
CONTRIBUTED RESEARCH ARTICLES 99

showtext: Using System Fonts in R
Graphics
by Yixuan Qiu

Abstract This article introduces the showtext package that makes it easy to use system fonts in R
graphics. Unlike other methods to embed fonts into graphics, showtext converts text into raster images
or polygons, and then adds them to the plot canvas. This method produces platform-independent
image files that do not rely on the fonts that create them. It supports a large number of font formats
and R graphics devices, and meanwhile provides convenient features such as using web fonts and
integrating with knitr. This article provides an elaborate introduction to the showtext package,
including its design, usage, and examples.

Introduction

Using fonts in R graphics is neither a new topic nor a difficult task, if only the standard font families
such as “sans”, “serif” and “mono” are needed. However, problems occur when one wants to select
fonts that are installed in the system but not among the standard families inside R, especially for the
PDF graphics device. With the evolution of R graphics device as well as related extension packages,
there are more and more solutions emerging to solve the font problem. The R News article Murrell
and Ripley (2006) systematically describes the working mechanism of PostScript and PDF devices to
handle nonstandard fonts, and more recently, the blog post by Winston Chang1 serves as an tutorial
for the extrafont package (Chang, 2014) which makes it easy to use TrueType fonts in PostScript, PDF
and Windows bitmap devices.

With the same target, this article introduces the showtext package (Qiu, 2015a) that provides an
alternative way to use fonts in R graphics. It has good support for various font formats and most
graphics devices in R, and meanwhile provides some extra features such as loading web fonts and
integration with knitr (Xie, 2013, 2014a,b). All efforts devoted to the showtext package are trying to
seek an easy and elegant way to make use of different fonts in R graphics.

In the remaining part, this article will first review some existing methods of font selection in R,
and then give an introduction to the showtext package, including its design, usage, examples and a
number of suggestions for use.

Existing methods to use fonts

Built-in graphics devices in R

It is possible to let R’s built-in graphics devices (e.g., PNG and PDF) to use installed fonts in the
system. However, the implementation is quite configuration dependent. If Cairo graphics2 support
has been compiled in R such that png(type = "cairo") and cairo_pdf() are available, then it is quite
straightforward to use system fonts in the plots. One only needs to specify the family name of font as
is used by the system. (Figure 1)

> library(ggplot2)
> # background for various plots later
> bg <- ggplot(NULL, aes(x = 1, y = 1)) + ylim(0.8, 1.2) +
+ theme(axis.title = element_blank(), axis.ticks = element_blank(),
+ axis.text = element_blank())
>
> if(capabilities("cairo")) {
+ png("builtin-1.png", 672, 384, type = "cairo", res = 96)
+ txt1 <- annotate("text", 1, 1, label = "A sample of\nDejaVu Sans Mono",
+ family = "DejaVu Sans Mono", size = 15)
+ print(bg + txt1)
+ dev.off()
+
+ cairo_pdf("builtin-2.pdf", 7, 4)

1http://blog.revolutionanalytics.com/2012/09/how-to-use-your-favorite-fonts-in-r-charts.html
2http://cairographics.org/

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://CRAN.R-project.org/package=extrafont
http://CRAN.R-project.org/package=showtext
http://CRAN.R-project.org/package=knitr
http://blog.revolutionanalytics.com/2012/09/how-to-use-your-favorite-fonts-in-r-charts.html
http://cairographics.org/

CONTRIBUTED RESEARCH ARTICLES 100

+ txt2 <- annotate("text", 1, 1, label = "A sample of\nDejaVu Serif Italic",
+ family = "DejaVu Serif", fontface = "italic", size = 15)
+ print(bg + txt2)
+ dev.off()
+ }

A sample of
DejaVu Serif Italic

Figure 1: Specify full family name when Cairo graphics is compiled into R. Left: graph in PNG format;
right: graph in PDF format.

However, when Cairo graphics is not available, it will require more effort to customize the font.
For PNG graphs, the user needs to first register a font family name in R which is mapped to a font that
is installed in the system, and then specify the font family name in plotting functions. Below is an
example to show this procedure on Windows. (Figure 2)

> if(.Platform$OS.type == "windows") {
+ windowsFonts(century = "Century Gothic")
+ png("builtin-3.png", 672, 384, res = 96)
+ txt3 <- annotate("text", 1, 1, label = "A sample of\nCentury Gothic",
+ family = "century", size = 20)
+ print(bg + txt3)
+ dev.off()
+ }

Figure 2: Use system fonts for PNG on Windows without Cairo graphics.

Notice that we use the function windowsFonts() to register font and create name mapping. In
other operating systems, there are analogous functions such as X11Fonts() and quartzFonts() to do
the similar job.

For PDF graphs, the setup is more complicated. The first step is similar: one should call pdfFonts()
to register new family names in R, and then use them in the plot. However, the obstacle here is that
pdfFonts() requires the Adobe Font Metrics files (.afm), which may be unavailable for users. On
the contrary, TrueType fonts (.ttf) and OpenType fonts (mostly .otf) are most commonly used, but
unfortunately, these font formats are not directly supported by pdfFonts(). Additionally, to make the
plot have consistent appearance across different PDF viewers, it is usually suggested to embed the
font within the file by calling the function embedFonts(), which further invokes an external software
Ghostscript3. For the details, interested readers are referred to the R News article Murrell and Ripley
(2006).

Due to this complexity, when creating PDF graphs users are most likely to only select the built-in
PDF font families, which can be queried by the command names(pdfFonts()).

3http://www.ghostscript.com/

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://www.ghostscript.com/

CONTRIBUTED RESEARCH ARTICLES 101

The Cairo package

The Cairo package (Urbanek and Horner, 2014) provides a number of high-quality graphics devices
that are driven by a unified back-end based on Cairo graphics. When the Cairo library is configured
with FreeType and Fontconfig support, one can make use of the CairoFonts() function to specify the
fonts that will be used by all the devices in Cairo. Below is an example to show this. (Figure 3, left)

> library(Cairo)
>
> CairoFonts(regular = "Liberation Sans:style=Regular",
+ italic = "Liberation Serif:style=Italic")
>
> CairoPDF("Cairo-1.pdf", 7, 4)
> txt4 <- annotate("text", 1, 1.1, label = "A sample of Liberation Sans", size = 12)
> txt5 <- annotate("text", 1, 0.9, label = "A sample of Liberation Serif",
+ fontface = "italic", size = 12)
> print(bg + txt4 + txt5)
> dev.off()

For systems where Cairo is not configured with FreeType or Fontconfig (e.g., Windows), the
method to specify fonts is similar to that of png(type = "cairo") and cairo_pdf(). (Figure 3, right)

> if(.Platform$OS.type == "windows") {
+ CairoPDF("Cairo-2.pdf", 7, 4)
+ txt6 <- annotate("text", 1, 1.1, label = "A sample of Constantia",
+ family = "Constantia", size = 12)
+ txt7 <- annotate("text", 1, 0.9, label = "A sample of Lucida Console",
+ family = "Lucida Console", size = 10)
+ print(bg + txt6 + txt7)
+ dev.off()
+ }

A sample of Liberation Sans

A sample of Liberation Serif

A sample of Constantia

A sample of Lucida Console

Figure 3: Specify fonts in the Cairo package. Left: with FreeType and Fontconfig support; right:
without (e.g. on Windows).

The extrafont package

extrafont is an R package mainly used to simplify the use of system fonts in PDF and PostScript
graphics. It is able to extract metric files (.afm) from TrueType fonts (.ttf) so that the R PDF device
can utilize that information to place text in graphics. This procedure is accomplished by the Rttf2pt1
package (Chang, 2015) that extrafont depends on. Also, for the same reason previously described,
extrafont provides the function embed_fonts() to call Ghostscript to embed fonts in PDF files.

extrafont requires a first-time configuration, during which it will scan for TrueType fonts installed
in the system and generate corresponding metric files along with other necessary configuration files.
Afterwards, one needs to call loadfonts() to register the newly created metric fonts in R. These two
steps only need to be done once and are not necessary in a new R session.

> library(extrafont)
> ## Run once
> font_import()
> loadfonts()

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://CRAN.R-project.org/package=Cairo
http://CRAN.R-project.org/package=Rttf2pt1

CONTRIBUTED RESEARCH ARTICLES 102

After this set-up, the user may query the available font families for the PDF device by calling
functions fonts() or fonttable(), and use them in any plotting functions involving font selection.
Since we are now using metric font files, it is best practice to embed the fonts into the PDF file. This is
done by calling the function embed_fonts(). (Figure 4)

> library(extrafont)
> pdf("extrafont-1-unembedded.pdf", 7, 4)
> txt8 <- annotate("text", 1, 1.1, label = "A sample of Ubuntu Light",
+ family = "Ubuntu Light", size = 12)
> txt9 <- annotate("text", 1, 0.9, label = "A sample of Ubuntu Condensed",
+ family = "Ubuntu Condensed", size = 12)
> print(bg + txt8 + txt9)
> dev.off()
> embed_fonts("extrafont-1-unembedded.pdf", outfile = "extrafont-1.pdf")

A sample of Ubuntu Light

A sample of Ubuntu Condensed

Figure 4: Using the extrafont package to select fonts in PDF device.

The embedding procedure requires the Ghostscript program to be installed in the system and
findable to R. On Windows, the command below is an example to tell R where it is.

> Sys.setenv(R_GSCMD = "C:/Program Files/gs/gs9.05/bin/gswin32c.exe")

More details about extrafont can be found in the README file4 of this package.

The new approach: showtext

The previous section describes a number of ways to use system fonts in R graphics. While they could
be helpful in many situations when dealing with fonts in R, there is still room for seeking more elegant
ways to achieve that target, among which the showtext package is one trying to meet such a goal. The
following are a number of highlighted features of showtext:

1. Easy installation. showtext only requires the lightweight FreeType library5 for installation, and
works without dependence on external software such as Ghostscript. This would be helpful
when other solutions are not possible, e.g., when the Cairo library is unavailable in the system.

2. Support for various font formats. A certain type of font is supported as long as the back-end
FreeType library can read it, including but not limited to TrueType fonts, OpenType fonts, Type
1 fonts, etc.

3. Support for various R graphics devices. Technically showtext can work on almost any graphics
device, regardless of if it is in PNG, PDF, SVG or JPEG format.

4. The output graph produced by showtext has a platform-independent appearance . There is no
need to embed fonts into the graph, and viewers can read the text without installing the fonts
that actually produced them.

5. It also features functions to automatically search and download many beautiful, accessible
and open source fonts on the web, and users can use these fonts without installing them to the
operating system, which means that the system level font library can be kept intact and clean.

6. showtext has a neat integration with knitr.

4http://CRAN.R-project.org/package=extrafont/README.html
5http://www.freetype.org/

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://CRAN.R-project.org/package=extrafont/README.html
http://www.freetype.org/

CONTRIBUTED RESEARCH ARTICLES 103

The basic idea behind showtext is quite simple: it converts text into raster images (for bitmap and
on-screen devices) or polygons (for vector graphics), and then put them in the graphics. This design
comes from the fact that handling text is a very complicated task for graphics devices, but polygons
and raster images are lower-level operations that are easier to deal with. Therefore, as long as a device
understands how to draw polygons or overlay bitmap on its canvas, it will also be able to show text
with the help of this package.

More specifically, the showtext package develops a general framework to render text in R graphics.
First, it overrides the functions contained in the graphics device that are responsible for drawing text,
so that showtext will take over the text rendering procedure. Then, it uses the FreeType library to read
the font file and analyze the character string that is going to be displayed in the graph. Finally, the
text is transformed into basic graphical components (raster images or polygons) that can be easily
rendered by the device. As a result, the created graph does not rely on the original font file, thus being
platform-independent.

This procedure can be better explained by the diagram in Figure 5.

R function
text()

Is showtext
enabled?

Default device
function
text()

showtext device
function
text()

Text displayed
on graphics window

or image file

NO

YES

Locate font
file

Extract
glyph

information

Bitmap
or vector
graphics?

Default device
function
raster()

Default device
function
path()

Raster image

Polygon

Bitm
ap

Vector

Details

Figure 5: How showtext works with R graphics devices.

Usage of showtext

The usage of showtext is easy and intuitive, consisting of two major steps: registering system fonts
into R, and enabling showtext when executing plotting commands. As an additional feature, its
integration with knitr is also introduced in this section.

Registering fonts

The purpose of this step is to create a mapping between the font family name used by R and the path
of the corresponding font file, so that every time the graphics device requests a font with a given name,
showtext can locate and open that font file. The actual work of registering fonts is done by the sysfonts
package (Qiu, 2015b), on which showtext depends. sysfonts provides the function font.add() to
register font families for showtext, with six arguments in total, of which the first two are mandatory.
The first parameter, family, is the family name that the user wants to use in the plotting functions.
The second one, regular, should give the path to the font file for a regular font face. Other parameters,
such as bold and italic, are similar to regular, but pointing to the files with corresponding font faces.
If any of the extra font face parameter is set to NULL, the font file for regular font face will be used.

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://CRAN.R-project.org/package=sysfonts

CONTRIBUTED RESEARCH ARTICLES 104

Below is an example to download and register the xkcd6 font for showtext.

> library(showtext)
> dest <- file.path(tempdir(), "xkcd.ttf")
> download.file("http://simonsoftware.se/other/xkcd.ttf", dest, mode = "wb")
> font.add("myxkcd", regular = dest)

If successful, “myxkcd” should appear in the result returned by font.families(). This function
lists all font families that are available in showtext, among which “sans”, “serif”, “mono” and “wqy-
microhei” are built-in and will be loaded automatically with the package.

For most operating systems, fonts are usually installed in some standard locations. To add fonts
located in these directories, users can provide the filename rather than the absolute path to save some
typing. For example on Windows, sysfonts knows about the standard font directory, so we can use
the following code to register the Consolas families to showtext:

> if(.Platform$OS.type == "windows") {
+ font.add("consolas", regular = "consola.ttf", bold = "consolab.ttf",
+ italic = "consolai.ttf", bolditalic = "consolaz.ttf")
+ font.families()
+ }

[1] "sans" "serif" "mono" "wqy-microhei"
[5] "myxkcd" "consolas"

Users can view or set such search paths through function font.paths(), and list available font
files in those paths by calling font.files(). While it may take some efforts to figure out the filename
of a font with a given family name (and perhaps also font face), the naming convention of font files is
usually intuitive and fixed. Also, some font file viewers can help mapping the font name to its real file
name in the system.

To make the font adding process easier, sysfonts also makes use of the Google Fonts project7 to
simplify the process of downloading and registering fonts available on the web. Google Fonts hosts
more than 600 open source fonts, and is still enriching its collection. Function font.families.google()
lists the presently accessible fonts in the repository, and font.add.google() could search for a specific
font family, download its font files for all possible faces, and add them to showtext. These two
functions require the RCurl (Temple Lang, 2015) and jsonlite (Ooms, 2014) packages. The following
code demonstrates this process.

> head(font.families.google(), 10)

[1] "ABeeZee" "Abel" "Abril Fatface"
[4] "Aclonica" "Acme" "Actor"
[7] "Adamina" "Advent Pro" "Aguafina Script"
[10] "Akronim"

> font.add.google("Lato", "lato")
> font.families()

[1] "sans" "serif" "mono" "wqy-microhei"
[5] "myxkcd" "consolas" "lato"

Note that the Lato font has multiple font faces (regular, bold, italic, etc.) in the Google Fonts
repository. font.add.google() is aware of this and will register all of the font faces in R.

Enabling showtext in plots

After registering the fonts, using them in plotting functions will be straightforward. The simplest way
to enable showtext in R graphs is to call the showtext.auto() function, after which users are allowed
to use the font families that are listed in font.families() to draw text. When it is no longer needed,
users may call showtext.auto(FALSE) to turn showtext off. Figure 6 is an example to demonstrate
this usage with ggplot2 (Wickham 2009; credit goes to the answer in Stackoverflow8 for inserting an
image in ggplot2):

6http://xkcd.com/
7http://www.google.com/fonts
8http://stackoverflow.com/questions/9917049/inserting-an-image-to-ggplot2

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://CRAN.R-project.org/package=RCurl
http://CRAN.R-project.org/package=jsonlite
http://CRAN.R-project.org/package=ggplot2
http://xkcd.com/
http://www.google.com/fonts
http://stackoverflow.com/questions/9917049/inserting-an-image-to-ggplot2

CONTRIBUTED RESEARCH ARTICLES 105

> library(png)
> library(grid)
> library(ggplot2)
> ## download and read an image
> dest <- file.path(tempdir(), "pic.png")
> download.file("http://china-r.org/img/China-R-Logo-trans.png", dest, mode = "wb")
> g <- rasterGrob(readPNG(dest), interpolate = TRUE)
> ## load font and plot
> font.add.google("Lato", "lato")
> ttl <- "\u6b22\u8fce\u5173\u6ce8\u4e2d\u56fd\u0052\u8bed\u8a00\u4f1a\u8bae"
> plt <- ggplot(NULL, aes(x = 1, y = 1)) + xlim(73, 135) + ylim(17, 54) +
+ annotation_custom(g, xmin = 73, xmax = 135, ymin = 17, ymax = 54) +
+ annotate("text", -Inf, -Inf, label = "http://china-r.org", size = 8,
+ family = "lato", fontface = "italic", hjust = -0.1, vjust = -1) +
+ coord_fixed() + ggtitle(ttl) + theme_grey(base_size = 20) +
+ theme(axis.title = element_blank(),
+ plot.title = element_text(family = "wqy-microhei"))
>
> showtext.opts(dpi = 96)
> showtext.auto()
>
> ggsave("showtext-1.png", plt, width = 8.75, height = 5, dpi = 96)

Figure 6: Use showtext with ggplot2.

In this example, “wqy-microhei” is the name for the WenQuanYi Micro Hei9 font that will be
automatically loaded by showtext. WenQuanYi Micro Hei contains a large number of CJK (Chinese,
Japanese and Korean) characters, so combined with showtext it can be useful to show text in those
languages.

Note that when working with bitmap image formats (e.g. PNG, JPEG, TIFF), users should be
careful about the resolution of the image. Since showtext is unable to query the DPI that is used by
the graphics device, users should set it manually by the command showtext.opts(dpi = ...).

While showtext.auto() should be enough for most cases in using showtext, users actually have
more freedom to control which part of the graph should be rendered by showtext and which not.
Generally speaking, users could enclose code that wants to use showtext by a pair of function calls:
showtext.begin() and showtext.end(). The code outside of these parts will still use the standard
way to draw text. Figure 7 is an example to show this.

> ## load font
> dest <- file.path(tempdir(), "xkcd.ttf")
> download.file("http://simonsoftware.se/other/xkcd.ttf", dest, mode = "wb")
> font.add("myxkcd", regular = dest)
>
> pdf("showtext-2.pdf", 7, 3)
>
> set.seed(0)

9http://wenq.org/en

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://wenq.org/en

CONTRIBUTED RESEARCH ARTICLES 106

> p <- runif(1)
> showtext.begin()
> op <- par(family = "myxkcd", mar = c(0.1, 0.1, 3.1, 1.1))
> pie(c(1 - p, p), cex = 1.2, labels = c("Those who understand\nbinary",
+ "Those who don't"),
+ col = c("#F8766D", "#00BFC4"), border = NA, radius = 0.9)
> box()
> par(op)
> showtext.end()
> title("There are 10 types of people in the world", font.main = 4)
>
> dev.off()

There are 10 types of people in the world

Figure 7: Use showtext in part of the graph. The title is drawn using a standard font, while the pie
chart labels are using fonts loaded by showtext.

Figure 7 uses the xkcd font we added in the previous section. More interesting graphs of this style
can be found in the xkcd package (Manzanera, 2014).

Integration with knitr

knitr is an R package and engine to generate dynamic documents with R. It is similar to the built-in
Sweave engine inside R, but brings in many extensions and enhancements. Starting from version 1.7,
knitr began to support showtext through the option fig.showtext. Code chunks with this option
being TRUE will automatically invoke the showtext.begin() function, so there is no need to manually
call it from the user. Here is a minimal example of an Rmd file that uses showtext.

We first do some setup work...

```{r setup}
library(knitr)
library(showtext)
showtext.opts(dpi = 72)
opts_chunk$set(fig.width = 7, fig.height = 7, dpi = 72)
```

Then register a font from Google Fonts.

```{r fonts, message=FALSE}
font.add.google("Lobster", "lobster")
```

Finally we create some fancy plot.

```{r fancy, fig.showtext=TRUE, fig.align='center'}
plot(1, pch = 16, cex = 3)
text(1, 1.1, "A fancy dot", family = "lobster", col = "steelblue", cex = 3)
```

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://CRAN.R-project.org/package=xkcd

CONTRIBUTED RESEARCH ARTICLES 107

Limitations and solutions

The goal of showtext is to provide an elegant way to allow R to use system fonts in graphics. While
it should be useful in most situations, there are a few limitations that need to be taken care of. This
section lists these limitations of showtext, as well as some hints about how to use it in the best way.

First, showtext looks for fonts according to their filenames rather than the usual “font names” in
the system. This design is intentional since font names can be ambiguous. For example, the same font
can have multiple names given by different font management software. In contrast, the font file is the
entity that actually contains the glyphs of a specific font, hence it helps to avoid such confusion. While
this setting may cause some problems for users who are searching for the filename for the first time, it
should be quite convenient afterwards, and one possible solution is to use the fonts in Google Fonts
through the function font.add.google(), which maintains a standard and stable interface to access
fonts.

Second, for vector graphics such as PDF and SVG, since text will be converted into polygons,
it is no longer real text that can be searched in a PDF or SVG viewer. Also, the size of the PDF or
SVG file created by showtext is usually larger than the one produced in the standard way. For users
concerned by these issues, it is advisable touse cairo_pdf() or Cairo to generate PDF graphics, and to
use RSvgDevice (Luciani et al., 2014) for SVG output.

In addition, at the time of writing showtext is not working well with the plot window provided
by the RStudio IDE10. The simple solution is to manually open a graphics device using functions such
as windows() and x11(), and then draw plots inside this window, rather than the built-in one offered
by RStudio IDE.

Finally, in terms of the overall design, showtext is in some sense intrusive, since when user calls
showtext.begin(), it temporarily replaces the device functions by its own ones, and later restores
them after showtext.end() is called. An alternative and probably more elegant way to address the
font problem is to develop new graphics devices that are based on showtext, so that they can make use
of the text handling functionality contained in showtext. This possibility is left to future developers of
graphics devices.

Summary

This article introduces the showtext package, which helps to use various types of fonts in R graphics,
with both highlighted features and its limitations. We have also discussed a number of alternative
ways in R to create graphs using non-standard fonts. While there is hardly a universally best way to
use fonts in R, some situations were described in which a certain approach is most appropriate.

• The built-in devices in R without Cairo support have the least dependency on external libraries
and software. More effort needs to be taken in this situation compared with others, but this may
be the only possible solution, especially when R is compiled in a minimal environment.

• When Cairo graphics is compiled in R, devices such as png(type = "cairo") and cairo_pdf()
allow users to select fonts by their family names. This should be the easiest way to use fonts in
R graphs without extension packages.

• The Cairo package has similar functionality to png(type = "cairo") and cairo_pdf(), and
additionally provides a global font selector, which is useful when choosing a default font for all
Cairo devices.

• The extrafont package provides a complete solution for pdf() and postscript() devices with
TrueType fonts, as well as support for Windows bitmap output. It introduces an easy way to
import system fonts into R, so that users only need to make configuration changes once.

• showtext supports various font formats and most graphics devices. It also offers some conve-
nient features like using web fonts obtained from Google Fonts, and integration with the knitr
package. Some suggestions are given in Section “Limitations and solutions” in order to use it in
the best way.

Acknowledgments

The author of this article would like to thank Yihui Xie, for his kind work of adding the support for
showtext in his knitr package, and Barret Schloerke, who provided a lot of helpful comments and
corrections of the original manuscript. The author is also grateful to the editor and two anonymous
reviewers, who made many helpful suggestions to this article.

10http://www.rstudio.com/products/RStudio/

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://CRAN.R-project.org/package=RSvgDevice
http://www.rstudio.com/products/RStudio/

CONTRIBUTED RESEARCH ARTICLES 108

Bibliography

W. Chang. extrafont: Tools for Using Fonts, 2014. URL http://CRAN.R-project.org/package=
extrafont. R package version 0.17. [p99]

W. Chang. Rttf2pt1: Package for ttf2pt1 Program, 2015. URL http://CRAN.R-project.org/package=
Rttf2pt1. R package version 1.3.3. [p101]

T. J. Luciani, M. Decorde, and V. Lise. RSvgDevice: An R SVG Graphics Device, 2014. URL http:
//CRAN.R-project.org/package=RSvgDevice. R package version 0.6.4.4. [p107]

E. T. Manzanera. xkcd: Plotting ggplot2 Graphics in a XKCD Style, 2014. URL http://CRAN.R-project.
org/package=xkcd. R package version 0.0.4. [p106]

P. Murrell and B. Ripley. Non-standard fonts in PostScript and PDF graphics. R News, 6(2):41–47, May
2006. URL http://CRAN.R-project.org/doc/Rnews/. [p99, 100]

J. Ooms. The jsonlite package: A practical and consistent mapping between JSON data and R objects.
arXiv:1403.2805 [stat.CO], 2014. URL http://arxiv.org/abs/1403.2805. [p104]

Y. Qiu. showtext: Using Fonts More Easily in R Graphs, 2015a. URL http://CRAN.R-project.org/
package=showtext. R package version 0.4-2. [p99]

Y. Qiu. sysfonts: Loading System Fonts into R, 2015b. URL http://CRAN.R-project.org/package=
sysfonts. R package version 0.5. [p103]

D. Temple Lang. RCurl: General Network (HTTP/FTP/...) Client Interface for R, 2015. URL http://CRAN.R-
project.org/package=RCurl. R package version 1.95-4.6. [p104]

S. Urbanek and J. Horner. Cairo: R Graphics Device using Cairo Graphics Library for Creating High-Quality
Bitmap (PNG, JPEG, TIFF), Vector (PDF, SVG, PostScript) and Display (X11 and Win32) Output, 2014.
URL http://CRAN.R-project.org/package=Cairo. R package version 1.5-6. [p101]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer, 2009. URL http://had.co.nz/
ggplot2/book. [p104, 125]

Y. Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, 2013. URL http://CRAN.R-
project.org/package=knitr. [p99]

Y. Xie. knitr: A comprehensive tool for reproducible research in R. In V. Stodden, F. Leisch, and R. D.
Peng, editors, Implementing Reproducible Computational Research. Chapman and Hall/CRC, 2014a.
[p99]

Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R, 2014b. URL http://CRAN.R-
project.org/package=knitr. R package version 1.6.10. [p28, 99]

Yixuan Qiu
Purdue University
Department of Statistics, West Lafayette, IN 47906
USA
yixuanq@gmail.com

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://CRAN.R-project.org/package=extrafont
http://CRAN.R-project.org/package=extrafont
http://CRAN.R-project.org/package=Rttf2pt1
http://CRAN.R-project.org/package=Rttf2pt1
http://CRAN.R-project.org/package=RSvgDevice
http://CRAN.R-project.org/package=RSvgDevice
http://CRAN.R-project.org/package=xkcd
http://CRAN.R-project.org/package=xkcd
http://CRAN.R-project.org/doc/Rnews/
http://arxiv.org/abs/1403.2805
http://CRAN.R-project.org/package=showtext
http://CRAN.R-project.org/package=showtext
http://CRAN.R-project.org/package=sysfonts
http://CRAN.R-project.org/package=sysfonts
http://CRAN.R-project.org/package=RCurl
http://CRAN.R-project.org/package=RCurl
http://CRAN.R-project.org/package=Cairo
http://had.co.nz/ggplot2/book
http://had.co.nz/ggplot2/book
http://CRAN.R-project.org/package=knitr
http://CRAN.R-project.org/package=knitr
http://CRAN.R-project.org/package=knitr
http://CRAN.R-project.org/package=knitr
mailto:yixuanq@gmail.com

