
CONTRIBUTED RESEARCH ARTICLES 64

Maps, Coordinate Reference Systems and
Visualising Geographic Data with
mapmisc
by Patrick E. Brown

Abstract The mapmisc package provides functions for visualising geospatial data, including fetching
background map layers, producing colour scales and legends, and adding scale bars and orientation
arrows to plots. Background maps are returned in the coordinate reference system of the dataset
supplied, and inset maps and direction arrows reflect the map projection being plotted. This is a “light
weight” package having an emphasis on simplicity and ease of use.

Introduction

R has extensive facilities for managing, manipulating, and visualising spatial data, with the sp
(Pebesma and Bivand, 2005) and raster (Hijmans, 2015b) packages providing a set of object classes and
core functions which numerous other packages have built on. It is fairly straightforward to import
spatial data of a variety of types and from a range of sources including: images for map backgrounds;
high-resolution pixel grids of surface elevation; and polygons of administrative region boundaries.
Large volumes of such data are available for download from sites such as worldgrids.org, gadm.org,
and nhgis.org, and map images are freely available from OpenStreetMap.org and other online maps.
The first issue often encountered after downloading and importing spatial data is reconciling different
coordinate reference systems (CRS’s, or map projections). Most repositories of spatial data provide
longitude-latitude coordinates, although single-country data sources often use a country-specific
map projection (i.e. the UK’s Ordinance Survey National Grid) and online maps mostly use the Web
Mercator projection. The suitability of a particular map projection will depend on the geographic
region being considered and the specific problem at hand.

The mapmisc package (Brown, 2016) provides tools for working with projected data which cover
the following four areas:

• producing maps with projected data, including scale bars, background images, and inset maps;

• defining and using equal-area map projections for displaying the entire globe;

• creating optimal region-specific map projections where distances are preserved; and

• mapping with colour scales for continuous and categorical data.

This paper will cover each of these points in turn, working through examples and briefly describing
the operations by the functions in the mapmisc package. An emphasis is given to tidy, intuitive, and
reproducible code accessible for students and non-specialists.

Installation and related packages

The two most important packages required for using spatial data in R are the sp and raster packages,
which provide tools and classes for vector data (spatial data on a continuous domain) and raster data
(defined on a pixelated grid) respectively. Installing mapmisc with install.packages("mapmisc")
or by using a menu item on a GUI will install sp and raster if they are not already present. A third
important spatial package is rgdal (Bivand et al., 2016), which provides methods for re-projecting
coordinates and importing spatial data in various file formats. The Geographic Data Abstraction
Language (GDAL) underlies rgdal, aligning with R’s UNIX-like philosophy of combining separate
and specialised pieces of software. On most UNIX-based systems, the GDAL and proj4 software must
be installed separately prior to installing rgdal. All versions of Windows and most versions of MacOS
have binary versions of rgdal which include the GDAL and proj4 binaries, and rgdal can be installed
in the same manner as any other R package.

Additional packages used by mapmisc are: RColorBrewer (Neuwirth, 2014), classInt (Bivand,
2015), rgeos (Bivand and Rundel, 2016), and geosphere (Hijmans, 2015a). These four packages
and rgdal are not always installed automatically with mapmisc, as they are marked as “suggested”
packages with mapmisc being usable with a reduced level of functionality without them. Three
further packages necessary for reproducing the examples in this paper are dismo (Hijmans et al., 2016),
maptools (Bivand and Lewin-Koh, 2016), and R.utils (Bengtsson, 2016).

Loading the packages with

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=sp
http://CRAN.R-project.org/package=raster
http://worldgrids.org
http://gadm.org
http://nhgis.org
http://openstreetmap.org
http://CRAN.R-project.org/package=mapmisc
http://CRAN.R-project.org/package=rgdal
http://CRAN.R-project.org/package=RColorBrewer
http://CRAN.R-project.org/package=classInt
http://CRAN.R-project.org/package=rgeos
http://CRAN.R-project.org/package=geosphere
http://CRAN.R-project.org/package=dismo
http://CRAN.R-project.org/package=maptools
http://CRAN.R-project.org/package=R.utils

CONTRIBUTED RESEARCH ARTICLES 65

library("rgdal")
library("mapmisc")

also makes sp and raster available. The remaining packages do not need to be loaded explicitly and
will be called by mapmisc as needed.

Getting started with spatial data in R

The getData function provided by raster is able to download a number of useful and interesting
spatial datasets. The coastline and borders of Finland can be fetched with

finland <- raster::getData("GADM", country = "FIN", level = 0)

The object finland is a “SpatialPolygonsDataFrame”, and Bivand et al. (2013) contains a wealth of
information on working with objects of this type. The command

plot(finland, axes = TRUE)

produces the plot in Figure 1a.

The choice of Finland as an example is due to its being far from the equator, and a useful contrast
on the other side of the world is New Zealand. The coastline of New Zealand, obtained with

nz <- raster::getData("GADM", country = "NZL", level = 0)

includes a number of small outlying islands. The spatial extent of the nz object,

raster::extent(nz)

class : Extent
xmin : -179
xmax : 179
ymin : -52.6
ymax : -29.2

spans the entire globe in the x-direction since New Zealand has islands on both sides of the 180◦

meridian. Finding an appropriate axis limit through trial and error brings one to

plot(nz, xlim = c(167, 178), axes = TRUE)

and the map in Figure 1b.

The outlying islands can be removed from the nz object using the crop function in the raster
package, which in turn calls rgeos. Using the locator function and a few iterations of trial and error
leads to the discovery that a region spanning 160 to 180 degrees longitude and −47 to −30 degrees
latitude boxes in the main islands of New Zealand fairly tightly. The parts of New Zealand contained
within this box can be extracted by creating an extent object and passing it to crop.

nzClip <- raster::crop(nz, extent(160, 180, -47, -30))

The finland and nzClip objects will be used in the mapping examples which follow.

Working with map projections

This section covers mapping projected data and defining customised map projections. Adding
background images, scale bars, and inset maps to plots with the map.new, openmap, scaleBar, and
insetMap functions is demonstrated in the production of Figure 2. Map projections suitable for
displaying the entire globe are constructed with the moll function, and along with the wrapPolys
function Figure 5 is made. Map projections where Euclidean distances from x-y coordinates are useful
approximations of shortest distances between points on the globe are obtained with the omerc function
and used to produce Figure 7.

Spatial data with coordinate reference systems

The spatial coordinates in Figures 1a and 1b are angles of longitudes and latitudes; coordinates
which would be equivalent to the two angles of the spherical coordinate system (ρ, θ, φ) familiar
to mathematicians were it not for the inconvenient fact that the Earth is not spherical. The Earth is
rather an oblate spheroid, slightly “squashed” or pumpkin-shaped, and the angles of orientations
of lines pointing directly “up” (with reference to the stars) and “down” (as defined by a plumb line

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 66

pulled straight by gravity) differ. As a result, various types of long-lat coordinates are in use, with the
World Geodesic System (WGS84) used by Global Positioning Systems being the most widespread. The
European Petroleum Standards Group (EPSG) catalogue of Coordinate Reference Systems (or CRS’s)
refers to this system by the code 4326, and this code can be used to create an R object of class “CRS”
corresponding to the WGS84 system using the CRS function from the sp package.

sp::CRS("+init=epsg:4326")

CRS arguments:
+init=epsg:4326 +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84
+towgs84=0,0,0

The syntax of +argument=value for specifying a CRS comes from the PROJ.4 Cartographic Projec-
tions Library, with +proj=longlat indicating coordinates are angles and ellps=WGS84 specifying
that the Earth is an ellipsoid with values of the major axis length, minor axis length, and flattening
corresponding to the WGS84 specification.

The difficulty angular coordinates pose for interpreting maps or using spatial statistics is that
Euclidean distance

√
x2 + y2 is not always a useful measure of the distance separating two points.

The shortest route between two points on a sphere follows a Great Circle which divides the globe
into two equal halves. The distance between two points along this path, the Great Circle distance
(see Wikipedia, 2015a), can be computed with a trigonometric formula as implemented in the spDists
function in sp. Euclidean distance will be roughly proportional to Great Circle distance for two
points near the equator and reasonably close to one another. In Finland and New Zealand, however,
Euclidean distance will over-emphasise the east-west direction since one degree of longitude is a much
shorter distance (in kilometres) than one degree of latitude. It is for this reason that Greenland appears
larger than India on many maps even though the opposite is true. Most R packages which perform
spatial analyses rely on Euclidean distance, including this author’s geostatsp (Brown, 2015), even
though Great Circle distance would be straightforward to implement. Fitting a spatial model with
geostatsp to data in long-lat coordinates from Finland might uncover directional effects with strong
correlation in the east-west direction, which could well be an artefact arising from the over-estimation
of east-west distances. The importance of transforming spherical coordinates to a coordinate system
where the Euclidean distance is a reasonable approximation to the Great Circle distance should not be
under-estimated.

Most countries have an “official” CRS which produces accurate Euclidean distances for specific
areas of the globe, one of which is the Finland Uniform Coordinate System having EPSG code 2393.
This projection is obtained in R by CRS with

CRS("+init=epsg:2393")

CRS arguments:
+init=epsg:2393 +proj=tmerc +lat_0=0 +lon_0=27 +k=1 +x_0=3500000 +y_0=0
+ellps=intl +towgs84=-96.062,-82.428,-121.753,4.801,0.345,-1.376,1.496
+units=m +no_defs

This is a Transverse Mercator projection (+proj=tmerc) with x and y coordinates giving positions on
a cylinder containing the earth. The entry +lon_0=27 indicates that the cylinder touches the Earth
along the 27◦ meridian line. Provided two points are reasonably close to the 27◦ meridian, Euclidean
distance between their Finland Uniform Coordinates will be very close to the true distance between
them. The map of Finland can be converted to this coordinate system using spTransform from sp and
rgdal with

finlandMerc <- spTransform(finland, CRS("+init=epsg:2393"))

Figure 1c is the result of plotting this object with plot(finlandMerc,axes = TRUE). Notice the
projected map has a wider base and narrower top than the long-lat map in Figure 1a. The coordinates
in Figure 1c refer to an origin where the 27◦ meridian intersects the equator, with the +x_0= argument
above indicating that 3,500km are added to the x coordinates.

Cylindrical map projections can be constructed from any cylinder containing the Earth, and there
is no mathematical requirement to use one of the standard transverse Mercator projections with an
EPSG number. For example, a given user might consider the point (170◦E, 45◦S) to be an intuitive
location for the origin of the transformed map of New Zealand, and thus decide to define a custom
CRS with this centre. The cylinder can follow any Great Circle, it need not be a meridian line, and a
Great Circle angled 40◦ clockwise would run the length of the two islands. Cylindrical projections with
an angle are termed Oblique Mercator projections (see Snyder, 1987, page 66), and can be constructed
with the assistance of mapmisc’s omerc function. A custom projection with the (170◦E, 45◦S) origin
and a 40◦ rotation is obtained by

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://github.com/OSGeo/proj.4/wiki
https://github.com/OSGeo/proj.4/wiki
http://CRAN.R-project.org/package=geostatsp
http://spatialreference.org/ref/epsg/2393

CONTRIBUTED RESEARCH ARTICLES 67

20°E 25°E 30°E 35°

60
°N

62
°N

64
°N

66
°N

68
°N

70
°N

(a) Finland,
Longitude-Latitude

165°E 170°E 175°E 180°

50
°S

45
°S

40
°S

35
°S

30
°S

(b) New Zealand,
Longitude-Latitude

3200000 360000066
00

00
0

70
00

00
0

74
00

00
0

78
00

00
0

(c) Finland Transverse
Mercator

−6e+05 −2e+05 2e+05

−
2e

+
05

2e
+

05
6e

+
05

1e
+

06

(d) New Zealand,
Oblique Mercator

Figure 1: Basic maps of Finland and New Zealand in different Coordinate Reference Systems.

nzCrs <- omerc(c(170, -45), angle = 40)
nzCrs

CRS arguments:
+proj=omerc +lat_0=-45 +lonc=170 +alpha=40 +k=1 +x_0=0 +y_0=0 +gamma=0
+ellps=WGS84 +units=m

The difference between the above and the projection for Finland is the omerc in place of tmerc, with
the additional argument +alpha=40 specifying an angle. The New Zealand coastline can be projected
to this CRS with spTransform.

nzRot <- spTransform(nzClip, nzCrs)

Figure 1d results from executing plot(nzRot,axes = TRUE), and New Zealand has been rotated 40◦

to a vertical position.

Finding a projection

When choosing a map projection for a dataset, a simple web search of a phrase such as “map projection
finland epsg” will often give clear advice as to what the most commonly used national CRS is. A
number of tools in rgdal can be used to obtain a projection in a more systematic manner. Below
the make_EPSG function creates a table of all EPSG coded CRS’s which rgdal supports, and a grep
command used to show all those projections with “Finland” in its description. The resulting list of
projections below confirms that 2393 is a sensible choice.

allEpsg <- rgdal::make_EPSG()
allEpsg[grep("Finland", allEpsg$note), 1:2]

code note
859 2391 # KKJ / Finland zone 1
860 2392 # KKJ / Finland zone 2
861 2393 # KKJ / Finland Uniform Coordinate System
862 2394 # KKJ / Finland zone 4
1853 3386 # KKJ / Finland zone 0
1854 3387 # KKJ / Finland zone 5
4929 3901 # KKJ / Finland Uniform Coordinate System + N60 height

A second method for obtaining a CRS is to make a rough guess at a projection string and use
showEPSG to attempt to find a corresponding EPSG code. Were one to use a Universal Transverse
Mercator (or UTM) projection for a map of Finland, a web search for “UTM zone map” shows that
Finland lies in UTM zone 35. A proj4 specification of a UTM zone 35 projection will contain +proj=utm
and +zone=35, and showEPSG states that the EPSG code 32635 corresponds to an appropriate CRS.

rgdal::showEPSG("+proj=utm +zone=35")

[1] "32635"

CRS("+init=epsg:32635")

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 68

(a) Finland. Background © OpenStreetMap (b) New Zealand. Tiles courtesy of MapQuest and
© OpenStreetMap

Figure 2: Maps produced using the mapmisc package, containing background images, inset maps,
and scale bars.

CRS arguments:
+init=epsg:32635 +proj=utm +zone=35 +datum=WGS84 +units=m +no_defs
+ellps=WGS84 +towgs84=0,0,0

The definitive resource for information on national map projections is contained in the monthly
bulletins of The Imaging and Geospatial Information Society. The GridsDatums data set in rgdal gives
the year and month for each country’s entry at www.asprs.org/Grids-Datums.html. The entry for
Finland appears in the October 2006 issue.

data("GridsDatums", package = "rgdal")
GridsDatums[grep("Finland", GridsDatums$country),]

country month year ISO
100 Republic of Finland (October) 2006 FIN

Mapping projected data

The mapmisc functions openmap, map.new, scaleBar, and insetMap can be used together to improve
on the basic maps in Figure 1, and they are used here to add background images, a scale bar, and an
inset map to Figure 2.

Background map images are obtained from the openmap function, which downloads image files
from OpenStreetMap.org or a number of other sources. The images used in Figure 2 were obtained
with

nzBg <- openmap(nzRot, path = "mapquest-sat")
finlandBg <- openmap(finlandMerc, path = "landscape")

The first argument of openmap is used to set both the spatial extent of the map to be retrieved and
the CRS the map will be projected to. Any spatial object x for which extent(x) and projection(x)
are defined can be provided to openmap. The path = argument specifies the source of the map, and
sample maps from the various sources are shown in Figure 11 in the Appendix. The objects produced
by openmap are raster objects, converted from image files downloaded from web map servers. The
Finland map is an object of class “RasterLayer”.

finlandBg

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright
http://www.mapquest.com
http://openstreetmap.org/copyright
http://www.asprs.org
http://www.asprs.org/Grids-Datums.html
http://www.asprs.org/wp-content/uploads/2012/05/10-2006-finland.pdf
http://www.asprs.org/wp-content/uploads/2012/05/10-2006-finland.pdf
http://openstreetmap.org

CONTRIBUTED RESEARCH ARTICLES 69

class : RasterLayer
dimensions : 768, 376, 288768 (nrow, ncol, ncell)
resolution : 2747, 2252 (x, y)
extent : 2889952, 3922969, 6183827, 7913059 (xmin, xmax, ymin, ymax)
coord. ref. : +init=epsg:2393 +proj=tmerc +lat_0=0 +lon_0=27 +k=1 +x_0=3500000 +...
data source : in memory
names : landscape
values : 1, 1022 (min, max)

Notice that the CRS is the same as for the finlandMerc object. The New Zealand map is a “RasterStack”
with red, green and blue layers.

nzBg

class : RasterStack
dimensions : 512, 289, 147968, 3 (nrow, ncol, ncell, nlayers)
resolution : 5237, 5190 (x, y)
extent : -1e+06, 510285, -977333, 1680003 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=omerc +lat_0=-45 +lonc=170 +alpha=40 +k=1 +x_0=0 +y_0=0 +gam...
names : mapquest.satRed, mapquest.satGreen, mapquest.satBlue
min values : 0, 0, 0
max values : 248, 250, 247

The Finland map can be viewed with plot(finlandBg), whereas the three-layered New Zealand map
needs the plotRGB function for plotting its red, green and blue values as colours.

Figure 2a is produced with the four function calls below.

map.new(finlandMerc, 0.8)
plot(finlandBg, add = TRUE)
plot(finlandMerc, add = TRUE)
scaleBar(finlandMerc, "bottomright")
insetMap(finlandMerc, "right", width = 0.3, cropInset = extent(0, 180, -50, 70))

The functions run are the following:

• map.new initialises a new plot area suitable for showing finlandMerc. The second argument
set to 0.8 specifies that the left 80% of the plot will contain the map and the right 20% will be
reserved for legends or inset maps.

• plot(finlandBg,add = TRUE) adds the background map to the existing plot.

• plot(finlandMerc,add = TRUE) adds the border of Finland from the finlandMerc object.

• scaleBar produces the 200km scale and north arrow at the bottom right. The finlandMerc
object is required to inform scaleBar that the Finland Uniform Coordinate System is used, and
scaleBar(CRS("+init=epsg:2393"),"bottomright") would have achieved the same effect.

• insetMap produces the small map to the right, showing in red on the inset map the area covered
by the plot. As with scaleBar it uses finlandMerc to obtain the CRS of the map coordinates.
The width argument specifies the width of the inset map as a fraction of the plotting region. The
cropInset argument produces an inset map where New Zealand (at 170◦E and 45◦S) is in the
south-west corner, and the northern limit of Finland (roughly 70◦) is encompassed.

The New Zealand map in Figure 2b is produced with similar code.

map.new(nzRot, 0.8)
plotRGB(nzBg, add = TRUE)
rgdal::llgridlines(nzRot, col = "yellow")
plot(nzRot, add = TRUE, border = "red")
scaleBar(nzRot, "left")
insetMap(nzRot, "right", width = 0.3, cropInset = extent(0, 180, -50, 70))

The use of plotRGB in place of plot is used for the background map, and the scale bar has been placed
at the centre-left. The llgridlines function from rgdal added latitude and meridian lines in yellow.

The images in Figure 2 have dimensions of 4 by 5 inches, saved as png files with 72 pixels per inch.
Executing the code above in an interactive R session will likely produce maps with a slightly different
appearance unless the graphics window has these same dimensions. This document is produced with
knitr (Xie, 2015), and the figure dimensions are set with the fig.height = and fig.width = options
to code chunks.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=knitr

CONTRIBUTED RESEARCH ARTICLES 70

The map images in finlandBg and nzBg were retrieved from OpenStreetMap.org and MapQuest re-
spectively, and although they are free to use and reproduce they must be attributed. The openmapAttribution
function produces an attribution for an object produced by openmap or a string valid as a path = ar-
gument for openmap. An attribution for nzBg (or "mapquest-sat"), as in the caption for Figure 2, is
produced with

openmapAttribution(nzBg, short = TRUE)

mapquest.sat
"Tiles courtesy of MapQuest(www.mapquest.com)"

The Acknowledgements section of this paper has used this function without the short = TRUE
argument.

openmapAttribution(finlandBg)

landscape
"copyright OpenStreetMap.org contributors. Data by OpenStreetMap.org
available under the Open Database License (opendatacommons.org/licenses/odbl),
cartography by Thunderforest.com"

The additional argument type = "latex" is used in the source code for this paper, and type =
"markdown" is also available.

Projecting background maps

There are a number of potential pitfalls involved when using background map images with projected
data, and this section will describe some additional options to openmap and map.new which can help in
this regard.

Two undesirable features of Figure 2a are the white triangular section in the top left of the map,
and the low resolution and lack of legibility of the names of towns and cities. How this arose can be
understood by contrasting the map image retrieved from OpenStreetMap.org in Figure 3a with the
Finland Uniform Coordinate System map in Figure 3b. The map in Figure 3a uses coordinates in the
Spherical Mercator projection, where a vertically-oriented cylinder is wrapped around a spherical
Earth at the equator,1 and the rectangular area covered by the original map becomes somewhat
trapezoidal when projected to the Transverse Mercator coordinates in Figure 3b. The transformation
has distorted the text on the image, and the image does not completely cover the black rectangle
corresponding to the plotting region of Figure 2a.

The map images provided by OpenStreetMap.org and elsewhere are available at different zoom
levels or resolutions. A map at zoom level 0 is a 256 by 256 pixel image covering the entire world.
Zoom level 1 covers the world in 4 “map tiles” of 256 by 256 pixels, and zoom level N consists of
4N such tiles. The zoom level can be specified directly in openmap with the zoom = argument, or
indirectly with the maxTiles = argument. With the default value of maxTiles = 9, opemnap will find
the highest zoom level where the number of map tiles required to cover the spatial object supplied is
at most 9. The finlandBg map has a zoom level of 5 and 6 tiles, giving a 376 by 768 pixel image. This
information is contained in an attribute of finlandBg.

attributes(finlandBg)$tiles

$tiles
[1] 6
##
$zoom
[1] 5
##
$path
landscape
"http://tile.opencyclemap.org/landscape/"

dim(finlandBg)

1The Web Mercator, which originated with Google Maps, is in fact slightly different from the Spherical Mercator
assigned to map images by mapmisc. Maps in a Web Mercator projection are visually identical to a Spherical
Mercator, but the Mercator x-y coordinates are hidden and users are shown coordinates which have been con-
verted long-lat (EPSG 4326). The group managing the EPSG codes initially refused to assign a code to the Web
Mercator, reportedly saying: “We will not devalue the EPSG dataset by including such inappropriate geodesy and
cartography” (Wikipedia, 2016). The Web Mercator was later assigned EPSG code 3857.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org
http://www.mapquest.com
http://openstreetmap.org
http://openstreetmap.org

CONTRIBUTED RESEARCH ARTICLES 71

(a) Spherical Mercator (b) Finland UCS

Figure 3: Map images of Finland in the Spherical Mercator projection and the Finland Uniform
Coordinate System (UCS) projection. © OpenStreetMap.

[1] 768 376 1

When openmap projects the downloaded map tiles to the Finland CRS (using projectRaster from the
raster package), a number of pixels from the original map are lost or put out of position and the text
can become mangled.

A partial solution for improving projected images is best illustrated with the rotated CRS used for
New Zealand. Figure 4a shows a map of Auckland, New Zealand, in the Spherical Mercator projection
provided by OpenStreetMap.org, and the rotated Oblique Mercator projection used earlier is used for
the map in Figure 4b. The map images are obtained by creating a “SpatialPoints” object for the location
of Auckland in long-lat coordinates and projecting it to the CRS of the nzRot object from Figure 2b.

aucklandLL <- SpatialPoints(data.frame(x = 174.764204, y = -36.853744),
proj4string = crsLL)

auckland <- spTransform(aucklandLL, projection(nzRot))

crsLL is an object in mapmisc specifying the WGS84 projection, identical to CRS("+init=epsg:4326).
The map in Figure 4b is retrieved below.

aucklandBg <- openmap(auckland, buffer = 3000, maxTiles = 4)

The buffer = argument specifies an additional area around auckland which the map should cover
(in this case 3km), and specifying maxTiles = 4 will select the highest zoom level which is able to
cover the map region with four or fewer tiles. A map at the same zoom level in the Spherical Mercator
projection, for Figure 4a, is obtained next.

aucklandBgMerc <- openmap(auckland, zoom = attributes(aucklandBg)$tiles$zoom,
path = attributes(aucklandBg)$tiles$path, crs = crsMerc)

The crsMerc object gives the Spherical Mercator projection.

crsMerc

CRS arguments:
+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0
+k=1.0 +units=m +no_defs

Figure 4c shows only the area within 3km of the auckland object, produced by adding the buffer =
3000 argument to map.new.

map.new(auckland, buffer = 3000)
plot(aucklandBg, add = TRUE)
scaleBar(auckland, "topleft")

One problem with Figure 4b has been resolved, since the displayed area is entirely contained within
the map image. The text in Figure 4c is visibly distorted, and the distortion is reduced by increasing

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright
http://openstreetmap.org

CONTRIBUTED RESEARCH ARTICLES 72

(a) Spherical Mercator (b) Oblique Mercator

(c) Oblique, detail (d) Oblique, high resolution

Figure 4: Map images of Auckland, NZ, in Spherical Mercator and Oblique Mercator projections.
© OpenStreetMap.

the resolution of the image prior to re-projection. The fact = 4 argument to the call to openmap below
increases the resolution of the raster by a factor of 4, creating 16 times the number of pixels, yielding
the map in Figure 4d.

aucklandFine <- openmap(auckland, buffer = 3000,
zoom = attributes(aucklandBg)$tiles$zoom, fact = 4)

map.new(auckland, buffer = 3000)
plot(aucklandFine, add = TRUE)
scaleBar(auckland, "topleft")

Re-projecting rasters is computationally intensive, and openmap can require considerable running time
when the zoom level or fact argument are large.

Equal-area map projections

This section covers producing maps of the entire globe using the functions moll, wrapPoly, and
gridlinesWrap. A number of different Coordinate Reference Systems (CRS’s) are used to display
maps of the world, and Munroe (2011) is a useful introduction to some of the most popular of these.
Figure 5a shows the world in a Mollweide projection (Wikipedia, 2015b), an equal-area CRS with
the property that the sizes of polygons on the map are roughly proportional to their true surface
areas. Figures 5b, 5e and 5f use Mollweide projections with different origins and angles of orientation,
projections which are obtainable with mapmisc.

Polygons corresponding to the borders of the countries of the world are contained in the wrld_simpl
object from the maptools package, and this object will be used to produce the images in Figure 5. The
object is loaded with

data("wrld_simpl", package = "maptools")

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright

CONTRIBUTED RESEARCH ARTICLES 73

wrld_simpl

class : SpatialPolygonsDataFrame
features : 246
extent : -180, 180, -90, 83.6 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0
variables : 11
names : FIPS, ISO2, ISO3, UN, NAME, AREA, POP2005, REGION, ...
min values : , AD, ABW, 10, Aaland Islands, 0, 0.00e+00, 0, ...
max values : ZI, ZW, ZWE, 96, Zimbabwe, 99545, 9.94e+04, 9, ...

and a selection of R’s named colours is assigned to the countries as follows.

colVec <- grep("gray|white|snow|ivory|turquoise|blue|[1-3]", colours(distinct = TRUE),
invert = TRUE, value = TRUE)

wrld_simpl$col <- rep_len(colVec, length(wrld_simpl))

The moll function creates “CRS” objects for Mollweide projections, which can be used with spTransform
to compute a Mollweide projection of wrld_simpl.

mollCrs <- moll()
worldMoll <- spTransform(wrld_simpl, mollCrs)

This “CRS” object is specified with a string similar to those seen earlier, with +proj=moll being the
defining feature.

mollCrs

CRS arguments:
+proj=moll +lon_wrap=0 +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84
+units=m +no_defs +towgs84=0,0,0

The moll function adds two additional attributes to the “CRS” object produced, one of which is the
“ellipse” object containing the spatial extent of the Earth in this projection.

names(attributes(mollCrs))

[1] "projargs" "class" "crop" "ellipse"

The map.new function uses the “ellipse” attribute to define the plotting region and add the light blue
background in Figure 5a.

map.new(mollCrs, col = "lightblue")
plot(worldMoll, add = TRUE, col = worldMoll$col,

border = col2html("black", opacity = 0.2))
gridlinesWrap(worldMoll, lty = 2, col = "red")

The standard Mollweide projection is symmetric about the 0◦ Greenwich meridian line and the globe
is wrapped or split in the Pacific ocean at the 180◦ latitude line. Figure 5b is centred around a meridian
line passing through Hawaii and splits the Earth along a longitude line passing through Africa and
Europe. The CRS for this centred Mollweide projection is produced from the moll function, which
adds Hawaii’s longitude to the +lon_wrap and +lon_0 components of the CRS.

(mollHawaii <- moll(geocode("hawaii")))

CRS arguments:
+proj=moll +lon_wrap=-155.5827818 +lon_0=-155.5827818 +x_0=0 +y_0=0
+ellps=WGS84 +datum=WGS84 +units=m +no_defs +towgs84=0,0,0

A difficulty with this Hawaiian Mollweide projection is that the meridian line along which the world
is split runs through many of the polygons in wrld_simpl. The spTransform function used with
this projection produces the polygons in Figure 5c, with horizontal lines connecting the two halves
of polygons which have been split. The wrapPoly function in mapmisc addresses this problem by
splitting the affected polygons prior to their projection, using the “crop” attribute of the “CRS” object
produced by moll.

worldHawaii <- wrapPoly(wrld_simpl, mollHawaii)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 74

(a) Mollweide, Greenwich (b) Mollweide, Hawaii

(c) Hawaii with spTransform (d) Long-Lat

(e) Oblique Mollweide, Jerusalem (f) Oblique Mollweide, Pacific

Figure 5: World maps in Mollweide projections.

The red vertical line in Figure 5d is produced from attributes(mollHawaii)$crop, and the function
gDifference from rgeos is called by wrapPoly to remove the portion of each polygon intersecting with
this line.

A Mollweide projection need not have a north-south orientation, and an Oblique Mollweide
projection can be constructed by rotating the globe’s long-lat coordinates to produce different origins
and orientations. Figure 5e positions Jerusalem at the centre of the Earth (standard practice for
cartographers during the middle ages), and at Jerusalem the “up” direction is 35◦ clockwise of north.

(mollOblique <- moll(geocode("jerusalem"), angle = 35))

CRS arguments:
+proj=ob_tran +o_proj=moll +o_lon_p=-42.7134520141079
+o_lat_p=44.2305998589378 +lon_0=-17.7121046024056
+lon_wrap=-17.7121046024056 +ellps=WGS84 +datum=WGS84 +units=m +no_defs
+towgs84=0,0,0

This string specifies two projections are to be applied. First, +proj=ob_tran rotates the long-lat
coordinates to move the north pole to the coordinate (44◦N, 42◦W). Second, +o_proj=moll applies a
Mollweide projection to these rotated coordinates using 17.7◦W as the central meridian line. These
three values (44◦N, 42◦W, 17.7◦W) are obtained by numerical optimisation, attempting to move
Jerusalem as close as possible to the origin while preserving the 35◦ orientation.

Figure 5e is produced by first re-projecting the world map with wrapPoly.

worldOblique <- wrapPoly(wrld_simpl, mollOblique)

Adding red longitude and latitude grid lines with this projection cannot be done with the llgridlines
function from rgdal, as the same horizontal striping seen in Figure 5c will result. The gridlinesWrap
function from mapmisc breaks the grid lines in the same manner as wrapPoly, and adds the red
graticule lines as follows.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 75

Truth Spherical Mercator Greenwich Hawaii Jerusalem Pacific

Canada 9.98 49.72 9.74 9.79 9.61 9.66
Congo 2.35 2.36 2.34 1.95 2.34 2.34

ratio 4.26 21.08 4.17 5.03 4.11 4.13

Table 1: Surface areas (in millions of km2) of Canada and Congo, and areas computed for country
polygons in the Spherical Mercator projection and four Mollweide projections. Columns refer to the
standard Mollweide projection (Greenwich) and the Mollweide centred on Hawaii, Jerusalem, and the
north Pacific from Figures 5a, 5b, 5e and 5f.

map.new(mollOblique, col = "lightblue")
plot(worldOblique, add = TRUE, col = worldOblique$col,

border = col2html("black", 0.2))
gridlinesWrap(worldOblique, lty = 2, col = "red")

Figure 5f uses an Oblique Mollweide centred in the Pacific ocean with a 85◦ angle of rotation.

crsN <- moll(c(-140, 40), angle = 85)

Unlike the red line of the Hawaiian projection in Figure 5d, the green and blue curves showing where
the globe is wrapped for the two Oblique Mollweide projections lie in the ocean for the most part.

Table 1 computes the surface areas of Canada and the Congo by using the gArea function from
rgeos on different transformations of the wrld_simpl polygons. The first column shows the true
surface areas (according to Wikipedia) and the third row shows the ratio of Canada’s surface area to
the Congo’s. The Spherical Mercator projection vastly over-represents the size of Canada and the four
Oblique Mollweide projections are consistent in underestimating the area by a small amount. The
Congo is poorly served by the Hawaiian projection, which is unsurprising as this projection splits the
Congo through the middle.

Custom-optimised Oblique Mercator projections

This section describes the use of the omerc function for defining Oblique Mercator projections. Two
methods of optimising map projections are implemented, with the angle of rotation chosen to produce
the most compact bounding box possible or to preserve distances between a collection of points.

Ad-hoc projections for compact plotting regions

Compact representations minimising the number of void cells (i.e. those falling in the ocean) offer
computational advantages when used with statistical models or software requiring data on a grid,
such as the Markov random field based methods used in Brown (2015). Figure 6 shows New Zealand
rotated in order to produce a compact plotting area, with bounding box having the greatest possible
proportion of its area made up of land mass. This projection also minimises the number of vertical
inches which Figure 6 takes up on the page, which is the reason a clockwise rotation is used in place of
the anti-clockwise rotation from Figure 2b.

The omerc function calculates these ad-hoc projections based on the object to be re-projected and
a vector of rotation angles. The first argument below is the nzClip object containing the cropped
boundary of New Zealand, and the origin of the Oblique Mercator projection will be its centroid.
A sequence of Oblique Mercator projections using Great Circles angled between 10 and 50 degrees
from the north will be formulated, and the bounding box of New Zealand in each projection will be
computed. The projection returned by omerc uses the angle giving the smallest such box, with the
argument +alpha= showing an 18.5◦ angle in this example.

(nzRotOptCrs <- omerc(nzClip, seq(10, 50, by = 0.5), post = "wide"))

CRS arguments:
+proj=omerc +lat_0=-40.565 +lonc=172.502 +alpha=18.5 +k=1 +x_0=0 +y_0=0
+gamma=90 +ellps=WGS84 +units=m

A positive angle rotates the coordinate axes clockwise, which gives the resulting map the appearance of
being rotated anti-clockwise. An Oblique Mercator’s Great Circle becomes the y-axis of the coordinate
system, and a projection should seek to have as much of the area of interest as possible being close
to this Great Circle. An optimal projection will therefore have a tall and narrow bounding box, in

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 76

Figure 6: New Zealand in a 18.5◦ Oblique Mercator projection (—) with bounding box (—).
Background © CartoDB, © OpenStreetMap.

this instance the spine of New Zealand should run up and down the y-axis. The limits of 10 and
50 for the sequence of angles above are arbitrary estimates of the amount of anti-clockwise rotation
required to sit New Zealand upright. The argument post = "wide" in omerc specifies that a short
and wide bounding box is required, and this is accomplished by rotating the planar x-y coordinates
post-projection using the +gamma=90 element.

New Zealand is re-projected and a new background map in this projection is produced below.

nzRotOpt <- spTransform(nzClip, nzRotOptCrs)
nzBgRot <- openmap(nzRotOpt, path = "cartodb", buffer = 20000, fact = 2)

Figure 6 is produced with the following.

map.new(nzRotOpt, 0.8)
plot(nzBgRot, add = TRUE)
plot(nzRotOpt, add = TRUE, border = "red")
plot(extent(nzRotOpt), add = TRUE, col = "blue")
scaleBar(nzRotOpt, "bottomright", bty = "n")
insetMap(nzRotOpt, "topright", cropInset = extent(0, 180, -50, 70), width = 0.2)

Preservation of distances

Here we seek the parameters of an Oblique Mercator projection that would preserve at best the
Euclidean distances among a set of points on the surface of the Earth. This is particularly useful
for large countries away from the equator and we will use Canada as an example. Figure 7 shows
Canada in six different CRS’s, the first of which is an Oblique Mercator optimised to preserve distances
between 12 provincial and territorial capital cities. Unlike the New Zealand projection, however, the
x-y coordinates on the Mercator’s cylinder are inverse-rotated to preserve the north-south direction as
up-down.

Oblique Mercator projections are defined by an origin and an angle of rotation, only the latter
is optimised by the omerc function while the origin is set by the user. Here we will set the origin
somewhat arbitrarily as the town of Flin Flon, Manitoba, as an alternative to the centroid-based origin
used earlier. Residents of Toronto, this author included, affectionately refer to their city as “The Centre
of the Universe” 2, but Flin Flon is a more suitable Oblique Mercator centroid for two reasons. First,
Flin Flon’s latitude is a useful compromise between a northerly centroid able to accommodate the
Arctic islands and a centroid close to the populated areas in the south. Second, using Flin Flon as the
location where the inverse rotation will preserve the north-south direction as vertical should produce
a map with a familiar shape since a portion of the southern border following the 49th parallel will be
horizontal.

The locations of the cities required to compute this projection (Flin Flon and the provincial capitals)
can be retrieved from Google using the dismo package. A wrapper for the geocode function in
mapmisc converts the data retrieved by dismo to a “SpatialPointsDataFrame” object.

provincialCapitals <- mapmisc::geocode(c("Vancouver, BC", "Edmonton, AB", "Regina",
"Winnipeg", "Toronto, ON", "Quebec city", "Fredericton", "Charlottetown",

2Many Canadians residing outside Toronto prefer the somewhat less affectionate nickname of “Hogtown”,
claiming Torontonians are arrogant and collectively self-centred.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://cartodb.com
http://openstreetmap.org/copyright
http://www.google.com

CONTRIBUTED RESEARCH ARTICLES 77

"Halifax, NS", "St Johns, NL", "Iqaluit", "Whitehorse", "Yellowknife"),
verbose = TRUE)

flinflon <- mapmisc::geocode("Flin Flon")p

The names of the provincial capitals and the location of Flin Flon are below.

provincialCapitals$name

[1] "Vancouver" "Edmonton" "Regina" "Winnipeg"
[5] "Toronto" "Quebec City" "Fredericton" "Charlottetown"
[9] "Halifax" "St John's" "Iqaluit" "Whitehorse"
[13] "Yellowknife"

coordinates(flinflon)

longitude latitude
1 -102 54.8

The arguments given in the call to omerc below consist of: x giving flinfon as the origin of the
projection; angle giving a sequence of rotation angles to be considered; post = "north" specifying
that the planar coordinates should be inverse-rotated to preserve the north direction; and preserve
supplying the locations of the provincial capitals other than Iqaluit (the northerly capital of Nunavut)
for calculating the distances which the projections will seek to preserve.

(cproj <- omerc(x = flinflon, angle = seq(-85, 85, by = 0.25), post = "north",
preserve = provincialCapitals[provincialCapitals$name != "Iqaluit",]))

CRS arguments:
+proj=omerc +lat_0=54.766 +lonc=-101.876 +alpha=-83.5 +k=0.998 +x_0=0
+y_0=0 +gamma=-83.498 +ellps=WGS84 +units=m

The projection above uses an origin (specified by lat_0 and longc) at the coordinates of Flin Flon and
a cylinder tangent to the Earth along a Great Circle angled 83.5◦ anticlockwise (given by alpha). The k
= 0.998 component of the CRS scales the coordinates down by a small amount (0.2%). Although pairs
of points along the Great Circle will have Euclidean distances and Great Circle distances being equal,
the provincial capitals are some distance from this Great Circle and without scaling their Euclidean
distances would overestimate true distances by 0.2%. The gamma = -83.5 component appears as a
consequence of having used the post = "north" option, rotating the coordinates on the cylinder so
that a vertical line passing through the origin contains points which are directly north or south of each
other.

Two cities on Figure 7 for whom coordinates have not yet been retrieved are Kitimat, British
Columbia, and the hamlet of Grise Fiord, Canada’s most northerly civilian settlement3. These locations
are obtained below.

moreCities <- mapmisc::geocode(c("Grise Fiord", "Kitimat"))
cities <- bind(provincialCapitals, moreCities, flinflon)

Also shown is the Great Circle which forms the y-axis of the Oblique Mercator. This circle is created
using one of the many useful functions in the geosphere package.

gcircle <- SpatialPoints(geosphere::greatCircleBearing(flinflon@coords, -83.75),
proj4string = CRS("+init=epsg:4326"))

Five projections in addition to the Oblique Mercator are shown in Figure 7: a Lambert Conformal
Conic projection used by the Atlas of Canada (EPSG code 3347); a Two-Point Equidistant projection
based on the cities of Edmonton and Toronto (obtained from tpeqd); a Mollweide projection centred on
Flin Flon; the Spherical Mercator used by OpenStreetMap.org and other internet sites; and longitude-
latitude or angular coordinates. A list is created containing these four projections using mapmisc’s
tpeqd function in part.

crsList <- list("Oblique Merc" = cproj, "Lambert" = CRS("+init=epsg:3347"),
"2pt Equidist" = tpeqd(cities[cities$name %in% c("Edmonton", "Toronto"),]),
"Mollweide" = moll(flinflon, angle = 0), "Spherical Merc" = mapmisc::crsMerc,
"Long-Lat" = mapmisc::crsLL)

The cities and Great Circle are transformed to each of the projections with mapply.

3Readers should be aware that Grise Fiord resulted from a government-run resettlement program in the 1950’s,
and involved the deception and neglect of the indigenous people who were relocated to the hamlet.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 78

(a) Oblique Merc (b) Lambert

(c) 2pt Equidist (d) Mollweide

(e) Spherical Merc (f) Long-Lat

Figure 7: Canada and selected cities in five map projections, along with the Great Circle defining the
Oblique Mercator projection (· · ·). Background from Natural Resources Canada.

citiesT <- mapply(spTransform, CRSobj = crsList, MoreArgs = list(x = cities))

Code for retrieving background maps and for producing Figure 7 appears in the Appendix.

Notable features in Figure 7 are the Spherical Mercator’s overemphasis of the high Arctic regions,
the downward slope of the Lambert projection, the upward slope of the Two-Point Equidistant
map, and the “skinny” appearance of the Mollweide. The Oblique Mercator’s Great Circle, passing
through Flin Flon, Halifax and Kitimat at a nearly horizontal −83.5◦, is necessarily a straight line
in the Oblique Mercator projection and is reasonably straight in three other projections. The yellow
longitude-latitude lines and three north arrows on each plot show that only the Spherical Mercator

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.nrcan.gc.ca

CONTRIBUTED RESEARCH ARTICLES 79

Oblique Merc Lambert 2pt Equidist Mollweide Spherical Merc

south
mean −0.05 −0.23 −0.13 −6.68 54.19
sd 0.13 1.03 0.34 5.22 8.01

north
mean 1.74 −2.54 0.54 −1.10 131.43
sd 1.65 0.32 0.81 6.58 43.82

Table 2: Mean and standard deviation of the percentage by which Euclidean distance overestimates
Great Circle distance for various map projections. The bottom two rows involve distances involving at
least one of Grise Fiord, Iqaluit, Whitehorse and Yellowknife, with the top two rows including only
distances not involving any of these four northern locations.

and long-lat projections have the property that north is in the vertical direction throughout the map.

Table 2 compares Euclidean distance to true (or Great Circle) distance for each of the map pro-
jections, with the percentage by which the former overestimates the latter for each pair of cities
summarised. The first two rows give the mean and standard deviation for the percentage of overesti-
mation of distances between the southern locations (which exclude Grise Fiord, Iqaluit, Whitehorse,
and Yellowknife). The Oblique Mercator’s underestimation by 0.05% betters the other projections,
and the Mollweide’s 6.7% underestimation is excusable given the projection’s aim of preserving
areas rather than distances. The Lambert’s 0.23% underestimation appears respectable though the
comparatively large standard deviation of 1.03% indicates several city pairs with Euclidean distances
deviating several percent from their true separations. Distances involving at least one of the four
northern locations are less accurate for all projections (the Mollweide notwithstanding), and the
Oblique Mercator’s 1.7% overestimation betrays the fact that these northern points were not part of
omerc’s optimisation criteria. The Two-Point Equidistant projection is notable in its consistency and
accuracy, and the Lambert projection does not appear to be a CRS which statisticians should consider
using for points in Canada when accuracy of Euclidean distances is the primary concern.

Maps with colour scales

A separate set of facilities in mapmisc, complementing but disjoint from the tools related to map
projections, assists with the use of colour scales and legends for maps in R. The RColorBrewer package
gives R users access to the popular ColorBrewer collection of palettes, all of which are displayed in
Table 4 in the Appendix. These colours can be used with the functions in the classInt package to
create colour scales, and the venerable legend function is extremely versatile in its ability to create
map legends. The steps involved in defining and using colour scales have been streamlined and
consolidated into the colourScale, legendBreaks and legendTable functions in mapmisc. The process
of creating suitable bins, assigning colours to data points based on these bins, specifying transparency
when overlaying colours on background maps, and displaying the intervals and colours in a legend
has been simplified as much as possible in mapmisc, although at least five separate lines of R code are
required to produce a single map.

Colours with polygon data

Consider, as a motivating example, the task of visualising the spatial variation in fertility rates in Eu-
rope using data available from the statistical office of the European Union (EUROSTAT). EUROSTAT di-
vides the territory of the European Union and several adjoining nations into statistical units organised
in a hierarchical system named “nomenclature des unités territoriales statistiques” and given the memo-
rable acronym of NUTS. Social and demographic data on the statistical units are available at http://ec.
europa.eu/eurostat/data/database, and their boundaries can be obtained from http://ec.europa.
eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units. Fig-
ure 8 shows the fertility rate in 2010 for 456 units of level 2 in NUTS.

Code in the Appendix for downloading and merging the boundary files and fertility rates produces
a “SpatialPolygonsDataFrame” object euroF. Each polygon in the object is a territorial unit, and fertility
rates for each unit are provided for the years 2001 to 2012 inclusive.

euroF

class : SpatialPolygonsDataFrame

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://ec.europa.eu/eurostat/data/database
http://ec.europa.eu/eurostat/data/database
http://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units
http://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units

CONTRIBUTED RESEARCH ARTICLES 80

features : 456
extent : -24.5, 44.8, 34.6, 71.2 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +ellps=GRS80 +no_defs
variables : 29
names : NUTS_ID, STAT_LEVL_, SHAPE_Leng, SHAPE_Area, age.geo.time, X2013, ...
min values : AT, 0, 0.134, 1.00e+00, TOTAL,AT, 0.96 , ...
max values : UKN0, 2, 9.946, 9.96e-01, TOTAL,UKN0, 3.75 , ...

The polygons are transformed to the European Terrestrial Reference System (EPSG code 3034) below.

euroF <- spTransform(euroF, CRS("+init=epsg:3034"))

Colours in Figure 8 relate to the X2010 variable in euroF (fertility in 2010), with the colours themselves
taken from the “Spectral” palette of RColorBrewer. Below the colourScale function creates eight bins
(breaks = 8) for values of euroF$X2010, reversing the colours so that blues correspond to low values
and reds are large values (rev = TRUE).

ecol <- colourScale(euroF$X2010, col = "Spectral", breaks = 8, rev = TRUE,
style = "jenks", dec = 1, opacity = 0.5)

The style argument controls how the breaks are computed, and the "jenks" option corresponds to the
“natural breaks” algorithm from Jenks and Caspall (1971) (see also Pebesma and Bivand, 2005, Section
3.5.2) implemented in the classIntervals function of the classInt package. A number of clustering
algorithms for defining break points are provided by classIntervals, and the options for the style =
argument described in the help files for classIntervals are all available using the identically named
argument in colourScale. The break points are rounded to one decimal place as a consequence of the
dec = 1 argument, and the opacity = 0.5 option gives the plotted colours 50% transparency.

The result of a call to colourScale is a list containing the break points for bins (breaks), colours
associated with the bins (col), and a vector of length 456 (plot) with one colour per region.

names(ecol)

[1] "col" "breaks" "colOpacity" "plot"

ecol$breaks

[1] 1.0 1.3 1.4 1.6 1.8 2.0 2.4 2.9 3.8

ecol$col

[1] "#3288BD" "#66C2A5" "#ABDDA4" "#E6F598" "#FEE08B" "#FDAE61" "#F46D43"
[8] "#D53E4F"

length(ecol$plot)

[1] 456

The breaks and col elements are used for displaying a legend, whereas the plot element can be passed
as a col = argument when running plot on a “SpatialPoints” or “SpatialPolygons” object. Following
the retrieval of the background map with

euroMap <- openmap(euroF, path = "osm-no-labels")

Figure 8, minus the country names, can be produced as follows.

map.new(euroF)
plot(euroMap, add = TRUE)
plot(euroF, col = ecol$plot, add = TRUE, border = "lightgrey")
legendBreaks("topright", ecol, title = "fertility", bg = "white")
scaleBar(euroF, "bottom", bty = "n")

Notice the col = ecol$plot argument specifying the colours with which each region is filled, and that
the borders of each region were given by border = "lightgrey". The legend on the right is added
with legendBreaks, which passes most of its arguments to the standard legend function from the
graphics package. The role of legendBreaks is to ensure the 9 numeric break points are printed near
the boundaries between the coloured squares (as opposed to aligned with their centres).

The country names in Figure 8 are taken from the wrld_simpl object used earlier, although all
countries smaller than Albania have been removed in order to keep the map from becoming too
crowded. Below a portion of the globe in the northern hemisphere is cropped from wrld_simpl and
subsequently re-projected to the European CRS.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 81

Azerbaijan

Albania

Armenia

Bosnia
Herzegovina Bulgaria

Denmark

Ireland

Estonia

Austria

Czech
Republic

Finland

France
Georgia

Germany

Greece

Croatia

Hungary

Iceland

Italy

Iraq

Latvia

Belarus

Lithuania

Slovakia

Belgium

Netherlands

Norway

Poland

Portugal

Romania

Republic
of

Moldova

Russia

Spain

Sweden

Syrian
Arab

Republic

Switzerland

Turkey

United
Kingdom

Ukraine

Serbia

fertility

3.8
2.9
2.4
2
1.8
1.6
1.4
1.3
1

500km

Figure 8: Fertility in Europe by NUTS. Background © OpenStreetMap, © EuroGeographics for the
administrative boundaries.

data("wrld_simpl", package = "maptools")
worldCrop <- raster::crop(wrld_simpl, extent(-20, 100, 0, 90))
worldE <- spTransform(worldCrop, projection(euroF))

The areas of the countries are computed from the map worldMoll in the Mollweide projection, merged
into the worldE object, and all countries at least as large as Albania are retained.

worldE$area <- rgeos::gArea(worldMoll, byid = TRUE)[as.character(worldE$ISO3)]
worldE <- worldE[worldE$area >= worldE@data[worldE$NAME == "Albania", "area"],]

The names are added to the plot with the text function.

text(worldE, labels = worldE$NAME, cex = 0.8)

Using the style = "jenks" argument for colourScale triggers a clustering algorithm in function
classIntervals which can be time consuming for large datasets. The "quantile" and "equal" options
for the style argument use quantiles and equally spaced break points respectively, with the latter able
to have breaks equally spaced on a transformed scale (i.e. log or square root). Some examples appear
below.

colourScale(euroF$X2010, breaks = 8, style = "quantile", dec = 1)$breaks

[1] 1.0 1.4 1.5 1.7 1.9 2.0 3.8

colourScale(euroF$X2010, breaks = 8, style = "equal")$breaks

[1] 1.04 1.43 1.82 2.21 2.60 2.99 3.38 3.77

colourScale(euroF$X2010, breaks = 8, style = "equal", transform = "log")$breaks

[1] 1.04 1.25 1.50 1.81 2.17 2.61 3.14 3.77

colourScale(euroF$X2010, breaks = 8, style = "equal", dec = 0)$breaks

[1] 1 2 3 4

The final set of break points has a dec = 0 argument, and although 8 breaks have been requested only
4 unique breaks remain after rounding to the nearest integer.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright

CONTRIBUTED RESEARCH ARTICLES 82

Rasters and colour scales

Figure 9 shows two elevation maps of New Zealand produced with the assistance of the colourScale
and legendBreaks functions. The raster package provides versions of the plot function for use with
rasters, and using colourScale with rasters is slightly different from its use in the previous section.

The elevation data is obtained using the raster package’s getData function.

nzAltFull <- raster::getData("alt", country = "NZL", keepzip = TRUE)

The nzAlt object is a list of two elements, with elevation in two disjoint areas which comprise New
Zealand. The first element includes the main island, its CRS is incomplete (at the time of writing) and
should be re-specified.

nzAlt <- nzAltFull[[1]]
projection(nzAlt) <- CRS("+init=epsg:4326")

This raster includes a number of outlying islands, and its size becomes more manageable after the
main island is extracted using the previously computed nzClip object.

dim(nzAlt)

[1] 2244 1572 1

nzAlt <- raster::crop(nzAlt, extent(nzClip))
dim(nzAlt)

[1] 1544 1458 1

This smaller raster is now re-projected to the rotated Oblique Mercator projection used earlier, with the
filename = argument allowing for the resulting data to be stored as a file in R’s working directory
rather than in memory.

nzAltRot <- projectRaster(nzAlt, crs = projection(nzRot), filename = "nzAltRot.grd")
dim(nzAltRot)

[1] 2424 3069 1

Re-projecting the raster has made it larger, as the rectangular bounding box of nzAlt becomes a
diamond when rotated and nzAltRot has a bounding box large enough to contain this diamond. The
crop function is used to pare this raster down to the same extent as the nzRot object.

(nzAltCrop <- raster::crop(nzAltRot, extent(nzRot)))

class : RasterLayer
dimensions : 1895, 1369, 2594255 (nrow, ncol, ncell)
resolution : 554, 727 (x, y)
extent : -624719, 133707, -291892, 1085773 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=omerc +lat_0=-45 +lonc=170 +alpha=40 +k=1 +x_0=0 +y_0=0 +gam...
data source : in memory
names : NZL1_msk_alt
values : -11.1, 2960 (min, max)

Raster images are typically large, with nzAltCrop having over 2 million cells, and computing break
points using all of the data points would be time consuming. The raster package provide easy access
to the maximum and minimum values (−11 and 2960 above), which makes equally spaced break
points (style = "equal" below) quick to compute. All other styles of breaks are computed using a
sample of 20,000 cells taken using raster’s sampleRegular function.

nzAltCol <- colourScale(nzAltCrop, breaks = 7, col = terrain.colors, style = "equal",
dec = -2)

Here the col = argument was given the terrain.colors function, and any function accepting a
single integer argument and returning a vector with the specified number of colours would suffice.
Below a second colour scale is computed using the "OrRd" colour palette and a supplied vector of
breaks.

nzAltTrans <- colourScale(nzAltCrop, breaks = c(-20, 100, 500, 1200, 2000, 3100),
col = "OrRd", style = "fixed", opacity = c(0.2, 1))

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 83

(a) terrain.colors() (b) "OrRd" colours with opacity.
Tiles courtesy of MapQuest.

Figure 9: Elevation maps of New Zealand using colours from terrain.colors and the "OrRd" colours
from RColorBrewer.

Here the opacity argument has been given a vector of length 2, giving the opacity of the first colour
and last colour respectively with intervening colours having opacities which are linear interpolations
of these values.

Figure 9a is produced with code below.

par(bg = "lightblue1")
map.new(nzRot)
par(bg = "white")
plot(nzAltCrop, col = nzAltCol$col, breaks = nzAltCol$breaks, legend = FALSE,

add = TRUE)
plot(nzRot, add = TRUE, border = col2html("red", 0.4))
legendBreaks("bottomleft", nzAltCol, title = "metres", bg = "white")
scaleBar(nzRot, "left")

No background map is present, though the background has been set to a sea-like colour. The line
of code beginning with plot(nzAltRot,... adds the elevation data to the map. The col and breaks
elements of the colour scale nzAltCol are passed as identically named arguments of the plot method
from the raster package. The legend = FALSE argument prevents plot from adding its own legend,
which would not fit well with this map as it always appears on the right.

The code for Figure 9b is below.

map.new(nzRot)
plotRGB(nzBg, add = TRUE)
plot(nzAltCrop, col = nzAltTrans$colOpacity, breaks = nzAltTrans$breaks,

legend = FALSE, add = TRUE)
legendBreaks("bottomleft", nzAltTrans, title = "metres")
scaleBar(nzRot, "left")

Here the colOpacity element of the colour scale, which has 2-digit opacity levels appended to each
specified colour, is passed as col = argument to allow the satellite photo beneath to be viewed.

Colours with categorical data

Figure 10 maps land categories in Africa, and colourScale has been used to assign colours to 10 of the
20 land categories present. The way the raster package treats categorical data (a factor in R parlance)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.mapquest.com

CONTRIBUTED RESEARCH ARTICLES 84

requires a slightly different use of colourScale from the previous section, and legends suitable for
categorical data can be produced by legendBreaks and the related function legendTable.

The land cover data originate from the European Space Agency, and are redistributed by world-
grids.org. The file is provided in .tif format, compressed as a (.gz) file. The code below downloads,
unzips, and loads the data into R.

landUrl <- "http://www.worldgrids.org/lib/exe/fetch.php?media=glcesa1a.tif.gz"
gzfile <- "glcesa1a.tif.gz"
tiffile <- "glcesa1a.tif"
download.file(landUrl, gzfile)
R.utils::gunzip(gzfile, overwrite = file.exists(tiffile), remove = FALSE)
land <- raster(tiffile)

This land raster object spans the entire globe, and a portion of central Africa containing both Liberia
and Tanzania is extracted with the help of the wrld_simpl object used earlier.

worldSub <- wrld_simpl[grep("Liberia|Tanzania", wrld_simpl$NAME),]
worldSub <- spTransform(worldSub, projection(land))
landSub <- raster::crop(land, extend(extent(worldSub), 5))

The extend function has added an additional 5 units (in this case degrees latitude and longitude) to
the region to be extracted.

A text file containing a list of land categories and their numeric identifiers is posted at world-
grids.org, it is retrieved and loaded below.

download.file("http://www.worldgrids.org/lib/exe/fetch.php?media=glcesa.txt",
"landLevels.txt")

landTable <- read.table("landLevels.txt", header = TRUE, sep = "\t",
stringsAsFactors = FALSE)

This table can be used with colourScale to produce map colours and a legend, although the table
must first be modified as colourScale expects it to include a numeric ID column and a column called
label of descriptions. The land categories are assigned integer values in the raster

unique(landSub)

[1] 11 14 20 30 40 50 60 70 90 100 110 120 130 140 150 160 170 180 190
[20] 200 210

which correspond to the trailing digits of the DESCRIPTION column of the table.

landTable[1:2,]

COLOR NAME DESCRIPTION MINIMUM MAXIMUM
1 15790250 No data (burnt areas, clouds,) CL11 10.1 11.1
2 6619135 Rainfed croplands CL14 11.1 14.1

The codes are converted into the numeric ID variable and the NAME column tidied up with a complex
gsub statement and saved as label below.

landTable$ID <- as.numeric(gsub("^CL", "", landTable$DESCRIPTION))
landTable$label <-

gsub("Closed to open| - [[:print:]]+|\\(([[:digit:]]|[[:punct:]]|m)+\\)", "",
landTable$NAME)

landTable$label <- trimws(landTable$label)
landTable[c(1:3, 20:23), c("ID", "label")]

ID label
1 11 No data (burnt areas, clouds,)
2 14 Rainfed croplands
3 20 Mosaic cropland / vegetation (grassland/shrubland/forest)
20 200 Bare areas
21 210 Water bodies
22 220 Permanent snow and ice
23 230 No data (burnt areas, clouds,)

The labels argument is used to provide information on categories and labels to colourScale, and it
requires a data.frame with columns named ID and label giving category identifiers and descriptions
respectively.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.esa-landcover-cci.org
http://worldgrids.org
http://worldgrids.org
http://www.worldgrids.org
http://www.worldgrids.org

CONTRIBUTED RESEARCH ARTICLES 85

landLevels <- colourScale(landSub, breaks = 10, style = "unique", col = "Set3",
exclude = c(11, 210, 220, 230), labels = landTable)

Here 10 colours have been requested from the "Set3" palette, with style = "unique" specifying that
the data are categorical rather than continuous. The 10 most common land types will be assigned
colours, although the exclude = argument specifies that several categories (i.e. 11 no data, 210 water
bodies, 200 bare areas) will not be colour-coded regardless of how prevalent they are.

names(landLevels)

[1] "col" "breaks" "colOpacity" "colourtable" "colortable"
[6] "levels" "legend"

The colourtable and levels elements above were not present when colourScale was used in the
previous section, and these elements will be produced whenever a labels = argument has been
provided. The levels element is a data frame with one row per land category and columns with labels
and colours, and is compatible with the raster package’s facilities for categorical variables. A categori-
cal raster has a list of data frames, one for each raster layer, accessible by executing levels(landSub).
The land categories are the first and only layer of the landSub raster and the table produced by
colourScale is added to the first element of the levels list below.

levels(landSub)[[1]] <- landLevels$levels

The colourtable object in landLevels is a vector of colours associated with each numeric category,
with NA’s for those categories for which no colour has been assigned (ID 201, Water Bodies for example).
It will be used by raster’s plotting functions if it has been added to the legend@colortable slot of a
raster as follows.

landSub@legend@colortable <- landLevels$colourtable

The American spelling “color” is used by the majority of R packages, despite the Guidelines for Rd
files stating: “For consistency, aim to use British (rather than American) spelling.” This author, being
Canadian, requires “color” and “colour” to be interchangeable and provides landLevels$colortable
(and a colorScale function) to this effect.

Figure 10 includes the "stamen-toner" web map as a foreground (rather than background)
layer with country borders and names. The tonerToTrans function converts the white pixels in
the "stamen-toner" map to transparent (and greys to semi-transparent), allowing the map to be added
after and on top of the land category image.

landMap <- openmap(landSub, path = "stamen-toner")
landMapTrans <- tonerToTrans(landMap)

Figure 10 is produced as follows.

map.new(landSub)
plot(landSub, add = TRUE)
plot(landMapTrans, add = TRUE)
legendBreaks("bottomleft", landSub, ncol = 2, width = 25, lines = 3,

text.col = "yellow", cex = 0.8, pt.cex = 3, inset = 0, bty = "n")

The landSub raster, having had landLevels$colourtable and landLevels$levels attached to it, is the
only object required by the plot and legendBreaks functions. The legendBreaks function passes the
ncol, cex and inset arguments to the legend function, arguments specifying two columns, slightly
smaller than normal text, and a position flush to the bottom left respectively. The width = 25 argument
inserts line breaks in the legend labels after 25 characters, and the lines = 3 argument causes only
the first three lines to be displayed.

An alternative to including the legend on the plot is to create an “in-line” legend as in the caption
to Figure 10. The legendTable function assists in this task, with the code

legendTable(landSub, collapse = "; ", type = "latex")

used in this instance. Table 3 is created with the following.

Hmisc::latex(legendTable(landSub, type = "latex"), file = "", rowname = NULL,
where = "htb", caption.loc = "bottom", colheads = FALSE,
caption = "Land categories in Figure \\ref{fig:plotLand}")

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://developer.r-project.org/Rds.html
http://developer.r-project.org/Rds.html

CONTRIBUTED RESEARCH ARTICLES 86

Figure 10: Land categories in central Africa: Rainfed croplands (); Mosaic cropland / vegetation
(grassland/shrubland/forest) (); Mosaic vegetation (grassland/shrubland/forest) / cropland
(); Broadleaved evergreen or semi-deciduous forest (); Closed broadleaved deciduous
forest (); Open broadleaved deciduous forest/woodland (); Mosaic forest or shrubland
/ grassland (); (Broadleaved or needleleaved, evergreen or deciduous) shrubland ();
Herbaceous vegetation (grassland, savannas or lichens/mosses) (); Broadleaved forest regularly
flooded (semi-permanently or temporarily) (). Background © Stamen Design.

Rainfed croplands
Mosaic cropland / vegetation (grassland/shrubland/forest)
Mosaic vegetation (grassland/shrubland/forest) / cropland
Broadleaved evergreen or semi-deciduous forest
Closed broadleaved deciduous forest
Open broadleaved deciduous forest/woodland
Mosaic forest or shrubland / grassland
(Broadleaved or needleleaved, evergreen or deciduous) shrubland
Herbaceous vegetation (grassland, savannas or lichens/mosses)
Broadleaved forest regularly flooded (semi-permanently or temporarily)

Table 3: Land categories in Figure 10.

Conclusions

This paper and the mapmisc package aim to contribute to and advance the suite of tools available
to the growing community of R users performing advanced statistical analyses of spatial data. The
first objective of mapmisc is removing barriers to using a map projection which is appropriate for
the problem at hand, even when a non-standard projection optimised for a particular study region
is most appropriate. A second objective is the provision of tools which simplify the creation and
use of colour scales and legends. The way in which mapmisc seeks to accomplish these goals is by
automating many of the tasks involved, with obtaining and re-projecting map tiles or creating colour
scales with transparency being two examples. New functionality provided by mapmisc to R users
includes the creation of optimised map projections and the creation of inset maps and scale bars for
data in a rotated projection.

The scope of mapmisc has been kept deliberately narrow. Maps are static rather than interactive,
base graphics are used, all spatial data types used are from sp or raster, and functions have been kept
simple with few arguments. In contrast to spplot from package sp and ggplot2 (Wickham, 2009),
maps made with mapmisc are produced with a sequence of independent function calls with each
function performing a very specific task. This approach was originally intended to benefit students and
non-specialists, and the package grew out of code originally provided to students in an undergraduate
course. Many of the tools in mapmisc can, however, be used with ggplot2, leaflet (Cheng and Xie,
2016) or other advanced graphical packages. No new object classes have been created by mapmisc,
any package compatible with raster can use background maps from openmap and a “CRS” object

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://stamen.com
http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=leaflet

CONTRIBUTED RESEARCH ARTICLES 87

provided by omerc or moll can be used with any package that calls rgdal for transformations. Colours
and break points from colourScale can be used with spplot, and legendBreaks can be used in any
graphics environment where the legend function operates.

Additional motivations for the framework mapmisc employs are reproducibility and consistency
when producing multiple maps. Colour scales and background maps are defined before a map is
produced, and plot areas are laid out before any graphics are added. While sometimes clumsy for
interactive use, mapmisc code fits tidily within Sweave or knitr documents and script files. Repro-
ducibility of research results is an area where R excels, and mapmisc can help to simplify the creation
of high quality maps in reproducible code scripts. For refining and manually polishing maps and
plots, R will never replace Geographical Information Systems or graphics editing software. For most
other tasks faced by a Spatial Statistician, however, the occasions when an environment other than R is
required are becoming fewer in number over time.

Acknowledgements

The author holds a Discovery Grant from the Natural Sciences and Engineering Council of Canada.

Attributions for background maps

Figures 2a, 8 and all inset maps: © OpenStreetMap contributors. Data by OpenStreetMap available
under the Open Database License, cartography is licensed as CC BY-SA.

Figure 2b, 9b: Tiles courtesy of MapQuest, portions courtesy NASA/JPL-Caltech and U.S. Depart. of
Agriculture, Farm Service Agency.

Figure 7 Cartography by The Canada Base Map – Transportation (CBMT) web mapping services of
the Earth Sciences Sector (ESS) at Natural Resources Canada (NRCan) licensed as the Open
Government Licence – Canada.

Figure 10: Map tiles by Stamen Design under CC BY 3.0. Data by OpenStreetMap available under the
CC BY-SA.

Figure 6: Map tiles by CartoDB under CC BY 3.0. Data by OpenStreetMap available under the Open
Database License.

Figure 11: The Appendix is © OpenStreetMap contributors. Data by OpenStreetMap available under
the Open Database License, cartography is licensed as CC BY-SA. with the exceptions below.

mapquest : Tiles courtesy of MapQuest. Data by OpenStreetMap available under the Open
Database License.

mapquest-sat : Tiles courtesy of MapQuest, portions courtesy NASA/JPL-Caltech and U.S.
Depart. of Agriculture, Farm Service Agency.

mapquest-labels : Tiles courtesy of MapQuest. Data by OpenStreetMap available under the
Open Database License.

maptoolkit : © Toursprung GmbH Data by OpenStreetMap available under the Open Database
License.

humanitarian : © OpenStreetMap contributors. Data by OpenStreetMap available under the
Open Database License, cartography by Humanitarian OSM team is licensed as CC BY-SA.

cartodb : Map tiles by CartoDB under CC BY 3.0. Data by OpenStreetMap available under the
Open Database License.

cartodb-dark : Map tiles by CartoDB under CC BY 3.0. Data by OpenStreetMap available
under the Open Database License.

stamen-toner : Map tiles by Stamen Design under CC BY 3.0. Data by OpenStreetMap available
under the Open Database License.

stamen-watercolor : Map tiles by Stamen Design under CC BY 3.0. Data by OpenStreetMap
available under the CC BY-SA.

Bibliography

H. Bengtsson. R.utils: Various Programming Utilities, 2016. URL https://CRAN.R-project.org/
package=R.utils. R package version 2.3.0. [p64]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://creativecommons.org/licenses/by-sa/2.0
http://www.mapquest.com
http://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/free-data-geogratis/geogratis-web-services/17216
http://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/free-data-geogratis/geogratis-web-services/17216
http://open.canada.ca/en/open-government-licence-canada
http://open.canada.ca/en/open-government-licence-canada
http://stamen.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://creativecommons.org/licenses/by/3.0
http://cartodb.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://opendatacommons.org/licenses/odbl
http://openstreetmap.org/copyright
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://creativecommons.org/licenses/by-sa/2.0
http://www.mapquest.com
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://opendatacommons.org/licenses/odbl
http://www.mapquest.com
http://www.mapquest.com
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://www.toursprung.com
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://opendatacommons.org/licenses/odbl
http://openstreetmap.org/copyright
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://hot.openstreetmap.org/about
http://creativecommons.org/licenses/by-sa/2.0
http://cartodb.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://cartodb.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://stamen.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://stamen.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://creativecommons.org/licenses/by/3.0
https://CRAN.R-project.org/package=R.utils
https://CRAN.R-project.org/package=R.utils

CONTRIBUTED RESEARCH ARTICLES 88

R. Bivand. classInt: Choose Univariate Class Intervals, 2015. URL https://CRAN.R-project.org/
package=classInt. R package version 0.1-23. [p64]

R. Bivand and N. Lewin-Koh. maptools: Tools for Reading and Handling Spatial Objects, 2016. URL
https://CRAN.R-project.org/package=maptools. R package version 0.8-39. [p64]

R. Bivand and C. Rundel. rgeos: Interface to Geometry Engine – Open Source (GEOS), 2016. URL
https://CRAN.R-project.org/package=rgeos. R package version 0.3-19. [p64]

R. Bivand, T. Keitt, and B. Rowlingson. rgdal: Bindings for the Geospatial Data Abstraction Library, 2016.
URL https://CRAN.R-project.org/package=rgdal. R package version 1.1-8. [p64]

R. S. Bivand, E. Pebesma, and V. Gomez-Rubio. Applied Spatial Data Analysis with R. Springer, New
York, 2nd edition, 2013. URL http://www.asdar-book.org/. [p65]

P. Brown. mapmisc: Utilities for Producing Maps, 2016. URL https://CRAN.R-project.org/package=
mapmisc. R package version 1.5.0. [p64]

P. E. Brown. Model-based geostatistics the easy way. Journal of Statistical Software, 63(12):1–24, 2015.
URL http://www.jstatsoft.org/v63/i12/. [p66, 75]

J. Cheng and Y. Xie. leaflet: Create Interactive Web Maps with the JavaScript “Leaflet” Library, 2016. URL
https://CRAN.R-project.org/package=leaflet. R package version 1.0.1. [p86]

R. J. Hijmans. geosphere: Spherical Trigonometry, 2015a. URL https://CRAN.R-project.org/package=
geosphere. R package version 1.5-1. [p64]

R. J. Hijmans. raster: Geographic Data Analysis and Modeling, 2015b. URL https://CRAN.R-project.
org/package=raster. R package version 2.5-2. [p64]

R. J. Hijmans, S. Phillips, J. Leathwick, and J. Elith. dismo: Species Distribution Modeling, 2016. URL
https://CRAN.R-project.org/package=dismo. R package version 1.0-15. [p64]

G. F. Jenks and F. C. Caspall. Error on choroplethic maps: Definition, measurement, reduction. The
Annals of the Association of American Geographers, 61(2):217–244, 1971. [p80]

R. Munroe. Map projections. xkcd Web Comic, 2011. URL http://xkcd.com/977. [Online; accessed
11-March-2015]. [p72]

E. Neuwirth. RColorBrewer: ColorBrewer Palettes, 2014. URL https://CRAN.R-project.org/package=
RColorBrewer. R package version 1.1-2. [p64]

E. J. Pebesma and R. S. Bivand. Classes and methods for spatial data in R. R News, 5(2):9–13, November
2005. URL http://CRAN.R-project.org/doc/Rnews/. [p64, 80]

J. P. Snyder. Map projections – A working manual. Professional Paper 1395, US Geologic Survey,
Washington, DC, 1987. URL http://pubs.usgs.gov/pp/1395/report.pdf. [p66]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. URL
http://ggplot2.org. [p86]

Wikipedia. Great-circle distance – Wikipedia, The Free Encyclopedia, 2015a. URL https://
en.wikipedia.org/w/index.php?title=Great-circle_distance&oldid=688488703. [Online; ac-
cessed 3-November-2015]. [p66]

Wikipedia. Mollweide projection – Wikipedia, The Free Encyclopedia, 2015b. URL https://en.
wikipedia.org/w/index.php?title=Mollweide_projection&oldid=689173007. [Online; accessed
25-November-2015]. [p72]

Wikipedia. Web Mercator – Wikipedia, The Free Encyclopedia, 2016. URL https://en.wikipedia.
org/w/index.php?title=Web_Mercator&oldid=714750105. [Online; accessed 19-May-2016]. [p70]

Y. Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition,
2015. URL http://yihui.name/knitr/. [p69]

Patrick Brown
Cancer Care Ontario
620 University Ave
Toronto, ON M5G 2L7 Canada
patrick.brown@utoronto.ca

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=classInt
https://CRAN.R-project.org/package=classInt
https://CRAN.R-project.org/package=maptools
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=rgdal
http://www.asdar-book.org/
https://CRAN.R-project.org/package=mapmisc
https://CRAN.R-project.org/package=mapmisc
http://www.jstatsoft.org/v63/i12/
https://CRAN.R-project.org/package=leaflet
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=dismo
http://xkcd.com/977
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer
http://CRAN.R-project.org/doc/Rnews/
http://pubs.usgs.gov/pp/1395/report.pdf
http://ggplot2.org
https://en.wikipedia.org/w/index.php?title=Great-circle_distance&oldid=688488703
https://en.wikipedia.org/w/index.php?title=Great-circle_distance&oldid=688488703
https://en.wikipedia.org/w/index.php?title=Mollweide_projection&oldid=689173007
https://en.wikipedia.org/w/index.php?title=Mollweide_projection&oldid=689173007
https://en.wikipedia.org/w/index.php?title=Web_Mercator&oldid=714750105
https://en.wikipedia.org/w/index.php?title=Web_Mercator&oldid=714750105
http://yihui.name/knitr/
mailto:patrick.brown@utoronto.ca

CONTRIBUTED RESEARCH ARTICLES 89

Additional code

European fertility

URL’s for web sites where data are obtained:

nutsUrl <- "http://ec.europa.eu/eurostat/cache/GISCO/geodatafiles/NUTS_2010_60M_SH.zip"
nutsFile <- basename(nutsUrl)

Download and read in boundary file:

if (!file.exists(nutsFile)) {
download.file(nutsUrl, nutsFile, method = "curl")

}
unzip(nutsFile)
nutsShp <- grep("RG_60M_2010.shp$", unzip(nutsFile, list = TRUE)$Name, value = TRUE)
euroNuts <- shapefile(nutsShp)

The fertility data are retrieved as a gzipped tab-separated text file, which the R.utils package is able
to decompress. The code below will download a copy of this file from the author’s web server if the
EUROSTAT download fails.

fertUrl <- file.path("http://ec.europa.eu/eurostat/estat-navtree-portlet-prod",
"BulkDownloadListing?sort=1&file=data%2Fdemo_r_frate2.tsv.gz")

fertFileGz <- "demo_r_frate2.tsv.gz"
fertFile <- gsub(".gz$", "", fertFileGz)
if (!file.exists(fertFileGz)) {

download.file(fertUrl, fertFileGz, method = "curl")
}
R.utils::gunzip(fertFileGz, overwrite = file.exists(fertFile), remove = FALSE)
euroDat <- read.table(fertFile, header = TRUE, stringsAsFactors = FALSE, sep = "\t",

na.strings = ": ")
euroDat <- euroDat[grep("^TOTAL", euroDat[, 1]),]
euroDat$timegeo <- gsub("^TOTAL,", "", euroDat[, 1])

Merge the fertility and polygon data. Warning messages that not all rows of the fertility table can be
matched to polygons can be ignored.

euroF <- sp::merge(euroNuts, euroDat, all.x = FALSE, by.x = "NUTS_ID",
by.y = "timegeo")

Exclude some of the outlying parts of the EU:

euroF <- raster::crop(euroF, extent(-25, 180, 33, 90))

Canada

Transform the Great Circle:

gcircleT <- mapply(spTransform, CRSobj = crsList, MoreArgs = list(x = gcircle))

Obtain background maps:

mapT <- mapply(openmap, crs = crsList, MoreArgs = list(path = "nrcan", x = cities,
buffer = 3))

Create maps:

for (D in names(crsList)) {
map.new(citiesT[[D]], buffer = c(200 * 1000, 1)[1 + isLonLat(citiesT[[D]])])
plotRGB(mapT[[D]], add = TRUE)
rgdal::llgridlines(citiesT[[D]], col = "orange")
points(gcircleT[[D]], cex = 0.1, col = "blue")
points(citiesT[[D]], col = "red", pch = "+", cex = 1.5)
text(citiesT[[D]], labels = citiesT[[D]]$name, col = "red", pos = cities$pos,

offset = 0.6, cex = 1.2)
scaleBar(citiesT[[D]], "topleft", seg.len = 4, pt.cex = 0)

}

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 90

Additional tables and figures

col max palette

BrBG 11

PiYG 11

PRGn 11

PuOr 11

RdBu 11

RdGy 11

RdYlBu 11

RdYlGn 11

Spectral 11

Accent 8

Dark2 8

Paired 12

Pastel1 9

Pastel2 8

Set1 9

Set2 8

Set3 12

Blues 9

BuGn 9

BuPu 9

GnBu 9

Greens 9

Greys 9

Oranges 9

OrRd 9

PuBu 9

PuBuGn 9

PuRd 9

Purples 9

RdPu 9

Reds 9

YlGn 9

YlGnBu 9

YlOrBr 9

YlOrRd 9

Table 4: Colour palettes from RColorBrewer, with col showing the character string to provide
colourScale or brewer.pal and max giving the maximum number of colours for each palette.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 91

(a) osm,
© OpenStreetMap.

(b) osm-semitransparent,
© OpenStreetMap.

(c) osm-no-labels,
© OpenStreetMap.

(d) osm-transport,
© OpenStreetMap.

(e) bw-mapnik,
© OpenStreetMap.

(f) mapquest. Tiles
courtesy of MapQuest.

(g) mapquest-sat. Tiles
courtesy of MapQuest.

(h) osm-cyclemap,
© OpenStreetMap.

(i) landscape,
© OpenStreetMap.

(j) opentopomap,
© OpenStreetMap.

(k) maptoolkit,
© Toursprung GmbH.

(l) waze, © Waze mobile.

(m) humanitarian,
© OpenStreetMap.

(n) cartodb, © CartoDB. (o) stamen-toner,
© Stamen Design.

(p) stamen-watercolor,
© Stamen Design.

Figure 11: Selected openmap tile sets.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://www.mapquest.com
http://www.mapquest.com
http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://www.toursprung.com
http://www.waze.com/legal/notices
http://openstreetmap.org/copyright
http://cartodb.com
http://stamen.com
http://stamen.com

