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Two-Tier Latent Class IRT Models in R
by Silvia Bacci and Francesco Bartolucci

Abstract In analyzing data deriving from the administration of a questionnaire to a group of individu-
als, Item Response Theory (IRT) models provide a flexible framework to account for several aspects
involved in the response process, such as the existence of multiple latent traits. In this paper, we focus
on a class of semi-parametric multidimensional IRT models, in which these traits are represented
through one or more discrete latent variables; these models allow us to cluster individuals into homo-
geneous latent classes and, at the same time, to properly study item characteristics. In particular, we
follow a within-item multidimensional formulation similar to that adopted in the two-tier models,
with each item measuring one or two latent traits. The proposed class of models may be estimated
through the package MLCIRTwithin, whose functioning is illustrated in this paper with examples
based on data about quality-of-life measurement and about the propensity to commit a crime.

Introduction

Several fields of human knowledge require the measurement of unobservable constructs (or latent
traits) through ad hoc methods based on questionnaires consisting of multiple items having dichoto-
mously or ordered politomously scored response categories. This is the case of measurement of
customer satisfaction, quality-of-life, level of physical and/or psychological disabilities, ability in
certain subjects, and so on.

Item Response Theory (IRT) models (Hambleton and Swaminathan, 1985; Van der Linden and
Hambleton, 1997; Bartolucci et al., 2015) are well-known statistical models to deal with these data.
In their original formulation, these models are characterized by: (i) unidimensionality (i.e., only one
latent trait is assumed to be measured by all items); (ii) a parametric (usually normal) distribution for
the latent variables used to represent the trait of interest; and (iii) no effect of individual covariates on
this latent trait. These elements often turn out to be restrictive in modern applications and, therefore,
several extensions of IRT models have been proposed in the literature. Among the possible extensions,
in this paper we consider the class of multidimensional Latent Class (LC) IRT models proposed
by Bartolucci (2007) and von Davier (2008); see also Bacci et al. (2014). Models of this type are
characterized by: (i) multidimensionality, in the sense that more latent traits may be measured by the set
of items (Reckase, 2009); (ii) discreteness of the latent variables, so that homogeneous subpopulations
(or latent classes; Lazarsfeld and Henry, 1968; Goodman, 1974) of individuals are detected with respect
to the constructs measured by the questionnaire; and (iii) possible presence of individual covariates
affecting the probabilities to belong to each latent class.

In particular, we focus on a specific extension of IRT models based on within-item multidimension-
ality (Adams et al., 1997), which is characterized by items affected by more than one latent variable.
This is opposed to the more common between-item multidimensionality , where each item may mea-
sure only one latent variable as in the original approach of Bartolucci (2007). More in detail, the model
here proposed represents a discrete version of the item bifactor model and of the more general two-tier
IRT model (Bock et al., 1988; Gibbons and Hedeker, 1992; Gibbons et al., 2007; Cai, 2010; Cai et al.,
2011; Reise, 2012; Bonifay, 2015), based on a particular within-item multidimensional formulation
with each item loading on at most two latent variables that are mutually uncorrelated. With respect to
traditional item bifactor and two-tier models, which assume the normality of the latent variables, the
discreteness assumption increases the flexibility of the approach and allows us to cluster individuals
in homogeneous latent classes. Formann and Kohlmann (2002) propose a general approach based
on latent classes that includes the discrete two-tier model here proposed as special case. However,
different from the proposal of these authors, we let the class membership probability depend on
individual covariates and we also allow for more flexibility in terms of specification of model link
function. Limited to binary items, a recent example of application of the proposed two-tier LC-IRT
model is provided in Bacci and Bartolucci (2015) to jointly study certain students’ abilities and the
propensity to skipping item responses.

The procedures to estimate the proposed class of two-tier LC-IRT models are implemented in
the R package MLCIRTwithin (Bartolucci and Bacci, 2016), downloadable from http://CRAN.R-
project.org/package=MLCIRTwithin, whose illustration is the primary focus of the present paper. In
particular, we are interested in providing a detailed description of the main functions of this package,
named est_multi_poly_within and search.model_within, also through some applications.

The remainder of the paper is organized as follows. In the next section we provide the formulation
of the proposed class of two-tier LC-IRT models and, then, some details about likelihood inference
for these models. Furthermore, we describe the main functions implemented in the R package
MLCIRTwithin for model estimation. In the following, the functioning of the package is illustrated
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through two applications: the first one concerns the measurement of Heath-related Quality Of Life
(HQOL) on cancer patients and the second one is about the measurement of propensity to commit
crimes. Some final remarks conclude the work.

The class of models

The proposed class of models is formulated on the basis of two independent vectors of latent variables
representing the unobservable individual characteristics measured by the test items. For each unit
i = 1, . . . , n, these vectors are denoted by U i = (Ui1, . . . , UiD1 )

′ and V i = (Vi1, . . . , ViD2 )
′ and are

of dimension D1 and D2, respectively. Similarly to the item bifactor model, we assume that each
item response Yij, with i = 1, . . . , n and j = 1, . . . , r, where r is the number of items, may depend
on (and then measures) at most two latent variables, under the constraint that these two variables
do not belong to the same vector. This is formalized by introducing the disjoint subsets U1, . . . ,UD1

and V1, . . . ,VD2 of J = {1, . . . , r}, where U d1
contains the indices of the items depending on latent

variable Uid1
and Vd2 is the set of those depending on latent variable Vid2 . Equivalently, Yij depends on

Uid1
if and only if j ∈ U id1

and on Vid2 if and only if j ∈ V id2 . Note that, even if the subsets U1, . . . ,UD1

cannot overlap, and the same is assumed for V1, . . . ,VD2 , the same item j may belong both to a set
of the first type and to a set of the second type (within-item multidimensionality); more formally,
there may exist d1 and d2 such that j ∈ U d1

and j ∈ Vd2 . In practice, some items belonging to U d1
,

d1 = 1, . . . , D1, will be present also in Vd2 , d2 = 1, . . . , D2. With respect to the specification commonly
encountered in the literature on item bifactor and two-tier models, our proposal is more general, as
any value of D1 and D2 is allowed, whereas D1 = 1 (or, alternatively, D2 = 1) in the item bifactor
model and D1 = 2 (or, alternatively, D2 = 2) in the two-tier model. Moreover, components of U i are
allowed to be correlated; the same holds for components of V i.

An illustrative example of the above assumptions is provided in Figure 1, where D1 = 2, D2 = 1,
and four items out of r = 7 measure two latent traits (item 2 measures dimensions Ui1 and Vi1; items 3,
5, and 6 measure dimensions Ui2 and Vi1); the two dimensions Ui1 and Ui2 do not share any item.

Ui1

Yi1 Yi2

Ui2

Yi3 Yi4

Vi1

Yi5 Yi6 Yi7

Figure 1: Path diagram of the proposed two-tier model for two latent vectors with two and one
dimension, respectively, and seven items (U1 = {1, 2}, U2 = {3, 4, 5, 6}, V1 = {2, 3, 5, 6, 7}).

Adopting a semi-parametric approach for the latent distribution, the first latent vector U i is
assumed to have a discrete distribution based on k1 support points u1, . . . , uk1

and, in absence of
individual covariates, common mass probabilities λ1, . . . , λk1

. Similarly, the distribution of the second
latent vector V i has k2 support points v1, . . . , vk2 and, again in absence of individual covariates,
common mass probabilities π1, . . . , πk2 . In both cases, the support points identify classes of individuals
that are homogeneous with respect to the latent traits represented by U i and V i. Note that cases with
k1 = 1 or k2 = 1 detect a special situation in which vector of latent variables U i or V i, respectively, has
no role in explaining the observed item responses.

For binary response variables, the measurement model assumes that, for i = 1, . . . , n, j = 1, . . . , r,
h1 = 1, . . . , k1, and h2 = 1, . . . , k2,

logit p(Yij = 1|U i = uh1
, V i = vh2 ) = γ1j

D1

∑
d1=1

1{j ∈ U d1
}uh1d1

+ γ2j

D2

∑
d2=1

1{j ∈ Vd2}vh2d2 − β j, (1)

where 1{·} is the indicator function and γ1j, γ2j, and β j are suitable item parameters. As usual for IRT
models, γ1j and γ2j represent the discrimination power of item j with respect to the latent variables in
U i and V i, respectively, whereas β j denotes the difficulty level of item j. In the previous expression,
uh1d1

denotes the d1-th element of uh1
, whereas vh2d2 denotes the d2-th element of vh2 .

Different from traditional LC models characterized by constant mass probabilities, a more general
approach is based on assuming that the probabilities to belong to every latent class defined by the
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distribution of U i and V i depend on individual covariates, when such covariates are observed. For
this aim, we denote the vector of covariates for individual i = 1, . . . , n by X i and we assume that U i
and V i are conditionally independent given X i. Moreover, we adopt the following multinomial logit
parametrization (Formann, 2007) for each latent vector:

log
λh1

(xi)

λ1(xi)
= x′iδ1h1

, h1 = 2, . . . , k1, (2)

log
πh2 (xi)

π1(xi)
= x′iδ2h2 , h2 = 2, . . . , k2, (3)

with λh1
(xi) = p(U i = uh1

|X i = xi) and πh2 (xi) = p(V i = vh2 |X i = xi), where xi contains the
constant term. The vectors of coefficients δ1h1

and δ2h2 measure the effect of the covariates on the
logit to belong to class h1 = 2, . . . , k1 and h2 = 2, . . . , k2, with respect to class h1 = 1 and h2 = 1,
respectively. Alternatively, a global logit formulation may be adopted. This is related to a cumulative
logit formulation (Agresti, 2013), where the logits in equations (2) and (3) are substituted with

log
p(U i ≥ uh1

|X i = xi)

p(U i < uh1
|X i = xi)

= log
λh1

(xi) + . . . + λk1
(xi)

λ1(xi) + . . . + λh1−1(xi)
, h1 = 2, . . . , k1

and

log
p(V i ≥ vh2 |X i = xi)

p(V i < vh2 |X i = xi)
= log

πh2 (xi) + . . . + πk2 (xi)

π1(xi) + . . . + πh2−1(xi)
, h2 = 2, . . . , k2,

respectively. The main advantage of the global logit parametrization is the easier interpretation of the
regression coefficients that now refer to the effect of the covariates on the logit to belong to a specific
class (or higher) with respect to a lower class. However, this parameterization requires the latent
classes to be ordered according to a specific criterion (e.g., requiring an increasing trend of the support
points for a given dimension).

In the case of polytomously scored items with ordered categories indexed from 0 to lj − 1, the
model based on Equation (1) may be extended according to a global logit link function, so that a
graded response model (Samejima, 1969) results in:

log
p(Yij ≥ y|U i = uh1

, V i = vh2 )

p(Yij < y|U i = uh1
, V i = vh2 )

= γ1j

D1

∑
d1=1

1{j ∈ U d1
}uh1d1

+ γ2j

D2

∑
d2=1

1{j ∈ Vd2}vh2d2 − β jy. (4)

Alternatively, using a local logit link function, we may assume a partial credit model (Masters, 1982):

log
p(Yij = y|U i = uh1

, V i = vh2 )

p(Yij = y− 1|U i = uh1
, V i = vh2 )

= γ1j

D1

∑
d1=1

1{j ∈ U d1
}uh1d1

+ γ2j

D2

∑
d2=1

1{j ∈ Vd2}vh2d2 − β jy.

(5)

In the above expressions, y = 1, . . . , lj − 1 and the difficulty parameter β jy is now specific of item j
and response category y. A more parsimonious model is obtained by expressing β jy as the sum of two
components (rating scale parametrization; Andrich, 1978), that is,

β jy = β j + τy, j = 1, . . . , r; y = 1, . . . , lj − 1, (6)

so that the distance in terms of difficulty from category to category (i.e., τy) is the same for all items.
Note that the rating scale parametrization is allowed only when items have the same number of
response categories (i.e., lj = l, j = 1, . . . , r). For more details about the possible item parametrizations
in the presence of ordinal items see Bacci et al. (2014) and Bartolucci et al. (2015).

In order to ensure the identification of the proposed class of models, two necessary conditions
must hold. First, as usual in the IRT modeling, we must constrain one discriminant index to be equal
to 1 and one difficulty parameter to be equal to 0 for each dimension. More in detail, let jd1

be a
specific element of U d1

and jd2 a specific element of Vd2 for d1 = 1, . . . , D1 and d2 = 1, . . . , D2. Then
we assume γ1jd1

= 1, γ2jd2
= 1, and, when item difficulties are free, β jd1 1 = 0 and β jd2 1 = 0, whereas in

the presence of a rating scale parametrization we assume β jd1
= 0, β jd2

= 0, and τ1 = 0. In the case of
binary items, constraints on difficulties simplify to β jd1

= 0 and β jd2
= 0. Generally speaking, jd1

and
jd2 may be chosen in an arbitrary way, paying attention to select a different item for each dimension.
So, in the example illustrated in Figure 1, if we constrain item j = 1 for dimension Ui1 and item j = 3
for dimension Ui2, then for dimension Vi1 we may constrain any one of the items in the subset V1 with
the only exception of item j = 3. As an alternative to constraining item parameters, we may fix the
support points, as in the general diagnostic model of von Davier (2008).

A further identification condition requires that at least one item belongs to one of the subsets U d1
or
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to one of the subsets Vd2 ; more formally, the union of U1, . . . ,UD1 must be different from the union of
V1, . . . ,VD2 . In other words, we restrict γ1j = 0 or γ2j = 0 for at least one j and the maximum number
of items shared by U i and V i is equal to r− 1. Alternatively, we may skip this restrictive condition
by specifying in a suitable way linear constraints (e.g., equality restrictions) on some discriminant
parameters (for some examples see Cai, 2010; Cai et al., 2011).

To specify in a flexible way constraints on the support points and item parameters, we denote
the complete vectors of support points by u = (u11, u12, . . . , uk1D1

)′ for latent variable U i and v =
(v11, v12, . . . , vk2D2 )

′ for latent variable V i, the complete vectors of item discriminating indices as γ1 =
(γ11, . . . , γ1r)

′ for items affected by U i (then γ1j is missing if item j does not belong to U1, . . . ,UD1 )
and γ2 = (γ21, . . . , γ2r)

′ for items affected by V i (then γ2j is missing if item j does not belong to
V1, . . . ,VD2 ), and the complete vector of item difficulties as β = (β11, . . . , βr,lr−1)

′ (or β = (β1, . . . , βr)′

in the binary case). The corresponding vectors of free support points and free item parameters are
denoted by ũ, ṽ, γ̃1, γ̃2, and β̃, respectively. A wide range of linear constraints and fixed values of
the parameters are specified through a suitable definition of matrices Zu, Zv, Zγ1 , Zγ2 , and Zβ and
vectors zu, zv, zγ1 , zγ2 , and zβ, as follows:

u = Zuũ + zu, (7)

v = Zvṽ + zv, (8)

γ1 = Zγ1 γ̃1 + zγ1 , (9)

γ2 = Zγ2 γ̃2 + zγ2 , (10)

β = Zβ β̃ + zβ. (11)

For instance, according to the usual IRT parametrization with free support points and constraints on
the item parameters (i.e., one discriminant index equal to 1 and one difficulty parameter equal to 0
for each dimension), Zu and Zv are identity matrices of dimensions k1D1 × k1D1 and k2D2 × k2D2,
respectively, and zu and zv are null vectors. Moreover, matrices Zγ1 , Zγ2 , and Zβ are defined as
identity matrices without those columns corresponding to the constrained item parameters, whereas
zγ1 and zγ2 are vectors with ones in correspondence of constrained item discrimination parameters
and zeros otherwise; zβ is a vector of zeros. Further examples of specification of constraints on
model parameters are provided in the sequel, when the functioning of the estimation functions of the
proposed R package and an example on criminal data (Example 2) are illustrated.

Likelihood inference

The proposed two-tier LC-IRT model can be estimated by maximizing the marginal log-likelihood

`(η) =
n

∑
i=1

log Li(yi|xi), (12)

where η is the vector of free model parameters, that is, support points of U i and V i, item difficulty and
discrimination parameters, and regression coefficients for the covariates; in the previous expression,
yi = (yi1, . . . , yir)

′ is the vector of observed item responses for subject i. Due to the local independence
assumption, the marginal likelihood Li(yi|xi) for subject i (or manifest probability of yi) used in
equation (12) is given by:

Li(yi|xi) =
k1

∑
h1=1

k2

∑
h2=1

λh1
(xi)πh2 (xi)

r

∏
j=1

ph1h2 (yij),

where, ph1h2 (y) = p(Yij = y|U i = uh1
, V i = vh2 ), which depends on (1) in the case of binary items and

on (4) or (5) in the case of ordinal items, if a global logit or a local logit parametrization is adopted.

We maximize `(η) through the Expectation Maximization (EM) algorithm (Dempster et al., 1977),
which is based on alternating two steps until convergence:

E-step: the expected value of the complete data log-likelihood (i.e., the log-likelihood for the observed
and latent variables) is computed, given the current parameter vector η. In practice, this consists
in computing the posterior probability qh1h2i for h1 = 1, . . . , k1, h2 = 1, . . . , k2, and i = 1, . . . , n;
this is the probability that unit i belongs to latent class h1, according to the first vector of latent
variables, and to latent class h2, according to the second vector of latent variables, given the
observed data, that is, p(U i = uh1

, V i = vh2 |xi, yi). By the Bayes’ theorem we have that

qh1h2i =
λh1

(xi)πh2 (xi)∏r
j=1 ph1h2 (yij)

Li(yi|xi)
.
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The resulting complete data log-likelihood is, in expected value, equal to

`∗(η) =
k1

∑
h1=1

k2

∑
h2=1

n

∑
i=1

qh1h2i log

λh1
(xi)πh2 (xi)

r

∏
j=1

ph1h2 (yij)

 . (13)

M-step: the parameter vector η is updated by maximizing function (13) obtained at the previous
step. Note that single parameter subvectors of η may be updated separately, as this function
factorizes in three components involving the mass probabilities λh1

(xi), the mass probabilities
πh2 (xi), and the conditional response probabilities ph1h2 (yij), respectively. Iterative algorithms
of Newton-Raphson type are necessary to maximize all components (for details see Bacci and
Bartolucci, 2015, and references therein) with the exception of the first two in the case of absence
of individual covariates. In fact, in this case we have the following explicit expressions to update
the class weights:

λh1
=

1
n

k2

∑
h2=1

n

∑
i=1

qh1h2i, h1 = 1, . . . , k1,

πh2 =
1
n

k1

∑
h1=1

n

∑
i=1

qh1h2i, h2 = 1, . . . , k2.

Similar to the other iterative algorithms, the first iteration of the EM algorithm needs to be
initialized through suitable values for the model parameters that can be chosen according to certain
deterministic or random rules. A common problem with finite mixture models, and then with
the proposed model, is due to the presence of several local maximum points of the log-likelihood
function. Therefore, in order to avoid a solution that does not correspond to the global maximum, a
good practice consists in repeating the estimation process for a specific model a certain number of
times using random starting values and, in the presence of different values of the log-likelihood at
convergence, the solution corresponding to the highest log-likelihood value is selected.

A crucial point is that of model selection, mainly as concerns the choice of the number of support
points (or latent classes) for both latent vectors (i.e., k1 and k2). For this aim, a likelihood-ratio test
cannot be directly used, as the regularity conditions for having an asymptotic null distribution of
χ2-type are not satisfied for this type of test when it is applied to compare two models with different
values of k1 and k2. We then suggest to rely on suitable forms of penalization of the maximum
log-likelihood, such as the Akaike Information Criterion (AIC; Akaike, 1973), which is related to
Kullback-Leibler distance between the true density and the estimated density of a model. This criterion
is based on the following index:

AIC = −2ˆ̀(η) + 2#par,

with ˆ̀(·) denoting the estimated maximum log-likelihood and #par the number of free parameters.
Alternatively, we suggest the use of the Bayesian Information Criterion (BIC; Schwarz, 1978) based on
the index

BIC = −2ˆ̀(η) + log(n)#par.

According to both these criteria, one should select the model with the minimum value of AIC or BIC.

Other selection criteria may be based on the entropy, whose computation involves the individual
posterior probabilities. Entropy is a measure of the capability of the model to provide a neat partition
of the sample units, which is computed as

E = −
k1

∑
h1=1

k2

∑
h2=1

n

∑
i=1

qh1h2i log qh1h2i,

based on the posterior probabilities qh1h2i. If the components are well separated, the posterior probabil-
ities tend to define a clear partition of the units, assuming values close to one, and, as a consequence,
the entropy will be close to zero. Usually, the entropy is not directly used to assess the number of
support points and, to also account for the goodness of fit of the model, a normalized version of
entropy is used by Celeux and Soromenho (1996). This is defined as

NEC =
E

ˆ̀k1k2 − ˆ̀11
, k1 > 1, k2 > 1,

where ˆ̀k1k2 is the maximum log-likelihood of the model with k1 and k2 support points and ˆ̀11 is
the maximum log-likelihood value of the model with just one component for both latent variables.
According to this criterion, the optimal number of components is the one that minimizes the NEC
index. Note that NEC is not defined when k1 = k2 = 1, in which case NEC = 1 by convention.
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In practice, we propose to fit a series of models with similar specifications that distinguish one
other for values assigned to k1 and k2 and, then, to make comparisons through one or more of the
mentioned criteria. In more detail, given k1, we consider increasing values of k2 and, similarly, given
k2 we consider increasing values of k1 until AIC, BIC, or NEC do not start to increase and, then, the
previous value of support points is taken as the optimal one.

More in general, for certain values of k1 and k2 we suggest that the choice between two competing
models is driven by the likelihood-ratio test in the presence of nested models (i.e., when one model
is obtained by the other one through constraints on the parameters), whereas the selection criteria
above mentioned are suitable in the presence of non-nested models. The likelihood-ratio test is also
used to evaluate the global fit of a model, when this is compared with the saturated model, that is,
the largest model one can fit. Note that in the context at issue the saturated model is defined only
for model specifications without covariates. Other proposals, coming from the literature on logistic
regression models and on IRT models, consist of parametric and non-parametric tests that allow us
to verify specific hypotheses concerning, among others, the unidimensionality of the questionnaire,
the validity of the Rasch paradigm, the validity of the local independence assumption. In addition to
the global fit of a model, also item-specific fit statistics, which are usually based on the comparison
between observed and expected item responses, are useful to evaluate the goodness of each item and
the need of removing it from the questionnaire. For a wide review of the mentioned methods see
Bartolucci et al. (2015), Chap. 5.7, and the references therein.

Finally, in order to facilitate the interpretation of the results, we suggest to standardize the
estimated support points ûd1h1

and v̂d2h2 , so as to obtain latent variables that have mean 0 and variance
equal to 1, and coherently transform the estimated item parameters γ̂1j, γ̂2j, and β̂ jy.

Let µ̂Ud1
and σ̂Ud1

denote the mean and the standard deviation of ûd11, . . . , ûd1k1
and let µ̂Vd2

and σ̂Vd2
denote the mean and the standard deviation of v̂d21, . . . , v̂d2k2 . Then, ûd1h1

and v̂d2h2 are
standardized as follows:

û∗d1h1
=

ûd1h1
− µ̂Ud1

σ̂Ud1

, d1 = 1, . . . , D1, (14)

v̂∗d2h2
=

v̂d2h2 − µ̂Vd2

σ̂Vd2

, d2 = 1, . . . , D2. (15)

Moreover, γ̂1j, γ̂2j, and β̂ jy are transformed as

γ̂∗1j = γ̂1j

D1

∑
d1=1

1{j ∈ U d1
}σ̂Ud1

, (16)

γ̂∗2j = γ̂2j

D2

∑
d2=1

1{j ∈ Vd2}σ̂Vd2
, (17)

β̂∗jy = β̂ jy − γ̂1j

D1

∑
d1=1

1{j ∈ U d1
}µ̂Ud1

− γ̂2j

D2

∑
d2=1

1{j ∈ Vd2}µ̂Vd2
, (18)

for j = 1, . . . , r and y = 0, . . . , lj − 1, with lj = 2 for a dichotomously scored item.

The R package MLCIRTwithin

The class of two-tier LC-IRT models previously described may be estimated through the R package
MLCIRTwithin; for technical details see the official documentation provided in CRAN (Bartolucci
and Bacci, 2016).

Before illustrating the main functions in the package at issue, it is worth mentioning some alter-
native R packages, which estimate models with a formulation resembling the one proposed. A first
example is provided by the R package MultiLCIRT (Bartolucci et al., 2014, 2016), whose functions are
similar, in terms of input and output, to those of MLCIRTwithin; however, MultiLCIRT is limited
to the estimation of LC-IRT models under between-item multidimensionality, in the sense that items
loading on more than one latent trait are not allowed and then a single vector of latent variables U i
is used. Moreover, constraints on the item parameters or fixed values for the support points cannot
be specified. Package CDM (Robitzsch et al., 2016) performs the estimation of the class of cognitive
diagnostic models (Tatsuoka, 1983; Jang, 2008; Rupp and Templin, 2008), in which the proposed,
discrete, two-tier model may be included. The class of models estimated through CDM may be
characterized, among the main options, by normally distributed latent traits or, alternatively, discrete
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latent traits whose support points may be freely estimated or may be specified as fixed values. As
concerns item parameters, item-by-category specific slopes as well as linear constraints are allowed.
However, different from our proposal, individual covariates affecting the class membership as well
as the specification of a global logit link are not allowed. Moreover, attention must be paid to the
interpretation of the latent classes, which are defined in a quite different and general way with respect
to our proposal. The estimation of within-item multidimensional IRT models and item bifactor models
is also performed through packages mirt (Chalmers, 2012; Chalmers et al., 2016) and flirt (Jeon et al.,
2014), under the assumption of normally distributed latent variables. Package mirt also allows for dis-
crete latent variables; however, in such a case just the multidimensional LC model without a classical
IRT parametrization (mainly, without item difficulties) and without covariates is estimated. A major
flexibility with respect to mirt is provided by package covLCA (Bertrand and Hafner, 2013), which
is focused on multidimensional LC models with covariates affecting both the class membership and
the manifest variables. Other two packages to mention are lavaan (Rosseel et al., 2015) and OpenMx
(Neale et al., 2016) that perform the estimation of the wide class of structural equation models, in
which unidimensional and multidimensional IRT models are included, under the assumption of
normality of the latent variables. Finally, we mention two general and flexible softwares that may
accommodate the estimation of the model here proposed, that is, Mplus (Muthén and Muthén, 2012)
and LatentGold (Vermunt and Magidson, 2005): the former is tailored to the estimation of latent
variable models under the assumption of normal or discrete latent variables, whereas the latter is
focused on LC models. In both cases, the user may formulate IRT models with a variety of features,
among which multidimensionality and presence of covariates.

Functions est_multi_poly_within and est_multi_poly_between

The main function of MLCIRTwithin is est_multi_poly_within, which performs the maximum
likelihood estimation of the model specified through equations (1) to (5), allowing for several options.

Function est_multi_poly_within requires the following main input arguments:

• S: matrix of item response configurations listed row-by-row; items with a different number of
categories and missing responses are allowed.

• yv: vector of the frequencies of every row in S; by default, yv is a vector of ones.

• k1: number of latent classes for latent variable U i.

• k2: number of latent classes for latent variable V i.

• X: matrix of covariates affecting the class weights; by default, X is NULL.

• start: method of initialization of the algorithm: "deterministic" (default value) for values
chosen according to a deterministic rule, "random" for values randomly drawn from suitable
distributions (continuous uniform between 0 and 1 for the class weights and standard normal
for the other parameters), and "external" for values provided by the researcher through inputs
Phi, ga1t, ga2t, De1, and De2.

• link: type of link function: "global" for global logits as in Equation (4) and "local" for local
logits as in Equation (5). With binary items, any type of link function may be specified, resulting
in a Rasch (Rasch, 1960) or a two-parameter logit (2PL; Birnbaum, 1968) type model depending
on the value assigned to input disc.

• disc: constraints on the discriminating item parameters: FALSE (default value) for parameters
γ1j and γ2j all equal to one and TRUE for free values. With binary items, option disc = FALSE
results in a Rasch model, whereas a 2PL model is obtained when option disc = TRUE.

• difl: constraints on the difficulty item parameters, in the case of ordinal polytomously scored
items: FALSE (default value) for unconstrained parameters β jy and TRUE for a rating scale
parametrization as in (6). This option is not allowed in the presence of items with a different
number of response categories.

• multi1: matrix with one row for each component of U i and elements in each cell indicating the
indices of the items measuring the dimension corresponding to that row; the number of rows
is D1 and that of columns equals the number of items in the largest dimension. If dimensions
differ in the number of items, zeros are inserted in the empty cells. Each item corresponding to
the first column of each row has discriminating index constrained to 1 and difficulty parameter
constrained to 0 to ensure model identifiability. For instance, in the presence of 6 items, with
items 1 and 2 measuring the first dimension of latent variable U i and the remaining items 3 to 6
measuring another dimension of U i, as in Figure 1, matrix multi1 is specified as

(multi1 <- rbind(c(1,2,0,0), c(3,4,5,6)))
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[,1] [,2] [,3] [,4]
[1,] 1 2 0 0
[2,] 3 4 5 6

• multi2: same as multi1 for latent variable V i. For model identifiability, attention must be payed
on the item indices in the first column of multi2 that cannot be the same as the indices in the
first column of multi1. For instance, in the situation described in Figure 1, the matrix multi2
specified as

(multi2 <- c(7, 2:3, 5:6))

[1] 7 2 3 5 6

implies γ27 = 1 and β7 = 0. A particular case is when the intersection between matrices multi1
and multi2 is empty: in such a case a between-item multidimensional LC-IRT model is specified,
based on two completely independent latent vectors U i and V i.

• fort: if TRUE, Fortran routines are used whenever possible to speed up computation.

• tol: level of tolerance of the algorithm in terms of relative difference between the log-likelihood
corresponding to two consecutive algorithm iterations (default value is 10−10).

• disp: if TRUE, the log-likelihood evolution is displayed step-by-step.

• output: if TRUE, additional output arguments are returned.

• out_se: if TRUE, standard errors and variance-covariance matrix for the parameter estimates are
returned.

• glob: type of parametrization for the sub-model assumed on the individual-specific latent class
weights: FALSE (default value) for a multinomial logit model as in (2)-(3) and TRUE for a global
logit model.

• Zth1, Zth2: matrices for the specification of linear constraints on the support points, according
to (7) and (8), respectively; by default these are identity matrices with a number of rows (and
columns) equal to the total number of support points, that is, k1D1 and k2D2, respectively.

• zth1, zth2: vectors of length k1D1 and k2D2, respectively, for the specification of linear con-
straints and fixed support points, according to (7) and (8), respectively; by default they are null
vectors.
Under the default specifications of Zth1, Zth2, zth1, and zth2, the support points are freely
estimated and, for the model identification, certain constraints are assumed on the item parame-
ters. On the contrary, to fix the values of the support points, Zth1, Zth2, zth1, and zth2 must be
supplied by the user. For instance, in the situation described in Figure 1 under the assumption
k1 = k2 = 2, we define u = (−1,−1, 1, 1)′ and v = (−0.5, 0.5)′ as follows:

Zth1 <- matrix(0,2*2,0)
zth1 <- c(rep(-1, times=2), rep(1, times = 2))
Zth2 <- matrix(0,2,0)
zth2 <- c(-0.5,0.5)

• Zga1, Zga2, Zbe: matrices for the specification of linear constraints on the vectors of item
parameters γ1, γ2, and β, as in (9), (10) and (11), respectively. In more detail, the number
of rows of Zga1 and Zga2 is equal to the number of non-null entries in multi1 and multi2,
respectively, and coincides with the length of vectors γ1 and γ2; whereas the number of rows of
Zbe corresponds to the total number of item difficulties and coincides with the length of vector
β. The number of columns of Zga1, Zga2, Zbe is equal to the total number of free parameters,
corresponding to the length of vectors γ̃1, γ̃2, and β̃, respectively. By default these are identity
matrices without those columns corresponding to the constrained parameters. For instance, in
the situation described in Figure 1 with the usual IRT constraints γ11 = γ13 = 1 and γ27 = 1
resulting from matrices multi1 and multi2 defined above, and β1 = β3 = β7 = 0 in the case of
binary items, the following matrices are used by default in function est_multi_poly_within:

(Zga1 <- diag(6)[, -c(1,3)])
[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0
[2,] 1 0 0 0
[3,] 0 0 0 0
[4,] 0 1 0 0
[5,] 0 0 1 0
[6,] 0 0 0 1
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(Zga2 <- diag(5)[, -5])

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
[5,] 0 0 0 0

(Zbe <- diag(7)[, -c(1,3,7)])

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 1 0 0 0
[3,] 0 0 0 0
[4,] 0 1 0 0
[5,] 0 0 1 0
[6,] 0 0 0 1
[7,] 0 0 0 0

Whenever we are interested in introducing further constraints, then the matrices at issue must
be supplied by the user. For instance, to restrict γ14 = γ15, then matrix Zga1 must be defined as

Zga1 <- diag(6)[ , -c(1, 3, 5)]; Zga1[5, 2] <- 1
Zga1

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 1 0 0
[3,] 0 0 0
[4,] 0 1 0
[5,] 0 1 0
[6,] 0 0 1

• zga1, zga2, and zbe: vectors whose length is equal to the number of rows of Zga1, Zga2, and Zbe,
respectively. In other words, length of zga1, zga2, and zbe is given by the number of elements
in γ1, γ2, and β. The suitable specification of these vectors, combined with that of matrices Zga1,
Zga2, and Zbe, allows for linear constraints and fixed values of the item parameters, as in (9),
(10), and (11). By default, zga1 and zga2 are vectors with elements 1 for each constrained item
and 0 otherwise; by default zbe is a null vector. For instance, in the situation depicted in Figure
1 and matrices multi1 and multi2, default values assumed for vectors at issue are

zga1 <- c(1, 0, 1, 0, 0, 0)
zga2 <- c(0, 0, 0, 0, 1)
zbe <- rep(0, times = 7)

Any other constraint may be defined by modifying in a suitable way these three vectors and
matrices Zga1, Zga2, Zbe. For instance, if we are interested in fixing the difficulty of (binary)
item 4 to be equal to 2 (i.e., β4 = 2), then we define Zbe and zbe as follows:

Zbe <- diag(7)[, -c(1,3,4,7)]
Zbe

[,1] [,2] [,3]
[1,] 0 0 0
[2,] 1 0 0
[3,] 0 0 0
[4,] 0 0 0
[5,] 0 1 0
[6,] 0 0 1
[7,] 0 0 0

zbe <- c(0, 0, 0, 2, 0, 0, 0)

Function est_multi_poly_within supplies the following output:

• piv1 and piv2: vectors of the estimated weights of latent classes for U i and V i, respectively;
in the presence of individual covariates, these are averages of the individual-specific mass
probabilities.
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• Th1 and Th2: matrices of estimated and constrained support points for each dimension (by row)
and each latent class (by column) for U i and V i, respectively.

• Bec: matrix of estimated and constrained item difficulty parameters; exact zeros correspond to
identifiability constraints.

• ga1c and ga2c: vectors of estimated and constrained item discriminating parameters for U i and
V i, respectively; exact ones correspond to identifiability constraints and NA to items that do not
load on the latent variable.

• th1t, th2t, bet, ga1t, and ga2t: estimated parameters (i.e., parameters without constraints)
related to Th1,Th2,Bec,ga1c,ga2c, respectively.

• Th1s, Th2s, Becs, ga1cs, and ga2cs: standardized values of Th1, Th2, Bec, ga1c, and ga2c,
respectively; in Th1s and Th2s classes are re-ordered according to the increasing values of the
support points for the first dimension.

• piv1s and piv2s: the same as piv1 and piv2, but re-ordered according to Th1s and Th2s.

• fv1 and fv2: vectors indicating the reference items for each dimension of U i and V i, respectively.

• Phi: conditional response probabilities for every item and each pair of latent classes of U i and
V i.

• De1 and De2: matrices of estimated regression coefficients for the model on the class weights
for U i and V i, respectively, in the presence of individual covariates; for each covariate and the
constant term, the number of estimated coefficients is equal to the number of latent classes
minus one.

• Piv1, Piv2, Pp1, Pp2, and lkv: optional output (obtained if output = TRUE) referred to the
matrices of weights for every covariate configuration for latent variables U i and V i, the matrices
of the posterior probabilities for each response configuration and latent class for latent variables
U i and V i, and the values of the log-likelihood during the estimation process, respectively.

• XX1dis and XX2dis: design matrices for the covariates affecting the first and the second vector
of latent variables, respectively (optional output obtained if output = TRUE).

• lk: value of the log-likelihood at convergence.

• np: number of estimated model parameters.

• aic, bic, and ent: AIC, BIC, and entropy indices, respectively.

• seDe1, seDe2, seTh1, seTh2, seBec, sega1, sega2, seth1t, seth2t, sebet, sega1t, sega2t, and Vn:
standard errors of the corresponding estimated parameters and estimated variance-covariance
matrix (if out_se = TRUE).

Some relevant commands to display output from function est_multi_poly_within are based
on the S3 methods summary for the main estimates; coef and confint for the point estimates and
confidence intervals (at a specified level of confidence) of support points, item parameters, and
regression coefficients; logLik for the value of log-likelihood at convergence; and vcov for the estimated
variance-and-covariance matrix.

Another relevant function of package MLCIRTwithin is est_multi_poly_between, which per-
forms the maximum likelihood estimation of an LC-IRT model under between-item multidimensional-
ity. The main differences with respect to function est_multi_poly of the R package MultiLCIRT are
that the latter does not allow for items with a different number of response categories and refers to a
slightly different specification of item difficulties (for details see Bacci et al., 2014).

Input arguments required by est_multi_poly_between are very similar to those of function
est_multi_poly_within. The main difference is that only one vector of latent variables is involved
in the model specification. Consequently, the number of latent classes (input k) is common to all the
dimensions and the multidimensional structure of the items is specified through one matrix (input
multi), having one row for each dimension. Constraints on model parameters are also possible through
a suitable definition of arguments Zth, zth, Zbe, zbe, Zga, and zga, whose functioning is the same as
the corresponding arguments in function est_multi_poly_within. The function provides as its main
output argument a vector of estimated average weights of the latent classes (output piv) and a matrix
of estimated support points for each dimension and each latent class of the latent trait before (output
Th) and after the standardization (output Ths). Besides, a matrix of difficulty item parameters (outputs
Bec and, in the case of standardization, Becs), a vector of discriminating indices (output gac and, in the
case of standardization, gacs), and a matrix of regression coefficients (output De) are provided, other
than other output arguments similar to those above described for est_multi_poly_within, included
the S3 methods.

Finally, we clarify that a model specification of type

out1 <- est_multi_poly_between(S, k = k0, link = "global", multi = rbind(1:3, 4:6)),
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with k0 latent classes, is substantially different from a model specification of type

out2 <- est_multi_poly_within(S, k1 = k0, k2 = k0, link = "global", multi1 = c(1:3),
multi2 = c(4:6)).

In fact, the model corresponding to out2 involves two completely independent latent variables, having
incidentally the same number of latent classes: thus, an individual belonging to a specific class (say,
class 1) according to the first latent variable may belong to any latent class under the second latent
variable (say, class 2). On the contrary, model out1 involves only one latent variable decomposed in
two dimensions: thus, belonging to a given latent class under one dimension implies belonging to
the same class under the other dimension. Overall, model out2 has k0−1 free parameters more than
model out1.

Functions search.model_within and search.model_between

As outlined in Section “Likelihood inference,” the selection of a two-tier LC-IRT model may be a quite
demanding procedure, requiring the choice of the number of support points for the latent variables
and a check for the possible presence of local maxima. Function search.model_within allows us to
search for the global maximum of the log-likelihood of a model with a specific formulation (in terms
of multidimensional structure, link function, and constraints on the item parameters) given a vector of
possible number of latent classes to try for.

In practice, function search.model_within applies function est_multi_poly_within a given num-
ber of times for each pair of values for k1 and k2, initializing the estimation algorithm with deterministic
and random values of the model parameters and holding, for each pair of k1 and k2, that model with
the highest value of the log-likelihood at convergence. To make the entire process computationally
less demanding, the search of the global maximum may be performed with a relatively large tolerance
level for checking convergence of the estimation algorithm. Then, in order to improve the precision of
parameters estimates, the estimates provided by the model with the best value of the log-likelihood are
used as starting values in the last step of the model selection process, using an augmented tolerance
level. Note that when k1 = 1 or k2 = 1 the model estimation is actually performed by the function
est_multi_poly_between, which is automatically retrieved by search.model_within.

The function at issue requires the following main input arguments:

• S, yv, X, link, disc, difl, multi1, multi2, fort, disp, output, out_se, Zth1, zth1, Zth2, zth2,
Zbe, zbe, Zga1, zga1, Zga2, and zga2: are the same as in function est_multi_poly_within.

• kv1 and kv2: vectors of number of latent classes to try for latent variable U i and V i, respectively;
single values are also allowed for.

• tol1 and tol2: tolerance levels (default value are 10−6 and 10−10, respectively) for checking
convergence of the algorithm as relative difference between consecutive log-likelihoods. The
value of tol1 is used for checks based on deterministic and random starting values, whereas
the value of tol2 is used for improving the precision of estimates for the model with the best
log-likelihood level.

• nrep: constant value that drives the number of estimations of each model with random starting
values, given by nrep(k1k2 − 1); the default value for nrep is 2. In the case of nrep equal to 0,
only the estimation with deterministic starting values is performed.

Note that if single values for kv1 and kv2 are specified and nrep equals 0, function search.model_within
performs just one call of function est_multi_poly_within (or function est_multi_poly_between if
kv1 or kv2 equal 1) with option start = "deterministic".

Function search.model_within supplies the following output:

• aicv, bicv, and necv: vectors of AIC, BIC, and NEC indices, respectively, for each of the
estimated models.

• errv: trace of any error occurred during the estimation process.

• lkv: values of log-likelihood at convergence for each of the estimated models.

• out.single: output of each single model, similar to the output of est_multi_poly_within, with
the addition of values of k1 (output k1); k2 (output k2); and the sequence of log-likelihoods
(output lktrace) for the deterministic start, for each random start, and for the final estimation
provided by a tolerance level equal to tol2 (if tol2 > tol1).

Finally, we outline that a function with input and output arguments similar to those of the
function search.model_within is available to perform the model selection in the case of between-item
multidimensional LC-IRT models. This function is named search.model_between and it relies on
est_multi_poly_between.
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Examples in R

In the following we illustrate package MLCIRTwithin through two data analysis examples. In
Example 1 we describe the model selection procedure, as well as the interpretation of the output,
considering a set of ordered items measuring two latent variables. In Example 2, the specification of
constraints on the support points and on the item parameters is illustrated through the analysis of
data concerning repeated item responses along two time occasions. The detailed software scripts to
implement the two examples, named Example1.R and Example2.R, are available in the Supplementary
Online Material at https://sites.google.com/site/bartstatistics/sm_mlcirtwithin.zip.

Example 1: analysis of multidimensionality

Data set SF12_nomiss, already provided in the R package MLCIRTwithin, refer to a sample of 493
oncological Italian patients who were asked to fill in the Italian validated Short Form 12 version 2
questionnaire (SF-12; Stewart and Ware, 1992; Ware et al., 2002) concerning the assessment of HQOL.
The questionnaire is comprised by 12 items having five ordered response modalities, except items
2 and 3 having only three modalities; a high score means a worse level of HQOL and vice-versa
(note that, in the original scoring system, modalities of items 9 and 10 are reversed). Also the age is
available for each patient. In the following we show the first few records of the data set and the related
summaries.

library(MLCIRTwithin)

data(SF12_nomiss)
head(SF12_nomiss)

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 age
1 1 0 1 1 0 2 2 2 1 1 1 0 74.94593
2 0 0 1 1 2 1 2 1 0 2 1 1 84.49829
3 1 1 1 2 1 0 0 2 1 1 1 1 77.44285
4 3 2 2 4 4 4 4 3 4 4 4 4 80.55305
6 1 1 2 2 2 2 2 2 2 2 2 2 81.68104
7 1 0 1 3 2 2 1 2 1 2 1 3 78.55168

str(SF12_nomiss)

'data.frame': 493 obs. of 13 variables:
$ Y1 : num 1 0 1 3 1 1 1 1 2 2 ...
$ Y2 : num 0 0 1 2 1 0 0 2 1 1 ...
$ Y3 : num 1 1 1 2 2 1 1 2 1 2 ...
$ Y4 : num 1 1 2 4 2 3 1 3 2 3 ...
$ Y5 : num 0 2 1 4 2 2 2 2 2 3 ...
$ Y6 : num 2 1 0 4 2 2 2 2 3 3 ...
$ Y7 : num 2 2 0 4 2 1 1 2 3 3 ...
$ Y8 : num 2 1 2 3 2 2 2 1 3 3 ...
$ Y9 : num 1 0 1 4 2 1 2 3 3 3 ...
$ Y10: num 1 2 1 4 2 2 1 2 2 2 ...
$ Y11: num 1 1 1 4 2 1 2 1 4 3 ...
$ Y12: num 0 1 1 4 2 3 1 2 3 3 ...
$ age: num 74.9 84.5 77.4 80.6 81.7 ...

# For the description of each item see the online documentation
?SF_nomiss

According to the main current literature (see, mainly, Ware et al., 2002), the SF-12 questionnaire
may be used to properly evaluate two main aspects of HQOL: physical and emotional. The standard
scoring algorithm for summarizing these two latent dimensions is based on an orthogonal factor
analysis, on the basis of which positive and negative weights are assigned to each item. More in detail,
items 1 to 5 and item 8 have positive weights for physical HQOL and negative weights for emotional
HQOL, whereas items 6, 7, 9, 11, and 12 have negative weights for physical HQOL and positive
weights for emotional HQOL; item 10 has positive weights for both components. According to this
scoring system, the scores of physical and emotional HQOL result by a suitable weighted average of
the item responses.
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A low score on physical HQOL has the following meaning (Ware and Gandek, 1998): substantial
limitations in self-care, physical, social and role activities; severe bodily pain; frequent tiredness;
health rated as poor. On the contrary, a high level of physical component corresponds to: no physical
limitations, disabilities or decrements in well-being; high energy level; health rated as excellent. As
regards the emotional component, a low score implies: frequent psychological distress, social and role
disability due to emotional problems; health rated poor. On the other hand, a high level of emotional
component corresponds to: frequent positive affect; absence of psychological distress and limitations
in usual social activities due to emotional problems; health rated excellent.

The main drawback of the above algorithm based on the orthogonal factor analysis is that the
summary score may be inconsistent due to weights of opposite sign for the same items, as higher
emotional health scores drive physical health scores down and, similarly, higher physical health scores
drive emotional health scores down (Farivar et al., 2007). An alternative approach for clustering
patients according to their physical and emotional health status is based on IRT analysis (see, among
others, Hays et al., 1993). In such a context, we analyze the multidimensional structure of SF-12
questionnaire through a two-dimensional model allowing items measuring both latent variables. In
more detail, we compare several plausible multidimensional structures, defined through the following
matrices, with the first one referred to the physical HQOL and the second one referred to the emotional
HQOL:

Type 1: within-item multidimensional model with two independent latent variables and no shared
item; items are allocated according to the sign of weights resulting by the factor analysis
mentioned above:

(multi1_dim1 <- c(1:5, 8))

[1] 1 2 3 4 5 8

(multi1_dim2 <- c(6:7, 9:12))
[1] 6 7 9 10 11 12

Type 2: model with two latent variables sharing items that do not explicitly affect a specific dimension

(multi2_dim1 <- c(1:5, 8:12))

[1] 1 2 3 4 5 8 9 10 11 12

(multi2_dim2 <- c(6:12, 1))

[1] 6 7 8 9 10 11 12 1

Type 3: multidimensional structure similar to the previous one, but with three items (9, 10, and 11)
assigned only to the emotional HQOL

(multi3_dim1 <- c(1:5, 8, 12))

[1] 1 2 3 4 5 8 12

(multi3_dim2 <- c(6:12, 1))

[1] 6 7 8 9 10 11 12 1

Type 4: multidimensional structure similar to that defined through multi21 and multi22, but one
more item (number 8), concerning the presence of pain, is assigned only to physical HQOL,
since pain is usually intended in terms of physical health (i.e., bodily pain)

(multi4_dim1 <- c(1:5, 8, 12))

[1] 1 2 3 4 5 8 12

(multi4_dim2 <- c(6:7, 9:12, 1))

[1] 6 7 9 10 11 12 1

The allocation of every item according to one of the above proposed structures is suggested by the
more or less explicit reference of the item text to physical or emotional component of HQOL (or to
both of them).

Considering the possible multidimensional structures above defined, we focus on models with
global logit link function and free discriminating item parameters; also the effect of age on the mass
probabilities is investigated.
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# Item responses and covariates
S <- SF12_nomiss[ , 1:12]
X <- SF12_nomiss[ , 13]

For each type of multidimensional structure, we select the optimal number of latent classes on
the basis of BIC index according to the procedure described in Section “Likelihood inference”. Also
the check of local maxima solutions follows the same lines described therein. For these aims we use
function search.model_within, as follows:

### Model selection
maxk1 <- 6
maxk2 <- 6

tol1 <- 10^-3
tol2 <- 10^-6

# Multidimensional structure of Type 1
set.seed(0)
out1 <- search.model_within(S, kv1 = 1:maxk1, kv2 = 1:maxk2, X = X, link = "global",

disc = TRUE, multi1 = multi1_dim1, multi2 = multi1_dim2,
fort = TRUE, tol1 = tol1, tol2 = tol2, nrep = 1)

# Multidimensional structure of Type 2
set.seed(0)
out2 <- search.model_within(S, kv1 = 1:maxk1, kv2 = 1:maxk2, X = X, link = "global",

disc = TRUE, multi1 = multi2_dim1, multi2 = multi2_dim2,
fort = TRUE, tol1 = tol1, tol2 = tol2, nrep = 1)

# Multidimensional structure of Type 3
set.seed(0)
out3 <- search.model_within(S, kv1 = 1:maxk1, kv2 = 1:maxk2, X = X, link = "global",

disc = TRUE, multi1 = multi3_dim1, multi2 = multi3_dim2,
fort = TRUE, tol1 = tol1, tol2 = tol2, nrep = 1)

# Multidimensional structure of Type 4
set.seed(0)
out4 <- search.model_within(S, kv1 = 1:maxk1, kv2 = 1:maxk2, X = X, link = "global",

disc = TRUE, multi1 = multi4_dim1, multi2 = multi4_dim2,
fort = TRUE, tol1 = tol1, tol2 = tol2, nrep = 1)

We advise that the entire estimation process may take a very long computational time; then, we
suggest to reduce the tolerance level of the algorithm (we adopted 10−3 instead of the default value
10−6 for argument tol1 and 10−6 instead of the default value 10−10 for argument tol2) and the
number of repetitions with random initializations (we specified nrep = 1 instead of the default
value nrep = 2). Outputs out1, out2, out3, and out4 are contained in the file ‘Example1.RData’,
available in the supplementary online material at https://sites.google.com/site/bartstatistics/
sm_mlcirtwithin.zip.

In order to select the optimal model, values of BIC index are displayed in the following 36-by-4
matrix, having one row for each model and one column for each multidimensional structure:

# BIC indices
BIC <- cbind(out1$bicv, out2$bicv, out3$bicv, out4$bicv)
colnames(BIC) <- c("Type 1", "Type 2", "Type 3", "Type 4")
k1 <- rep(1:6, times = 1, each = 6)
k2 <- rep(1:6, times = 6)
BIC <- cbind(k1, k2, BIC)
BIC

k1 k2 Type 1 Type 2 Type 3 Type 4
[1,] 1 1 16041.95 16041.95 16041.95 16041.95
[2,] 1 2 14952.57 14758.90 14758.90 14857.40
[3,] 1 3 14637.43 14397.05 14397.05 14523.30
[4,] 1 4 14457.90 14186.90 14186.90 14323.75
[5,] 1 5 14457.16 14182.29 14182.29 14322.70
[6,] 1 6 14456.62 14181.76 14181.76 14323.05
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[7,] 2 1 15245.74 14755.76 15106.47 15106.47
[8,] 2 2 14180.93 14010.29 14071.65 14097.89
[9,] 2 3 13865.85 13721.04 13750.05 13784.53
[10,] 2 4 13686.27 13543.49 13554.24 13595.26
[11,] 2 5 13685.48 13543.77 13553.30 13599.42
[12,] 2 6 13684.91 13559.40 13563.59 13604.91
[13,] 3 1 14945.39 14292.43 14748.77 14748.77
[14,] 3 2 13880.61 13674.91 13783.16 13791.13
[15,] 3 3 13565.50 13435.72 13482.17 13495.04
[16,] 3 4 13385.96 13291.34 13303.73 13319.80
[17,] 3 5 13385.83 13294.18 13306.15 13324.50
[18,] 3 6 13392.96 13308.42 13318.83 13334.18
[19,] 4 1 14897.97 14183.55 14678.01 14678.01
[20,] 4 2 13837.48 13606.69 13728.08 13732.33
[21,] 4 3 13522.40 13369.83 13441.26 13451.80
[22,] 4 4 13342.82 13245.49 13262.09 13271.06
[23,] 4 5 13342.45 13251.35 13269.85 13277.34
[24,] 4 6 13341.56 13265.77 13271.07 13293.80
[25,] 5 1 14858.93 14122.61 14610.54 14610.54
[26,] 5 2 13851.00 13549.28 13744.75 13674.28
[27,] 5 3 13538.57 13353.08 13383.57 13387.67
[28,] 5 4 13356.25 13196.32 13215.00 13219.66
[29,] 5 5 13298.70 13207.16 13216.58 13226.12
[30,] 5 6 13298.20 13212.85 13237.74 13242.02
[31,] 6 1 14932.45 14110.19 14613.70 14613.70
[32,] 6 2 13805.78 13557.76 13683.30 13683.43
[33,] 6 3 13495.08 13339.91 13393.67 13410.61
[34,] 6 4 13311.17 13205.40 13231.35 13230.88
[35,] 6 5 13312.05 13214.68 13237.86 13240.88
[36,] 6 6 13310.90 13222.19 13241.50 13243.07

On the basis of the above matrix we observe that the minimum value of the BIC index, that is,
13196.32, is displayed in column 2, denoting the multidimensional structure of type 2, and row 28,
which refers to models with k1 = 5 and k2 = 4 latent classes. The output of the selected model is
contained in the object out2$out.single[[28]].

# Minimum BIC
min(BIC[ , 3:6])

[1] 13196.32

# Detect model with the minimum BIC
arrayInd(which.min(BIC[ , -c(1:2)]), .dim = dim(BIC))

[,1] [,2]
[1,] 28 2

# Number of support points for the best model
out2$out.single[[28]]$k1

[1] 5

out2$out.single[[28]]$k2
[1] 4

# Selected model
outsel = out2$out.single[[28]]

We also observe that the same number of support points is selected for the other multidimensional
structures with shared items (i.e., structures of types 3 and 4).

# Minimum BIC and selected model for multidimensional structures of types 1, 3, 4
min(BIC[, "Type 1"])

[1] 13298.2
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which.min(BIC[ ,"Type 1"])

[1] 30

min(BIC[, "Type 3"])

[1] 13215

which.min(BIC[ ,"Type 3"])

[1] 28

min(BIC[, "Type 4"])

[1] 13219.66

which.min(BIC[ ,"Type 4"])

[1] 28

After selecting the number of latent classes and the type of within-item multidimensional structure,
we estimate again the selected model out with option out_se = T for the computation of standard
errors. To reduce the computational time, we use function est_multi_poly_within with option start
= "external" and specified as input for options Phi, ga1c, ga2c, De1, and De2 the corresponding
output from the selected model.

# Re-estimate model to compute standard errors
out <- est_multi_poly_within(S = S, k1 = outsel$k1, k2 = outsel$k2, X = X,

start = "external",
multi1 = multi2_dim1, multi2 = multi2_dim2,
Phi = outsel$Phi, ga1t = outsel$ga1t, ga2t = outsel$ga2t,
De1 = outsel$De1, De2 = outsel$De2,
link = "global", disc = TRUE, fort = TRUE, output = TRUE,
out_se = TRUE, disp = TRUE)

Details of the output of the estimated model may be displayed through the usual methods summary,
coef, and confint.

### Display output of the estimated model
# summary(out)
# coef(out)
# confint(out)

# Estimates of support points and average mass probabilities for physical HQOL
lv1 <- rbind(out$Th1, t(out$piv1))
rownames(lv1) <- c("Physical HQOL", "Average prob.")
round(lv1, 3)

1 2 3 4 5
Physical HQOL 0.823 1.684 2.854 0.093 -2.024
Average prob. 0.199 0.387 0.310 0.083 0.021

# Estimates of support points and average mass probabilities for emotional HQOL
lv2 <- rbind(out$Th2, t(out$piv2))
rownames(lv2) <- c("Emotional HQOL", "Average prob.")
round(lv2, 3)

1 2 3 4
Emotional HQOL 0.471 11.526 7.585 4.151
Average prob. 0.149 0.141 0.390 0.321

According to the estimated model, patients are clustered in 5 latent classes denoting different
levels of physical HQOL (output out$Th1) and in 4 latent classes denoting different levels of emotional
HQOL (output out$Th2). To simplify the interpretation of the latent classes, it is useful to re-order and
standardize the estimated support points. For this aim, function est_multi_poly_within provides
the values of support points, which are standardized according to equations (14)-(18) and re-ordered
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according to increasing values of the first dimension of the corresponding latent variable (outputs
out$Th1s and out$Th2s with related weights out$piv1s and out$piv2s, respectively).

# Standardized support points of physical HQOL
lv1s <- rbind(out$Th1s, t(out$piv1s))
rownames(lv1s) <- c("Stand. Physical HQOL", "Average prob.")
round(lv1s, 3)

5 4 1 2 3
Stand. Physical HQOL -3.561 -1.517 -0.812 0.019 1.149
Average prob. 0.021 0.083 0.199 0.387 0.310

# Standardized support points of emotional HQOL
lv2s <- rbind(out$Th2s, t(out$piv2s))
rownames(lv2s) <- c("Stand. Emotional HQOL", "Average prob.")
round(lv2s, 3)

1 4 3 2
Stand. Emotional HQOL -1.667 -0.553 0.486 1.679
Average prob. 0.149 0.321 0.390 0.141

We observe that classes 5, 4, and 1 of physical HQOL and classes 1 and 4 of emotional HQOL collect
patients with negative levels of the related latent trait, whereas patients with levels of HQOL above
the mean belong to the remaining classes (i.e., classes 2 and 3 for physical HQOL and classes 3 and 2
for emotional HQOL). We also observe that the distribution of physical HQOL is strongly skewed to
negative values, whereas that of emotional HQOL is symmetric (Figure 2).
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Figure 2: Standardized mass probability distribution of physical (left panel) and emotional (right
panel) HQOL.

As concerns item parameters, the discriminating indices and the corresponding standard errors
and confidence intervals are displayed as follows:

# Item discriminating parameters and related standard errors
gamma1 <- cbind(out$ga1c, out$sega1c)
colnames(gamma1) <- c("gamma1", "st.err.")
round(gamma1, 3)

gamma1 st.err.
[1,] 1.000 0.000
[2,] 1.988 0.329
[3,] 1.193 0.199
[4,] 3.519 0.570
[5,] 3.394 0.582
[6,] NA NA
[7,] NA NA
[8,] 1.579 0.255
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[9,] -0.006 0.117
[10,] 0.732 0.151
[11,] 0.145 0.125
[12,] 1.002 0.184

gamma2 <-cbind(out$ga2c, out$sega2c)
colnames(gamma2) <- c("gamma2", "st.err.")
round(gamma2, 3)

gamma2 st.err.
[1,] 0.212 0.042
[2,] NA NA
[3,] NA NA
[4,] NA NA
[5,] NA NA
[6,] 1.000 0.000
[7,] 0.809 0.076
[8,] 0.128 0.037
[9,] 0.599 0.079
[10,] 0.429 0.059
[11,] 0.793 0.093
[12,] 0.606 0.074

# Confidence intervals at 95% of item discriminating parameters (columns 1-4)
confint(out)

[...] Output omitted

Confidence interval for the item parameters:
gamma1_1 gamma1_2 gamma2_1 gamma2_2 beta1_1 beta1_2 beta2_1 beta2_2 beta3_1 beta3_2 beta4_1 beta4_2

1 1.0000 1.0000 0.1293 0.2939 0.0000 0.0000 2.2927 3.0763 5.4703 6.6560 7.0976 8.9132
2 1.3425 2.6326 NA NA -0.2428 1.8308 3.6945 6.1378 NA NA NA NA
3 0.8036 1.5825 NA NA -1.4885 -0.0974 1.1539 2.5872 NA NA NA NA
4 2.4010 4.6368 NA NA -1.3097 2.1941 1.2833 4.9066 5.2791 9.4358 8.5939 13.4278
5 2.2542 4.5348 NA NA -0.8427 2.5507 1.9437 5.5126 5.3510 9.4330 8.2434 12.8277
6 NA NA 1.0000 1.0000 0.0000 0.0000 2.4866 3.9477 5.4657 7.6420 8.4771 11.2498
7 NA NA 0.6612 0.9574 -0.4397 0.7189 1.7730 3.0777 4.1602 5.8143 7.1608 9.3353
8 1.0790 2.0796 0.0556 0.2010 -2.8325 -0.8067 0.3711 2.0693 3.0574 4.9355 4.5989 6.6225
9 -0.2348 0.2235 0.4451 0.7529 -1.9089 -0.6523 1.0767 2.2309 3.5534 5.0154 6.9565 9.1180
10 0.4366 1.0274 0.3135 0.5451 -0.7823 0.3940 1.9615 3.1901 4.6207 6.1860 7.3341 9.3617
11 -0.0999 0.3905 0.6100 0.9762 -1.1600 0.1005 1.6032 2.9576 4.8700 6.7528 7.4612 9.8398
12 0.6411 1.3637 0.4611 0.7503 -1.5644 0.0124 1.4481 2.8845 4.6337 6.4619 6.9167 9.0782

[...] Output omitted

In the previous output, the first two tables show the estimates of item discriminating parameters γ̂1j
and γ̂2j, respectively, and the related standard errors, whereas the last table shows the corresponding
inferior and superior limits of the confidence intervals at 95% level. Entries denoted by NA refer to
those items that do not load on the corresponding latent variable.

We observe that discriminating parameters are generally highly significant, with two notable
exceptions: discriminating indices for items 9 and 11 referred to physical HQOL (i.e., parameters
γ19 and γ1,11). This result suggests that these two items do not contribute in a significant way to the
measurement of physical HQOL.

The standardized estimates of parameters γ̂∗1j and γ̂∗2j are provided by

# Standardized discriminating parameters
gammas <- rbind(out$ga1cs, out$ga2cs)
rownames(gammas) <- c("Physical HQOL", "Emotional HQOL")
round(gammas, 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
Physical HQOL 1.036 2.059 1.236 3.645 3.516 NA NA 1.636 -0.006 0.758 0.151 1.038
Emotional HQOL 0.699 NA NA NA NA 3.304 2.674 0.424 1.979 1.419 2.621 2.001

Note that the judgment about general health (item 1) is affected by both components of HQOL, but
the physical dimension has a more relevant role (γ̂∗11 = 1.036 vs γ̂∗21 = 0.699). On the contrary, the
self-evaluation of the consequences of physical or emotional health on social activities (item 12) is
mainly affected by the emotional component of HQOL (γ̂∗1,12 = 1.038 vs γ̂∗2,12 = 2.001).
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We also highlight relevant differences among items in terms of difficulty, as results by the related
standardized item parameters:

# Standardized difficulty parameters
round(out$Becs, 3)

cutoff
item 1 2 3 4
1 -2.929 -0.245 3.134 5.076
2 -2.514 1.608 NA NA
3 -2.778 -0.115 NA NA
4 -5.414 -2.761 1.501 5.155
5 -4.795 -1.921 1.743 4.887
6 -5.979 -2.762 0.575 3.884
7 -4.700 -2.414 0.148 3.409
8 -5.215 -2.175 0.601 2.215
9 -4.853 -1.918 0.712 4.465
10 -3.979 -1.209 1.618 4.563
11 -5.514 -2.704 0.827 3.667
12 -6.066 -3.124 0.258 2.707

In particular, positive responses to items related only (items 4 and 5) or mainly (item 1) to physical
HQOL require a level of the latent trait in average higher than items related only (items 6 and 7) or
mainly (items 9, 11, and 12) to emotional HQOL. In other words, the emotional component of HQOL
interferes less than physical component of HQOL on work, daily activities, and social life.

In the estimated model we assume an effect of patient’s age on the HQOL, according to the
multinomial logit parametrization, as in equation (3). Estimates of regression coefficients δ1h1

and
δ2h2 , with h1 = 2, 3, 4, 5 and h2 = 2, 3, 4, and related standard errors, are provided by:

# Effect of covariate age on physical HQOL
De1 <- cbind(out$De1, out$seDe1)
colnames(De1) <- c("delta12", "delta13", "delta14", "delta15", "se(delta12)",

"se(delta13)", "se(delta14)", "se(delta15)")
round(De1, 3)

delta12 delta13 delta14 delta15 se(delta12) se(delta13) se(delta14) se(delta15)
intercept 2.960 3.021 -0.997 -4.773 1.035 0.937 1.862 2.453
X1 -0.038 -0.043 0.002 0.039 0.017 0.015 0.026 0.035

# Effect of covariate age on emotional HQOL
De2 <- cbind(out$De2, out$seDe2)
colnames(De2) <- c("delta22", "delta23", "delta24", "se(delta22)", "se(delta23)",

"se(delta24)")
round(De2, 3)

delta22 delta23 delta24 se(delta22) se(delta23) se(delta24)
intercept 0.743 2.581 1.905 0.951 0.791 0.850
X1 -0.013 -0.027 -0.019 0.015 0.013 0.014

# Confidence intervals at 95% of regression coeffic. for physical and emotional HQOL
confint(out)

[...] Output omitted

Confidence interval for the regression coefficients for the 1st latent variable:
logit

2_1 2_2 3_1 3_2 4_1 4_2 5_1 5_2
intercept 0.9301 4.9890 1.1833 4.8581 -4.6451 2.6520 -9.5808 0.0355
X1 -0.0709 -0.0055 -0.0717 -0.0146 -0.0489 0.0528 -0.0295 0.1075

Confidence interval for the regression coefficients for the 2nd latent variable:
logit

2_1 2_2 3_1 3_2 4_1 4_2
intercept -1.1204 2.606 1.0306 4.1313 0.2383 3.5707
X1 -0.0434 0.017 -0.0521 -0.0021 -0.0458 0.0081
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We observe a negative, although not particularly significant, effect of age on the probability to
belong to a specific latent class with respect to the worst one (i.e., class 1), for both components of
HQOL. A more parsimonious and more easily interpretable solution is provided by specifying a global
logit parametrization through option glob = TRUE of the function est_multi_poly_within, as follows:

# Model with global logit parametrization for covariates
outgl <- est_multi_poly_within(S = S, k1 = 5, k2 = 4, X = X,

multi1 = multi2_dim1, multi2 = multi2_dim2, link = "global",
disc = TRUE, fort = TRUE, tol = 10^-8, disp = TRUE, output = TRUE,
out_se = TRUE, glob = TRUE)

# Effect of covariate age on physical HQOL
De1glob <- cbind(outgl$De1, outgl$seDe1)
colnames(De1glob) <- c("coef", "se")
round(De1glob, 3)

coef se
cutoff1 5.093 0.544
cutoff2 2.827 0.467
cutoff3 1.050 0.443
cutoff4 -0.777 0.477
X1 -0.028 0.007

# Effect of covariate age on emotional HQOL
De2glob <- cbind(outgl$De2, outgl$seDe2)
colnames(De2glob) <- c("coef", "se")
round(De2glob, 3)

coef se
cutoff1 2.306 0.463
cutoff2 0.664 0.453
cutoff3 -1.312 0.461
X1 -0.010 0.007

# Confidence intervals at 95% of regression coeffic. for physical and emotional HQOL
confint(outgl)

[...] Output omitted

Confidence interval for the regression coefficients for the 1st latent variable:
logit

_1 _2
cutoff1 4.0265 6.1586
cutoff2 1.9112 3.7427
cutoff3 0.1816 1.9187
cutoff4 -1.7110 0.1575
X1 -0.0422 -0.0132

Confidence interval for the regression coefficients for the 2nd latent variable:
logit

_1 _2
cutoff1 1.3987 3.2124
cutoff2 -0.2229 1.5509
cutoff3 -2.2153 -0.4088
X1 -0.0240 0.0049

In such a case just one regression coefficient for each latent variable is estimated instead of k1 − 1 or
k2 − 1, denoting a negative effect of patient’s age on the logit to belong to a specific class or higher
with respect to a lower class.
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Example 2: analysis of repeated item responses

An interesting example of a real problem that can be solved through the discrete two-tier models is
encountered when a questionnaire is used on multiple waves to measure the same latent variable at
each time occasion. In such a situation, following Cai (2010) we distinguish a “specific” dimension Uid1

for each item within the questionnaire to capture the dependence between an individual’s responses
to the same item d1 (d1 = 1, . . . , D1, D1 = r) at the different occasions, and we introduce one “primary”
dimension Vid2 for each wave d2 (d2 = 1, . . . , D2), representing the latent variable of interest at a given
occasion. Through a suitable choice of identifiability and equality constraints on the item parameters,
it is possible to estimate the support points of V i and, then, obtain a class-specific time trajectory of the
latent variable measured by the questionnaire. The resulting multidimensional structure is illustrated
in Figure 3 for the case D2 = 2.

Vi1

Yi1 Yi2 . . . Yir

Ui1 Ui2 . . . Uir

Vi2

Yi,r+1 Yi,r+2 . . . Yi,2r

Figure 3: Path diagram of the discrete two-tier model for longitudinal data for r items and D2 = 2
waves.

To illustrate specification and estimation of the discrete two-tier model for longitudinal data
we refer to a simulated data set about 10 different types of crime committed by a cohort of 10,000
hypothetical subjects on 6 waves; each crime corresponds to a binary item, which assumes value 1 if
the crime was committed and 0 otherwise. The latent variable of interest denotes the propensity to
commit a crime at each time occasion. The data set is available from the R package LMest (Bartolucci
and Pandolfi, 2016).

library(MLCIRTwithin)

### Load and prepare data
library(LMest)
data(data_criminal_sim)
data_criminal_sim[1:12,]

id sex time y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
[1,] 1 1 1 0 0 0 0 0 0 0 0 0 0
[2,] 1 1 2 0 0 0 0 0 0 0 0 0 0
[3,] 1 1 3 0 0 0 0 0 0 0 0 0 0
[4,] 1 1 4 0 0 0 0 0 0 0 0 0 0
[5,] 1 1 5 0 0 0 0 0 0 0 0 0 0
[6,] 1 1 6 0 0 0 0 0 0 0 0 0 0
[7,] 2 1 1 0 0 0 0 0 0 0 0 0 0
[8,] 2 1 2 0 0 0 0 0 0 0 0 0 0
[9,] 2 1 3 0 0 0 0 0 0 0 0 0 0
[10,] 2 1 4 0 0 0 0 0 0 0 0 0 0
[11,] 2 1 5 0 0 0 0 0 0 0 0 0 0
[12,] 2 1 6 0 0 0 0 0 0 0 0 0 0

In order to simplify the illustration of the application, we keep the first two waves and five types of
crime, as follows:

# Keep items: y1,y3,y5,y7,y10; keep occasions: 1, 2
criminal_red <- data_criminal_sim[(data_criminal_sim[,3]==1 | data_criminal_sim[,3]==2),

c(1:3,4,6,8,10,13)]
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Moreover, in order to estimate the model at issue through the R package MLCIRTwithin, we need
to reshape the data from “long” to “wide” format; we also aggregate records corresponding to the
same patterns. Note that, after reshaping the data set, the total amount of items is 10, that is, 5 items
observed at time 1 (j = 1, . . . , 5) and the same 5 items observed again at time 2 (j = 6, . . . , 10).

# Data reshape in wide format
criminal_red <- data.frame(criminal_red)
crim_wide <- reshape(criminal_red, v.names = c("y1", "y3", "y5", "y7", "y10"),

timevar = "time", idvar = "id", direction = "wide")
head(crim_wide)

id sex y1.1 y3.1 y5.1 y7.1 y10.1 y1.2 y3.2 y5.2 y7.2 y10.2
1 1 1 0 0 0 0 0 0 0 0 0 0
3 2 1 0 0 0 0 0 0 0 0 0 0
5 3 1 0 0 0 0 0 0 0 0 0 0
7 4 1 0 0 0 0 0 0 0 0 0 0
9 5 1 0 0 0 0 0 0 0 0 0 0
11 6 1 0 0 0 0 0 0 0 0 0 0
dim(crim_wide)
[1] 10000 12

# Aggregate records with the same pattern
crim_wide <- as.matrix(crim_wide)
crim_wide2 <- aggr_data(crim_wide[, -1])

# Item responses, covariates, and vector of weights
S <- crim_wide2$data_dis[,-1]
X <- crim_wide2$data_dis[,1]; X <- X - 1
yv <- crim_wide2$freq

The multidimensional structure is defined through the specification of matrices multi1 and multi2,
with multi1 referring to specific dimensions capturing the dependence between responses to the same
item at the two different waves, whereas multi2 refers to the propensity to commit a crime at time 1
and at time 2. Then, U i = (Ui1, . . . , Ui5)

′ and V i = (Vi1, Vi2)
′; we also assume k1 = k2 = 2 .

### Define the multidimensional structure
multi1 <- matrix(0, nrow=5, ncol=2)
multi2 <- matrix(0, nrow=2, ncol=5)
multi1[1,] <- c(6, 1)
multi1[2,] <- c(2, 7)
multi1[3,] <- c(3, 8)
multi1[4,] <- c(4, 9)
multi1[5,] <- c(5, 10)
multi2[1,] <- c(1:5)
multi2[2,] <- c(7, 6, 8:10)
multi1

[,1] [,2]
[1,] 6 1
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
multi2

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 7 6 8 9 10

# Number of latent classes
k1 <- 2
k2 <- 2

The next step of the model specification consists in fixing some support points to identify the model
and adding equality constraints on difficulties and discriminating indices to properly account for the
longitudinal data structure, similarly to Cai (2010). In more detail, we fix the support points of the
latent variable U i, that is, u = (−1,−1,−1,−1,−1, 1, 1, 1, 1, 1)′, and on the first dimension of the latent
variable V i, whereas the support points on the second dimension of V i are freely estimated, that is,
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v = (−1, v12, 1, v22)
′: in such a way, we estimate how the propensity to commit a crime changes over

the time. Moreover, we constrain difficulty and discriminating parameters of each item at time 1 to be
equal to the parameters of the same item at time 2, that is, β j = β5+j, γ1j = γ1,5+j, γ2j = γ2,5+j, with
j = 1, . . . , 5.

### Specification of model constraints
# Fix support points on latent variable U
# Fix support points on the first dimension of latent variable V
# Free support points on the second dimension of latent variable V

(Zth1 <- matrix(0, nrow(multi1)*k1, 0))

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
[9,]
[10,]

(zth1 <- c(rep(-1, times = nrow(multi1)), rep(1, times = nrow(multi1))))
[1] -1 -1 -1 -1 -1 1 1 1 1 1

(Zth2 <- diag(nrow(multi2)*k2)[ , -c(1,3)])
[,1] [,2]

[1,] 0 0
[2,] 1 0
[3,] 0 0
[4,] 0 1

(zth2 <- c(-1, 0, 1, 0))
[1] -1 0 1 0

# Equality constraints on difficulties and discriminating indices to account
# for the longitudinal data structure

(Zbe <- matrix(1, nrow(multi2), 1) %x% diag(nrow(multi1)))
[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 1
[6,] 1 0 0 0 0
[7,] 0 1 0 0 0
[8,] 0 0 1 0 0
[9,] 0 0 0 1 0
[10,] 0 0 0 0 1
Zga2 <- Zbe
Zga1 <- Zbe

The final step consists in estimating the model according to the structure specified above. The main
difference with respect to the model presented in the previous section (Example 1) is that now all items
are shared by both the latent variables U i and V i and suitable constraints on the model parameters
are introduced through arguments Zth1, zth1, Zth2, zth2, Zbe, Zga1, and Zga2, according to equations
(7)-(11).

out <- est_multi_poly_within(S = S, yv = yv, k1 = k1, k2 = k2, X = X, link = "global",
disc = TRUE, multi1 = multi1, multi2 = multi2, disp = TRUE,
output = TRUE, out_se = TRUE, Zth1 = Zth1, zth1 = zth1, Zth2 = Zth2,
zth2 = zth2, Zbe = Zbe, Zga1 = Zga1, Zga2 = Zga2)

Estimates of support points and item parameters may be displayed through the usual methods
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summary, coef, and confint:

### Display output
# summary(out)
# coef(out)
# confint(out)

# Support points and average weights of latent variable V
out$Th2

class
dimension 1 2

1 -1.0000000 1.000000
2 -0.6925198 1.679367

out$piv2

[,1]
[1,] 0.91757919
[2,] 0.08242081

# Conditional response probabilities for latent variable V
# Note that the latent classes are numbered following an increasing order,
# starting from latent variable U
round(out$Phi[,, 3:4], 3)

, , class = 3

item
category 1 2 3 4 5 6 7 8 9 10

0 0.994 0.982 0.944 0.986 0.998 0.991 0.974 0.919 0.981 0.997
1 0.006 0.018 0.056 0.014 0.002 0.009 0.026 0.081 0.019 0.003

, , class = 4

item
category 1 2 3 4 5 6 7 8 9 10

0 0.897 0.799 0.551 0.874 0.882 0.758 0.618 0.335 0.758 0.628
1 0.103 0.201 0.449 0.126 0.118 0.242 0.382 0.665 0.242 0.372

We observe that 91.8% of the individuals belong to class 1, which is characterized by the smallest
propensity to commit a crime, whereas the remaining 8.24% of individuals are allocated in class 2.
Both classes present a tendency to increase the propensity to commit a crime from time 1 to time 2.
Indeed, the estimated support points of the propensity to commit a crime at time 2 (i.e., estimates of
v12 and v22) are higher than the corresponding values at time 1, for both the latent classes (−0.693
vs −1 for class 1 and 1.679 vs 1 for class 2). Moreover, the conditional probabilities of observing a
given crime is higher for items observed at time 2, that is, items 6 to 10, with respect to the same
items observed at time 1, that is, items 1 to 5, mainly in the case of latent class 2. For instance, for an
individual belonging to class 2 the conditional probability of observing a crime of type 1 equals 10.3%
at time 1 and it increases to 24.2% at time 2.

Finally, we outline that the constraints specified through matrices Zbe, Zga1, and Zga2 result in the
following estimates, which are equal for every pair of items referring to the same type of crime (i.e.,
items 1-6, 2-7, 3-8, 4-9, 5-10):

# Estimates of item parameters
beta <- cbind(out$Bec[1:5], out$Bec[6:10])
colnames(beta) <- c("time 1", "time 2")
gamma1 <- cbind(out$ga1c[1:5], out$ga1c[6:10])
colnames(gamma1) <- c("time 1", "time 2")
gamma2 <- cbind(out$ga2c[1:5], out$ga2c[6:10])
colnames(gamma2) <- c("time 1", "time 2")

beta
time 1 time 2

[1,] 4.994018 4.994018
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[2,] 4.891019 4.891019
[3,] 2.700745 2.700745
[4,] 5.991825 5.991825
[5,] 5.544927 5.544927

gamma1
time 1 time 2

[1,] 1.318531 1.318531
[2,] 2.195804 2.195804
[3,] 1.184268 1.184268
[4,] 2.883623 2.883623
[5,] 1.353772 1.353772

gamma2
time 1 time 2

[1,] 1.510292 1.510292
[2,] 1.317424 1.317424
[3,] 1.311341 1.311341
[4,] 1.169848 1.169848
[5,] 2.183823 2.183823

Summary

In this paper we illustrate the R package MLCIRTwithin, whose main function est_multi_poly_within
implements an Expectation Maximization based approach to estimate the parameters of two-tier latent
class item response theory (IRT) models. This class of models, which extends in a flexible way the
class of basic IRT models, is based on two independent vectors of latent variables. Moreover, two
main assumptions hold: (i) items are allowed to measure one or two latent variables (within-item
multidimensionality) and (ii) latent variables are assumed to have a discrete distribution with a finite
number of support points, which identify homogeneous latent classes of individuals, and related mass
probabilities that may depend on individual covariates.

We illustrate the R package through two examples based on data about the measurement of health-
related quality of life in cancer patients (Example 1) and about the measurement of the propensity to
commit a crime in two time occasions (Example 2). The first example investigates the multidimensional
structure of the questionnaire and is focused on the interpretation of the estimated model parameters.
The second example illustrates how to treat longitudinal item responses through the specification of
suitable constraints on support points and item parameters.
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