CONTRIBUTED RESEARCH ARTICLES

19

VSUREF: An R Package for Variable

Selection Using Random Forests
by Robin Genuer, Jean-Michel Poggi and Christine Tuleau-Malot

Abstract This paper describes the R package VSURF. Based on random forests, and for both regression
and classification problems, it returns two subsets of variables. The first is a subset of important
variables including some redundancy which can be relevant for interpretation, and the second one
is a smaller subset corresponding to a model trying to avoid redundancy focusing more closely on
the prediction objective. The two-stage strategy is based on a preliminary ranking of the explanatory
variables using the random forests permutation-based score of importance and proceeds using a
stepwise forward strategy for variable introduction. The two proposals can be obtained automatically
using data-driven default values, good enough to provide interesting results, but strategy can also
be tuned by the user. The algorithm is illustrated on a simulated example and its applications to real
datasets are presented.

Introduction

Variable selection is a crucial issue in many applied classification and regression problems (see
e.g. Hastie et al., 2001). It is of interest for statistical analysis as well as for modelisation or prediction
purposes to remove irrelevant variables, to select all important ones or to determine a sufficient subset
for prediction. These main different objectives from a statistical learning perspective involve variable
selection to simplify statistical problems, to help diagnosis and interpretation, and to speed up data
processing.

Genuer et al. (2010b) proposed a variable selection method based on random forests (Breiman,
2001), and the aim of this paper is to describe the associated R package called VSURF and to illustrate
its use on real datasets. The stable version of the package is available from the Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/package=VSURF.! In order to make the
paper self-contained, the description of the variable selection method is provided. A simulated toy
example and a classical real dataset are processed using VSURF. In addition, two real examples in a
high-dimensional setting, not previously addressed by the authors, are used to illustrate the value of
the strategy and the effectiveness of the R package.

Introduced by Breiman (2001), random forests (abbreviated RF in the sequel) are an attractive
nonparametric statistical method to deal with these problems, since they require only mild conditions
on the model supposed to have generated the observed data. Indeed, since RF are based on decision
trees and use aggregation ideas, they allow us to consider in an elegant and versatile framework
different models and problems, namely regression, two-class and multiclass classifications.

Considering a learning set L = {(X1,Y1),...,(Xu, Yu)}, supposed to consist of independent
observations of the random vector (X,Y), we distinguish as usual the predictors (or explanatory
variables), collected in the vector X = (X!,...,X?) where X € RP, from the explained variable
Y € Y where Y is either a class label for classification problems or a numerical response for regression
ones. Let us recall that a classifier ¢ is a mapping f : R” —) while the regression function naturally
corresponds to the function s when we suppose that Y = s(X) + ¢ with E[¢|X] = 0. Then random
forests provide estimators of either the Bayes classifier, which minimizes the classification error
P(Y # #(X)), or the regression function.

The CART (Classification and Regression Trees) method defined by Breiman et al. (1984) is a
well-known way to design optimal single binary decision trees. It proceeds by performing first a
growing step and then a pruning one. The principle of random forests is to aggregate many binary
decision trees coming from two random perturbation mechanisms: the use of bootstrap samples of
L instead of L and the random choice of a subset of explanatory variables at each node instead of
all of them. There are two main differences with respect to CART trees: first, in the growing step, at
each node, a fixed number of input variables are randomly chosen and the best split is calculated only
among them and, second, no pruning step is performed so all the trees of the forest are maximal trees.
The RF algorithm is a very popular machine learning algorithm and appears to be powerful in a lot
of different applications, see for example Verikas et al. (2011) and Boulesteix et al. (2012) for recent
surveys.

Several implementations of these methods are available. Focusing on R packages we must mention
rpart (Therneau et al., 2015) for CART, randomForest (Liaw and Wiener, 2002) for RF, party (Hothorn

! The current development version of the package is also available at https: //github.com/robingenuer/VSURF.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=VSURF
http://CRAN.R-project.org/package=VSURF
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=party
https://github.com/robingenuer/VSURF

CONTRIBUTED RESEARCH ARTICLES

20

et al., 2006) for CART and RF (through the function cforest) and ipred (Peters et al., 2002) for bagging
(Breiman, 1996), a closely related method cited here for the sake of completeness. In this paper, we use
the randomForest procedure, which is based on the initial contribution of Breiman and Cutler (2004).
We will concentrate on the prediction performance of RF focusing on the out-of-bag (OOB) error (see
Breiman, 2001) and on the quantification of the variable importance (VI in the sequel) which are key
ingredients for our variable selection strategy. For a general discussion about variable importance, see
Azen and Budescu (2003). In the random forests framework, one of the most widely used scores of
importance of a given variable is the increase in mean of the error of a tree (mean square error (MSE)
for regression and misclassification rate for classification) in the forest when the observed values of
this variable are randomly permuted in the OOB samples (see Archer and Kimes, 2008).

Strobl et al. (2007) showed that VI scores are biased towards correlated variables, and Strobl
et al. (2008) proposed an alternative permutation scheme as a solution, which, however, increases the
computation cost. This seems to be especially critical for high-dimensional problems with strongly
correlated predictors. Nevertheless, our previous experiments (Genuer et al., 2010b) on variable
selection and, more recently, the theoretical study of Gregorutti et al. (2013) show that, in some
situations, the VI scores are biased towards uncorrelated variables. Additional theoretical results and
experiments are needed to more deeply understand these phenomenons, but this is out of the scope of
the paper.

A lot of variable selection procedures are based on the combination of variable importance for
ranking and model estimation to generate, evaluate and compare a family of models, i.e., in particular
in the family of “wrapper” methods (Kohavi and John, 1997; Guyon and Elisseeff, 2003) which include
the prediction performance in the score calculation, for which a lot of methods can be cited. We choose
to highlight one of them which is widely used and close to our procedure. Diaz-Uriarte and Alvarez
De Andres (2006) propose a strategy based on recursive elimination of variables. At the beginning,
they compute RF variable importance and then, at each step, eliminate iteratively the 20% of the
variables having the smallest importance and build a new forest with the remaining variables. The
final set of variables is selected by minimizing over the obtained forests, the OOB error rate defined
by:

00B — lcard{ie {1,...,n}|y; #9;} inthe classification framework
e B % Yieft,.n (Vi — yA,-)2 in the regression framework
where 7; is the aggregation of the predicted values by trees t for which (x;, y;) belongs to the associated
OOB sample (data not included in the bootstrap sample used to construct ¢). The proportion of
variables to eliminate is an arbitrary parameter of their method and does not depend on the data. Let
us remark that we propose an heuristic strategy which does not depend on specific model hypotheses,
but which is based on data-driven thresholds to take decisions.

This topic of variable selection still continues to be of interest. Indeed recently Hapfelmeier and
Ulm (2012) propose a new variable selection approach using random forests and, more generally,
Cadenas et al. (2013) describe and compare different approaches in a survey paper.

Some packages are available to cope with variable selection problems. Let us cite, for classification
problems the R package Boruta, described in Kursa and Rudnicki (2010), which aims at finding
all relevant variables using a random forest classification algorithm which iteratively removes the
variables using a statistical test. The R package varSelRF, described in Diaz-Uriarte (2007), implements
the previously described method for selecting very small sets of genes in the context of classification.
The R package ofw (L.é Cao and Chabrier, 2008), also dedicated to the context of classification, selects
relevant variables based on the application of supervised multiclass classifiers such as CART or
support vector machines. The R package spikeSlabGAM implements Bayesian variable selection
via regularized estimation in additive mixed models (Scheipl, 2011). Dedicated to the biomarker
identification in the life sciences, the R package BioMark implements two meta-statistics for variable
selection (Wehrens et al., 2012): the first sets a data-dependent selection threshold for significance,
which is useful when two groups are compared, and the second, more general one, uses repeated
subsampling and selects the model coefficients remaining consistently important.

The paper is organized as follows. After this introduction, we present the general variable selection
strategy. We then describe how to use package VSURF on a simple simulated dataset. Finally, we
examine three real-life examples to illustrate the method in action in high-dimensional situations as
well as in a standard one.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=ipred
https://CRAN.R-project.org/package=Boruta
https://CRAN.R-project.org/package=varSelRF
https://CRAN.R-project.org/package=spikeSlabGAM
https://CRAN.R-project.org/package=BioMark

CONTRIBUTED RESEARCH ARTICLES

21

The strategy

Objectives

In Genuer et al. (2010b) we distinguished two variable selection objectives referred to as interpretation
and prediction.

Even if this distinction can be a little bit confusing since we use for both objectives the same
criterion related to prediction performance, the idea is the following. The first objective, called
interpretation, is to find important variables highly related to the response variable, even with some
redundancy, possibly high. The second one, namely prediction, is to find a smaller number of variables
with very low redundancy and sufficient for a good enough prediction of the response variable. The
terminology used here can be misunderstood since usually for interpretation, one usually looks for
parsimony but in many situations one may often want to identify all predictor variables associated
with the response to interpret correctly the relation. We thank one anonymous reviewer for raising
this issue and we detail an example in the next paragraph to clarify the difference.

A typical situation illustrates the distinction between the two kinds of variable selection. Let us
consider a high-dimensional (n < p) classification problem for which the predictor variables are
associated to a pixel in an image or a voxel in a 3D-image as in fMRI brain activity classification
problems (see e.g. Genuer et al., 2010a). In such situations, it is supposed that a lot of variables are
useless and that there exist unknown groups of highly correlated predictors corresponding to brain
regions involved in the response to a given stimulation. The two distinct objectives about variable
selection can be of interest. Finding all the important variables highly related to the response variable
is useful for interpretation, since it corresponds to the determination of entire regions in the brain or a
full parcel in an image. By contrast, finding a small number of variables sufficient for good prediction
allows to get the most discriminant variables within the previously highlighted regions. For a more
formal approach to this distinction, see also the interesting paper Nilsson et al. (2007).

Principle

The principle of the two-steps algorithm is the following. First, we rank the variables according to
a variable importance measure and the unimportant ones are eliminated. Second, we provide two
different subsets obtained either by considering a collection of nested RF models and selecting the
variables of the most accurate one, or by introducing sequentially the sorted variables.

Since the quantification of the variable importance is crucial for our procedure, let us recall the
definition of RF variable importance. For each tree ¢ of the forest, consider the associated OOB; sample
(data not included in the bootstrap sample used to construct t). Denote by errOOB; the error (MSE for
regression and misclassification rate for classification) of a single tree t on this OOB; sample. Now,

randomly permute the values of X/ in OOB; to get a perturbed sample denoted by 65_13// and compute

errOOBy , the error of predictor ¢ on the perturbed sample. Variable importance of X/ is then equal to:

VI(X)) = ﬁ (err65B/t] - errOOBt) ,
t

where the sum is over all trees ¢ of the RF and ntree denotes the number of trees of the RF. Notice that
we use this definition of importance and not the normalized one. Indeed, instead of considering (as
mentioned in Breiman and Cutler, 2004) that the raw VI are independent replicates, normalizing them
and assuming normality of these scores, we prefer a fully data-driven solution. This is a key point of
our strategy: we prefer to estimate directly the variability of importance across repetitions of forests
instead of using normality when ntree is sufficiently large, which is only valid under some specific
conditions. Those conditions are difficult to check since their validity depends heavily on tuning
parameters and problem peculiarities, so data-driven normalization prevents some misspecified
asymptotic behavior.

Another useful argument, which provides the rationale for this kind of variable selection procedure
based on a classical stepwise method combined with the use of a VI measure, is that a variable not
included in the underlying true model has a null “theoretical” importance. In a recent paper Gregorutti
et al. (2013) theoretically state that, in the case of additive models, irrelevant variables have null
“theoretical” VI. A similar result for the mean decrease impurity index (not used in this paper) has
been proven by Louppe et al. (2013).

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

22

Detailed strategy

Let us now describe more precisely our two-steps procedure. Note that each RF is typically built using
ntree = 2000 trees.

¢ Step 1. Preliminary elimination and ranking:

- Rank the variables by sorting the VI (averaged over typically 50 RF runs) in descending
order.

- Eliminate the variables of small importance (let 2 denote the number of remaining vari-
ables).

More precisely, starting from this order, consider the ordered sequence of the correspond-
ing standard deviations (sd) of VI and use it to estimate a threshold value for VI. Since
variability of VIis larger for true variables compared to useless ones, the threshold value is
given by an estimation of the VI standard deviation of the useless variables. This threshold
is set to the minimum prediction value given by a CART model where the Y are the sd of
the VI and the X are the ranks.

Then only the variables with an averaged VI exceeding this threshold are retained.
* Step 2. Variable selection:

— For interpretation: construct the nested collection of RF models involving the k first vari-
ables, for k = 1 to m and select the variables involved in the model leading to the smallest
QOB error. This leads to consider m’ variables.

More precisely, we compute OOB error rates of RF (averaged typically over 25 runs) of the
nested models starting from the one with only the most important variable, and ending
with the one including all important variables previously kept. Ideally, the variables of
the model leading to the smallest OOB error are selected. In fact, in order to deal with
instability, we use a classical trick: we select the smallest model with an OOB error less
than the minimal OOB error augmented by its standard deviation (based on the same 25
runs).

— For prediction: starting with the ordered variables retained for interpretation, construct an
ascending sequence of RF models, by invoking and testing the variables in a stepwise way.
The variables of the last model are selected.

More precisely, the sequential variable introduction is based on the following test: a
variable is added only if the error decrease is larger than a threshold. The idea is that the
OOB error decrease must be significantly greater than the average variation obtained by
adding noisy variables. The threshold is set to the mean of the absolute values of the first
order differentiated OOB errors between the model with m’ variables and the one with m

variables:
1 m—1

p— Z | errOOB(j + 1) — errOOB(j), | (1)

j=m'

where errOOB(j) is the OOB error of the RF built using the j most important variables.

Comments

In addition to the detailed strategy, let us give some additional comments. Regarding the first step of
our procedure, our previous simulation study in Genuer et al. (2010b) shows that both VI level and
variability are larger for relevant variables.

We assume that the stabilized ranking performed in the first step of our procedure will not change
after the elimination step.

The use of CART to find the threshold is of course not strictly necessary and can be replaced by
many other strategies but it is interesting in our case because the idea is typically to find a constant on
a large interval. Since CART fits a piece-wise constant function, this desired constant is the threshold
for VI and is defined as the minimum prediction value given by a CART model fitting the curve of
VI standard deviations. It is obtained automatically by the CART strategy whereas the user needs to
select some window parameter if, for example, a simple smoothing method is used.

Note that the threshold value is based on VI standard deviations while the effective thresholding
is performed on the VI mean. In general, this rule is conservative and leads to keep more variables
than necessary, postponing to the next step a more parsimonious choice.

In addition, we note that several implementation choices have been made: randomForest for RF
fitting and VI calculation (repeated 50 times to quantify variability) and rpart for estimating the VI

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

23

variability level associated with irrelevant variables leading to a convenient threshold value. Of course
other choices would be possible, for example, using the function cforest of the package party to
implement the same scheme of variable selection.

The next section describes the use of the package VSURF together with a complete illustration of
the strategy which is not supported by specific model hypotheses but based on data-driven thresholds
to take decisions.

But before entering in this description, let us emphasize that the objects of interest here are the
subsets of important variables and not precisely the corresponding models. Thus OOB errors from the
figures (or from the fitted objects) cannot be used or reported as the prediction error estimation of the
final model because this would need a proper cross-validation scheme.

Using the package VSURF

From data to final results

We illustrate the use of the VSURF package on a simple simulated moderately high-dimensional
dataset (n = 100 < p = 200) called toys data, introduced by Weston et al. (2003). It comes from an
equiprobable two-class problem, Y € {—1,1}, with 6 influential variables and with the others being
noise variables. Let us define the simulation model by giving the conditional distribution of the X for
Y=y

* For the six first variables: with probability 0.7, Xt~ N(yi,1) fori = 1,2,3 and Xt~ N(0,1)
for i = 4,5,6; with probability 0.3, X’ ~ N(0,1) fori = 1,2,3 and X' ~ N (y(i —3),1) for
i=4,5,6.

e The remaining variables are noise: X' ~ N(0,1) fori =7,...,p.

The variables obtained in the simulation are standardized before further analysis.

First, we load the VSURF package and the toys data (and fix the random number generation seed
for reproducibility):

> library("VSURF")
> data("toys")
> set.seed(3101318)

The standard way to use the VSURF package is to use the VSURF function. This function executes
the complete procedure, and is just a wrapper for the three intermediate functions VSURF_thres,
VSURF_interp and VSURF_pred which are described in the next section. Typical use of the VSURF
function is as follows:

> toys.vsurf <- VSURF(x = toys$x, y = toys$y, mtry = 100)

The only mandatory inputs are x, an object containing input variables, and y, the output variable.

In this example, we also choose a specific value for mtry (default is p/3 for classification and
regression problems in VSURF), which only affects RF runs in the first step of the procedure. In addition,
we stress that the default value for ntree is 2000 in VSURF. Those values were considered as well
adapted for VI calculations (see Genuer et al., 2010b, Section 2.2) and these two arguments are passed
to the randomForest function (we kept the same name for consistency).

The function outputs a list containing all results.

> names(toys.vsurf)

[1] "varselect.thres” "varselect.interp” "varselect.pred”

[4] "nums.varselect” "imp.varselect.thres” "min.thres”

[7] "imp.mean.dec” "imp.mean.dec.ind"” "imp.sd.dec”
[10] "mean.perf” "pred.pruned.tree” "err.interp”
[13] "sd.min" "err.pred” "mean. jump"

[16] "nmin” "nsd” "nmj"
[19] "overall.time” "comput.times” "ncores”
[22] "clusterType" "call”

The most important objects are varselect. thres, varselect.interp and varselect.pred, which
contain the set of variables selected after the thresholding, interpretation and prediction step respec-
tively.

The summary method gives a short summary of the results: numbers of selected variables and
computation times.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 24

VI mean
0.00 0.05 0.10 0.15
VI standard deviation
0.0000 0.0015 0.0030

0 50 100 150 200 0 50 100 150 200

variables variables

OOB error
0.05 0.10 0.15

OOB error
0.02 0.06 0.10

0O 5 10 15 20 25 30 35 1.0 15 2.0 2.5 3.0

nested models predictive models

Figure 1: VSURF for the toys data: Top graphs illustrate the thresholding step, bottom left and bottom
right graphs are associated with interpretation and prediction steps respectively.

> summary(toys.vsurf)

VSURF computation time: 1.6 mins

VSURF selected:
36 variables at thresholding step (in 57.6 secs)
4 variables at interpretation step (in 38.4 secs)
3 variables at prediction step (in 2.2 secs)

The plot method gives a plot (see Figure 1) of the results in 4 graphs. To selectively obtain
single graphs of Figure 1 one can either suitably specify the arguments of this plot method, or use
intermediate plot methods (associated with each procedure step) included in the package.

> plot(toys.vsurf)

In addition, we include a predict method, which permits to predict the outcomes for new data
with RF using only the variables selected by VSURF.

Finally, we point out that all computations of the package can be executed in parallel, whenever it
is possible. For example, the following command runs VSURF in parallel on a Linux computing server
using 40 cores:

> set.seed(2734, kind = "L'Ecuyer-CMRG")
> toys.vsurf.parallel <- VSURF(toys$x, toys$y, mtry = 100, parallel = TRUE,
+ ncores = 40, clusterType = "FORK")

> summary(toys.vsurf.parallel)

VSURF computation time: 8.3 secs

VSURF selected:
35 variables at thresholding step (in 3.8 secs)
4 variables at interpretation step (in 2.3 secs)
3 variables at prediction step (in 2.2 secs)

VSURF ran in parallel on a FORK cluster and used 40 cores

Note that we use the "L'Ecuyer-CMRG" kind in the set.seed function to allow reproducibility
(when the call is on a FORK cluster with the same number of cores). Even if one should have a

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

25

VI standard deviation

computing server with 40 cores to benefit from this execution time reduction, the resulting ‘VSURF’

0.00010 0.00020

0.00000

|
——

|
"
_
>

| w AL \W\/\/\AA S\ M/V

e 'VLN\/»\) VU\,JM.\],,W\]W.W

I I I I I
0 50 100 150 200

variables

Figure 2: Zoom of the top right graph of Figure 1.

object from this call will be the same on a computer with fewer cores available. Parallel calls of VSURF
will be used to deal with the two high-dimensional datasets at the end of the paper.

How to get intermediate results

Let us now detail the main stages of the procedure together with the results obtained on the toys data.

Note that unless explicitly stated otherwise, all graphs refer to Figure 1.

e Step 1.

— Variable ranking.

The result of variable ranking is drawn on the top left graph. True variables are significantly
more important than the noisy ones.

Variable elimination.

Starting from this order, the plot of the corresponding standard deviations of VI is used
to estimate a threshold value for VI. This threshold (figured by the dotted horizontal red
line in Figure 2, which is a zoom of the top right graph of Figure 1) is set to the minimum
prediction value given by a CART model fitting this curve (see the green piece-wise
constant function on the same graph).

Then only the variables with an averaged VI exceeding this level (i.e. above the horizontal
red line in the top left graph of Figures 1) are retained.

The computation of the 50 forests, the ranking and elimination steps are obtained with the
VSURF_thres function:

> set.seed(3101318)
> toys.thres <- VSURF_thres(toys$x, toys$y, mtry = 100)

The VSURF_thres function outputs a list containing all results of this step. The main
outputs are: varselect. thres which contains the indices of variables selected by this step,
imp.mean.dec and imp.sd.dec which hold the VI mean and standard deviation (the order
according to decreasing VI mean can be found in imp.mean.dec. ind).

> toys.thres$varselect. thres

(1 3 2 6 5 1 4 184 37 138 159 81 17 180 131 52 191
[17] 96 192 165 94 198 25 21 109 64 12 29 188 107 157 70 46
[33] 54 143 186 111

Finally, Figure 2 can be obtained with the following command:
> plot(toys.vsurf, step = "thres”, imp.mean = FALSE, ylim = c(0, 2e-4))

We can see in the plot of the VI standard deviations (top right graph of Figure 1) that the
true variables’ standard deviations are large compared to those of the noisy variables,
which are close to zero.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

26

e Step 2.

— Variable selection procedure for interpretation.

We use VSURF_interp for this step. Note that we have to specify the indices of variables
selected at the previous step. So we set argument vars to toys. thres$varselect. thres:

> toys.interp <- VSURF_interp(toys$x, toys$y,
+ vars = toys.thres$varselect. thres)

The list resulting from the VSURF_interp function mainly contains varselect.interp: the
variables selected by this step, and err. interp: OOB error rates of RF nested models.

> toys.interp$varselect.interp
[113 265

In the bottom left graph, we see that the error decreases quickly. It reaches its (almost)
minimum when the first four true variables are included in the model (see the vertical red
line) and then it remains nearly constant. The selected model contains variables V3, V2,
V6, V5, which are four of the six true variables, while the actual minimum is reached for
35 variables.

Note that, to ensure quality of OOB error estimations (e.g. Genuer et al., 2008, Section 2)
along embedded RF models, the mtry parameter of the randomForest function is here set
to its default value if k (the number of variables involved in the current RF model) is not
greater than 7, while it is set to k/3 otherwise.

— Variable selection procedure for prediction.

We use the VSURF_pred function for this step. We need to specify the error rates and
the variables selected in the interpretation step in the err.interp and varselect.interp
arguments:

> toys.pred <- VSURF_pred(toys$x, toys$y,
+ err.interp = toys.interp$err.interp,
+ varselect.interp = toys.interp$varselect.interp)

The main outputs of the VSURF_pred function are the variables selected by this final step,
varselect.pred, and the OOB error rates of RF models, err.pred.

> toys.pred$varselect.pred
[11365

For the toys data, the final model for prediction purpose involves only variables V3, V6,
V5 (see the bottom right graph). The threshold is set to the mean of the absolute values of
the first order differentiated OOB errors between the model with m’ = 4 variables and the
one with m = 36 variables.

Finally, we mention that VSURF_thres and VSURF_interp can be executed in parallel with the same
syntax as VSURF (setting parallel = TRUE), while VSURF_pred cannot be parallelized.

Tuning the different steps of the procedure

We provide two additional functions for tuning the thresholding and interpretation steps without
having to rerun all computations.

¢ First, a tune method which, applied to the result of VSURF_thres, can be used to tune the
thresholding step. We can use the nmin parameter (which has default value 1) in order to set the
threshold to the minimum prediction value given by the CART model times nmin.

> toys.thres.tuned <- tune(toys.thres, nmin = 3)
> toys.thres.tuned$varselect. thres

(1 3 2 6 5 1 4 184 37 138 159 81 17 180 131 52 191

We get 16 selected variables instead of 36 previously.

* Secondly, a tune method which, applied to the result of VSURF_interp, is of the same kind and
allows to tune the interpretation step. If we now want to be more restrictive in our selection
in the interpretation step, we can select the smallest model with an OOB error less than the
minimal OOB error augmented by its empirical standard deviation times nsd (with nsd > 1).

> toys.interp.tuned <- tune(toys.interp, nsd = 5)
> toys.interp.tuned$varselect.interp

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

27

[11326
We get 3 selected variables instead of 4 previously.

We did not write a tuning method for the prediction step because it is a recursive step and needs to
recompute the sequence. Hence, to adjust the parameter for this step, we have to rerun the VSURF_pred
function with a different value of nmj (which has default value 1). This multiplicative constant allows
to modulate the threshold defined in (1).

For example, increasing the value of nmj leads to selection of fewer variables:

> toys.pred.tuned <- VSURF_pred(toys$x, toys$y, err.interp = toys.interp$err.interp,

+ varselect.interp = toys.interp$varselect.interp,
+ nmj = 70)

> toys.pred.tuned$varselect.pred

[1136

Remark

Thanks to one of the three anonymous reviewers, we would like to give a warning following
a remark made by Svetnik et al. (2004). Indeed, this work considers a situation where there is no
link between X and Y and for which they use OOB errors in a recursive strategy, different but not
too far from our procedure, to select variables. Their results show that this kind of strategy can be
seriously biased and can overfit the data. To illustrate explicitly this phenomenon, let us start with the
original dataset toys for which our procedure performs quite well (see the paper Genuer et al., 2010b,
containing an extensive study of the operating characteristics of the algorithm including no overfitting
in presence of many additional dummy variables). Then, modify it by scrambling the Y values thus
removing the link between X and Y. Applying VSURF on this modified dataset leads to an OOB error
rate, in the interpretation step, starting from 50% (which is correct) and exhibiting a minimum for 10
variables corresponding to 37%. So, in this situation for which there is no optimal solution and the
desirable behavior is to find a constant OOB error rate along the sequence, the procedure still provides
a solution. So, the conclusion is that even when there is no link between X and Y the procedure can
highlight a set of variables.

Of course, using an external 5-fold cross-validation of our entire procedure leads to the correct
estimate of 51% error rate for both interpretation and prediction steps and the correct conclusion: there
is nothing to find in the data. Alternatively, if we simulate a second sample coming from the same
simulation model and use it only to rank the variables, the interpretation step exhibits an OOB error
rate curve oscillating around 50%, which leads to the correct conclusion.

Three illustrative examples

In this section we apply the proposed procedure on three real-life examples: two high-dimensional
datasets (associated with a regression problem and a classification one respectively) and, before that, a
standard one to illustrate the versatility of the procedure.

Let us mention that the VSURF stability is a natural issue to investigate (see e.g. Meinshausen and
Biithlmann, 2010) and is considered in Genuer et al. (2010b) Sections 3 and 4.

Ozone data

The Ozone dataset consists of n = 366 observations for 12 independent variables and 1 dependent
variable. These variables are numbered as in the R package mlbench (Leisch and Dimitriadou, 2010):
1 — Month, 2 — Day of month, 3 — Day of week, 5 — Pressure height, 6 — Wind speed, 7 — Humidity,
8 — Temperature (Sandburg), 9 — Temperature (E1 Monte), 10 — Inversion base height, 11 — Pressure
gradient, 12 — Inversion base temperature, 13 — Visibility, for independent variables and 4 — Daily
maximum one-hour-average ozone, for the dependent variable.

What makes the use of this dataset interesting, is that it has already been extensively studied and
that even though it is a real one, it is possible to a priori know which variables are expected to be
important. Moreover, this dataset, which is not a high-dimensional one, includes some missing data,
allowing us to give an example of how to handle such data using VSURF.

To begin, we load the data:

> data("Ozone", package = "mlbench")
> set.seed(221921186)

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=mlbench

CONTRIBUTED RESEARCH ARTICLES

28

20

VI mean
10
|

I I I I I I I I I I I I
V9 Vv8 V12 V1 Vil V5 VIO V7 V13 V6 V3 V2

variables

Figure 3: Sorted VI mean associated with the 12 explanatory variables of the 0zone data, with variable
names on the x-axis.

Then, we apply the complete procedure via VSURF. Note that the following formula-type call is
necessary to handle missing values (as in randomForest).

> vozone <- VSURF(V4 ~ ., data = Ozone, na.action = na.omit)
> summary (vozone)

VSURF computation time: 1.7 mins

VSURF selected:
9 variables at thresholding step (in 1.1 mins)
5 variables at interpretation step (in 26.3 secs)
5 variables at prediction step (in 12.4 secs)

In the first step, we look at the variable importance associated with each of the explanatory variables.
> plot(vozone, step = "thres”, imp.sd = FALSE, var.names = TRUE)

In Figure 3, and as noticed in previous studies, three very sensible groups of variables can be
discerned ranging from the most to the least important. The first group contains the two temperatures
(8 and 9), the inversion base temperature (12) known to be the best ozone predictors, and the month
(1), which is an important predictor since ozone concentration exhibits an heavy seasonal component.
The second group of clearly less important meteorological variables consists of: pressure height (5),
humidity (7), inversion base height (10), pressure gradient (11) and visibility (13). Finally the last
group contains three unimportant variables: day of month (2), day of week (3) of course and more
surprisingly wind speed (6). This last fact is classical: wind enters in the model only when ozone
pollution arises, otherwise wind and pollution are weakly correlated (see for example Cheze et al.,
2003, who highlight this phenomenon using partial estimators).

Let us now examine the results of the selection procedures. To reflect the order used in the
definition of the variables, we reorder the output variables of the procedure.

> number <- c(1:3, 5:13)
> number[vozone$varselect. thres]

[11 9 812 111 510 713

After the first elimination step, the 3 variables of negative importance (variables 6, 3 and 2) are
eliminated, as expected.

> number[vozone$varselect.interp]
[11 9 812 1 1

Then the interpretation procedure leads to select the model with 5 variables, which contains all of
the most important variables.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

29

> number[vozone$varselect.pred]
[11 9 812 11
With the default settings, the prediction step does not remove any additional variable.

Remark

Even though the comparison with other variable selection strategies is out of the scope of the paper,
one of the three anonymous reviewers has kindly compared the results of the VSURF package with
the results of the R package Boruta, described in Kursa and Rudnicki (2010), on the two datasets toys
and Ozone.

Let us recall that this module directly aims at selecting all-relevant features. Hence the comparison
with the interpretation set delivered by VSUREF is of interest. In the toys dataset, the number of truly
relevant variables is 6. VSUREF finds 4 out of 6 variables in the interpretation stage while Boruta
finds all six truly relevant variables and one more false positive variable. In the case of the Ozone
data set VSUREF finds 5 variables in the interpretation stage, while Boruta finds 9. So, this seems to
confirm that the heuristic proposed by VSURF is prediction oriented (the price to pay is a risk of
false negatives) and suggests that the strategy proposed by Boruta is more accurate to recover weak
redundant correlations between predictors and decision variable (the price to pay seems to be a risk of
false positives).

In fact our strategy assumes more or less that there are unnecessary variables in the set of all
available variables initially, which is not really the case in the Ozone dataset. However, it is the case in
the following two high-dimensional examples.

Toxicity data

This second dataset is also a regression framework, however, unlike before, this case is a high-
dimensional problem. The liver.toxicity dataset, available in the R package mixOmics (Lé Cao
et al,, 2015), is a real dataset from a study by Heinloth et al. (2004). In this study, 4 male rats of
the inbred strain Fisher 344 were exposed to different doses of acetaminophen (non toxic dose (50
or 150 mg/kg), moderate toxic dose (1500 mg/kg), severe toxic dose (2000 mg/kg)) in a controlled
experiment. Necropsies were performed at different hours after exposure (6, 18, 24 and 48 hours)
and the mRNA from the liver was extracted. In the original study, 10 clinical chemistry variables
containing markers for the liver injury were measured. Those variables are numerical variables since
they measure the serum enzymes level. For our analysis, the dataset extracted from this study contains:

* a data frame, called gene, with 64 rows representing the subjects and 3116 columns repre-
senting explanatory variables which are the gene expression levels after normalization and
preprocessing due to Bushel et al. (2007),

e avector, called clinic, with 64 rows and 1 column, one of the 10 clinical variables for the same
64 subjects: more precisely, the variable named ALB. g.dL ., which corresponds to the albumin
level and which is the one considered in Gonzélez et al. (2012).

As in previous studies (Gidskehaug et al., 2007; Lé Cao et al., 2008), our aim is, using VSUREF, to
predict our clinical variable by the genes.

First, we load the data as follows:

Vv

data("liver.toxicity"”, package = "mixOmics"”)
clinic <- liver.toxicity$clinic$ALB.g.dL.
set.seed(7162013, "L'Ecuyer-CMRG")

VvV Vv

Now we apply our procedure and analyze the results.

> vtoxicity <- VSURF(liver.toxicity$gene, clinic, parallel = TRUE, ncores = 40,
+ clusterType = "FORK")

> summary(vtoxicity)

VSURF computation time: 5.9 mins

VSURF selected:
550 variables at thresholding step (in 1.1 mins)
5 variables at interpretation step (in 4.8 mins)

5 variables at prediction step (in 3.4 secs)

VSURF ran in parallel on a FORK cluster and used 40 cores

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=mixOmics

CONTRIBUTED RESEARCH ARTICLES

30

c
K]
8
o -
§ 2 s 38
g 9o T 2
= o I ©
g g
g > g
o Al > o
S =
0 500 1500 2500 ° 0 500 1500 2500
variables variables
o o
0 [Te]
e =
o o
S S
g g & g
m < m <
o © o ©
o 1 o
o o
3 1 3
© T T T T T y o
0 100 200 300 400 500 1 2 3 4 5
nested models predictive models

Figure 4: VSURF for the toxicity data.

We notice that after the elimination step, only 550 variables remain, thus the number of variables
has been reduced by a factor of six. This ratio is not surprising since we know that there exists extreme
redundancy in the gene expression data together with a lot of irrelevant variables.

> plot(vtoxicity)

By considering the top left graph of Figure 4, it seems quite obvious to keep just a few variables.

Indeed, the procedure leads to 5 variables, after both interpretation and prediction steps. Even if the
numbers of selected variables are very small, they are not surprisingly low if we refer to the study
in Gonzdlez et al. (2012), where 12 variables were selected. It would be noted that, in general, our
method failed to deliver all the variables related to the response variable in the case of numerous
strongly correlated predictors. In addition, we do not select the same genes but our set of selected
variables and the one in Gonzalez et al. (2012) exhibit strong correlations.

Even if the results are quite similar, an advantage of using VSURF is that this procedure does not
involve tuning parameters unlike the procedure developed in Gonzdlez et al. (2012). This difference is
the main reason for the gap in computation time: several minutes with 40 cores for VSURF compared to
several minutes with 1 core for Gonzalez et al. (2012).

SRBCT data

The dataset we consider here will allow us to apply our procedure in a classification framework. The
real classification dataset is a small version of the small round blue cell tumors of childhood data and
contains the expression measure of genes measured on 63 samples. This set is composed of:

¢ adata frame, called gene, of size 63 x 2308 which contains the 2308 gene expressions;

* aresponse factor of length 63, called class, indicating the class of each sample (4 classes in
total).

These data, presented in details in Khan et al. (2001), available in the R package mixOmics, have
been widely studied but in most cases only 200 genes were considered and data have been transformed
to reduce the problem to a regression problem (see e.g. Lé Cao and Chabrier, 2008). As in Diaz-Uriarte
and Alvarez De Andres (2006), we consider the 2308 genes and we deal directly with the classification
problem, using VSURF.

> data("srbct”, package = "mixOmics")
> set.seed(10131419, "L'Ecuyer-CMRG")

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

31

> VSRBCT <- VSURF(srbct$gene, srbct$class, parallel = TRUE, ncores = 40,
+ clusterType = "FORK")

> summary (vSRBCT)

VSURF computation time: 3.6 mins

VSURF selected:
676 variables at thresholding step (in 22.6 secs)
25 variables at interpretation step (in 3 mins)
13 variables at prediction step (in 13.6 secs)

VSURF ran in parallel on a FORK cluster and used 40 cores

On this dataset, the procedure leads to 25 and 13 selected variables after the interpretation and
prediction step respectively, and the selected variable sets are stable.

We can compare these results with those obtained in Diaz-Uriarte and Alvarez De Andres (2006)
where the authors select 22 genes on the original dataset and their number of selected variables is
quite stable.

To get an idea of the performance of our procedure on the dataset, we perform an error rate
estimation using an external 5-fold cross-validation scheme (meaning that we apply VSURF on each
fold of the cross-validation). We obtain the following error rates” for interpretation and prediction sets
respectively:

interp pred
0.01587302 0.07936508

The comparison with error rates evaluated using 200 bootstrap samples in Diaz-Uriarte and
Alvarez De Andres (2006) suggests that our selections are reasonable.

Acknowledgements

We thank the editor and the three anonymous referees for their thorough comments and suggestions
which really helped to improve the clarity of the paper.

Bibliography
K.J. Archer and R. V. Kimes. Empirical characterization of random forest variable importance measures.

Computational Statistics & Data Analysis, 52(4):2249-2260, 2008. [p20]

R. Azen and D. V. Budescu. The dominance analysis approach for comparing predictors in multiple
regression. Psychological Methods, 8(2):129-148, 2003. [p20]

A.-L. Boulesteix, S. Janitza,]. Kruppa, and I. R. Kénig. Overview of random forest methodology and
practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 2(6):493-507, 2012. [p19]

L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996. [p20]
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001. [p19, 20]

L. Breiman and A. Cutler. Random forest manual. 2004. URL http://www.stat.berkeley.edu/
~breiman/RandomForests/cc_manual.htm. [p20, 21]

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Chapman & Hall,
New York, 1984. [p19]

P. Bushel, R. Wolfinger, and G. Gibson. Simultaneous clustering of gene expression data with clinical
chemistry and pathological evaluations reveals phenotypic prototypes. BMC Systems Biology, 1(1):
15, 2007. [p29]

J. M. Cadenas, M. Carmen Garrido, and R. Martinez. Feature subset selection filter-wrapper based on
low quality data. Expert Systems with Applications, 40(16):6241-6252, 2013. [p20]

2The script is available at https://github.com/robingenuer/VSURF/blob/master/Example/srbct_cv.R

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_manual.htm
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_manual.htm
https://github.com/robingenuer/VSURF/blob/master/Example/srbct_cv.R

CONTRIBUTED RESEARCH ARTICLES

32

N. Cheze,].-M. Poggi, and B. Portier. Partial and recombined estimators for nonlinear additive models.
Statistical Inference for Stochastic Processes, 6(2):155-197, 2003. [p28]

R. Diaz-Uriarte. GeneSrF and varSelRF: A web-based tool and R package for gene selection and
classification using random forest. BMC Bioinformatics, 8(1):328, 2007. [p20]

R. Diaz-Uriarte and S. Alvarez De Andres. Gene selection and classification of microarray data using
random forest. BMC Bioinformatics, 7(1):3, 2006. [p20, 30, 31]

R. Genuer, J.-M. Poggi, and C. Tuleau. Random forests: Some methodological insights. 2008.
arXiv:0811.3619. [p26]

R. Genuer, V. Michel, E. Eger, and B. Thirion. Random forests based feature selection for decoding fMRI
data. In Proceedings of COMPSTAT 2010 — 19th International Conference on Computational Statistics,
pages 1071-1078, 2010a. [p21]

R. Genuer, J.-M. Poggi, and C. Tuleau-Malot. Variable selection using random forests. Pattern
Recognition Letters, 31(14):2225-2236, 2010b. [p19, 20, 21, 22, 23, 27]

L. Gidskehaug, E. Anderssen, A. Flatberg, and B. K. Alsberg. A framework for significance analysis of
gene expression data using dimension reduction methods. BMC Bioinformatics, 8(1):346, 2007. [p29]

I. Gonzélez, K.-A. Lé Cao, M.]. Davis, and S. Déjean. Visualising associations between paired ‘omics’
data sets. BioData Mining, 5(1):1-23, 2012. [p29, 30]

B. Gregorutti, B. Michel, and P. Saint-Pierre. Correlation and variable importance in random forests.
2013. arXiv:1310.5726. [p20, 21]

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning
Research, 3:1157-1182, 2003. [p20]

A. Hapfelmeier and K. Ulm. A new variable selection approach using random forests. Computational
Statistics & Data Analysis, 60:50-69, 2012. [p20]

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning. Springer-Verlag, New
York, 2001. [p19]

A. N. Heinloth, R. D. Irwin, G. A. Boorman, P. Nettesheim, R. D. Fannin, S. O. Sieber, M. L. Snell, C.J.
Tucker, L. Li, G. S. Travlos, G. Vansant, P. E. Blackshear, R. W. Tennant, M. L. Cunningham, and
R. S. Paules. Gene expression profiling of rat livers reveals indicators of potential adverse effects.
Toxicological Sciences, 80(1):193-202, 2004. [p29]

T. Hothorn, K. Hornik, and A. Zeileis. Unbiased recursive partitioning: A conditional inference
framework. Journal of Computational and Graphical Statistics, 15(3):651-674, 2006. [p19]

J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R.
Antonescu, C. Peterson, and P. S. Meltzer. Classification and diagnostic prediction of cancers using
gene expression profiling and artificial neural networks. Nature Medicine, 7(6):673-679, 2001. [p30]

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1):273-324,
1997. [p20]

M. B. Kursa and W. R. Rudnicki. Feature selection with the Boruta package. Journal of Statistical
Software, 36(11):1-13, 2010. [p20, 29]

K.-A. Lé Cao and P. Chabrier. ofw: An R package to select continuous variables for multiclass
classification with a stochastic wrapper method. Journal of Statistical Software, 28(9):1-16, 2008. [p20,
30]

K.-A. Lé Cao, D. Rossouw, C. Robert-Granié, and P. Besse. A sparse PLS for variable selection when
integrating omics data. Statistical Applications in Genetics and Molecular Biology, 7(1), 2008. [p29]

K.-A. Lé Cao, I. Gonzalez, and S. Dejean. mixOmics: Omics Data Integration Project, 2015. URL
https://CRAN.R-project.org/package=mixOmics. R package version 5.0-4, with key contributions
from F. Rohart and B. Gautier and contributions from P. Monget,]. Coquery, F. Yao and B. Liquet.
[p29]

F. Leisch and E. Dimitriadou. mlbench: Machine Learning Benchmark Problems, 2010. URL https:
//CRAN.R-project.org/package=mlbench. R package version 2.1-1. [p27]

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=mixOmics
https://CRAN.R-project.org/package=mlbench
https://CRAN.R-project.org/package=mlbench

CONTRIBUTED RESEARCH ARTICLES

33

A. Liaw and M. Wiener. Classification and regression by randomForest. R News, 2(3):18-22, 2002. [p19]

G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts. Understanding variable importances in forests of
randomized trees. In Advances in Neural Information Processing Systems, pages 431-439, 2013. [p21]

N. Meinshausen and P. Bithlmann. Stability selection. Journal of the Royal Statistical Society B, 72(4):

417-473, 2010. [p27]

R. Nilsson, J. M. Pefia,]. Bjorkegren, and J. Tegnér. Consistent feature selection for pattern recognition
in polynomial time. Journal of Machine Learning Research, 8:589-612, 2007. [p21]

A. Peters, T. Hothorn, and B. Lausen. ipred: Improved predictors. R News, 2(2):33-36, 2002. [p20]

F. Scheipl. spikeSlabGAM: Bayesian variable selection, model choice and regularization for generalized
additive mixed models in R. Journal of Statistical Software, 43(14):1-24, 2011. [p20]

C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance
measures: [llustrations, sources and a solution. BMC Bioinformatics, 8(1):25, 2007. [p20]

C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. Conditional variable importance for
random forests. BMC Bioinformatics, 9(1):307, 2008. [p20]

V. Svetnik, A. Liaw, C. Tong, and T. Wang. Application of Breiman’s random forest to modeling
structure-activity relationships of pharmaceutical molecules. In Multiple Classifier Systems, pages
334-343. Springer, 2004. [p27]

T. Therneau, B. Atkinson, and B. Ripley. rpart: Recursive Partitioning and Regression Trees, 2015. URL
https://CRAN.R-project.org/package=rpart. R package version 4.1-9. [p19]

A. Verikas, A. Gelzinis, and M. Bacauskiene. Mining data with random forests: A survey and results
of new tests. Pattern Recognition, 44(2):330-349, 2011. [p19]

H. R. Wehrens, M. Johan, and P. Franceschi. Meta-statistics for variable selection: The R package
BioMark. Journal of Statistical Software, 51(10):1-18, 2012. [p20]

J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping. Use of the zero norm with linear models and
kernel methods. Journal of Machine Learning Research, 3:1439-1461, 2003. [p23]

Robin Genuer

University of Bordeaux

ISPED, Centre INSERM U-897-Epidemiologie-Biostatistique
33000 Bordeaux, France

and

INRIA Bordeaux Sud Ouest, SISTM team

33400 Talence, France
Robin.Genuer@isped.u-bordeaux2.fr

Jean-Michel Poggi

University of Orsay

Lab. Mathematics

bat 425

91405 Orsay, France
Jean-Michel.Poggi@math.u-psud. fr

Christine Tuleau-Malot

University of Nice Sophia Antipolis
CNRS, LJAD, UMR 7351

06100 Nice, France
Malot@unice.fr

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=rpart
mailto:Robin.Genuer@isped.u-bordeaux2.fr
mailto:Jean-Michel.Poggi@math.u-psud.fr
mailto:Malot@unice.fr

