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Identifying Complex Causal
Dependencies in Configurational Data
with Coincidence Analysis
by Michael Baumgartner and Alrik Thiem

Abstract We present cna, a package for performing Coincidence Analysis (CNA). CNA is a config-
urational comparative method for the identification of complex causal dependencies—in particular,
causal chains and common cause structures—in configurational data. After a brief introduction to the
method’s theoretical background and main algorithmic ideas, we demonstrate the use of the package
by means of an artificial and a real-life data set. Moreover, we outline planned enhancements of the
package that will further increase its applicability.

Introduction

Configurational comparative methods (CCMs) subsume techniques for the identification of complex
causal dependencies in configurational data using the theoretical framework of Boolean algebra and
its various extensions (Rihoux and Ragin, 2009). For example, Qualitative Comparative Analysis
(QCA; Ragin, 1987, 2000, 2008)—hitherto the most prominent representative of CCMs—has been
applied in areas as diverse as business administration (e.g., Chung, 2001), environmental science
(van Vliet et al., 2013), evaluation (Cragun et al., 2014), political science (Thiem, 2011), public health
(Longest and Thoits, 2012) and sociology (Crowley, 2013). Besides three stand-alone programs based
on graphical user interfaces, three R packages for QCA are currently available, each with a different
scope of functionality: QCA (Dusa and Thiem, 2014; Thiem and Duşa, 2013a,c), QCA3 (Huang, 2014)
and SetMethods (Quaranta, 2013; an add-on package to Schneider and Wagemann, 2012).

A novel technique called Coincidence Analysis (CNA) has recently joined the family of CCMs
(Baumgartner, 2009a,b, 2013a). Like QCA, CNA searches for rigorously minimized sufficient and
necessary conditions of causally modeled outcomes, and it implements the same regularity theory of
causation as QCA, that is, the theory most prominently advanced by Mackie (1974). Contrary to QCA,
however, CNA can treat any number of factors in a processed data set as endogenous (outcomes),
and it does not eliminate redundancies from sufficient and necessary conditions by means of Quine-
McCluskey optimization (Quine, 1959; McCluskey, 1965), but by means of an optimization algorithm
that is custom-built for causal modeling. As a direct consequence of these differences, CNA can
identify common cause and causal chain structures. Moreover, the algorithm does not need to be told
which factors are endogenous and which ones exogenous; it can infer that from the data. What is more,
limited data diversity does not force CNA to resort to counterfactual additions to the data. Finally,
while the QCA programs fs/QCA (Ragin and Davey, 2014), fuzzy (Longest and Vaisey, 2008), Tosmana
(Cronqvist, 2011) and Kirq (Reichert and Rubinson, 2014) often fail to find all data-fitting models
(cf. Baumgartner and Thiem, 2014; Thiem, 2014c; Thiem and Duşa, 2013b), the R implementation of
CNA presented in this paper (cna; Ambuehl et al., 2015) not only ensures—as does QCA—that all
single-outcome models are identified but additionally recovers the whole space of multiple-outcome
models that fit the data.

After an introduction to the theoretical and algorithmic background of CNA, we demonstrate the
potential of the cna R package by means of an artificial and a real-life data set. In the final section, we
outline planned enhancements of cna that will further increase its applicability.

Theoretical and algorithmic background

CCMs search for causal dependencies as defined by so-called regularity theories of causation, whose
development dates back to David Hume (1711-1776) and John Stuart Mill (1806-1873). By implementing
techniques of Boolean algebra, modern regularity theories spell out the notion of causal relevance
in terms of redundancy-free (minimized) sufficiency and necessity relations among the elements of
analyzed sets of factors (Mackie, 1974; Graßhoff and May, 2001; Baumgartner, 2008, 2013b).

The crucial component of the regularity theoretic definiens of causal relevance is the notion of
a minimal theory. A minimal theory of a factor Z is a minimally necessary disjunction of minimally
sufficient conditions of Z. A conjunction Φ of coincidently instantiated factors, i.e. Y1∗Y2∗ . . . ∗Yn, is a
minimally sufficient condition of Z if, and only if (iff), Φ is sufficient for Z (Φ→ Z), and there exists
no proper part Φ′ of Φ such that Φ′ → Z. A proper part Φ′ of Φ is the result of eliminating at least
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one conjunct from Φ. A disjunction Ψ of minimally sufficient conditions, i.e. Φ1 + Φ2 + . . . + Φn, is
a minimally necessary condition of Z iff Ψ is necessary for Z (Z → Ψ), and there exists no proper
part Ψ′ of Ψ such that Z → Ψ′. A proper part Ψ′ of Ψ is the result of eliminating at least one disjunct
from Ψ. Overall, a minimal theory of Z has the following biconditional form: Ψ↔ Z (where Ψ is an
expression in disjunctive normal form and Z is a single factor).

A minimal theory represents the causally interpretable dependencies of sufficiency and necessity
among the factors contained in a data set δ. That is, causal relevance can be defined in terms of
membership in a minimal theory, or more specifically: a factor A is causally relevant to a factor B in a
data set δ iff δ entails a minimal theory Ψ↔ B such that A is contained in Ψ.

CNA aims to infer minimal theories from δ by, first, identifying sufficient and necessary conditions
in δ and by, second, minimizing those conditions. To the latter end, CNA tests the redundancy
of factors by eliminating them from sufficient and necessary conditions and checking whether the
remaining conditions are still sufficient and necessary, respectively. More specifically, to determine
whether a sufficient condition Y1∗Y2∗ . . . ∗Yh of a factor Z is minimally sufficient, CNA systematically
eliminates conjuncts from Y1∗Y2∗ . . . ∗Yh. For each conjunction that results from such an elimination,
say for Y2∗Y3∗ . . . ∗Yh, CNA then parses the processed data δ to check whether δ contains Y2∗Y3∗ . . . ∗Yh
in combination with the negation of Z, i.e. z. If δ does not contain such a configuration, Y2∗Y3∗ . . . ∗Yh
is itself sufficient for Z, which means that Y1 is redundant. CNA then proceeds to eliminate the next
conjunct from Y2∗Y3∗ . . . ∗Yh and tests for further redundancies, until no more redundancies are found.
By contrast, if δ contains the configuration Y2∗Y3∗ . . . ∗Yh in combination with z, Y1 makes a difference
to Z and is, thus, not redundant. Accordingly, CNA re-adds Y1 to Y2∗Y3∗ . . . ∗Yh and proceeds to
eliminate Y2, and so forth.

Similarly, to determine whether a complex necessary condition Φ1 + Φ2 + . . . + Φh of a factor Z is
minimally necessary, CNA systematically eliminates disjuncts from Φ1 + Φ2 + . . . + Φh and checks for
every resulting disjunction, say for Φ2 + Φ3 + . . . + Φh, whether it is still necessary for Z, i.e. whether
δ contains a configuration featuring Z without any of the disjuncts in Φ2 + Φ3 + . . . + Φh. If δ does
not contain such a configuration, Φ2 + Φ3 + . . . + Φh is still necessary for Z, which means that the
eliminated disjunct Φ1 is redundant. Next, Φ2 + Φ3 + . . . + Φh is tested for further redundancies,
until no more redundancies are found.

CNA does not presuppose that certain factors in δ can be identified as endogenous prior to
applying CNA. In principle, CNA is designed to recover and rigorously minimize all relationships
of sufficiency and necessity among the factors in δ. In practice, however, it is often known from the
outset which factors are exogenous and which endogenous. What is more, often enough theoretical
knowledge is available to order the factors in δ causally, where a causal ordering is a relation Yi ≺ Yj
entailing that Yj cannot be a cause of Yi (e.g., because Yi is instantiated temporally before Yj). That is,
an ordering excludes certain causal dependencies but does not stipulate any. Accordingly, in addition
to a data set δ, CNA may be given a subset W of endogenous factors (i.e. possible effects) in δ and
an ordering ≺ over the factors in δ as input. Minimally sufficient and necessary conditions are then
calculated for the members of W in accordance with ≺ only.

Recovered minimal theories of the elements of W are issued as so-called atomic solution formulas. If
CNA finds an atomic solution formula Ψ1 ↔ Zi and an atomic solution formula Ψ2 ↔ Zj such that
Zi 6= Zj and Ψ1 and Ψ2 have at least one factor in common or Zi appears in Ψ2 or Zj appears in Ψ1,
then CNA builds the complex solution formula (Ψ1 ↔ Zi)∗(Ψ2 ↔ Zj). Configurational data regularly
underdetermine their own causal modeling, with the effect that multiple atomic and complex solution
formulas fit the data equally well. In cases of such model ambiguities, CNA provides an overview
over the whole model space by returning all data-fitting solution formulas.

As causally analyzed data tend to be noisy, that is, confounded by uncontrolled (unmeasured)
causes of endogenous factors, it often happens that no configuration of factors is strictly sufficient
or necessary for a given Z ∈ W. To still extract some (tentative) causal information from such data,
Ragin (2006) has introduced so-called consistency and coverage measures (with values between 0 and 1).
Consistency reproduces the degree to which the behavior of a given outcome obeys a corresponding
sufficiency or necessity relationship (or a whole solution formula), whereas coverage reproduces the
degree to which a sufficiency or necessity relationship (or a whole solution formula) accounts for the
behavior of the corresponding outcome. If data cannot be causally modeled with maximal consistency
and coverage scores, CNA invites its users to gradually lower consistency and coverage thresholds
until solution formulas can be built.

The cna package by Ambuehl et al. (2015) implements the methodological protocol of CNA
as sketched above. For more details on the background assumptions of CNA, its minimization
algorithm, and its relation to other configurational methods such as QCA, we refer interested readers
to Baumgartner (2009a).
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Examples

Hypothetical data

In the following, we illustrate the main steps in using the cna package. First, we employ a hypothetical
data set from Baumgartner (2009a) to investigate the causal dependencies among five factors hypoth-
esized to constitute a causal structure behind the overall level of education in western democratic
countries. These five factors are “strong unions” (U; 1 = strong, 0 = not strong), “high level of disparity”
(D; 1 = high, 0 = not high), “strong left parties” (L; 1 = strong, 0 = not strong), “high gross national
product” (GNP; G; 1 = high, 0 = not high) and “high level of education” (E; 1 = high, 0 = not high).
The data for eight countries are presented in Table 1.

Case U D L G E

1 1 1 1 1 1
2 1 1 1 0 1
3 1 0 1 1 1
4 1 0 1 0 1
5 0 1 1 1 1
6 0 1 1 0 1
7 0 0 0 1 1
8 0 0 0 0 0

Table 1: Exemplary data to be analyzed by CNA.

The cna package comes with an integrated bundle of six data sets from various areas of the social
sciences. That bundle also includes the data in Table 1 as the data frame d.educate. Accordingly,
the first step to causally model Table 1 by means of CNA is to load the cna package along with the
d.educate data.

> library(cna)
> data(d.educate)

The heart of the cna package is constituted by the cna() function. It is the function that identifies
and minimizes dependencies of sufficiency and necessity in the data, which can be given to cna() either
in terms of a Boolean data frame or of a truth table as produced by the truthTab() function. Essentially,
truthTab() simply merges multiple rows of a data frame featuring the same configuration into one
row, such that each row of the resulting truth table corresponds to one determinate configuration. The
number of occurrences (cases) and an enumeration of the cases are saved as attributes ‘n’ and ‘cases’,
respectively. As Table 1 does not contain multiple rows with identical configurations, the application
of truthTab() is uncalled for and we can directly pass d.educate on to cna(). Moreover, let us assume
that we have no prior causal knowledge about the underlying causal structure, such that we cannot
additionally supply a causal ordering. The following is the default output returned by cna().

> cna(d.educate)
--- Coincidence Analysis (CNA) ---

Factors: U, D, L, G, E

Minimally sufficient conditions:
--------------------------------
Outcome D:
condition consistency coverage

L*u -> D 1.000 0.500
E*g*u -> D 1.000 0.250

Outcome E:
condition consistency coverage

L -> E 1.000 0.857
D -> E 1.000 0.571
G -> E 1.000 0.571
U -> E 1.000 0.571

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 179

Outcome G:
condition consistency coverage

d*E*u -> G 1.000 0.250
E*l -> G 1.000 0.250

Outcome L:
condition consistency coverage
D -> L 1.000 0.667
U -> L 1.000 0.667
E*g -> L 1.000 0.500

Outcome U:
condition consistency coverage

d*L -> U 1.000 0.500
d*E*g -> U 1.000 0.250

Atomic solution formulas:
-------------------------
Outcome E:

condition consistency coverage
D + G + U <-> E 1.000 1.000
G + L <-> E 1.000 1.000

Outcome L:
condition consistency coverage

D + U <-> L 1.000 1.000

Complex solution formulas:
--------------------------

condition consistency coverage
(D + G + U <-> E) * (D + U <-> L) 1.000 1.000

(G + L <-> E) * (D + U <-> L) 1.000 1.000

First, cna() lists all minimally sufficient conditions of all factors in d.educate, second, it reports
the atomic solution formulas for the factors that can be modeled as endogenous factors, and third, it
specifies the resulting complex solutions. All solution types come with corresponding consistency and
coverage scores. In case of Table 1, these scores reach maximal values for both atomic and complex
solution formulas. Thus, the d.educate data are as good as configurational data can possibly get.

The above results show that the causal structure generating Table 1 features two endogenous
factors, viz. “strong left parties” (L) and “high level of education” (E). Moreover, there is one atomic
solution for L and there are two for E. Overall, cna() infers that the d.educate data can be modeled
in terms of the two complex structures depicted in Figure 1. Graph 1a represents a common cause
structure, in which “high level of disparity” (D) and “strong unions” (U) appear as direct common
causes of L and E, whereas Graph 1b depicts a causal chain such that D and U are direct causes
of L, which in turn is a direct cause of E. As the data in Table 1 are optimal by all standards of
configurational modeling, there is no way to determine which of these two structures is the true or
correct one.
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Figure 1: Visualization of dependency structures in d.educate data.
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Real-life data

This subsection illustrates further functionalities of the cna package on the basis of a real-life data
set. To this end, we choose the study by Lam and Ostrom (2010), who analyze the effects of an
irrigation experiment in the course of development interventions on the Indrawati River watershed
in the central hills of Nepal. Among other things, the authors investigate the causal relevance of
five exogenous factors on “persistent improvement in water adequacy at the tail end in winter” (W),
which takes the value 1 when farmers at the tail end of the watershed persistently receive the water
they need in winter, and the value 0 otherwise. The five exogenous factors are: “continual assistance
on infrastructure improvement” (A), “existence of a set of formal rules for irrigation operation and
maintenance” (R), “existence of provisions of fines” (F), “existence of consistent leadership” (L), and
“existence of collective action among farmers for system maintenance” (C), for all of which the values
1 and 0 represent “yes” and “no”, respectively. The relevant data set, which comprises 15 cases, is
included in the cna package as the data frame d.irrigate.

> data(d.irrigate)
> d.irrigate

A R F L C W
1 0 1 0 1 1 1
2 0 1 0 1 1 0
3 0 1 1 1 1 1
.. . . . . . .
<rest omitted>

Lam and Ostrom (2010) assume that W is the ultimate outcome of the data-generating causal
structure. This background assumption can be given to cna() by means of the argument ordering,
which takes a list of character vectors referring to the factors in the data frame as input. In case
of d.irrigate, the intended ordering is this: ordering = list(c("A","R","F","L"," C"),"W"). It
determines that W is causally located after A, R, F, L, C, meaning that the former cannot be a cause of
the latter. Moreover, as this data frame does not comprise all relevant factors for W, it is no longer
possible to reach perfect coverage scores. In the following analysis, we set the coverage threshold
(cov) to 0.9 and extract only the complex solution formulas from the resulting solution object via the
function csf().

> sol1 <- cna(d.irrigate, ordering = list(c("A", "R", "F", "L", "C"), "W"), cov = 0.9)
> csf(sol1)

condition consistency coverage
1 (a + f*R + L <-> C) * (A*C + a*f*r + F*R + l*R <-> W) 1.000 0.917
2 (a + f*R + L <-> C) * (A*C + a*l + F*R <-> W) 1.000 0.917
3 (a + f*R + L <-> C) * (A*C + C*f*r + F*R + l*R <-> W) 1.000 0.917
4 (a + f*R + L <-> C) * (A*C + C*l + F*R <-> W) 1.000 0.917
5 (a + f*R + L <-> C) * (a*f*r + A*L + F*R + l*R <-> W) 1.000 0.917
6 (a + f*R + L <-> C) * (a*f*r + A*R + F*R + l*R <-> W) 1.000 0.917
7 (a + f*R + L <-> C) * (a*l + A*L + F*R + l*R <-> W) 1.000 0.917
8 (a + f*R + L <-> C) * (a*l + A*R + F*R <-> W) 1.000 0.917
9 (a + f*R + L <-> C) * (A*L + C*f*r + F*R + l*R <-> W) 1.000 0.917
10 (a + f*R + L <-> C) * (A*L + C*l + F*R <-> W) 1.000 0.917
11 (a + f*R + L <-> C) * (A*R + C*f*r + F*R + l*R <-> W) 1.000 0.917
12 (a + f*R + L <-> C) * (A*R + C*l + F*R <-> W) 1.000 0.917

This output of cna() shows that not only W can be modeled as an endogenous factor, but also
C—a fact which is overlooked by Lam and Ostrom (2010) due to their reliance on QCA with its focus
on single-outcome structures. cna() returns one atomic solution formula for C and 12 for W, yielding
a total of 12 complex solution formulas that fare equally well with respect to all parameters of model
fit. According to some of these models, the behavior of C and W is regulated by a common cause
structure; according to others, the underlying structure is a causal chain.

To generate models for negative outcomes, cna() provides the argument notcols, which takes a
character vector of factors to be negated as input. In the following analysis, we set cov to 0.66 and
negate the factors C and W (which then must also appear negatively in the ordering). Moreover,
we pass the solution object on to the print() function, which provides arguments determining the
number of solutions to print (nsolutions) and what elements of the solution to print (what). The
what argument takes a character vector as input, where "t" prints the truth table, "m" the minimally
sufficient conditions, "a" the atomic solution formulas, "c" the complex solution formulas, and "all"
returns all solution elements.

> sol2 <- cna(d.irrigate, ordering = list(c("A", "R", "F", "L", "c"), "w"),
notcols = c("C", "W"), cov = 0.66)
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> print(sol2, nsolutions = 3, what = "a,c")
--- Coincidence Analysis (CNA) ---

Causal ordering:
A, R, F, L, c < w

Atomic solution formulas:
-------------------------
Outcome R:

condition consistency coverage
A*C + f*L <-> R 1.000 0.667
A*F + f*L <-> R 1.000 0.667
A*L + f*L + F*l <-> R 1.000 0.667

Outcome w:
condition consistency coverage

A*r + F*r <-> w 1.000 0.667
A*r + L*r <-> w 1.000 0.667
c*f + F*r <-> w 1.000 0.667
... (total no. of formulas: 6)

Complex solution formulas:
--------------------------

condition consistency coverage
(A*C + f*L <-> R) * (A*r + F*r <-> w) 1.000 0.667
(A*F + f*L <-> R) * (A*r + F*r <-> w) 1.000 0.667

(A*L + f*L + F*l <-> R) * (A*r + F*r <-> w) 1.000 0.667
... (total no. of formulas: 18)

Finally, the condition() function provides assistance to inspect the properties of sufficient and
necessary conditions in a data frame, most notably, of minimally sufficient and necessary conditions
that appear in solution formulas returned by cna(). It takes a vector of strings specifying Boolean
functions as input, reveals which configurations and cases instantiate a given condition or solution,
and lists consistency, coverage, as well as unique coverage scores (cf. Ragin, 2008, 63-68). Below, we
investigate the properties of the first atomic solution for outcome w from the previous analysis.

> condition("A*r + F*r <-> w", d.irrigate)
A*r+F*r -> w :
A*r+F*r w n cases

0 0 1 1
0 1 1 2
0 0 2 3,4
0 0 2 5,6
0 0 2 7,8
0 0 1 9
0 0 1 10
1 1 1 11
1 1 1 12
0 0 1 13
0 0 1 14
0 0 1 15

Consistency: 1.000 (2/2)
Coverage: 0.667 (2/3)
Total no. of cases: 15
Unique Coverages: A*r : 0.333 (1/3)

F*r : 0.333 (1/3)

The first two columns of the table returned by condition() indicate the configurations instantiating
(‘1’) and not instantiating (‘0’) the disjunction A∗r + F∗r and the outcome w, respectively. The third
column specifies how many cases in the associated data feature a corresponding configuration, and the
forth column lists these cases. According to the above output, hence, A∗r + F∗r covers the instances of
w in cases 11 and 12 and leaves the occurrence of w in case 2 uncovered. Consequently, the overall
solution coverage is 2/3, with each disjunct uniquely covering one of the instances of w.
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Summary and outlook

We have presented cna, an R package implementing Coincidence Analysis (CNA), which is a method
for the identification of multi-outcome structures in configurational data. CNA not only differs from
QCA—the standard method of configurational causal modeling—by relaxing the single-outcome
restriction but also by not drawing on Quine-McCluskey optimization for the elimination of redundan-
cies from sufficient and necessary conditions. Instead, CNA employs its own minimization algorithm
that is custom-built for causal modeling purposes.

At this stage of development, cna still requires bivalent variables. Planned future enhancements
include the capability to process multivalent factors that generate crisp sets (Thiem, 2013) and bivalent
factors with fuzzy sets (Smithson and Verkuilen, 2006). Possibilities to merge these constructs in
multivalent factors with fuzzy sets, as has recently been suggested in the context of QCA (Thiem,
2014a), will be explored as well. In this connection, aspects of alternative procedures proposed in the
context of minimization with fuzzy sets may be incorporated where appropriate (Eliason and Stryker,
2009). Finally, functionality for sensitivity diagnostics that facilitates robustness tests is envisaged
(Thiem, 2014b).

Complex causal structures are communicated most effectively to readers of scientific articles in the
form of graphs rather than formulas. This is all the more true for multivalent factors. In this regard,
functionality that translates cna solutions into corresponding graphs enjoys high priority on the list of
future enhancements.
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