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CryptRndTest: An R Package for Testing
the Cryptographic Randomness
by Haydar Demirhan and Nihan Bitirim

Abstract In this article, we introduce the R package CryptRndTest that performs eight statistical
randomness tests on cryptographic random number sequences. The purpose of the package is to
provide software implementing recently proposed cryptographic randomness tests utilizing goodness-
of-fit tests superior to the usual chi-square test in terms of statistical performance. Most of the tests
included in package CryptRndTest are not available in other software packages such as the R package
RDieHarder or the C library TestU01. Chi-square, Anderson-Darling, Kolmogorov-Smirnov, and
Jarque-Bera goodness-of-fit procedures are provided along with cryptographic randomness tests.
CryptRndTest utilizes multiple precision floating numbers for sequences longer than 64-bit based
on the package Rmpfr. By this way, included tests are applied precisely for higher bit-lengths. In
addition CryptRndTest provides a user friendly interface to these cryptographic randomness tests.
As an illustrative application, CryptRndTest is used to test available random number generators in R.

Introduction

Cryptographic random numbers constitute the heart of ciphering processes. Security of the transmitted
information is mostly based on the quality of random numbers used to cipher the information. Due
to efficiency considerations, pseudo random numbers that ensure some hard-to-achieve properties
are used for ciphering in practice. There are a considerable amount of pseudo random number
generators (RNG’s) in the literature of cryptography. Suitability of these RNG’s for use in cryptographic
applications is evaluated based on statistical randomness tests that are specifically designed to test
randomness at the level required for ciphering processes.

In a cryptographic randomness test, first, the empirical distribution of a test statistic is obtained
over a random number sequence by various data manipulations. Then, a statistical goodness-of-
fit test is applied to evaluate significance of the difference between the empirical distribution and
its theoretical counterpart at a predetermined level of significance. The need for a certain level of
randomness to ensure unpredictability in the cryptography context makes procedures used to check
cryptographic and classical randomness different from each other. The manipulations of random
number sequences are required to make the cryptographic randomness tests more sensitive to small
deviations from the exact randomness than their classical counterparts. The null hypothesis of the test
is “H0 : Sequences generated by the RNG of interest are random.” There are more than a hundred
alternative tests for the evaluation of cryptographic randomness available (L’Ecuyer and Hellekalek,
1998).

In the literature, some of these tests are grouped into test batteries or test suites (L’Ecuyer and
Simard, 2007; Marsaglia and Tsang, 2002). A detailed review of test batteries is given by Demirhan and
Bitirim (2016). To be qualified as suitable, an RNG should be identified as random in a predetermined
portion or all of the tests in a test battery. The basic test battery is introduced by Knuth (1998, 1981,
1969). Then, Marsaglia (1996) introduced the Diehard test battery composed of 12 randomness tests.
Disadvantages of the Diehard test battery were overcame by another test battery called Dieharder
that is introduced by Brown et al. (2014). Dieharder includes 26 cryptographic randomness tests. It is
an improvement of the Diehard battery, provides a user friendly interface and a useful open source
tool set for users of random numbers (Brown et al., 2014). The Dieharder test battery is implemented
in the R package RDieHarder prepared by Eddelbuettel and Brown (2014). At the time of writing,
Windows and OS X binaries are not available for this package. The US National Institute of Standards
and Technology developed the NIST battery composed of 16 tests (Sýs et al., 2014; Sýs and Říha, 2014;
Rukhin et al., 2010; Rukhin, 2001; Soto, 1999). The NIST battery is still used as a straightforward tool
for formal certifications and accepted as a standard test battery. Sadique et al. (2012) reviewed the tests
included in the NIST test battery. A suite of test batteries, TestU01, was introduced by L’Ecuyer and
Simard (2007, 2014). TestU01 is a C library that combines most of the available randomness tests and
RNGs in six test batteries (McCullough, 2006; L’Ecuyer and Simard, 2007). There are also smaller scale
test batteries in terms of extensiveness. ENT was proposed by Walker (2014) that contains 5 statistics
and tests. The Helsinki test battery is based on the Ising model and random walks on lattices and was
proposed by Vattulainen et al. (1995). The Crypt-X test battery, which includes 6 tests, was developed
by the Information Security Research Center at Queensland University of Technology (Sýs and Říha,
2014; Soto, 1999). The SPRNG test battery includes some tests from the battery of Knuth (Mascagni
and Srinivasan, 2000). Ruetti (2004) combined Knuth, Helsinki, Diehard, and SPRNG batteries and
proposed a test battery consisting of 37 statistical and physical tests.
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In addition to the tests included in test batteries, there also exist recently proposed cryptographic
randomness tests that are not performed by test batteries. Maurer (1992) proposed a statistical test for
random bit generators. Hernandez et al. (2004) proposed a new test called Strict Avalanche Criterion
(SAC). Ryabko et al. (2004) proposed an adaptation of the well-known chi-square test. This test is
more efficient than the usual chi-square test in small samples. “Book Stack” and “Order” tests were
proposed by Ryabko and Monarev (2005) for testing binary random bit sequences. Doganaksoy
et al. (2006) proposed three randomness tests based on the random walk process. An advantage of
these tests is that it is possible to calculate exact probabilities corresponding to the test statistics. The
“Topological Binary Test” was introduced by Alcover et al. (2013) to test randomness in bit sequences.
It counts different bit patterns of pre-determined length in a sequence of random bits.

Availability of a software implementing a test battery or even that of an individual cryptographic
randomness test is a critical issue for the usefulness of the related test or battery. The library TestU01
is developed in ANSI C; hence, it is compiled by GNU tools instead of today’s C compilers. Although
TestU01 performs a wide variety of tests and their combinations, it lacks flexibility of implementation.
Because the battery Dieharder is implemented in an R package, namely RDieHarder, it is more
applicable and user-friendly than TestU01. However, unavailability of Windows and OS X binaries
can be seen as a disadvantage that decreases its accessibility. A package for the implementation
of the NIST battery is prepared for SUN workstations using ANSI C (Rukhin et al., 2010). Rukhin
et al. (2010) provides a user guide for setting up the package and running the included tests. Ease of
implementation of the NIST battery is similar with TestU01. For the implementation of individual
randomness tests, there are also numerous R packages such as randtests (Caeiro and Mateus, 2014) or
DescTools (Signorell, 2015). Although some of the tests included in these packages are also used to
evaluate cryptographic randomness, they cover neither recently proposed tests nor those developed
specifically to test cryptographic randomness.

The usual chi-square test is applied with nearly all of the cryptographic randomness tests in the
literature. The mentioned implementations including those covered by R automatically apply the
chi-square test. However, there are numerous alternatives to the chi-square goodness-of-fit test such
as the Kolmogorov-Smirnov, Anderson-Darling, or Jarque-Bera tests. It is apparent that because
statistical qualities of these tests are better than the chi-square test, there will be a gain in performance
of cryptographic randomness tests when applied with better goodness-of-fit tests. Thus, we need
software that is capable of conducting actual cryptographic randomness tests such as topological
binary, book stack, etc. with goodness-of-fit tests better than the usual chi-square test in statistical
performance. When the range and variety of cryptographic randomness tests implemented by software
and practicability of available software are considered, this software should effectively implement new
tests with various goodness-of-fit tests and has a user-friendly interface. The package CryptRndTest
(Demirhan, 2016) contributes to satisfy this need.

The aim of this article is to describe and illustrate the use of the R package CryptRndTest (currently
in version 1.2.2) that performs some of recently proposed and basic cryptographic randomness tests.
The package includes the functions adaptive.chi.square, birthday.spacings, book.stack, GCD.test,
topological.binary, and random.walk.tests to perform adaptive chi-square, birthday spacings,
book stack, greatest common divisor, topological binary tests, and three tests based on the random
walk process, respectively. To the best of our knowledge, the adaptive chi-square, topological binary,
and the tests based on the random walk process are first implemented in software with package
CryptRndTest. In addition to the chi-square procedure, these functions apply Anderson-Darling,
Kolmogorov-Smirnov, and Jarque-Bera procedures when suitable. Because statistical performances
of goodness-of-fit tests differ under various conditions, the application of different goodness-of-fit
procedures is a beneficial feature. This is another important feature of package CryptRndTest. In
addition, it has the following auxiliary functions: GCD, GCD.q, GCD.big, Strlng2, toBaseTwo, toBaseTen,
and TBT.criticalValue to compute the greatest common divisor under different conditions of inputs,
approximately calculate the Stirling number of the second kind when the inputs are large, make base
conversions precisely with large inputs, and calculate critical values for the topological binary test.

The paper is organized as follows: in the next section, methodologies of the tests included in
package CryptRndTest are briefly given. Details of algorithms used to manipulate integer and bit
sequences are mentioned, and applications of goodness-of-fit procedures performed by package
CryptRndTest are clarified. Parameter settings and limitations for each test are mentioned. Finally,
as an illustrative application of package CryptRndTest, random number generators available in R
are tested by using the proposed package under different sequence and bit-length conditions. By
this application, implementation performance of the package is analyzed, recently proposed tests are
evaluated, and usage of package CryptRndTest is illustrated.
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Performed tests

Adaptive chi-square

The adaptive chi-square test was introduced by Ryabko et al. (2004). It is empirically demonstrated by
Ryabko et al. (2004) that the adaptive chi-square test is more efficient than the classical chi-square test
in the identification of non-random patterns in samples smaller than those required by the chi-square
test. For example, when we work with 64-bit numbers the length of the alphabet is 264; hence, we
need to have a sequence of length greater than 5 · 264 to apply the classical chi-square test safely. The
logic behind the test is to divide the alphabet into subsets and perform the chi-square test over subsets
instead of individual elements of the sample. By this way, subsets are considered as a new alphabet
and a new null hypothesis and its alternative are formed over the subsets. Because the number of
categories required to test new hypotheses is equal to the number of subsets, the chi-square test is
applied with much smaller samples. To conclude randomness, it is expected to observe a uniformity
in the distribution of input numbers into the subsets. Deviations from this uniformity are detected by
the adaptive chi-square test.

The function adaptive.chi.square() is called to apply the test. It implements the following
pseudo-code algorithm:

Algorithm 1.

1. Input data as a matrix of bits or a vector of integers, the number of subsets (S) that the alphabet
will be divided into, and proportion of training data set;

2. If data is represented by bits, transform data to base-10;

3. Divide whole data set into training and testing subsets with regarding input weights;

4. Identify the numbers that are seen in the sequence of interest at least once;

5. Find the frequency of occurrences for each element of the alphabet in training and testing
subsets;

6. For i = 1, . . . , S, find the frequency of elements that are seen i-times in the training and testing
subsets;

7. Apply the two-sample chi-square test with the expected and observed counts obtained at the
previous step over the training and testing subsets, respectively;

8. Return value of the test statistic, corresponding p-value, and the decision on the null hypothesis.

While working with integers, the alphabet corresponds to the range of considered numbers. For
instance, if 32-bit numbers are being tested, the alphabet in Algorithm 1 includes the numbers between
0 and 232 − 1. At step 4, we do not form the whole alphabet, instead we count the numbers (words)
that are seen at least once; and hence, the rest of the numbers have zero count. At step 7, the degrees
of freedom of the test is S− 1.

Parameters of the adaptive chi-square test are: weight of training and testing samples (r), the
length of the considered number sequence (n), and the number of subsets (S) that the alphabet is
divided into. Ryabko et al. (2004) do not give strict rules for the determination of values of these
parameters. They suggest to run some experiments to find the values of parameters that provide the
highest statistical performance such as power and specificity. Because such a study would not be
cost-effective for an individual application of the test, at least, the user may evaluate sensitivity of test
results to the values of S and r. In the function adaptive.chi.square(), we set r = 0.5 by default. The
value of S is set by the user. That of n is determined by the length of input data. Because input data is a
random sample from the RNG of interest, the value of n should be increased with increasing bit-length
to successfully represent the range of numbers that will be generated by the RNG. When bit-length is
greater than 64, we utilize the package Rmpfr (Maechler, 2015) to work with higher precision.

Algorithm complexity of the function adaptive.chi.square() is O(n2) in the worst case. Required
memory is directly related to the length of the input sequence. Due to the algorithm complexity
of the function used to identify unique numbers at step 4, implementation time of the function
adaptive.chi.square increases quadratically along with the length of the input sequence.

Birthday spacings

The Birthday Spacings test was given by Marsaglia and Tsang (2002). It focuses on the number of
duplicated values of spacings between ordered birthdays among a year of pre-determined length.
The observed duplication patterns in input numbers are compared with the patterns that should be
observed under randomness. Thus, the birthday spacings test detects deviations from randomness
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by focusing on repetition frequency of numbers to ensure uniformity. Marsaglia and Tsang (2002)
propose that the number of duplicated values is approximately distributed according to the Poisson
distribution. They also derive an expression for the mean rate of the Poisson distribution.

The function birthday.spacings() is employed to run the test. It implements the following
pseudo-code algorithm:

Algorithm 2.

1. Input data as a vector of integers of size n, the number of birthdays (m), the length of year (N),
the mean rate of the theoretical Poisson distribution (λ), and the number of classes (k) that is
constructed for goodness-of-fit tests;

2. Reshape the first m · bn/mc elements of input vector as a matrix of bn/mc rows and m columns;

3. Sort each row of the matrix of step 2 according to the values in columns;

4. For each row, find the distance between columns of the sorted matrix by extracting the values in
the columns at the previous step;

5. Count duplicated values among the distances obtained at step 4;

6. Calculate class probabilities over the Poisson distribution with mean rate λ for x = 0, . . . , k, and
assign the rest of probability mass to the (k + 1)-th class;

7. Calculate expected frequencies corresponding to the probabilities obtained at the previous step;

8. Replicate the expected counts to form the corresponding sample;

9. Apply the Anderson-Darling test to compare goodness-of-fit of the samples obtained at steps 5
and 8;

10. Apply the Kolmogorov-Smirnov test to compare goodness-of-fit of the samples obtained at
steps 5 and 8;

11. Construct frequency table of the counts obtained at step 5;

12. Apply chi-square test over the frequency tables obtained at steps 7 and 11;

13. Return the values of test statistics, corresponding p-values, and decisions on the null hypothesis.

At step 2 of Algorithm 2, each row of the reshaped matrix includes birthdays in columns. Total
number of rows determines the size of the sample that is used in goodness-of-fit tests applied at steps
9, 10, and 12. Manipulation of the input vector according to the birthday spacings test is completed at
step 5. This manipulation produces the empirical sample in testing the goodness-of-fit to the Poisson
distribution. The Anderson-Darling test at step 9 is applied by using function ad.test from the
package kSamples (Scholz and Zhu, 2016). The Kolmogorov-Smirnov test at step 10 is applied by
using function ks.test from the package stats.

Marsaglia and Tsang (2002) give some insight into the optimal values of parameters. The mean
rate is λ = m3/(4n). They state that for an RNG, it is harder to pass this test for increasing values of
either m or n. Specifically, the case with m = 4096 and n = 232 is qualified as a compelling setting for
32-bit generators. Length of the input sequence is another important parameter. Because the size of
the sample used in testing the goodness-of-fit is equal to bn/mc, the length of the input sequence (n)
should be chosen large enough to apply the goodness-of-fit tests appropriately.

Algorithm complexity of the function birthday.spacings() is O(n2) in the worst case. The
limitation of birthday.spacings() is directly related with the value of m. For all combinations of m
and n suggested by Marsaglia and Tsang (2002), λ is equal to 4. Following this logic, when n = 264 the
value of m giving λ = 4 is 6,658,043. In this case, for a reliable application of goodness-of-fit tests at
steps 9, 10, and 12, we need at least 133,160,860 integers and correspondingly 8,522,295,040 bits. For bit
lengths higher than 32, the value of λ can be taken as 2. For instance, when n = 264, the corresponding
value of m is 5,284,492. Thus, decreasing the value of λ does not overcome the need for a huge data set
for a reliable testing. Note that use of huge data set for testing is a memory consuming operation.

Book stack

The Book Stack test was proposed by Ryabko and Monarev (2005). Positions of the numbers on a stack
are taken into consideration. In this test, randomness implies that frequency of finding each number at
each position is equally likely. Departures from this equality mean that some of the words are seen
more frequently in contrast to the nature of randomness. The book stack test focuses on non-uniform
patterns and frequent repetitions of input numbers to detect deviations from randomness by means of
unexpected autocorrelation patterns and non-uniformity.

The function book.stack() implements the following pseudo-code algorithm to run the test:
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Algorithm 3.

1. Input data as a matrix of bits or a vector of integers and the number of subsets (k) that the
alphabet will be divided into;

2. If data are represented by bits, transform data to base-10;

3. Form an array that includes the numbers from 1 to the number of unique words in the input
sequence;

4. Write each element of the input vector in place of the first element of the array formed at the
previous step, and move the other elements except the one written to the first cell of the array
one step right;

5. Record the array obtained at the previous step;

6. Go back to step 4 until all elements of the input vector are taken into account;

7. Divide the whole alphabet into k non-overlapping subsets (A1, A2, . . . , Ak);

8. For each subset of the alphabet, find the frequency of occurrences of the number corresponding
to the position of each element of input vector in the arrays formed at steps 4 and 5;

9. Apply the chi-square test with expected counts equal to n · Ai, where i = 1, . . . , k and n is the
length of input vector or number of columns of input matrix;

10. Return the value of test statistic, corresponding p-value, and decision on the null hypothesis.

In order to get an integer number of subsets, the length of input vector should be determined to get
an integer as the length of subsets. Optimal value for the length of input vector is given as n ≈ B · 2B/2,
where B is the bit-length of the considered RNG (Ryabko and Monarev, 2005; Doroshenko and Ryabko,
2006; Doroshenko et al., 2006). For an appropriate determination of number of subsets, k, Ryabko
and Monarev (2005) suggest performing an empirical study. As for an appropriate bit-length, it is
mentioned by Ryabko and Monarev (2005) that it is hard to set up a sensible test with much higher
bit-lengths.

Algorithm complexity of the function book.stack() is O(n2) in the worst case. The limitation of
the Book Stack test is based on the bit-length of the considered RNG. For example, for B = 64 the
length of the input vector is calculated as 1.37 · 1011 and we need 1 terabyte memory whereas the
memory requirement is 4 megabytes for B = 32. Due to both memory and sensibility issues, it is not
appropriate to work with high bit-lengths such as 64.

Greatest common divisor

Two tests proposed by Marsaglia and Tsang (2002) are based on the number of required iterations
(k) and the value of the greatest common divisor (GCD) obtained in the GCD operation. When
perceived as random variables, both k and GCD are independently and identically distributed and their
distributions can be obtained under randomness. Marsaglia and Tsang (2002) derived distributions
of k with an empirical study and that of GCD theoretically under the null hypothesis of randomness.
Departures from randomness imply nonconformity between empirical and theoretical distributions of
k and GCD. Thus, these tests focus on the deviations from independence and uniformity.

The function gcd.test() is called to apply the test. The following pseudo-code algorithm is
implemented by gcd.test() when all of the goodness-of-fit tests are set to TRUE:

Algorithm 4.

1. Input data as an N × 2 matrix of integers, mean and standard deviation of theoretical normal
distribution of k;

2. Constitute a pair of numbers from each row of input matrix;

3. Apply the GCD operation to each pair formed at the previous step;

4. Store values of k for N pairs;

5. If the obtained GCD is less than 3, store it as 3 and if that of GCD is greater than 35, store it as 35;

6. Generate a random sample of size N from the normal distribution with input values of mean
and standard deviation.

7. If the tests based on k will be conducted, go to the next step, otherwise go to step 13;

8. Apply the two sample Kolmogorov-Smirnov test in a two-sided setting to samples obtained at
steps 4 and 6;

9. Apply the chi-square test to samples obtained at steps 4 and 6;
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10. Standardize the values of k by using its empirical mean and standard deviation;

11. Apply the Jarque-Bera test to the standardized sample of step 10;

12. Apply the Anderson-Darling test to samples obtained at steps 4 and 6;

13. If the tests based on the GCD will be conducted, go to the next step, otherwise go to step 19;

14. Construct the cumulative distribution function (cdf) of the probability function (pf) of GCD
given by Marsaglia and Tsang (2002);

15. Obtain theoretical frequencies for the GCD over the cdf of step 14. Specifically, if theoretical
frequency of the GCD is less than 3, store it as 3 and if that of the GCD is greater than 35, store it
as 35;

16. Replicate the expected counts to form the corresponding sample;

17. Apply the two sample Kolmogorov-Smirnov test in a two-sided setting to samples obtained at
steps 5 and 16;

18. Apply the chi-square test to samples obtained at steps 5 and 16;

19. Return the values of calculated test statistics, corresponding p-values, and decisions on the null
hypothesis.

Mean and standard deviation of the theoretical normal distribution for bit lengths other than 32
are not given by Marsaglia and Tsang (2002). We conducted extensive empirical studies, details of
which are mentioned in the following sections, to obtain these parameters and tabulated obtained
values in Table 3.

When bit-length is increased, corresponding value of GCD mostly becomes greater than 35; hence,
the operation at step 15 of Algorithm 4 gets unreasonable. Thus, we observe that it is not appropriate
to conduct tests based on the GCD for high bit-lengths such as 128.

The Kolmogorov-Smirnov and chi-square tests at steps 8 and 17, and 9 and 18 are applied by using
functions ks.test and chisq.test from the package stats, respectively. The Jarque-Bera test at step
11 is implemented by using the function jarque.bera.test from the package tseries (Trapletti and
Hornik, 2015). The Anderson-Darling test is applied by using the function ad.test from the package
kSamples.

Calculations of the number of required iterations and the value of the GCD are time consuming
tasks for bit-lengths greater than 64. To overcome this difficulty, we prepared three functions to
calculate GCD-related variables. The first function GCD.q computes the number of required iterations,
the value of the GCD, and the sequence of partial quotients by using the Euclidean algorithm. The
function GCD is the recursive version of the Euclidean algorithm and it only provides the number of
required iterations and the value of the GCD. The function GCD.big applies the Euclidean algorithm
over multiple precision floating point numbers using package Rmpfr and provides all three outputs
related with the GCD operation. While GCD is the fastest one, GCD.big gives the most precise results.
It is also possible to use the binary GCD algorithm to decrease the implementation time. However,
in this case it is not possible to apply tests over the number of required iterations of the Euclidean
algorithm. When the GCD operation is done recursively, the algorithm complexity of gcd.test() is
O(log(a)), where a is the maximum initial input to the recursive algorithm. Memory requirement for
GCD tests is directly related with the value of N.

Random walk tests

In the literature, binary sequences are analyzed in detail by using the random walk process. Do-
ganaksoy et al. (2006) proposed three tests based on the random walk stochastic process. In a random
walk process, magnitude or direction of each change is determined by chance; hence, a random
walk is random if increment and decrement probabilities are equal to each other. Therefore, random
walk processes provide a good basis for randomness. In a random walk, a part of the sequence
that intersects the x-axis with two successive points is called excursion, and over all excursions, the
maximum distance from the x-axis is defined as height, and the vertical distance between minimum
and maximum points over the y-axis is called expansion. Thus, we have three characteristics of the
random walk process to observe deviations from randomness. The corresponding tests are called
Random Walk Excursion, Random Walk Height, and Random Walk Expansion. If there is a trend in
the process, the input sequence fails in the excursion test. The height test focuses on the moves with
very low or high magnitude to detect non-randomness. The expansion test focuses on the anomalies in
amplitude of the walk to identify non-random patterns. Because the exact probabilities corresponding
to test statistics are calculated, the tests proposed by Doganaksoy et al. (2006) are also applicable for
small sample sizes.
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The function random.walk.tests() is called to apply three tests, selectively. The following pseudo-
code algorithm is implemented by random.walk.tests() when all of the tests are to be applied:

Algorithm 5.

1. Input data as a matrix of bits of dimension B× k, where B is the bit length and k is the length of
input sequence;

2. Transform the input values from {0, 1} to {−1, 1};
3. To apply the expansion, excursion, and height tests go to steps 4, 6, and 7, respectively;

4. For each non-overlapping set of length B, sum adjacent bits starting from the first bit and
increasing by one at each iteration (By this way, we get B summations for each number of
interest);

5. For the Expansion test, count and store the summations of the previous step equal to zero;

6. For the Excursion test, calculate the maximum summation and the absolute value of the mini-
mum summation among those of step 4 and store their sum;

7. For the Height test, store the absolute maximum of summations obtained at step 4;

8. Calculate theoretical cdf’s and pf’s for the tests regarding bit-lengths and probabilities tabulated
by Doganaksoy et al. (2006);

9. Calculate empirical cdf’s and pf’s over the counts obtained at steps 5, 6, and 7;

10. Replicate the expected and empirical pf’s to form the corresponding samples;

11. Apply the Anderson-Darling test to samples obtained at the previous step;

12. Apply the two sample Kolmogorov-Smirnov test in a two-sided setting to samples obtained at
step 10;

13. Apply the chi-square test to samples obtained at step 10;

14. Return the values of calculated test statistics, corresponding p-values, and decisions on the null
hypothesis.

The Anderson-Darling test at step 9 is applied by using function ad.test from the package
kSamples. The Kolmogorov-Smirnov test at step 10 is applied by using function ks.test from the
package stats. The chi-square test at step 11 is the classical application of the test without using a
predefined function. If one of the tests is not applied, all the results related with that test in output are
set to −1.

Algorithm complexities of expansion, excursion, and height tests are O(B), O(Bbk · Bc), and
O(Bbk · Bc), respectively. The limitation of the tests is unavailability of theoretical cdf’s for bit-lengths
other than 32, 64, 128, and 256. Therefore, using the information given by Doganaksoy et al. (2006) the
excursion is applied for bit-lengths of 16, 32, 64, 128, and 256; the height test is applied for bit-lengths
of 64, 128, 256, 512, and 1024; and the expansion test is applied for bit-lengths of 32, 64, and 128.
Although the size of required memory increases along with the length of the input sequence, it is
possible to apply the tests with reasonable sequence lengths without causing memory pressure.

Topological binary

The topological binary test was proposed by Alcover et al. (2013) to test the randomness in bit
sequences. The logic behind the test is based on the number of different fixed-length bit patterns in
a bit sequence. Frequency of distinct non-overlapping bit patterns over the sequence of interest is
influential on the test result. In case of randomness, we expect to have many different bit patterns in
the input sequence. The main strength of the topological binary test is that it focuses on the number of
bit patterns rather than frequency of occurrence of numbers. Because the exact distribution of the test
statistic is derived, it is possible to apply the test for short bit sequences.

The function topological.binary() implements the following pseudo-code algorithm to run the
test:

Algorithm 6.

1. Input data as a B× k matrix of bits, where B is the bit-length and k is the length of considered
number sequence, and the critical value;

2. Find and store non-overlapping blocks of length B;

3. Count the number of different B-bit patterns that appear across all the k blocks;
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Function Call

Test GCD.test() GCD.test(x,KS = TRUE,CSQ = TRUE,AD = TRUE,JB = TRUE,
test.k = TRUE, test.g = TRUE, mu, sd, alpha = 0.05)

random.walk.tests() random.walk.tests(x,B = 64,Excursion = TRUE,
Expansion = TRUE, Height = TRUE, alpha = 0.05)

birthday.spacings() birthday.spacings(x,m = 128,n = 216,alpha = 0.05,lambda,
num.class = 10)

adaptive.chi.square() adaptive.chi.square(x,B,S,alpha = 0.05,bit = FALSE)
book.stack() book.stack(A,B,k = 2,alpha = 0.05,bit = FALSE)
topological.binary() topological.binary(x,B,alpha = 0.05,critical.value)

Auxiliary Strlng2() Strlng2(n,k,log = TRUE)
GCD() GCD(x,y)
GCD.q() GCD.q(x,y)
GCD.big() GCD.big(x,y,B)
TBT.CriticalValue() TBT.criticalValue(m,k,alpha = 0.01,cdf = FALSE,exact = TRUE)
toBaseTen() toBaseTen(x,m = 128,prec = 256,toFile = FALSE,file)
toBaseTwo() toBaseTwo(x,m = 128,prec = 512,num.CPU = 4)

Table 1: Usage of test and auxiliary functions of package CryptRndTest.

4. If the result of step 3 is less than one, then reject the null hypothesis;

5. Else if the result of step 3 is greater than min(k, 2B), then do not reject the null hypothesis;

6. Else if the result of step 3 is less than the input critical value, then reject the null hypothesis;

7. Else do not reject the null hypothesis;

8. Return the result of step 3 as the value of test statistic and the decision on the null hypothesis.

Although the exact distribution of test statistic is derived by Alcover et al. (2013), calculation of the
Stirling numbers of the second kind with large inputs is required with bit-lengths greater than 16 for
the calculation of the cdf of the test statistics. Therefore, it is hard to obtain the critical value of the
test for large bit-lengths by using available functions in R packages such as the function Stirling2 of
package copula (Hofert et al., 2015). This case is a limitation of the function topological.binary(). To
overcome this limitation of the test, we prepared the function TBT.CriticalValue to calculate required
critical values for testing. Algorithm complexity of the function topological.binary() is O(n2) in
the worst case. The required memory to run the topological binary test is related with the value of k.

Auxiliary functions

The package CryptRndTest has seven auxiliary functions, i.e., Strlng2(), GCD(), GCD.q(), GCD.big(),
toBaseTwo(), toBaseTen(), and TBT.CriticalValue(). These functions are also suitable for individual
use. Strlng2() is used to calculate critical values for the topological binary test implemented by
TBT.CriticalValue(). GCD() and GCD.q() are called to calculate the greatest common divisor in the
GCD test implemented by gcd.test(). Three possible outcomes of the greatest common divisor
operation are the number of iterations, the sequence of partial quotients, and the value of greatest
common divisor. GCD() provides all of these outcomes for any pair of integers excluding zero.
Functions toBaseTwo() and toBaseTen() are used for base conversion from base 2 to 10 and vice
versa for large integers.

The function Strlng2() is used to compute the natural logarithm of Stirling numbers of the second
kind for large values of inputs in an approximate manner by the approaches of Bleick and Wang (1974)
and Temme (1993). In this approach, Lambert W functions are employed at the log scale to overcome
memory overflows.

Due to the large factorials in the calculation of Stirling numbers of the second kind, it is nearly
impossible to compute the exact cdf of the topological binary test statistic for higher bit lengths
without memory flows in R. The function TBT.CriticalValue() implements an approach for the
calculation of the cdf and approximately computes the required critical value for the topological
binary test at a given level of α. Because TBT.CriticalValue() utilizes Strlng2(), accuracy of results
decreases with increasing bit lengths and number of words under consideration. It is also possible
to make exact calculations by TBT.CriticalValue(). In this case, the function Stirling2 from the
package gmp (Lucas et al., 2014) is employed instead of Strlng2(). Because package gmp uses
multiple precision arithmetic, implementation time of TBT.CriticalValue() considerable increases.
User should evaluate the trade off between implementation time and high precision.

Arguments of main and auxiliary functions of package CryptRndTest are summarized in Table 1.
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Sequence length

Bit Short (I) Medium (II) Long (III)

8 256 32768 65536
16 16384 65536 131072
32 32768 131072 262144
64 131072 262144 524288
128 131072 262144 524288

Table 2: Lengths of random number sequences for different patterns.

A numerical illustration

As a numerical illustration of the package, we employed package CryptRndTest to test the randomness
of RNG’s available in R. By this way, we aim to get results of the tests that have not been applied
to RNG’s of interest yet, figure out implementation performance of package CryptRndTest under
various scenarios, and illustrate some issues on the determination of parameters of the tests for
considered scenarios. Note that it is impossible to observe the ability to control type-I error (rejection
of randomness hypothesis while it is actually true) for the tests with an empirical study such as
conducted in this section. Additionally, a more thorough investigation would be necessary to be able
to reliably assess the algorithms, but this is out of scope of this article.

RNG’s of interest are Wichmann-Hill (WH), Marsaglia-Multicarry (MM), Super-Duper (SD),
Mersenne-Twister (MT), Knuth-TAOCP-2002 (KT02), Knuth-TAOCP (KT), and L’Ecuyer-CMRG (LE)
(see the function Random in the base package for the details of these RNG’s). Applied tests are
topological binary (TBT), adaptive chi-square (Achi), birthday spacings (BDS), random walk expansion
(RWT.Exp), random walk height (RWT.Hei), random walk excursion (RWT.Exc), book stack (BS), and
greatest common divisor (GCD). TBT, RWT.Exp, RWT.Hei, and RWT.Exc tests work with binary
numbers while the rest of the tests take integers as input. BDS and RWT tests are applied separately
with each of Anderson-Darling, Kolmogorov-Smirnov, and chi-square goodness-of-fit tests, and the
GCD test is applied separately with each of Anderson-Darling, Kolmogorov-Smirnov, Jargue-Bera,
and chi-square goodness-of-fit tests. The total number of applied randomness tests is 21. All the tests
are applied at both 0.01 and 0.05 levels of significance and 8, 16, 32, 64, and 128-bit lengths. Considered
lengths of random number sequences for each bit-length are given in Table 2.

Because we get unreasonable implementation times for longer sequences at the level of 128-bit, the
same sequence lengths as 64-bit are considered for 128-bit numbers.

To conduct the adaptive chi-square test, we need to determine the value of argument S and the
proportions of training and testing samples. The latter one is taken equal. As for the value of S, we
did not detect a significant change in the test results observed for medium sequence length for all
bit-lengths for S = 2, 3, 4 in pilot runs. The values greater than 4 increase the implementation time
whereas small values decrease resolution. Thus, it is taken as 4 for all bit-lengths to work with a
reasonable degrees of freedom in the chi-square test. Also, the adaptive chi-square test is applied for
all bit-lengths.

Arguments of the birthday spacings test are the number of birthdays (m), the length of year (n),
the mean rate of the theoretical Poisson distribution (lambda), and the number of classes (num.class),
which is used for goodness-of-fit tests. In the experiments, the argument m was taken as 8, 128, and 4096
for 8, 16, and 32-bit-lengths, respectively. The argument n was set to 2B, where B is the bit-length. The
argument lambda was calculated by the formula given by Marsaglia and Tsang (2002). The argument
num.class was set to 5 and 10 for 8 and 16-bit and higher lengths, respectively.

For the book stack test, length of the sample (n) should be determined and data should be prepared
according to the value of n. Also, the number of subsets that the alphabet will be divided into (k)
should be determined. The formula proposed by Ryabko and Monarev (2005) is used to calculate the
value of n, and we set k=n/B.

In the GCD test procedure, tests are conducted for two outputs of the GCD operation, i.e., the
number of iterations required to find GCD (k) and GCD (g) itself. The population distribution of k
is well approximated by a normal distribution and parameters of the normal distribution are given
by Marsaglia and Tsang (2002) for 32-bit integers after an extensive numerical study. We observed
that the parameters of the population distribution differ for different bit-lengths and conducted a
numerical study to figure out the values of parameters for considered bit-lengths. For this study, 106

30-bit true random numbers were obtained from the web service “www.random.org.” Then, they were
converted to 8, 16, 32, 64, and 128-bit numbers. The GCD operation was applied and mean (mu.GCD)
and standard deviation (sd.GCD) of k were obtained as given in Table 3 after checking the normality of
the empirical distribution by means of descriptive statistics and the Anderson-Darling goodness-of-fit
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Bit mu.GCD sd.GCD

8 3.9991 1.6242
16 8.8784 2.3664
32 18.4023 3.4000
64 31.3269 4.3349

128 31.8390 4.3678

Table 3: Mean and standard deviation of population distribution of k.

α = 0.01 α = 0.05

Bit Short Medium Long Short Medium Long

8 153 NA NA 153 NA NA
16 14423 41268 NA 14423 41266 NA
32 32767 131066 262129 32767 131066 262129
64 131070 262113 523264 131070 262113 524264

128 131072 262144 524288 131072 262144 524288
NA: not available.

Table 4: Critical values for topological binary test.

test. The values obtained for 32-bit are very close to those obtained by Marsaglia and Tsang (2002).

As expected, the mean of k increases along with bit-length, and it approaches 35 (Marsaglia and
Tsang, 2002). The mild increase in the values of standard deviations is due to the increasing range
of the numbers that can be generated with a given bit-length. Also, the GCD test is applied for all
bit-lengths. However, nearly for all 128-bit random numbers, g > 35. Due to the operation done at
step 15 of Algorithm 4, it is unreasonable to conduct the GCD test over g for 128-bit numbers.

The topological binary test is also applied for all bit-lengths. Critical values for the topological
binary test are calculated by using the function TBT.criticalValue() for each bit and sequence length
combination and presented in Table 4. Because the length of sequence being tested cannot be longer
than 2m − 1, where m is the bit-length, critical values for medium and long sequences at 8-bit and for
long sequences at 16-bit levels are not available in Table 4.

In the application, random numbers were generated by using the same seed 283158301. Let
sim.data be an integer vector including data to be tested. It is reshaped with the following code
according to bit-length B:

if (B <= 64) {
sim.data <- matrix(data = sim.data, ncol = len, byrow = FALSE)

} else {
sim.data <- mpfrArray(sim.data, prec = B)

}

The adaptive chi-square, random walk, and topological binary tests were straightforwardly called
with the mentioned arguments. For the book stack test, the following code is employed:

n <- B * (2^(B/2))
dat.BS <- sim.data[1:round(n/B)]
BS <- book.stack(x = dat.BS, B = B, k = n/B, alpha = 0.01, bit = FALSE)
print(BS)

For the GCD tests, the input number sequence was divided into two-sequences and the tests were
applied with the following code:

if (len%%2 == 1) {
len <- len - 1

}
len2 <- len/2
if (B <= 64) {
dat.new <- array(NA, dim = c(len2,2))
dat.new[1:len2,1] <- sim.data[1:len2]
dat.new[1:len2,2] <- sim.data[(len2+1):len]

} else {
dat.new <- mpfrArray(NA, prec = m, dim = c(len2,2))
dat.new[1:len2, 1] <- sim.data[1:len2]
dat.new[1:len2, 2] <- sim.data[(len2+1):len]
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Tests

Bit Length TBT Achi BDS RWT.Exp RWT.Hei RWT.Exc BS GCD

8 32768 0.62 2.88 0.46 NA NA NA < 0.01 1.31
16 65536 1.70 5.70 0.46 NA NA 4.33 0.02 3.74
32 131072 6.68 10.88 2.10 NA 0.26 15.99 4253.01 12.32
64 262144 32.05 86.31 NA 84.21 88.74 64.68 NA 37.36
128 262144 77.16 10121.34 NA 221.16 196.96 149.29 NA 2657.62
TBT: topological binary, Achi: adaptive chi-square, BDS: birthday spacings, RWT: random walk, Exp: expansion,
Hei: height, BS: book stack, GCD: greatest common divisor, Length: the length of random number sequence,
NA: not available.

Table 5: Mean implementation time for each test in seconds.

}
EBOB <- GCD.test(x = dat.new, B = m, mu = mu.GCD, sd = sd.GCD, test.g = do.test.g)
print(EBOB)

where len is the length of the input sequence. Whole code snippets used to implement experiments
are given in the vignette of the package CrpytRndTest.

Random number sequences used for the performance analysis are of medium length given in
Table 2 and generated by the WH generator under each bit level. Five replications were made for each
test. Mean implementation times calculated over five replications are shown in Table 5 in seconds. All
variances of implementation times are less than 0.01. BDS, RWT, and BS tests were not applied at all
bit-lengths due to reasons explained in the relevant sections.

Implementation times of all tests from 8 to 64-bit levels are all sufficient. For 128 bits, most of
the implementation times of Achi and GCD tests are taken by finding unique values in a sequence
composed of multiple precision floating-point (mpf) numbers at step 4 of Algorithm 1 and the value
of gcd for mpf numbers at step 3 of Algorithm 4, respectively. For these operations, mpf numbers are
used via the package Rmpfr. The package Rmpfr is based on the GMP GNU library and provides
an interface from R to C (Maechler, 2011, 2015). Due to the use of mpf numbers via the package
Rmpfr, there is a considerable increase in implementation time of Achi and GCD tests at 128-bit level.
However, the gain in precision is worth the delay in implementation of these tests. Performances of the
tests working with binary numbers are all sufficient at the 128-bit level. Implementation time of the BS
test exponentially increases along with the bit-length. Although it is reasonable for 32 bits, application
of the test for higher bit-lengths requires an unreasonable amount of time for implementation.

All the tests were applied at both 0.01 and 0.05 levels of significance. The null hypothesis is “H0 :
Sequences generated by the RNG of interest are random” for all tests. For both levels of significance,
success rates of RNGs over the total number of applied tests are given in Table 6. Detailed test results
for the 0.05 level of significance are presented in the vignette of the package CrpytRndTest. The
total number of applied tests is given in the last row of Table 6 for each test scenario. For example,
because the birthday spacings test is not applied for 64 bit-length, the total number of applied tests is
17 for all sequence lengths. Note that the values given in Table 6 should not be confused with issues
related with statistical performance of the tests such as type I error or power. Table 6 represents the
proportion of RNG’s that did not fail in the given number of tests. In addition, because each test is
applied individually, the information presented by Table 6 should not be perceived as the results of
the application of a test battery.

In general, the proportion of success decreases with increasing sequence and bit-lengths. According
to the proportions of success, performance of the WH generator is satisfactory for 16 and 32-bit numbers
for all sequence lengths. The reason of getting a decreasing success rate with increasing bit-length
is that the random walk tests with all goodness-of-fit tests and the GCD test with the Jarque-Bera
goodness-of-fit test reject the randomness hypothesis while the rest of the tests mostly accept the
hypothesis for bit-lengths greater than 32. In detail, the WH generator successfully passes both of the
TBT and Achi tests nearly in all bit-sequence length combinations. Results of AD and KS goodness-
of-fit tests applied under both BDS and GCD tests (with k) are similar, and the CS test more likely
decides randomness of the WH generator. It is unsuccessful in passing the random walk tests for high
bit-lengths. The BS test concludes WH’s randomness under all of the test conditions. The GCD with
the JB goodness-of-fit test rejects the null hypothesis of randomness under all test conditions but the
first one. At the 0.01 level of significance, there is nearly no change in the results. The WH generator
passes the GCD test with CS goodness-of-fit test for k at (8, I), (8, II) and (32, I) scenarios, and the BDS
test with the AD goodness-of-fit test at (16, II).

According to the proportions of success, the SD generator mostly passes the tests for 16 and 32-bit
integers for all sequence lengths, and 8-bit integers for short and long sequences. Detailed test results
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Bit-length

Level 8 16 32 64 128

of Sequence length

Significance RNG I II III I II III I II III I II III I II III

0.01 WH 0.92 0.58 0.50 0.93 1.00 0.86 0.86 0.93 0.93 0.47 0.47 0.47 0.33 0.27 0.33
SD 0.92 0.58 0.75 0.93 0.93 0.93 0.93 0.93 0.93 0.41 0.47 0.35 0.33 0.33 0.27
MT 0.92 0.58 0.58 1.00 1.00 0.93 0.93 0.93 0.93 0.47 0.41 0.47 0.33 0.33 0.33
MM 0.92 0.58 0.75 0.93 0.93 1.00 1.00 0.93 0.93 0.47 0.41 0.35 0.33 0.33 0.27
LE 0.92 0.67 0.58 0.93 0.93 0.79 1.00 0.93 0.93 0.47 0.47 0.47 0.33 0.27 0.33
KT 0.92 0.67 0.58 0.93 0.93 0.93 1.00 0.93 0.93 0.41 0.47 0.47 0.27 0.33 0.33

KT02 0.92 0.67 0.58 1.00 0.93 1.00 1.00 0.93 0.86 0.47 0.41 0.47 0.27 0.33 0.33

0.05 WH 0.83 0.50 0.50 0.93 0.93 0.86 0.79 0.93 0.93 0.47 0.47 0.47 0.33 0.27 0.33
SD 0.92 0.58 0.75 0.93 0.93 0.86 0.86 0.79 0.86 0.41 0.47 0.29 0.33 0.33 0.27
MT 0.67 0.50 0.58 0.93 0.86 0.86 0.93 0.86 0.93 0.41 0.41 0.47 0.33 0.33 0.33
MM 0.92 0.58 0.75 0.93 0.93 0.93 1.00 0.86 0.93 0.47 0.41 0.35 0.33 0.33 0.27
LE 0.92 0.67 0.58 0.93 0.93 0.79 0.93 0.86 0.93 0.47 0.41 0.47 0.33 0.27 0.33
KT 0.92 0.58 0.58 0.93 0.86 0.93 1.00 0.93 0.93 0.41 0.41 0.47 0.27 0.20 0.33

KT02 0.83 0.58 0.42 1.00 0.93 0.93 1.00 0.93 0.79 0.47 0.41 0.47 0.27 0.33 0.33

Number of tests 12 12 12 15 15 15 15 15 15 17 17 17 15 15 15

Table 6: Success rates for RNGs over the tests applied by package CryptRndTest.

for the SD generator at the 0.05 level of significance are similar to that of the WH generator for the
TBT, Achi, BDS, RWT, and BS tests. It is better in the GCD test with the JB goodness-of-fit test for k. At
the 0.01 level of significance, the CS goodness-of-fit test applied with the GCD test cannot reject the
null hypothesis for 4 scenarios.

Reaction of the tests for MT, MM, and LE generators is similar to that of the WH generator.
According to the proportions of success, success rates of the MT generator are satisfactory for 16
and 32-bit numbers for all sequence lengths; and that of the MM generator is very satisfactory for 16
and 32-bit numbers for all sequence lengths, and 8-bit numbers for short and long sequence lengths.
Success proportions of LE, KT, and KT02 generators are high for 16 and 32-bit numbers for all sequence
lengths, and 8-bit numbers for short sequences. The BS test rejects randomness of the KT02 generator
for 8-bit numbers for all sequence lengths at the 0.05 level of significance. However, it cannot reject the
null hypothesis for 8-bit numbers for all sequence lengths for α = 0.01.

For 64-bit numbers, only the random walk excursion test with AD and KS goodness-of-fit tests
cannot reject the null hypothesis for all RNG’s. None of the random walk tests decides randomness of
RNG’s for 128-bit numbers. RNG’s pass TBT, Achi, and GCD for k with AD, KS, and CS goodness-of-fit
tests for almost all sequence lengths. This situation decreases the proportion of success for 64 and
128-bit numbers. This result would be due to the conservativeness of random walk height, random
walk expansion tests, and GCD test with the Jarque-Bera goodness-of-fit test for higher bit lengths.

Summary

Statistical analysis of randomness of a cryptographic random number generator is a critical and
necessary task to make use of the generator in cryptographic applications. Many cryptographic
randomness tests are available for this task including recently proposed ones. Although there are
several alternatives, the chi-square test is frequently employed within these cryptographic randomness
tests as a goodness-of-fit test. In this regard, this article describes the package CryptRndTest that
conducts frequently used and newly proposed 8 cryptographic randomness tests along with Anderson-
Darling, Kolmogorov-Smirnov, chi-square, and Jarque-Bera goodness-of-fit tests. Totally, package
CryptRndTest runs 21 tests. It also provides auxiliary functions for the calculation of the greatest
common divisor, sequence of partial quotients resulting from the greatest common divisor operation,
the base conversion from 2 to 10 and vice versa, and the Stirling numbers of the second kind. All of
these auxiliary functions also work with long integers by the use of multi-precision floating point
numbers.

In addition to the description of package CryptRndTest, random number generators available in
R are tested by 21 cryptographic randomness tests of CryptRndTest under various combinations of
sequence and bit-lengths. Implementation performance of package CryptRndTest is also revealed by
the numerical application.

The limitations of the package are mostly related to the memory and CPU capacities of the com-
puter used to run functions of CryptRndTest. Because, increasing bit-length considerably decreases
the implementation speed of tests working over integers, this can also be seen as a limitation for high
bit-lengths.
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