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mmpp: A Package for Calculating
Similarity and Distance Metrics for
Simple and Marked Temporal Point
Processes
by Hideitsu Hino, Ken Takano, and Noboru Murata

Abstract A simple temporal point process (SPP) is an important class of time series, where the sample
realization of the process is solely composed of the times at which events occur. Particular examples
of point process data are neuronal spike patterns or spike trains, and a large number of distance and
similarity metrics for those data have been proposed. A marked point process (MPP) is an extension
of a simple temporal point process, in which a certain vector valued mark is associated with each of
the temporal points in the SPP. Analyses of MPPs are of practical importance because instances of
MPPs include recordings of natural disasters such as earthquakes and tornadoes. In this paper, we
introduce the R package mmpp, which implements a number of distance and similarity metrics for
SPPs, and also extends those metrics for dealing with MPPs.

Introduction

A random point process is a mathematical model for describing a series of discrete events (Snyder and
Miller, 1991). Let X = {t; t0 ≤ t ≤ t0 + T} be the base space, on which an event occurs. The base space
can be quite abstract, but here we will take X to be a semi-infinite real line representing time. A set of
ordered points on X is denoted as x = {x1, x2, . . . , xn}, xi ≤ xi+1, and called a sample realization, or
simply realization of a point process.

Reflecting the importance of the analysis of point processes in a broad range of science and
engineering problems, there are already some R packages for modeling and simulating point processes
such as splancs (Rowlingson and Diggle, 1993), spatstat (Baddeley and Turner, 2005), PtProcess (Harte,
2010), and stpp (Gabriel et al., 2013). These packages support various approaches for the analysis of
both simple and marked spatial or spatio-temporal point processes, namely, estimating an intensity
function for sample points, visualizing the observed sample process, and running simulations based
on the specified models.

To complement the above mentioned packages, in mmpp (Hino et al., 2015), we focus on the simi-
larity or distance metrics between realizations of point processes. Similarity and distance metrics are
fundamental notions for multivariate analysis, machine learning and pattern recognition. For example,
with an appropriate distance metric, a simple k nearest neighbor classifier and regressor (Cover and
Hart, 1967) works in a satisfactory way. Also, kernel methods (Shawe-Taylor and Cristianini, 2004) are
a well known and widely used framework in machine learning, in which inferences are done solely
based on the values of kernel function, which is considered as a similarity metric between two objects.

As for the distance and similarity metric for point processes, vast amount of methods are developed
in the field of neuroscience (Kandel et al., 2000). In this field, neural activities are recorded as sequences
of spikes (called spike trains), which is nothing but a realization of a simple point process (SPP). By its
nature, the responses of neurons to the same stimulus can be different. To claim the repeatability and
the reliability of experimental results, a number of different distance and similarity metrics between
sequence of spikes are developed (Victor, 2005; Schreiber et al., 2003; Kreuz et al., 2007; Quian Quiroga
et al., 2002; van Rossum, 2001).

The package mmpp categorizes commonly used metrics for spike trains and offers implemen-
tations for them. Since a spike train is a realization of a simple point process, the original metrics
developed in the field of neuroscience do not consider marked point process (MPP) realizations.
mmpp extends conventional metrics for SPPs to MPPs. We have two main aims in the development of
mmpp:

1. to have a systematic and unified platform for calculating the similarities and distances between
SPPs, and

2. to support MPPs to offer a platform for performing metric-based analysis of earthquakes,
tornados, epidemics, or stock exchange data.
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Figure 1: An example of continuation by smoothing. Left: event timings are marked with ×. Right:
the corresponding continuous function vx(t).

Distances and similarities for point processes

Since realizations of temporal SPPs are ordered sets of the events, the commonly used Euclidean
distance and inner product cannot be directly defined between them. Most of the metrics for SPP
realizations first transform the realizations x = {x1, . . . , xn}, xi ≤ xi+1 and y = {y1, . . . , ym}, ; yj ≤
yj+1 to continuous functions vx(t) and vy(t), then define the distance or similarity metric between
them. Based on the transformations, we categorize conventional methods for defining metrics on SPP
realizations, and explain one by one in the following subsections.

We note that there are some attempts to directly define distances between SPP realizations. One of
the most principled and widely used methods is based on the edit distance (Victor, 2005), and this
method is extended to deal with MPP realizations by Suzuki et al. (2010). However, this approach is
computationally expensive and prohibitive for computing the distance between spike trains with even
a few dozen spikes. We exclude this class of metric from the current version of mmpp.

In the following, we often use kernel smoothers and step functions for transforming SPP realiza-
tions. For notational convenience, we denote a kernel smoother with parameter τ by hτ(t), and the
Heaviside step function by

u(t) =
{

1, t ≥ 0,
0, t < 0. (1)

Examples of smoothers include the Gaussian kernel smoother hg
τ(t) = exp(−t2/(2τ2))/

√
2πτ2 and

the Laplacian kernel smoother hl
τ(t) = exp(−|t|/τ)/(2τ).

Filtering to a continuous function

The most commonly used and intensively studied metrics for spike trains are based on the mapping
of an event sequence to a real valued continuous function as

x = {x1, . . . , xn} ⇒ vx(t) =
1
n

n

∑
i=1

hτ(t− xi) · u(t− xi). (2)

Figure 1 illustrates the transformation of an event sequence to a continuous function by the smoothing
method.

Then, the inner product of x and y is defined by the usual `2 inner product in functional space by

k(x, y) =
∫ ∞

0
dtvx(t)vy(t) ∈ [−∞, ∞], (3)

and similarly the distance is defined by

d(x, y) =
√∫ ∞

0
dt(vx(t)− vy(t))2. (4)

When we use the Laplacian smoother hl
τ(t) = exp (−|t|/τ) /(2τ), the similarity and distance are
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analytically given as

k(x, y) =
∫ ∞

0
dtvx(t)vy(t) =

1
4τnm

n

∑
i=1

m

∑
j=1

exp
(
− 1

τ
|xi − yj|

)
, (5)

and

d2(x, y) =k(x, x) + k(y, y)− 2k(x, y)

=
1

4τn2

n

∑
i=1

n

∑
j=1

exp

(
−
|xi − xj|

τ

)
+

1
4τm2

m

∑
i=1

m

∑
j=1

exp

(
−
|yi − yj|

τ

)

− 1
2τnm

n

∑
i=1

m

∑
j=1

exp

(
−
|xi − yj|

τ

)
, (6)

respectively. This distance eq. (6) is adopted by van Rossum (2001) for measuring the distance between
spike trains. On the other hand, Schreiber et al. (2003) proposed to use the correlation defined by

cor(x, y) =

∫ ∞
0 dtvx(t)vy(t)√∫ ∞

0 dtvx(t)vx(t)
√∫ ∞

0 dtvy(t)vy(t)
(7)

to measure the similarity between spike trains. This class of measures is extended to take into account
the effect of burst, i.e., the short interval in which events occur in high frequency, and refractory
period, i.e., the short interval in which events tend to be suppressed immediately after the previous
events (Houghton, 2009; Lyttle and Fellous, 2011). These two effects, namely burst and refractory
period, are commonly observed in neural activities. They are also observed in earthquake catalogues.
After a large main shock, usually we observe high frequent aftershocks. On the other hand, suppression
of events is sometimes happening, possibly because after a big event, the coda is so large that one
cannot detect smaller events under the large ongoing signal from the big event (Kagan, 2004; Iwata,
2008).

The filtering-based metric is computed by using the function fmetric in mmpp. The first two
arguments S1 and S2 are the (marked) point process realizations in the form of a ‘matrix’ object. The
first column of S1 and S2 are the event timings and the rest are the marks. The argument measure
can be either "sim" or "dist", indicating similarity or distance, respectively. By default, the function
assumes the Laplacian smoother. When the argument h of function fmetric is set to a function with
scaling parameter τ as

> fmetric(S1, S2, measure = "sim", h = function(x, tau) exp(-x^2/tau), tau = 1)

the integrals in eq. (3) and eq. (4) are numerically done using the R function integrate. The function
h should be square integrable and non-negative.

Intensity inner products

For analysis of point processes, the intensity function plays a central roll. Paiva et al. (2009) proposed
to use the intensity function for defining the inner product between SPP realizations. Let N(t) be the
number of events observed in the interval (0, t]. The intensity function of a counting process N(t) is
defined by

λx(t) = lim
ε→0

1
ε

Pr[N(t + ε)− N(t) = 1]. (8)

We note that we can also consider the conditional intensity function reflecting the history up to the
current time t, but we only explain the simplest case in this paper. Assuming that the SPP to be
analysed is well approximated by a Poisson process, the intensity function is estimated by using a
smoother hτ(t) as

λ̂x(t) =
1
n

n

∑
i=1

hτ(t− xi) (9)

in non-parametric manner (Reiss, 1993). Using the estimates of intensity functions for processes behind
x and y, Paiva et al. (2009) defined a similarity metric by

k(x, y) =
∫ ∞

−∞
dtλ̂x(t)λ̂y(t) =

1
4τ2nm

n

∑
i=1

m

∑
j=1

∫ ∞

−∞
dthτ(t− xi)hτ(t− yj). (10)

Particularly, when we use a Gaussian smoother hg
τ(t) = exp

(
−t2/(2τ2)

)
/
√

2πτ, the integral is
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analytically computed and we obtain an explicit formula

k(x, y) =
∫ ∞

−∞
dtλ̂x(t)λ̂y(t) =

1
4
√

πτnm

n

∑
i=1

m

∑
j=1

exp

(
−
(xi − yj)

2

4τ2

)
. (11)

The distance metric is also defined as

d(x, y) =
∫ ∞

−∞
dt(λ̂x(t)− λ̂y(t))2, (12)

and it is also simplified when we use the Gaussian smoother.

This class of measures is most in alignment with the statistical model of point processes. We
estimated the intensity function in a versatile non-parametric approach, but it is reasonable to use
other models such as the Hawkes model (Hawkes, 1971) when we should include the self-exciting
nature of the process.

The intensity inner product metric is computed by using the function iipmetric in mmpp. In the
current version, the function assumes the Gaussian smoother, and its scaling parameter is specified by
the argument tau as

> iipmetric(S1, S2, measure = "sim", tau = 1)

Co-occurrence metric

For comparing two SPP realizations, it is natural to count the number of events which can be considered
to be co-occurring. There are two metrics for SPP realizations based on the notion of co-occurrence.

The first one proposed by Quian Quiroga et al. (2002) directly counts near-by events. The closeness
of two events are defined by adaptively computed thresholds, making the method free from tuning
parameters. Suppose we have two SPP realizations x = {x1, . . . , xn} and y = {y1, . . . , ym}. For any
events xi ∈ x and yj ∈ y, a threshold under which the two events are considered to be synchronous
with each other is defined as half of the minimum of the four inter event intervals around these two
events:

τij =
1
2

min{xi+1 − xi, xi − xi−1, yj+1 − yj, yj − yj−1}. (13)

We note that τij in the above definition depends on x and y, though, for the sake of notational simplicity,
we simply denote it by τij. Then, the function that counts the number of events in y which is coincided
with those in x is defined by

c(x|y) =
n

∑
i=1

m

∑
j=1

Pij, (14)

Pij =


1, 0 < xi − yj < τij,
1/2, xi = yj,
0, otherwise.

(15)

Using this counting function, a similarity measure between x and y is defined as

k(x, y) =
c(x|y) + c(y|x)√

nm
, (16)

and a distance measure is obtained by the transformation (Lyttle and Fellous, 2011):

d(x, y) = 1− k(x, y). (17)

The second metric based on the counting co-occurrence is proposed by Hunter and Milton (2003),
which transforms x to a continuous function vx(t), and sums up the near-by events in proportion to
their degree of closeness. Denoting the closest event time in y from an event xi ∈ x by y(xi), we define
a function which measures degree of closeness by

dcτ(xi) = exp

(
−
|xi − y(xi)|

τ

)
. (18)

Then, a similarity metric between x and y is defined by

k(x, y) =
1
n ∑n

i=1 dcτ(xi) +
1
m ∑m

j=1 dcτ(yj)

2
, (19)
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and the distance is naturally defined by

d(x, y) = 1− k(x, y). (20)

The co-occurrence based metrics are computed by using the function coocmetric. By default, the
function assumes the counting similarity in eq. (16). The smoothed counting similarity is computed by
specifying the argument type = "smooth" as

> coocmetric(S1, S2, measure = "sim", type = "smooth", tau = 1)

Inter event interval

Assume an SPP realization x = {x1, . . . , xn}, xn < T such that for every event time xi, 0 < xi < T,
where T is the horizon of the time interval. In the inter event interval proposed by Kreuz et al. (2007),
the SPP realization x is first modified to include artificial events corresponding to the beginning and
end of the interval as

x = {x0 = 0, x1, . . . , xn, xn+1 = T}. (21)

Then each event is mapped to a function vx(t) as

vx(t) =
n+1

∑
i=0

fi(t), fi(t) =
{

0, t /∈ [xi, xi+1),
xi+1 − xi, t ∈ [xi, xi+1).

(22)

Two SPP realizations x and y are transformed to vx(t) and vy(t), then they are used to define an
intermediate function

Ixy(t) =
min{vx(t), vy(t)}
max{vx(t), vy(t)}

. (23)

This function takes value 1 when x is identical to y, and takes a smaller value when x and y are highly
dissimilar. By using this intermediate function, the similarity measure is defined by

k(x, y) =
1
T

∫ T

0
dtIxy(t), (24)

and the distance is defined by

d(x, y) =
1
T

∫ T

0
dt(1− Ixy(t)), (25)

which is originally defined in Kreuz et al. (2007). A simple example of transformation x ⇒ vx(t), y⇒
vy(t) and x, y⇒ 1− Ixy(t) is illustrated in Figure 2.

The inter event interval metrics are computed by using the function ieimetric as

> ieimetric(S1, S2, measure = "sim")

Extension to marked point processes

Sometimes events considered in point processes entail certain vector valued marks. For example,
seismic events are characterized by the time point the earthquake happens, and a set of attributes such
as magnitude, depth, longitude, and latitude of the hypo-center. To deal with marked point processes,
we extend the base spaceX toX = {t; t0 ≤ t ≤ t0 + T}×Rp, the Cartesian product of the time interval
[t0, t0 + T] and a region of the p dimensional Euclidean space corresponding to marks. Realizations of
MPPs are denoted by, for example, x = {(x1, r1), . . . , (xn, rn)} and y = {(y1, s1), . . . , (ym, sm)}.

There might be many possible ways of extension. The packages mmpp takes the simplest way to
deal with marks in a unified and computationally efficient manner, namely, the density or weight of
marks are included in the metrics for SPPs by Gaussian windowing as shown in eq. (27).

Filtering to continuous function

In the same manner as eq. (2), the marked point process realization x = {(x1, r1), . . . , (xn, rn)} is
transformed to a continuous function as

x = {(x1, ri), . . . , (xn, rn)} ⇒ vx(t, z) =
1
n

n

∑
i=1

hM(z− ri)hτ(t− xi) · u(t− xi), (26)
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Figure 2: Example of the transformation of two point process realizations x and y into the intermediate
function Ixy. The top panel shows x and corresponding continuous function vx(t). The middle panel
shows y and vy(t). The bottom panel shows the intermediate function 1− Ixy(t).

where

hM(z) = (2π)−p/2|M|1/2 exp
(
−1

2
z>Mz

)
= (2π)−p/2|M|1/2 exp

(
−1

2
‖z‖2

M

)
, M ∈ Rp×p, (27)

where |M| is the determinant of a matrix M, and ‖z‖2
M = z>Mz. Integrating with respect to both time

t and mark z, we define the inner product by

k(x, y) =
∫

Rp
dz
∫ ∞

0
dtvx(t, z)vy(t, z), (28)

and the distance by

d2(x, y) =
∫

Rp
dz
∫ ∞

0
dt(vx(t, z)− vy(t, z))2. (29)

By virtue of Gaussian windowing, the integral with respect to the mark is explicitly written as∫
Rp

dz exp
(
−1

2
‖z− ri‖2

M −
1
2
‖z− sj‖2

M

)
= (2π)

p
2

√
|2M| exp

(
−1

4
‖ri − sj‖2

M

)
. (30)

Furthermore, when we use Laplacian smoother for transforming temporal SPPs, we obtain

k(x, y) =
|M|1/2

2p+2πp/2τnm

n

∑
i=1

m

∑
j=1

exp

(
−
‖ri − sj‖2

M
4

)
exp

(
−
|xi − yj|

τ

)
. (31)

The distance metric is also calculated in the same manner.

We note that the effect of marks depend on the units used for the various marks. It is reasonable
to estimate the variance of each mark, and set the diagonal elements of M to be reciprocal of the
variances, which is adopted as the default setting for M in mmpp.

Intensity inner product

Extending kernel estimation eq. (9) to multivariate kernel estimation as

λ̂x(t, z) =
1
n

n

∑
i=1

hM(z− ri)hτ(t− xi), (32)

we obtain the estimate of the intensity function of the marked point process. We note that kernel
density estimation for multidimensional variables is inaccurate in general, and we can instead estimate
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the ground intensity function λ(t) and the density function for mark λ(z) separately. However, in
many applications, the dimension of marks is not so high, and currently we adopt the kernel based
estimator in eq. (32). The intensity inner product for MPP realizations is then defined by

k(x, y) =
∫

Rp
dz
∫ ∞

−∞
dtλ̂x(t, z)λ̂y(t, z). (33)

When we use the Gaussian smoother hg
τ(t) = exp

(
−t2/τ

)
/
√

2πτ2, the integral is explicitly computed
and we obtain

k(x, y) =
1

π(p+1)/2τ1/2|M|1/2nm

n

∑
i=1

m

∑
j=1

exp

(
−
(xi − yj)

2

2τ

)
exp

(
−
‖ri − sj‖2

M
4

)
. (34)

The distance metric is also defined by

d(x, y) =
∫

Rp
dz
∫ ∞

−∞
dt(λ̂x(t, z)− λ̂y(t, z))2. (35)

For estimating the intensity function, a simple Poisson process is assumed. This assumption is
relaxed with more flexible models such as the ETAS model (Ogata, 1988, 1998), where the intensity
function is estimated using the R packages SAPP (of Statistical Mathematics, 2014) and etasFLP
(Chiodi and Adelfio, 2015), for example. The extension of the intensity-based metric to support other
forms of intensity estimation such as the Hawkes and ETAS models remains our important future
work.

Co-occurrence metric

To extend the co-occurrence metric based on counting the synchronous events, eq. (15) is replaced
with a weighted counter

Pij = exp(−‖ri − sj‖2
M)×


1, 0 < xi − yj < τij,
1/2, xi = yj,
0, otherwise.

(36)

To extend the co-occurrence metric based on the smoothed count of the synchronous events,
eq. (18) is replaced with a weighted smoothed counter

dcτ,M(xi) = exp
(
−‖ri − s(xi)‖2

M

)
× exp

(
−
|xi − y(xi)|

τ

)
. (37)

Inter event interval

To weight the inter event interval by using marks associated with two MPP realizations x and y, we
define index extraction operators as follows. We modify an MPP realization x = {(x1, r1), . . . , (xn, rn)}
to include artificial events and marks corresponding to the beginning and end of the interval as

x = {(x0 = 0, r0 = 0), (x1, r1), . . . , (xn, rn), (xn+1 = T, rn+1 = 0)}. (38)

Then we define operators

q : [0, T]×X → R

(t, x) 7→ i, s.t. t ∈ [xi, xi+1], (39)

q : [0, T]×X → R

(t, x) 7→ i + 1, s.t. t ∈ [xi, xi+1]. (40)

The intermediate function eq.(23) is modified to take into account the dissimilarity of marks:

Ixy(t) =
min(vx(t), vy(t))
max(vx(t), vy(t))

exp(−‖rq(t,x) − sq(t,y)‖2
M) + exp(−‖rq(t,x) − sq(t,y)‖2

M)

2
. (41)

The distance and similarity are then calculated using eq. (25) and eq. (24).

The usage of the functions fmetric, iipmetric, coocmetric, and ieimetric does not change for
marked point process data, except for one additional argument M, which is the precision matrix M in
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Figure 3: An illustrative diagram of the problem setting. The horizontal axis corresponds to time,
and the vertical axis shows marks. Though the dimension of the mark is four, it is shown as one-
dimensional axis. The process is split by a three hour window, and each window is assigned an output
variable, which is the maximum magnitude in the next time window. Using the past one week data,
the output variable of the next time window is predicted by nearest neighbor regression.

eq. (27). By default, it is automatically set to the diagonal matrix with the diagonal elements equal to
the reciprocal of the variance of corresponding marks of S1 and S2. We can also specify the matrix M
manually as

> fmetric(S1, S2, measure = "sim", M = diag(3))

where the number of marks is assumed to be three.

An example with the Miyagi20030626 data set

This section illustrates the use of the package with a simple experiment. We use the Miyagi20030626
dataset contained within the package.

> library(mmpp)
> data(Miyagi20030626)

The dataset is composed of 2305 aftershocks of the 26th July 2003 earthquake of M6.2 at the northern
Miyagi-Ken Japan, which is a reparameterization of the main2006JUL26 dataset from the SAPP package.
Each record has 5 dimensions, time, longitude, latitude, depth, and magnitude of its hypo-center.
The time is recorded in seconds from the main shock.

To illustrate the use of the package, we consider a simple prediction task. We first split the original
dataset by a time-window of length 60× 60× 3, which means that the time interval of each partial
point process split by this window is three hours.

> sMiyagi <- splitMPP(Miyagi20030626, h = 60*60*3, scaleMarks = TRUE)$S

Then, the maximum magnitude in each partial point process realization is computed.

> ## target of prediction is the maximum magnitude in the window
> m <- NULL
> for (i in 1:length(sMiyagi)) {
+ m <- c(m, max(sMiyagi[[i]]$magnitude))
+ }

The task we consider is the prediction of the maximum magnitude in the next three hours using the
past one week of data. We formulate this problem as a regression problem. Let the partial point
process realization in the i-th window be oi, and let the maximum magnitude in the i + 1-th window
be mi. Then the problem is predicting mi+1 given oi+1 and the past 24× 7/3 = 56 hours of data
{(oi−`, mi−`)}55

`=0. See Figure 3 for an illustrative diagram of the problem setting.

> m <- m[-1]
> sMiyagi[[length(sMiyagi)]] <- NULL
> ## number of whole partial MPPs split by a 3-hour time window
> N <- length(sMiyagi)
> ## training samples are past one week data
> Ntr <- 24*7/3
> ## number of different prediction methods
> Nd <- 10
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For the purpose of illustrating the use of the package and to show the effect of different similarity
metrics, we adopt the nearest neighbor regression. That is, given the current realization oi, we find the
most similar realization oj ∈ {oi−l}55

l=0, and use the corresponding maximum magnitude mj as the
predictor for mi+1. We use ten different similarity metrics supported in the package, and evaluate the
mean absolute errors. The metrics used for these experiments are the filter based metric in eq. (3), the
intensity inner product metric in eq. (10), the co-occurrence with counting in eq. (16), the co-occurrence
with smoothed counting in eq. (19), and the inter event interval metric in eq. (24), and their MPP
extensions.

> err <- matrix(0, N - Ntr, Nd)
> colnames(err) <- c("f SPP","iip SPP","cooc (s) SPP","cooc (c) SPP","iei SPP",
+ "f MPP","iip MPP","cooc (s) MPP","cooc (c) MPP","iei MPP")

The following code performs the above explained experiment.

> for (t in 1:(N - Ntr)) {
+ qid <- Ntr + t
+ q <- sMiyagi[[qid]]
+ ## simple PP
+ ## fmetric with tau = 1
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, fmetric(q$time, sMiyagi[[qid - i]]$time))
+ }
+ err[t, 1] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## iipmetric with tau = 1
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, iipmetric(q$time, sMiyagi[[qid - i]]$time))
+ }
+ err[t, 2] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## coocmetric (smooth) with tau = 1
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, coocmetric(q$time, sMiyagi[[qid - i]]$time,
+ type = "smooth"))
+ }
+ err[t, 3] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## coocmetric (count)
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, coocmetric(q$time, sMiyagi[[qid - i]]$time,
+ type = "count"))
+ }
+ err[t, 4] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## iei metric
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, ieimetric(q$time, sMiyagi[[qid - i]]$time))
+ }
+ err[t, 5] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## marked PP with latitude, longitude, depth, and magnitude
+ ## fmetric with tau = 1
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, fmetric(q, sMiyagi[[qid - i]]))
+ }
+ err[t, 6] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## iipmetric with tau = 1
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, iipmetric(q, sMiyagi[[qid - i]]))
+ }
+ err[t, 7] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## coocmetric (smooth) with tau=1
+ sim2query <- NULL
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+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, coocmetric(q, sMiyagi[[qid - i]], type = "smooth"))
+ }
+ err[t, 8] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## coocmetric (count)
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, coocmetric(q, sMiyagi[[qid - i]], type = "count"))
+ }
+ err[t, 9] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## iei metric
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query,ieimetric(q, sMiyagi[[qid - i]]))
+ }
+ err[t, 10] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ }
> colMeans(err)
f SPP iip SPP cooc (s) SPP cooc (c) SPP iei SPP
0.7002634 0.6839529 0.7263602 0.6632930 0.7905148
f MPP iip MPP cooc (s) MPP cooc (c) MPP iei MPP
0.6839529 0.6317594 0.6643804 0.6622056 0.7698548

From this simple example, we can see that the prediction accuracy is improved by taking the marks
into account.

Summary and future directions

mmpp is the first R package dedicated to the calculation of the similarity and distance metrics for
marked point process realizations. It provides the implementation of several similarity metrics
for simple point processes, originally proposed in the literature of neuroscience, and also provides
extensions of these metrics to those for marked point processes.

A simple example of a real dataset presented in this paper illustrates the importance of taking
the marks into account in addition to the event timings, and it also illustrates the possibilities of the
package mmpp with a user guide for practitioners.

The development of the mmpp package has only just begun. Currently, we are considering
supporting burst sensitive and refractory period sensitive versions of fmetric, since these properties
are commonly observed in both neural activities and seismic event recordings. In the current version
of mmpp, for treating MPPs, event timings and marks are assumed to be separable, and all the
marks are simultaneously estimated by a kernel density estimator. This is a strong assumption and
other possibilities for modeling MPPs should be considered. For example, it is popular to group
spatio-temporal events, i.e., event timings and locations, and treat marks such as magnitude in seismic
events as purely marks. Then, the separability between marks and spatio-temporal events can be
tested by using test statistics proposed in Schoenberg (2004) and Chang and Schoenberg (2011). The
separability assumption offers computational advantages, though, it would miss the intrinsic structure
and relationship between event timings and marks. In principle, the separability hypothesis should be
tested before calculating the metrics. Frameworks for flexible modeling of marked sample sequences
with statistical validation such as nonparametric tests would be implemented in future version of
mmpp. We are also considering to extend the intensity inner product metric to support other form of
intensity estimation such as Hawkes and ETAS models.

Different similarity metrics capture different aspects of the point process realizations. Our final
goal of the development of the package mmpp is to provide a systematic way to select or combine
appropriate metrics for analysing given point process realizations and certain tasks such as prediction
of magnitude or clustering similar seismic events.

Acknowledgement

The authors are grateful to T. Iwata for helpful discussions and suggestions. The authors would like to
express their special thanks to the editor, the associate editor and three anonymous reviewers whose
comments led to valuable improvements of the manuscript. Part of this work is supported by JSPS
KAKENHI Grant Number 25870811, 26120504, and 25120009.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 247

Bibliography

A. Baddeley and R. Turner. spatstat: An R package for analyzing spatial point patterns. Journal of
Statistical Software, 12(6):1–42, 1 2005. URL http://www.jstatsoft.org/v12/i06. [p237]

C.-H. Chang and F. Schoenberg. Testing separability in marked multidimensional point processes
with covariates. The Annals of the Institute of Statistical Mathematics, 63(6):1103–1122, 2011. doi:
10.1007/s10463-010-0284-7. [p246]

M. Chiodi and G. Adelfio. etasFLP: Mixed FLP and ML Estimation of ETAS Space-Time Point Processes,
2015. URL https://CRAN.R-project.org/package=etasFLP. R package version 1.3.0. [p243]

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory,
13(1):21–27, 1967. doi: 10.1109/TIT.1967.1053964. [p237]

E. Gabriel, B. S. Rowlingson, and P. J. Diggle. stpp: An R package for plotting, simulating and
analyzing spatio-temporal point patterns. Journal of Statistical Software, 53(2):1–29, 4 2013. URL
http://www.jstatsoft.org/v53/i02. [p237]

D. Harte. PtProcess: An R package for modelling marked point processes indexed by time. Journal of
Statistical Software, 35(8):1–32, 2010. URL http://www.jstatsoft.org/v35/i08/. [p237]

A. G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1):
83–90, 1971. doi: 10.2307/2334319. [p240]

H. Hino, K. Takano, Y. Yoshikawa, and N. Murata. mmpp: Various similarity and distance metrics for
marked point processes, 2015. URL https://CRAN.R-project.org/package=mmpp. [p237]

C. Houghton. Studying spike trains using a van Rossum metric with a synapse-like filter. Journal of
Computational Neuroscience, 26(1):149–155, 2009. doi: 10.1007/s10827-008-0106-6. [p239]

J. D. Hunter and J. G. Milton. Amplitude and frequency dependence of spike timing: Implications for
dynamic regulation. Journal of Neurophysiology, 90(1):387–394, July 2003. doi: 10.1152/jn.00074.2003.
[p240]

T. Iwata. Low detection capability of global earthquakes after the occurrence of large earthquakes:
Investigation of the Harvard CMT catalogue. Geophysical Journal International, 174(3):849–856, 2008.
doi: 10.1111/j.1365-246X.2008.03864.x. [p239]

Y. Y. Kagan. Short-term properties of earthquake catalogs and models of earthquake source. Bulletin of
the Seismological Society of America, 94(4):1207–1228, 2004. doi: 10.1785/012003098. [p239]

E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science. McGraw-Hill Medical, 4th
edition, July 2000. [p237]

T. Kreuz, J. S. Haas, A. Morelli, H. D. Abarbanel, and A. Politi. Measuring spike train synchrony.
Journal of Neuroscience Methods, 165(1):151–161, 2007. doi: 10.1016/j.jneumeth.2007.05.031. [p237,
241]

D. Lyttle and J.-M. Fellous. A new similarity measure for spike trains: Sensitivity to bursts and periods
of inhibition. Journal of Neuroscience Methods, 199(2):296–309, 2011. doi: 10.1016/j.jneumeth.2011.05.
005. [p239, 240]

T. I. of Statistical Mathematics. SAPP: Statistical Analysis of Point Processes, 2014. URL https://CRAN.R-
project.org/package=SAPP. R package version 1.0.4. [p243]

Y. Ogata. Statistical models for earthquake occurrences and residual analysis for point processes.
Journal of the American Statistical Association, 83(401):9–27, Mar. 1988. doi: 10.2307/2288914. [p243]

Y. Ogata. Space-time point-process models for earthquake occurrences. The Annals of the Institute of
Statistical Mathematics, 50(2):379–402, June 1998. doi: 10.1023/a:1003403601725. [p243]

A. R. C. Paiva, I. Park, and J. C. Príncipe. A reproducing kernel Hilbert space framework for spike
train signal processing. Neural Comput., 21(2):424–449, Feb. 2009. doi: 10.1162/neco.2008.09-07-614.
[p239]

R. Quian Quiroga, T. Kreuz, and P. Grassberger. Event synchronization: A simple and fast method
to measure synchronicity and time delay patterns. Physical Review E, 66:041904, Oct 2002. doi:
10.1103/PhysRevE.66.041904. [p237, 240]

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

http://www.jstatsoft.org/v12/i06
https://CRAN.R-project.org/package=etasFLP
http://www.jstatsoft.org/v53/i02
http://www.jstatsoft.org/v35/i08/
https://CRAN.R-project.org/package=mmpp
https://CRAN.R-project.org/package=SAPP
https://CRAN.R-project.org/package=SAPP


CONTRIBUTED RESEARCH ARTICLES 248

R.-D. Reiss. A Course on Point Processes. Springer Series in Statistics. Springer, 1993. [p239]

B. Rowlingson and P. Diggle. Splancs: Spatial point pattern analysis code in S-PLUS. Computers &
Geosciences, 19(5):627–655, 1993. doi: 10.1016/0098-3004(93)90099-Q. [p237]

F. P. Schoenberg. Testing separability in spatial-temporal marked point processes. Biometrics, 60(2):
471–481, 2004. doi: 10.1111/j.0006-341X.2004.00192.x. [p246]

S. Schreiber, J. Fellous, D. Whitmer, P. Tiesinga, and T. Sejnowski. A new correlation-based measure of
spike timing reliability. Neurocomputing, 52–54(0):925 – 931, 2003. doi: 10.1016/S0925-2312(02)00838-
X. Computational Neuroscience: Trends in Research 2003. [p237, 239]

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press,
New York, NY, USA, 2004. [p237]

D. L. Snyder and M. I. Miller. Random Point Processes in Time and Space. Springer-Verlag, New York,
NY, USA, 2nd edition, 1991. [p237]

S. Suzuki, Y. Hirata, and K. Aihara. Definition of distance for marked point process data and its
application to recurrence plot-based analysis of exhange tick data of foreign currencies. International
Journal of Bifurcation and Chaos, 20(11):3699–3708, 2010. doi: 10.1142/S0218127410027970. [p238]

M. C. W. van Rossum. A novel spike distance. Neural Computation, 13(4):751–763, 2001. doi: 10.1162/
089976601300014321. [p237, 239]

J. D. Victor. Spike train metrics. Current Opinion in Neurobiology, 15:585–592, October 2005. doi:
10.1016/j.conb.2005.08.002. [p237, 238]

Hideitsu Hino
Graduate School of Systems and Information Engineering, University of Tsukuba
1–1–1 Tennoudai, Tsukuba, Ibaraki, 305–8573
Japan
hinohide@cs.tsukuba.ac.jp

Ken Takano
School of Science and Engineering, Waseda University
3–4–1 Ohkubo, Shinjuku-ku, Tokyo 169–8555
Japan
ken.takano@toki.waseda.jp

Noboru Murata
School of Science and Engineering, Waseda University
3–4–1 Ohkubo, Shinjuku-ku, Tokyo, 169–8555
Japan
noboru.murata@eb.waseda.ac.jp

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

mailto:hinohide@cs.tsukuba.ac.jp
mailto:ken.takano@toki.waseda.jp
mailto:noboru.murata@eb.waseda.ac.jp

