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Simulating Correlated Binary and
Multinomial Responses under Marginal
Model Specification: The SimCorMultRes
Package
by Anestis Touloumis

Abstract We developed the R package SimCorMultRes to facilitate simulation of correlated categori-
cal (binary and multinomial) responses under a desired marginal model specification. The simulated
correlated categorical responses are obtained by applying threshold approaches to correlated contin-
uous responses of underlying regression models and the dependence structure is parametrized in
terms of the correlation matrix of the latent continuous responses. This article provides an elaborate
introduction to the SimCorMultRes package demonstrating its design and usage via three examples.
The package can be obtained via CRAN.

Introduction

Fitting marginal models with correlated binary or multinomial responses is required in many applica-
tions in which the responses are assumed to be correlated. The obvious instance of such studies is
longitudinal studies (Diggle et al., 2002) where the categorical responses for each subject are collected
across time points and form a cluster. For each cluster, the associated covariates are also recorded
as they might influence the true marginal probabilities. Ordinary regression models designed for
independent responses might not lead to consistent estimators of the marginal regression parameters
or of their standard errors. For this reason, many authors have developed and proposed procedures for
estimating the regression parameters of a marginal model with categorical responses that are robust
to misspecification of the dependence structure, including maximum likelihood methods (Fitzmau-
rice and Laird, 1993; Glonek and McCullagh, 1995), copula approaches (Masarotto and Varin, 2012),
quasi-least squares approaches (Shults and Chaganty, 1998), generalized quasi-likelihood methods
(Sutradhar and Das, 1999; Sutradhar, 2003) and generalized estimating equations (GEE) approaches
(Lipsitz et al., 1991; Chaganty and Joe, 2004; Touloumis et al., 2013). Although the asymptotic prop-
erties of these methods are well-established, the evaluation of their performance in finite samples
under misspecification of the correlation structure relies on simulations. The crucial step of these
empirical studies is to simulate correlated categorical responses that satisfy a desired marginal model
and dependence structure specification.

Motivated by this, we present the R package SimCorMultRes (Touloumis, 2016) which makes
it easy to simulate correlated categorical responses under a given marginal model and dependence
structure configuration. The package implements marginal models for correlated binary responses
(two response categories) as well as for correlated multinomial responses (three or more response
categories) while taking into account the nature of the response categories (ordinal or nominal). In
summary, the correlated binary/multinomial responses are obtained as realizations of an under-
lying continuum. This means that latent regression models with correlated continuous responses
are utilized so as to generate the correlated categorical responses that satisfy the desired marginal
model specification. The categorical responses are obtained by applying threshold approaches to the
correlated continuous responses. In order to avoid theoretical pitfalls outlined in the next paragraph,
the desired dependence structure is expressed in terms of the correlation matrix of the latent responses.
To the best of our knowledge, SimCorMultRes is the first package in R that allows direct simulation
of correlated categorical responses under a marginal model specification with categorical and/or
continuous covariates.

To fully appreciate the features of SimCorMultRes, we briefly compare it with two R packages: i)
GenOrd (Barbiero and Ferrari, 2015), that implements the methods presented by Ferrari and Barbiero
(2012) and its features being discussed in greater detail in Barbiero and Ferrari (in press), and ii) Mul-
tiOrd (Amatya and Demirtas, 2016), that is described in Amatya and Demirtas (2015) and relies on the
simulation techniques proposed by Demirtas (2006). These packages are designed to simulate random
vectors of correlated binary or ordinal responses subject to fixed but common marginal probabilities
across all subjects and a predefined correlation matrix for the correlated categorical responses. There-
fore, unlike SimCorMultRes, it is not straightforward to utilize GenOrd or MultiOrd for simulating
categorical responses conditional on a regression model specification for the marginal probabilities,
especially when the marginal probabilities vary across subjects. In addition, SimCorMultRes has the

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=SimCorMultRes
https://CRAN.R-project.org/package=GenOrd
https://CRAN.R-project.org/package=MultiOrd
https://CRAN.R-project.org/package=MultiOrd


CONTRIBUTED RESEARCH ARTICLES 80

unique feature (to the best of our knowledge) to simulate correlated nominal responses. Another
difference between SimCorMultRes and the R packages GenOrd and MultiOrd is that the former
requires the association among the categorical responses to be directly expressed via their correlation
matrix and that the joint specification of the marginal probabilities and of the correlation matrix leads
to a valid joint distribution for the correlated categorical responses. A necessary condition for this is
that the so-called Frétchet-Hoeffding bounds are satisfied, which can be verified by employing the
method of Demirtas and Hedeker (2011). As noted by one of the reviewers, both GenOrd and Multi-
Ord have built-in mechanisms to check the restrictions imposed by the Frétchet-Hoeffding bounds.
Unfortunately, even if these restrictions are met, it is still theoretically possible that a legitimate joint
distribution does not exist for the correlated categorical responses (Bergsma and Rudas, 2002). To
circumvent this difficulty, the methodology implemented in SimCorMultRes always defines the joint
distribution of the correlated categorical responses in terms of the joint distribution of correlated latent
random variables and thus, it allows the user to generate correlated categorical responses under any
configuration of the marginal probabilities provided that the user-defined correlation matrix of the
latent continuous responses is positive definite, a condition that can be more easily verified.

The remainder of this paper is organized as follows. First we present the theoretical background
of the threshold approaches implemented in SimCorMultRes. In particular, we introduce the gen-
eral two-stage algorithm for simulating correlated categorical responses, focusing on the threshold
approaches that give rise to the marginal models with correlated categorical responses and on the
modified version of the NORmal To Anything (NORTA) method (Cario and Nelson, 1997), the default
simulation method of correlated latent random variables in SimCorMultRes. Next, we describe the
core and utility functions of the package. Then, we demonstrate the use of SimCorMultRes by consid-
ering the problems of evaluating two estimation methods for marginal models with correlated nominal
multinomial responses, of assessing the quality of an approximation that links the uniform local odds
ratios structure with the correlation parameter of an underlying bivariate normal distribution, and of
simulating correlated categorical random variables under no marginal model specification. Finally, we
summarize the features of SimCorMultRes and discuss future extensions.

Theoretical background

In this section, we introduce the threshold approaches that give rise to marginal models with correlated
binary, ordinal or nominal responses. Since the thresholds are applied to correlated continuous
responses, simulation of correlated continuous responses is required. This step can be performed in
various ways, eġ,̇ directly from an appropriate multivariate distribution, by utilizing distributional
properties about the sum or the difference of random vectors or by employing copula approaches.
Herein we discuss a simple and straightforward simulation method that is based on the NORTA
method, and we present a general algorithm that combines the threshold approaches with the modified
NORTA method, enabling us to generate correlated categorical responses subject to a marginal model
specification in a unified manner. However, we underline that the use of the NORTA method is optional
in the general algorithm and that it can be replaced with another simulation method/technique as
long as the distributional restrictions regarding the correlated continuous variables that are imposed
by the thresholds are met.

For notational ease, adopt a longitudinal set-up for generating the correlated binary or multinomial
variables. Let Yit be the random variable of subject i (i = 1, . . . , N) at time t (t = 1, . . . , T) and let
xit denote the associated covariates vector. To be consistent with the notation in the majority of the
literature, let Yit ∈ {0, 1} when there are two response categories and let Yit ∈ {1, 2, . . . , J ≥ 3} for at
least three categories.

Binary responses

Suppose the aim is to simulate correlated binary variables such that the marginal probabilities satisfy
the model

Pr (Yit = 1|xit) = F
(

βt0 + β′txit
)

(1)

where βt0 is the intercept and βt is the covariates parameter vector at time t, respectively, and where F
is a cumulative distribution function (c.d.f.).

Now, consider the multivariate latent regression model

UB
i =
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where µB
it = β′txit and {eB

i : i = 1, . . . , N} are independent random vectors such that eB
it ∼ F for all i

and t. Under these assumptions, generation of binary responses under the threshold

Yit = I
(

eB
it ≤ βt0 + µB

it

)
= I

(
UB

it ≤ βt0 + 2µB
it

)
gives rise to the marginal model (1), where I (A) denotes the indicator function of the event A. This
approach is a straightforward extension of the gold-standard simulation method proposed by Emrich
and Piedmonte (1991), in the sense that it also permits marginal modeling of the univariate probabilities
through covariates. Implementation of the method of Emrich and Piedmonte (1991) can be found in
the orphaned R package mvtBinaryEP (By and Qaqish, 2011).

Ordinal responses

Options for marginal modelling of correlated ordinal responses include the marginal cumulative link
model

Pr (Yit ≤ j|xit) = F
(

βtj0 + β′txit

)
(2)

and the marginal continuation-ratio model

Pr (Yit = j|Yit ≥ j, xit) = F
(

βtj0 + β′txit

)
. (3)

In both models, F is a c.d.f. and βt is the parameter vector at time t when the corresponding (J − 1)

category-specific intercepts
(

βt10, βt20, . . . , βt(J−1)0

)
are excluded.

First, consider the marginal cumulative link model (2) and suppose the multivariate latent regres-
sion model

UO1
i =

UO1
i1
...

UO1
iT

 =

µO1
i1
...

µO1
iT

+

eO1
i1
...

eO1
iT

 = µO1
i + eO1

i

holds, where µO1
it = −β′txit, and {eO1

i : i = 1, . . . , N} are independent random vectors such that
eO1

it ∼ F for all i and t. To generate an ordinal response Yit that satisfies model (2), one can categorize
UB

it by using the corresponding category-specific intercepts according to the threshold

Yit = j⇔ βt(j−1)0 < UO1
it ≤ βtj0

where
−∞ = βt00 < βt10 < βt20 < · · · < βt(J−1)0 < βtJ0 = ∞.

This threshold approach extends the approach discussed in McCullagh (1980) from cumulative link
models with independent ordinal responses to marginal cumulative link models with correlated
ordinal responses.

Next, consider the marginal continuation-ratio model (3) and suppose the following multivariate
latent regression model holds

UO2
i =

UO2
i1
...

UO2
iT

 =

µO2
i1
...

µO2
iT

+

eO2
i1
...

eO2
iT

 = µO2
i + eO2

i

where UO2
it =

(
UO2

it1 , . . . , UO2
itJ

)′
, µO2

it = − (β′txit, . . . , β′txit)
′ and eO2

it =
(

eO2
it1 , . . . , eO2

itJ

)′
for all i and t,

and {eO2
i : i = 1, . . . , N} are independent random vectors such that:

1. eO2
itj ∼ F for all i, t and j,

2. eO2
itj and eO2

itj′ are independent for all j 6= j′ (local independence assumption).

The marginal continuation-ratio model (3) arises by applying the threshold

Yit = j, given Yit ≥ j⇔ UO2
itj ≤ βtj0

to the components of Uit’s in a sequential order. This approach extends the latent variable representa-
tion described in Tutz (1991) which gives rise to the continuation-ratio model for independent ordinal
responses (see Agresti, 2013).
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Nominal responses

Consider the marginal baseline-category logit model

log
[

Pr (Yit = j|xit)

Pr (Yit = J|xit)

]
=
(

βtj0 − βtJ0

)
+
(

βtj − βtJ

)′
xit = β∗tj0 + β∗′tj xit (4)

where βtj0 and βtj is the j-th category-specific intercept and parameter vector at time t, respectively.
For identifiability reasons, restrictions such as βtJ0 = 0 and βtJ = 0 for all t are required, which imply
that β∗tj0 = βtj0 and β∗tj = βtj for all t and for all j = 1, . . . , J − 1. Note that model (4) relates with the
baseline-category logit model (see Agresti, 2013) and hence it is appropriate for marginal modelling of
correlated nominal responses.

To connect the marginal baseline-category logit model (4) with underlying regression models,
consider the multivariate latent regression model

UNO
i =
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...
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+
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...
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where UNO
it =

(
UNO

it1 , . . . , UNO
itJ

)′
, µNO

it =
(

βt10 + β′t1xit, . . . , βt(J−1)0 + β′tJxit

)′
and eNO

it =
(
eNO

it1 , . . . ,

eNO
itJ
)′ for all i and t, and {eNO

i : i = 1, . . . , N} are independent random vectors such that:

1. eNO
itj follow a standard extreme distribution for all i, t and j,

2. the assumption of choice independence is met at each measurement occasion, that is eNO
itj and

eNO
itj′ are independent for all j 6= j′.

The threshold
Yit = j⇔ Uitj = max{Uit1, . . . , UitJ}

extends the principle of maximum random utility (McFadden, 1974) and it generates correlated
nominal responses that give rise to the marginal baseline-category logit model (4).

Simple version of the NORTA method

Li and Hammond (1975) proposed a simple method for generating continuous random vectors with
given marginal distributions and a prescribed correlation matrix. Cario and Nelson (1997) introduced
the NORTA method which essentially modifies the approach of Li and Hammond (1975) to account for
any type of marginal distributions (discrete, continuous or mixed). Here, we describe a simple version
of the NORTA method in which the desired marginal distributions are continuous and identical which
is required by all the threshold approaches implemented in SimCorMultRes.

Let F be the c.d.f. of the target marginal distribution. To generate a p-variate random vector
W =

(
W1, . . . , Wp

)′ with correlation matrix cor (W) = RW such that Wk ∼ F for all k = 1, . . . , p, the
following NORTA transformation can be utilized:

1. Generate a random vector Z =
(
Z1, . . . , Zp

)′ from a standard multivariate normal distribution
with correlation matrix cor (Z) = RZ. The elements of RZ are calculated by solving numerically
p (p− 1) /2 equations, such that each equation relates cor (Zk, Zk′ ) with cor (Wk, Wk′ ) for all
k < k′. The exact formulae are given by Li and Hammond (1975).

2. Apply the transformation Wk = F−1 [Φ (Zk)] for all k, where Φ is the cumulative distribution of
the standard normal distribution.

If F = Φ, then the second step of the above modified NORTA algorithm is not needed. Otherwise,
the correlation matrices RZ and RW are expected to differ. In fact, Cario and Nelson (1997) showed that
under mild conditions it is possible to have RZ ≈ RW . For example, if F is the cumulative distribution
function of the standard logistic distribution (which might be the case in the marginal models for
correlated binary and ordinal responses), then RZ ≈ RW due to the well-known approximation
Φ (x) = F (xπ/3) for all x ∈ <. This simplifies the computational task as the p (p− 1) /2 equations
are not needed to be solved and issues regarding non-existence of a valid correlation matrix RZ for a
given choice of the correlation matrix RW (Li and Hammond, 1975) are avoided provided that RZ is
positive-definite under mild conditions (Cario and Nelson, 1997).

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 83

General generative process

We propose a simple and efficient two-staged general algorithm for generating correlated categorical
responses:

Stage 1. Marginal model specification: Provide the covariates, the regression parameters and the link
function (if required) of the desired marginal model (1), (2), (3), or (4).

Stage 2. Simulation of continuous random vectors via the NORTA method and threshold approach: Define the
desired dependence structure by fixing RZ to generate the continuous random vectors Ui’s from
the multivariate latent regression model implied by the marginal model specification selected in
Stage 1. Apply the corresponding threshold approach to obtain the correlated binary, ordinal or
nominal responses.

In the marginal models described above, we usually choose F to be the c.d.f. of a standard normal,
logistic or extreme value distribution. In either of these cases, it can be shown that the simulated
categorical responses are independent if and only if RZ is the identity matrix, which is true if and only
if the random variables in the latent random vectors ei’s are independent (Cario and Nelson, 1997).
For all other forms of RZ, correlated categorical responses will be generated.

Expressing the association structure in terms of RZ ensures the existence of a joint distribution for
the correlated categorical responses regardless of the marginal model specification which is not the
case when the association is expressed directly via the correlation matrix of the correlated categorical
responses. This well-known fact has been mentioned by Bergsma and Rudas (2002) among others, and
it has been exemplified in the case of correlated binary and multinomial responses by Chaganty and
Joe (2004), Chaganty and Joe (2006) and Touloumis et al. (2013), respectively. The simplest scenario
where adopting a common correlation matrix for the correlated categories responses across subjects is
problematic is when the linear predictor in the marginal model is allowed to vary freely on the real
line. In this case, only the identity matrix is a feasible value for the correlation matrix.

As mentioned before, the proposed version of the NORTA method is not the only option to
simulate continuous random vectors in Stage 2 and instead, alternative simulation techniques can
be easily employed. However, the user must be cautious in order to respect the corresponding
marginal distributional assumptions and the assumption of local independence or choice independence
whenever the marginal models (3) or (4) are used, respectively.

We emphasize that the proposed algorithm can also handle the situation in which no marginal
model specification is provided. For more details, please refer to the third example below.

Description of SimCorMultRes

SimCorMultRes contains four core functions (rbin, rmult.bcl, rmult.clm and rmult.crm) that enable
the user to generate correlated categorical responses and two utility functions (rnorta and rsmvnorm)
initially designed for internal use in the core functions. We describe in detail the arguments and the
output of the core and utility functions.

Core functions

Each core function in SimCorMultRes simulates correlated categorical responses under a marginal
model specification. In particular, rbin simulates correlated binary responses that satisfy the marginal
model (1), rmult.clm simulates correlated ordinal responses that satisfy the marginal cumulative link
model (2), rmult.crm simulates correlated ordinal responses that satisfy the marginal continuation-
ratio model (3) and rmult.bcl simulates correlated nominal responses that satisfy the marginal
baseline-category logit model (4).

The common cluster size (clsize) of the subjects is required in all core functions.

The ncategories argument in rmult.bcl indicates the number of nominal response categories.
The number of ordinal response categories in rmult.clm and rmult.crm is indirectly defined by the
intercepts argument. It contains the values of the threshold parameters which can be provided
either as a T × (J − 1) matrix or as a vector of length J − 1. In the first case, the (t, j)-th element of
intercepts corresponds to βtj0 and in the second case, it is assumed that βtj0 = β j0 for all t in the
marginal models (2) or (3). The intercepts argument is also employed in rbin to specify whether the
intercepts in the marginal model (1) are time-dependent. If βt0 = β0 for all t, then intercepts should
be a single number that reflects the value of β0. Otherwise, it should be a vector of size T with the t-th
element equal to the value of βt0.

The values for the marginal regression parameters (betas) should be provided as a numeric vector
whenever βt = β for all t in models (1), (2) or (3), and whenever βtj = β j and βtj = β j for all t in
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model (4). In all other cases, betas should be provided as a matrix with T rows such that the t-th
row contains the value of the marginal parameter vector at time t. It is important to emphasize that
(category-specific) intercept values should not be included in betas unless the function rmult.bcl is
used.

The functional relationship of the covariates in the marginal model (xformula) is specified similarly
as in other regression models with the single difference that no response variable should be provided.
The covariates defined in xformula can be imported via the xdata argument in “long” format, meaning
that each row contains all the subject-specific covariates information at a given time. When xdata is
missing, then the covariates are extracted from the environment that the core function is called.

The link argument in rbin, rmult.clm or rmult.crm determines the c.d.f. F in the marginal
models (1), (2) or (3) respectively, i. e., the link function. Options for the link function include the probit
("probit"), the logit ("logit"), the complimentary log-log ("cloglog") and the cauchit ("cauchit").
It is worth mentioning that there is no link argument in the function rmult.bcl because the marginal
distribution of the latent continuous random variables eNO

itj ’s is always the standard extreme value
distribution.

In all core functions, the latent random vectors ei’s can be either simulated using the proposed
NORTA approach or provided by the user via the rlatent argument. In the first case, the correlation
matrix RZ of the multivariate normal distribution (cor.matrix) in the modified NORTA method and
the link argument, wherever present, are required. Checks are carried out to ensure that cor.matrix is
a positive-definite correlation matrix and whenever rmult.crm or rmult.bcl is employed, cor.matrix
is forced to satisfy the restrictions of the latent dependence structure that are implied by the threshold
approach associated with models (3) or (4), respectively. In the case where the preferred simulation
method is not the NORTA method, rlatent should contain the values of the latent random vectors
while cor.matrix and link are ignored. Examples of using the rlatent argument can be found in the
help files and the vignette of SimCorMultRes.

The output of any core function is displayed as a list with three items: (i) a matrix with the
simulated responses such that the (i, t)-th element corresponds to the realization of Yit (Ysim), (ii) a
data frame (simdata) that contains the simulated responses (y), the covariates specified by xformula,
subjects’ identities (id) and the measurement occasions (time), and (iii) the NORTA generated or
user-defined latent random vectors (rlatent).

Utility functions

The utility function rnorta offers a more general implementation of the NORTA method described
earlier. The user needs to specify the number of random vectors (R), the correlation matrix RZ of
the multivariate normal distribution (cor.matrix) and the names of the quantile functions of the
desired marginal distributions (distr). The optional qparameters argument permits users to consider
parameter values for the marginal distributions other than the default (obtained when qparameters
= NULL). The function returns R random vectors with marginal distributions specified by distr (and
qparameters) when cor.matrix is the correlation matrix of the multivariate normal distribution in the
NORTA method. We highlight that rnorta has been extended to handle situations that are beyond
the scope of simulation of correlated categorical responses subject to a marginal model specification.
Unlike the simple version of the NORTA method needed for our purposes, rnorta does not require
marginal distributions to be identical. In fact, any univariate discrete or continuous distribution whose
quantile function is available in R can be employed in distr provided that the required R package is
available.

The function rsmvnorm generates R random vectors from a multivariate normal distribution with
mean vector the zero vector and covariance matrix cor.matrix.

Note that an error message is returned whenever cor.matrix in functions rnorta or rsmvnorm is
not a positive-definite correlation matrix.

Empirical illustration

We now illustrate the use of SimCorMultRes to: i) evaluate the performance of GEE approaches for
estimating the regression parameters of a marginal baseline-category logit model, ii) to verify approxi-
mations that relate a uniform local odds ratios structure to the correlation coefficient of a bivariate
normal distribution (Goodman, 1979) and, iii) to simulate correlated categorical random variables
with fixed arbitrary univariate probabilities that are not subject to a marginal model specification.
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Parameter estimation of marginal models

The motivation behind the creation of SimCorMultRes lies on evaluating statistical methods that esti-
mate the regression coefficients of marginal models with correlated binary or multinomial responses.
To exemplify this, we employ two GEE models for estimating a marginal model with correlated nomi-
nal responses: i) the local odds ratios GEE approach (Touloumis et al., 2013) and ii) the independence
“working” model, which treats all observations as independent when solving the estimating equations.
Although the two competing GEE models are asymptotically equally efficient, in the sense that they
both produce consistent estimators for the marginal regression parameters and of their standard errors,
the regression coefficient estimators of the independence “working” model are expected to be slightly
less precise than those of the local odds ratios GEE approach in small and moderate sample sizes due
to the fact that the independence “working” model does not account for the dependence among the
correlated responses (Touloumis et al., 2013).

To investigate this assertion for the case of correlated nominal responses, we employed the marginal
baseline-category logit model

log
[

Pr (Yit = j|xit)

Pr (Yit = 5|xit)

]
= β j0 + β j1xit (5)

where (β10, β11, β20, β21, β30, β31, β40, β41) = (2, 1, 1, 2, 1.5, 1.5, 2.5, 0.5) and xit
i.i.d.∼ N (0, 1) for all i =

1, . . . , 100 and t = 1, 2, 3, 4. Further, the correlation matrix RZ among the normally distributed variables
Zitj’s in the NORTA method was given by

cor
(

Zitj, Zit′ j′
)
=


1 if t = t′ and j = j′

0 if t = t′ and j 6= j′

0.56tj−t′ j′ if otherwise.

> library("SimCorMultRes")
> library("multgee")
Loading required package: gnm
Loading required package: VGAM
Loading required package: stats4
Loading required package: splines
> set.seed(1)
> N <- 100
> clsize <- 4
> ncategories <- 5
> betas <- c(2, 1, 1, 2, 1.5, 1.5, 2.5, 0.5, 0, 0)
> x <- rnorm(N * clsize)
> cor.matrix <- toeplitz(0.56^seq(0, clsize * ncategories - 1))
> for (i in 1:clsize) {
+ diag.index <- 1:ncategories + (i - 1) * ncategories
+ cor.matrix[diag.index, diag.index] <- diag(1, ncategories)
+ }

Conditional on the above marginal model specification and dependence structure, we simulated
correlated nominal responses and we fitted the local odds ratios GEE approach with an RC-type de-
pendence structure and the independence “working” model using the R package multgee (Touloumis,
2015). We replicated this procedure 1000 times and at each iteration we recorded the estimates of the
marginal regression parameter vector of the two competing models:

> B <- 1000
> indeGEEcoefs <- matrix(NA_real_, B, 8)
> RCGEEcoefs <- matrix(NA_real_, B, 8)
> for (b in 1:B) {
+ SimNomRes <- rmult.bcl(clsize = clsize, ncategories = ncategories,
+ betas = betas, xformula = ~x, cor.matrix = cor.matrix)
+ fitRC <- try(nomLORgee(y ~ x, id = id, repeated = time, data = SimNomRes$simdata,
+ LORstr = "RC", add = 0.05), silent = TRUE)
+ if (!inherits(fitRC, "try-error")) {
+ if (fitRC$convergence$conv)
+ RCGEEcoefs[b, ] <- coef(fitRC)
+ }
+ fitinde <- try(nomLORgee(y ~ x, id = id, repeated = time, data = SimNomRes$simdata,
+ LORstr = "independence"), silent = TRUE)
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Table 1: Simulation results for the local odds GEE approach (LOR) and the independence “working”
model (IEE) for estimating the regression parameter vector and their standard errors (second row) in
the marginal model (5).

Model β10 = 2 β11 = 1 β20 = 1 β21 = 2 β30 = 1.5 β31 = 1.5 β40 = 2.5 β41 = 0.5

IEE 2.0701 1.0308 1.0494 2.0530 1.5682 1.5441 2.5702 0.5209
0.3567 0.3232 0.4011 0.3601 0.3740 0.3412 0.3627 0.2995

LOR 2.0471 0.9951 1.0378 1.9832 1.5487 1.4943 2.5473 0.4946
0.3512 0.3105 0.3944 0.3490 0.3673 0.3319 0.3562 0.2873

SRE 1.0522 1.0927 1.0405 1.0852 1.0526 1.0738 1.0573 1.0921

+ if (!inherits(fitinde, "try-error")) {
+ if (fitinde$convergence$conv)
+ indeGEEcoefs[b, ] <- coef(fitinde)
+ }
+ }

Although the local odds GEE approach did not always converge, the convergence rate for the local
odds ratios GEE model was high

> convergence <- c(mean(!is.na(indeGEEcoefs)), mean(!is.na(RCGEEcoefs))) * 100
> convergence
[1] 100.0 99.7

and therefore, we can conduct a fair comparison by excluding the results from those 3 iterations in
which the local odds ratios GEE approach failed to converge.

Table 1 summarizes the simulation results by displaying the simulated mean and standard error of
the regression estimates from the two competing GEE models and the simulated relative efficiency
(SRE) for each regression parameter of model (5). For a given coefficient of model (5), the SRE criterion
was defined as the ratio of the simulated mean square error of the corresponding Monte Carlo estimate
based on the local odds ratios GEE approach to that based on the independence “working” model.
Values of the SRE criterion greater (less) than 1.0 imply that the local odds ratios GEE approach is more
(less) efficient than the independence “working” model in estimating this specific regression parameter.
As expected, the two GEE models seem to estimate consistently the marginal model (5), with the local
odds ratios GEE approach being 4.05%–9.27% more efficient in estimating each regression coefficient.

The results of Table 1 were calculated using the following R commands:

> simindemean <- colMeans(indeGEEcoefs, na.rm = TRUE)
> simindesd <- apply(indeGEEcoefs, 2, function(x) sd(x, na.rm = TRUE))
> simRCmean <- colMeans(RCGEEcoefs, na.rm = TRUE)
> simRCsd <- apply(RCGEEcoefs, 2, function(x) sd(x, na.rm = TRUE))
> simindesmse <- (betas[-c(9:10)] - simindemean)^2 + simindesd^2
> simRCsmse <- (betas[-c(9:10)] - simRCmean)^2 + simRCsd^2
> SRE <- simindesmse/simRCsmse
> rbind(simindemean, simindesd, simRCmean, simRCsd, SRE)

Uniform association model and bivariate normal distribution

Let fab denote the observed frequency of the cell (a, b) in a two-way contingency table and let Fab be
the corresponding expected frequency under some model, for a = 1, . . . , A and b = 1, . . . , B. Goodman
(1979) proposed the uniform association model

log (Fab) = ν + κa + λb + φ (6)

where the parameters ν, {κa : a = 1, . . . , A}, {λb : b = 1, . . . , B} and φ are identifiable once restrictions,
such as sum to zero constraints (Agresti, 2013), are applied to {κa : a = 1, . . . , A} and {λb : b =
1, . . . , B}. The association between the row and column variables is modelled parsimoniously by
assuming a common value φ for the (A− 1)× (B− 1) log local odds ratios. The key property of the
uniform association model is that φ relates to the correlation parameter ρ of an underlying bivariate
normal distribution (Goodman, 1979) via the approximations

φ ≈ ρ

1− ρ2
11
12

(7)
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or

ρ ≈
(√

1 + η2 − η

)
× 13/12 (8)

where η = (2φ)−1. The validity of these approximations has been explored only for ρ = 0.5 by
Goodman (1979). Here, we perform a more detailed empirical investigation by considering a grid of
values for ρ, namely ρ = 0.05, 0.10, . . . , 0.95.

For each value of ρ, we simulated 1000 random vectors from a bivariate normal distribution with
mean vector the zero vector and covariance matrix the correlation matrix(

1 ρ
ρ 1

)
.

In a similar fashion as in Goodman (1979), correlated ordinal responses were generated by applying
the threshold approach linked to model (2), with F = Φ and equi-distanced category-specific intercepts
(β10, β20, β30, β40, β50, β60, β70) = (−3,−2,−1, 0, 1, 2, 3). The sampling scheme does not involve any
covariates, that is βt = 0 and xit = 0 for all t. Next, we cross-classified the correlated simulated
responses to obtain a 8× 8 contingency table and we estimated φ by fitting the uniform association
model (6). We repeated this procedure 10000 times:

> library("SimCorMultRes")
> set.seed(123)
> commonlogoddsratio <- function(N, rho, intercepts, B) {
+ cor.matrix <- toeplitz(c(1, rho))
+ x <- rep(0, 2 * N)
+ ans <- rep(0, B)
+ for (b in 1:B) {
+ CorOrdRes <- rmult.clm(clsize = 2, intercepts = intercepts, betas = 0,
+ xformula = ~x, link = "probit", cor.matrix = cor.matrix)
+ simdata <- data.frame(table(CorOrdRes$Ysim[, 1], CorOrdRes$Ysim[, 2]))
+ if (any(simdata[, 3] == 0))
+ simdata[, 3] <- simdata[, 3] + 0.001
+ colnames(simdata) <- c("x", "y", "Freq")
+ fit <- glm(Freq ~ x + y + as.numeric(x):as.numeric(y), family = poisson(),
+ data = simdata)
+ ans[b] <- as.numeric(coef(fit)[length(coef(fit))])
+ }
+ ans
+ }
> N <- 1000
> intercepts <- c(-3, -2, -1, 0, 1, 2, 3)
> B <- 10000
> rho <- seq(0.05, 0.95, 0.05)
> logoddsratio <- rep(0, length(rho))
> for (i in seq_along(rho)) {
+ simdata <- commonlogoddsratio(N, rho[i], intercepts, B)
+ logoddsratio[i] <- mean(simdata)
+ }
There were 50 or more warnings (use warnings() to see the first 50)
> eta <- 1/(2 * logoddsratio)
> rhophi <- (sqrt(1 + eta^2) - eta) * 13/12

The produced warnings() reflect the fact that we have added 0.001 to each cell of the two-way
contingency table whenever an observed zero count occurred to ensure the existence of the maximum
likelihood estimator of φ (Birch, 1963). We estimated the underlying correlation parameter ρ with ρφ̂

obtained by replacing φ in (8) with its Monte Carlo counterpart φ̂. The following R commands were
run to obtain Figure 1.

> absdif <- abs(rhophi - rho)
> plot(rho, absdif, xlab = expression(rho), ylab = expression(abs(rho[hat(phi)] -
+ rho)), xaxt = "n")
> axis(1, at = seq(0.05, 0.95, 0.1), labels = seq(0.05, 0.95, 0.1))

Figure 1 displays the absolute difference between the true correlation parameter ρ and ρφ̂. In general,
approximation (8) seems to work well for weak correlation patterns, that is when ρ ≤ 0.20. The
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Figure 1: The absolute difference between the true correlation parameter ρ and ρφ̂, the correlation
implied by the association model (6).

simulated absolute difference increases slightly for 0.25 ≤ ρ ≤ 0.55 and then it decreases as 0.6 ≤
ρ ≤ 0.95. In addition, the Monte Carlo estimates of φ increase as the true value of ρ increases, which
suggests that φ does capture the strength of the underlying correlation structure. Therefore, we may
conclude that approximations (7) and (8) can adequately describe the relationship between the uniform
local odds ratios parameter φ in the uniform association model (6) and the correlation parameter ρ of
an underlying bivariate normal distribution.

Simulating correlated categorical responses under no marginal model specification

For completeness’ sake, we illustrate how to utilize SimCorMultRes in order to generate correlated
categorical random variables conditional on a desired dependence structure and known marginal
probabilities that are not determined by a regression model.

Suppose the goal is to simulate 5000 trivariate vectors Yi = (Yi1, Yi2, Yi3)
′ of multinomial responses

such that Yit ∈ {1, 2, 3, 4},

Pr (Yi1 = 1) = 0.1 Pr (Yi1 = 2) = 0.3 Pr (Yi1 = 3) = 0.4 Pr (Yi1 = 4) = 0.2

Pr (Yi2 = 1) = 0.2 Pr (Yi2 = 2) = 0.2 Pr (Yi2 = 3) = 0.2 Pr (Yi2 = 4) = 0.4

Pr (Yi3 = 1) = 0.2 Pr (Yi3 = 2) = 0.4 Pr (Yi3 = 3) = 0.3 Pr (Yi3 = 4) = 0.1

and a common uniform local odds ratio structure

φtt′ =
Pr (Yit = j, Yit′ = j′)Pr (Yit = j + 1, Yit′ = j′ + 1)
Pr (Yit = j, Yit′ = j′ + 1)Pr (Yit = j + 1, Yit′ = j′)

= 2

holds for all i = 1, . . . , 5000, t < t′ and j, j′ = 1, 2, 3. The above sampling scheme can be reparametrized
in terms of the threshold approach related to the marginal cumulative link model (2) while utilizing
the conclusions of the previous example to obtain the desired dependence structure.

To this direction, first define βtj0 = Φ−1 [Pr (Yit ≤ j)] for all t (t = 1, 2, 3) and j (j = 1, 2, 3) as the
category-specific intercepts of a marginal cumulative probit model with no covariates:

> library(SimCorMultRes)
> set.seed(123)
> N <- 5000
> clsize <- 3
> mprobs_1 <- c(0.1, 0.3, 0.4, 0.2)
> mprobs_2 <- c(0.2, 0.2, 0.2, 0.4)
> mprobs_3 <- c(0.2, 0.4, 0.3, 0.1)
> cprobs_1 <- cumsum(mprobs_1[-4])
> cprobs_2 <- cumsum(mprobs_2[-4])
> cprobs_3 <- cumsum(mprobs_3[-4])
> intercepts <- qnorm(rbind(cprobs_1, cprobs_2, cprobs_3))
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> x <- rep(0, clsize * N)

Next, for the pairwise dependence structure, approximate the desired pairwise uniform local odds
ratios φ12, φ13, φ23 via the correlation parameters of an underlying trivariate normal distribution
with mean vector the zero vector. Since the desired pairwise local odds ratios are all equal (φ12 =
φ13 = φ23 = 2), we may assume that the corresponding correlation parameters are all equal. This
common correlation parameter ρ can be sufficiently approximated by equation (8), which suggests
that ρ ≈ 0.5543:

> CommomLOR <- log(2)
> eta <- 1/(2 * CommomLOR)
> rhophi <- (sqrt(1 + eta^2) - eta) * 13/12
> rhophi
[1] 0.5543136

To sum up, the desired correlated multinomial responses can be simulated under a cumulative probit
model with no covariates and an exchangeable correlation matrix for the underlying trivariate normal
distribution with correlation parameter equal to 0.5543:

> cor.matrix <- toeplitz(c(1, rhophi, rhophi))
> simdata <- rmult.clm(clsize = clsize, intercepts = intercepts, betas = 0,
+ xformula = ~x, link = "probit", cor.matrix = cor.matrix)

The simulated category-specific probabilities satisfy the desired marginal configuration

> t(apply(simdata$Ysim, 2, function(x) table(x)/N))
1 2 3 4

[1,] 0.0970 0.2986 0.4068 0.1976
[2,] 0.1996 0.2046 0.1978 0.3980
[3,] 0.2068 0.3868 0.3068 0.0996

and a simulated correlation matrix for the latent random variables

> cor(simdata$rlatent)
[,1] [,2] [,3]

[1,] 1.0000000 0.5476759 0.5527712
[2,] 0.5476759 1.0000000 0.5534464
[3,] 0.5527712 0.5534464 1.0000000

This approach can also be employed to generate correlated binary random variables with known
marginal probabilities provided that the desired correlation structure of the binary responses can be
expressed in terms of a correlation matrix in the NORTA method. In this case SimCorMultRes is
essentially implementing the simulation method of Emrich and Piedmonte (1991) without performing
the first step of their algorithm.

Summary

We have presented the R package SimCorMultRes that simulates correlated binary or multinomial
random variables conditional on a marginal model specification while expressing the dependence
structure via the correlation structure of latent random variables. We outlined the underlying theory
that SimCorMultRes is based on and illustrated the use of the package with three examples. To
the best of our knowledge, SimCorMultRes is the first R package that targets specifically on the
generation of correlated binary, nominal or ordinal responses under marginal model specification.
In some instances, it could also be used to simulate correlated categorical responses even when
no model specification is provided for the marginal probabilities by exploiting the relationship of
association measures for discrete variables and the bivariate normal distribution. This can be achieved
by following a similar approach as the one adopted in the third example herein. The results in this
paper were obtained using SimCorMultRes version 1.4.1 and R 3.3.1.

Although the NORTA method is the default tool for simulating the latent random vectors denoted
by ei’s, it is extremely important to emphasize that these can be provided by the user via the rlatent
argument in the core functions. For example, generating correlated binary responses under a marginal
logit model specification and with an exchangeable correlation matrix, can be accomplished by taking
the difference of two independent random vectors from the multivariate Gumbel distribution each
with correlation matrix the desired correlation matrix. This approach can be found in standard
textbooks, such as Balakrishnan (1992). A working example, can be found in the vignette of this
package.
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A future direction is to increase the scope of marginal regression models for nominal and ordinal
responses, e.g., by including threshold approaches that give rise to a marginal adjacent-categories
logit model and allowing category-specific regression parameters in the marginal models with ordinal
responses.
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