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The Complex Multivariate Gaussian

Distribution
by Robin K. S. Hankin

Abstract Here I introduce package cmvnorm, a complex generalization of the mvtnorm package. A
complex generalization of the Gaussian process is suggested and numerical results presented using the
package. An application in the context of approximating the Weierstrass o-function using a complex
Gaussian process is given.

Introduction

Complex-valued random variables find applications in many areas of science such as signal process-
ing (Kay, 1989), radio engineering (Ozarow, 1994), and atmospheric physics (Mandic et al., 2009).
In this short paper I introduce cmvnorm (Hankin, 2015), a package for investigating one commonly
encountered complex-valued probability distribution, the complex Gaussian.

The real multivariate Gaussian distribution is well supported in R by package mvtnorm (Genz
et al.,, 2014), having density function

f(xm,X) = x € R", (1)

V2

where | M| denotes the determinant of matrix M. Here, m = E [X] € R" is the mean vector and & =
E {(X —m)(X— m)T} the covariance of random vector X; we write X ~ A, (m,X). One natural

generalization would be to consider Z ~ N'C,, (m,T), the complex multivariate Gaussian, with density
function

z—m) T~ !(z—m)

|7

—(

f(zm,T) ="¢ zeC’, )

where z* denotes the Hermitian transpose of complex vector z. Now m € C" is the complex mean

and I = E [(Z—m) (Z—m)"] is the complex variance; I is a Hermitian positive definite matrix.

Note the simpler form of (2), essentially due to Gauss’s integral operating more cleanly over the
complex plane than the real line:

" * " " 2,2 21 oo 2
/ e’zzdz:/ / e () dx dy = / e "rdrdd = .
C x€R JyeR 0=0 Jr=0

A zero mean complex random vector Z is said to be circularly symmetric (Goodman, 1963)
if E [ZZT] = 0, or equivalently Z and ¢’*Z have identical distributions for any a € R. Equation (2)
clearly has this property.

Most results from real multivariate analysis have a direct generalization to the complex case,
as long as “transpose” is replaced by “Hermitian transpose”. For example, X ~ M, (0,%) im-
plies BX ~ N (0,BTEB) for any constant matrix B € R"*", and analogously Z ~ NC, (0,T)
implies BZ ~ NC, (0,B*TB), B € C"*". Similar generalizations operate for Schur complement
methods on partitioned matrices.

Also, linear regression generalizes similarly. Specifically, consider y € R". Ify = XB + €
where X is a n X p design matrix, B € R” a vector of regression coefficients and € ~ N, (0,X)
is a vector of errors, then B = (XTZle)i1 XTx 1y is the maximum likelihood estimator for B.
The complex generalization is to write z = ZB+¢€, Z € C"P, B € CP, e ~ NC, (0,T') which
gives B = (z *F*1Z) ~! 2*T~12. Such considerations suggest a natural complex generalization of the
Gaussian process.

This short vignette introduces the cmvnorm package which furnishes some functionality for the
complex multivariate Gaussian distribution, and applies it in the context of a complex generalization of
the emulator package (FHankin, 2005), which implements functionality for investigating (real) Gaussian
processes.
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The package in use

Random complex vectors are generated using the rcmvnorm() function, analogous to rmvnorm():

> set.seed(1)

> library("cmvnorm”, quietly = TRUE)

> cm <- c(1, 1i)

> cv <- matrix(c(2, 1i, -1i, 2), 2, 2)

> (z <- rcmvnorm(6, mean = cm, sigma = cv))

[,1] [,2]

[1,] 0.9680986+0.55254191 0.0165969+2.97709761

[2,] 0.2044744-1.49948891 1.8320765+0.82712591

[3,1 1.0739973+0.22799141 -0.7967020+0.17360711

[4,] 1.3171073-0.98433131 0.9257146+0.55249131

[5,1 1.3537303-0.80862361 -0.0571337+0.39353751
2

[6,1 2.9751506-0.17292311 ©.3958585+3.31284391

Function demvnorm() returns the density according to (2):

> dcmvnorm(z, cm, cv)
[1] 5.103754e-04 1.809636e-05 2.981718e-03 1.172242e-03 4.466836e-03 6.803356e-07

So it is possible to determine a maximum likelihood estimate for the mean using direct numerical
optimization

> helper <- function(x) c(x[1] + 1i = x[2], x[3] + 1i * x[4])

> objective <- function(x, cv)

+  -sum(dcmvnorm(z, mean = helper(x), sigma = cv, log = TRUE))
> helper(optim(c(1, @, 1, @), objective, cv = cv)$par)

[1] 1.315409-0.4478631 0.385704+1.3727621

(helper functions are needed because optim() optimizes over R" as opposed to C"). This shows
reasonable agreement with the true value of the mean and indeed the analytic value of the MLE,
specifically

> colMeans(z)

[1] 1.315426-0.447472i 0.386068+1.3727841

The Gaussian process

In the context of the emulator, a (real) Gaussian process is usually defined as a random func-
tion 17: R? — R which, for any set of points {x, ..., Xy} in its domain D the random vector {1 (x1),
..., 11 (xn)} is multivariate Gaussian.

Itis convenient to specify E [1 (x)| B] = & (x) B, thatis, the expectation of the process at point x € D
conditional on the (unknown) vector of coefficients . Here h: R — IR7 specifies the g known

regressor functions of x = (x1,...,xp) T a common choice s 1 (x) = (1,x1,...,xp) T [givingg = p+1],
but one is in principle free to choose any function of x. One writes HT = (h(x1),...,h (x;)) when
considering the entire design matrix X; the R idiom is regressor.multi().

The covariance is typically given by

cov (7(x),n(x)) =V (x=x),

where V: R” — R must be chosen so that the variance matrix of any finite set of observations is
always positive-definite. Bochner’s theorem (Feller, 1971, chapter XIX) shows that V (-) must be
proportional to the characteristic function (CF) of a symmetric probability Borel measure.

Oakley (1999) uses techniques which have clear complex analogues to show that the posterior
mean of 7 (x) is given by

h(x)T B+ (cov (x,x1),...,cov (x,x,;))T A~? (y — Hi}) . (3)
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Here A is an n X n matrix of correlations between the observations, (72A,-]- = cov (17 (xi),7 (x]-)>
. . A -1 . . s
where ¢ is an overall variance term; and B = (XTA_lX) XT A~y is the maximum likelihood
estimator for B.

Equation (3) furnishes a cheap approximation to # (x) and is known as the ‘emulator’.

Complex Gaussian processes

The complex case is directly analogous, with : C¥ — C and B € C7. Writing cov (17 (z1),...,7 (zx))
= (), so that element (i, j) of matrix Q) is cov (7 (z;),7 <z]'> ) , we may relax the requirement that Q)

be symmetric positive definite to requiring only Hermitian positive definiteness. This allows one
to use the characteristic function of any, possibly non-symmetric, random variable ¥ with density
function f: IRP — R and characteristic function ¢:

Qjj = cov ('7 (zi) (Zj>> =¢ (Zi - Z]‘) . 4

That () remains Hermitian positive definite may be shown by evaluating a quadratic form with it
and arbitrary w € C" and establishing that it is real and non-negative:

w'Ow = ZW,-COV (17 (zi) .1 (zj>> w; definition of quadratic form
i
= ZW,-({) (z,- — zj) w; covariance function is the CF of ¥
ij
=) wi / elRe t*(z"’zﬁf (t) dt} w; definition of CF of ¥
ii L teCn
Z
= wielRet'(zi=z )wj f(t)] dt integration and summation commute
teCn l,]
= / ZWiei Re(t*z")WjeiRe(t*Z/) f(t)] dt expand and rearrange
JteCr ii
/]
2
= / wielRe('2) | £ (1) dt algebra
teCr |5
> 0. integral of sum of real positive functions

(This motivates the definition of the characteristic function of a complex multivariate random
variable Z as [E {ei Re(t*z)] )- Thus the covariance matrix is Hermitian positive definite: although its
entries are not necessarily real, its eigenvalues are all nonnegative.

In the real case one typically chooses ¥ to be a zero-mean Gaussian distribution; in the complex
case one can use the complex multivariate distribution given in equation (2) which has characteristic
function

exp (i Re (t*m) — %t*Ft) ()

and following Hankin (2012) in writing B = I'/4, we can write the variance matrix as a product of
a (real) scalar 02 term and

c(t) = exp (iRe (t'm) — t*Bt). (6)

Thus the covariance matrix () is given by

Qyj = cov (17 (zi) .1 (zj>) =o’c (zi — z]-) . (7)

In (6), B has the same meaning as in conventional emulator techniques and controls the modulus
of the covariance between 7 (z) and 7 (z'); m governs the phase.

Given the above, it seems to be reasonable to follow Oakley (1999) and admit only diagonal B;
but now distributions with nonzero mean can be considered (compare the real case which requires
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a zero mean). A parametrization using diagonal B and complex mean vector requires 3p (real)
hyperparameters; compare 2p if C? is identified with R?.

Functions of several complex variables

Analytic functions of several complex variables are an important and interesting class of objects;
Krantz (1987) motivates and discusses the discipline. Formally, consider f: C" — C, n > 2 and
write f (z1,...,z,). Function f is analytic if it satisfies the Cauchy-Riemann conditions in each variable
separately, thatisdf/dz; = 0,1 <j < n.

Such an f is continuous (due to a “non-trivial theorem of Hartogs”) and continuously differentiable
to arbitrarily high order. Krantz goes on to state some results which are startling if one’s exposure to
complex analysis is restricted to functions of a single variable: for example, any isolated singularity is
removable.

Numerical illustration of these ideas

The natural definition of complex Gaussian processes above, together with the features of analytic
functions of several complex variables, suggests that a complex emulation of analytic functions of
several complex variables might be a useful technique.

The ideas presented above, and the cmvnorm package, can now be used to sample directly from
an appropriate complex Gaussian distribution and estimate the roughness parameters:

> val <- latin.hypercube(40, 2, names = c("a”, "b"), complex = TRUE)
> head(val)

a b
[1,1 0.7375+0.23751 0.2375+0.71251
[2,] 0.6875+0.58751 ©.1375+0.33751
[3,]1 0.4625+0.53751 0.9875+0.58751
[4,] 0.7875+0.06251 0.0625+0.78751
[5,]1 0.3875+0.03751 0.5875+0.76251
[6,]1 0.2125+0.56251 0.7625+0.96251
(function latin.hypercube() is used to generate a random complex design matrix). We may now
specify a variance matrix using simple values for the roughness hyperparameters B = ((1) g) and m =

(1,i)T:

> true_scales <- c(1, 2)

> true_means <- c(1, 1i)

> A <- corr_complex(val, means = true_means, scales = true_scales)
> round(A[1:4, 1:4]1, 2)

[,1] [,2] [,3] [,4]
[1,1 1.00+0.00i ©.59-0.27i 0.25-0.10i ©.89+0.111
[2,] 0.59+0.27i 1.00+0.00i 0.20+0.00i 0.42+0.261
[3,] 0.25+0.101 0.20+0.00i 1.00+0.00i ©.10+0.061
[4,] 0.89-0.111 0.42-0.261 0.10-0.061 1.00+0.001

Function corr_complex() is a complex generalization of corr(); matrix A is Hermitian positive-
definite:

> all(eigen(A)$values > 0)
[11 TRUE
It is now possible to make a single multivariate observation d of this process, using g = (1,1+1i,1 — 2i) T,

> true_beta <- c(1, 1+1i, 1-2i)
> d <- drop(rcmvnorm(n = 1, mean = regressor.multi(val) %*% true_beta, sigma = A))
> head(d)

[1] 3.212719+1.5949011 1.874278+0.3455171 3.008503-0.7676181 3.766526+2.0718821
[5] 3.712913+0.8009831 3.944167+0.9248331
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Thus d is a single observation from a complex multivariate Gaussian distribution. Most of the functions
of the emulator package operate without modification. Thus betahat.fun(), which calculates the

maximum likelihood estimate 8 = (H*A~'H) H * A~y takes complex values directly:

> betahat.fun(val, solve(A), d)

const a b
0.593632-0.01286551 0.843608+1.09204371 1.140372-2.50537511

However, because the likelihood function is different, the interpolant() functionality is imple-
mented in the cmvnorm package by interpolant.quick.complex(), named in analogy to function
interpolant.quick() of package emulator.

For example, it is possible to evaluate the posterior distribution of the process at (0.5,0.3 + 0.17), a
point at which no observation has been made:

> interpolant.quick.complex(rbind(c(@.5, 0.3+0.1i)), d, val, solve(A),
+ scales = true_scales, means = true_means, give.Z = TRUE)

$mstar.star
[1] 1.706402-1.0086011

$7
[1] 9.203295

$prior
[1] 1.608085-0.104419i

Thus the posterior distribution for the process is complex Gaussian at this point with a mean of
about 1.71 — 1.01i and a variance of about 0.2.

Analytic functions

These techniques are now used to emulate an analytic function of several complex variables. A complex
function’s being analytic is a very strong restriction; Needham (2004) uses ‘rigidity” to describe the
severe constraint that analyticity represents.

Here the Weierstrass o-function (Chandrasekharan, 1985) is chosen as an example, on the grounds
that Littlewood and Offord (1948) consider it to be a typical entire function in a well-defined sense.
The elliptic package (Hankin, 2006) is used for numerical evaluation.

The o-function takes a primary argument z and two invariants g1, g2, so a three-column complex
design matrix is required:

> library("elliptic")

> valsigma <- 2 + 1i + round(latin.hypercube(30, 3,

+ names = c("z", "g1", "g2"), complex = TRUE)/4, 2)
> head(valsigma)

z g1 g2
[1,] 2.17+41.151 2.09+1.221 2.21+1.091
[2,] 2.11+41.011 2.04+1.031 2.25+1.151
[3,] 2.10+1.041 2.15+1.001 2.22+1.201
[4,] 2.13+41.101 2.24+1.211 2.01+1.161
[5,] 2.20+1.001 2.20+1.061 2.08+1.081
[6,] 2.05+1.101 2.19+1.041 2.11+41.031

(an offset is needed because 0 (z,81,82) =z + O (25) ). The o-function can now be evaluated at the
points of the design matrix:

> dsigma <- apply(valsigma, 1, function(u) sigma(u[1], g = u[2:31))

One way of estimating the roughness parameters is to use maximum likelihood. The likelihood

= _
for any set of roughness parameters is given by Oakley (1999) as ((72) 2 |A\71/2 |HTA*1H‘ 2
with complex generalization (02) ~(n=q) |AI" |H*A—'H |71 which is calculated in the package by
function scales.likelihood. complex(); this can be used to return the log-likelihood for a specific set
of roughness parameters:
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Figure 1: Visualization of the Weierstrass o-function, specifically o (z;2 + i,2.2 4 1.1i) in the region of
the complex plane —4 < Re (z),Im (z) < +4; visualization is scheme 13 of Hankin (2006).

> scales.likelihood.complex(scales = c(1, 1, 2), means = c(1, 1+1i, 1-2i),
+ zold = valsigma, z = dsigma, give_log = TRUE)

[1] 144.5415

Numerical methods can then be used to find the maximum likelihood estimate. Because function
optim() optimizes over R”, helper functions are again needed which translate from the optimand to
scales and means:

> scales <- function(x) exp(x[c(1, 2, 2)1)
> means <- function(x) x[c(3, 4, 4)]1 + 1i * x[c(5, 6, 6)]

Because the diagonal elements of B are strictly positive, their logarithms are optimized, following Han-
kin (2005); it is implicitly assumed that the scales and means associated with g1 and g, are equal.

objective <- function(x, valsigma, dsigma)
-scales.likelihood.complex(scales = scales(x), means = means(x),
zold = valsigma, z = dsigma)
start <- c(-0.538, -5.668, 0.6633, -0.0084, -1.73, -0.028)
jj <- optim(start, objective, valsigma = valsigma, dsigma = dsigma,
method = "SANN", control = list(maxit = 100))
(u <= jjspar)

V + VV + + V

[1] -0.5380 -5.6680 0.6633 -0.0084 -1.7300 -0.0280

Function corr_complex() may now be used to calculate the covariance of the observations:
> Asigma <- corr_complex(zl = valsigma, scales = scales(u), means = means(u))

So now we can compare the emulator against the “true” value:
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Figure 2: Visualization of the Weierstrass o-function, specifically ¢ (6 + 1i; g1 = z,¢» = 1) in the region
of the complex plane —4 < Re (z),Im (z) < +4; visualization is scheme 8 of Hankin (2006).

> interpolant.quick.complex(rbind(c(2+1i, 2+1i, 2+1i)), zold = valsigma,
+ d = dsigma, Ainv = solve(Asigma), scales = scales(u), means = means(u))

[1] 3.078956+1.2599931i
> sigma(2 + 1i, g = c(2 + 1i, 2 + 1i))
[1] 3.078255+1.257819i

showing reasonable agreement. It is also possible to test the hypothesis Hr: m € R? (that is, the
variance matrix A is real), by calculating the likelihood ratio of the unconstrained model (6) to that
obtained by HR. This may be achieved by constraining the optimization to satisfy m & R2:

ob2 <- function(x, valsigma, dsigma)
-scales.likelihood.complex(scales = scales(x), means = c(0, 0, 0),
zold = valsigma, z = dsigma)
jjr <- optim(u[1:2], ob2, method = "SANN", control = list(maxit = 1000),
valsigma = valsigma, dsigma = dsigma)
(ur <= jjr$par)

vV + V + + V

[11 0.2136577 -4.2640825

so the test statistic D is given by

> LR <- scales.likelihood.complex(scales = scales(ur), means = c(0, 0, 0),
+ zold = valsigma, z = dsigma)

> LC <- scales.likelihood.complex(scales = scales(u), means = means(u),

+ zold = valsigma, z = dsigma)

> (D <- 2 x (LC - LR))
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[1]1 22.17611

Observing that D is in the tail region of its asymptotic distribution, x3, the hypothesis Hg may be
rejected.

Conclusions

The cmvnorm package for the complex multivariate Gaussian distribution has been introduced and
motivated. The Gaussian process has been generalized to the complex case, and a complex generaliza-
tion of the emulator technique has been applied to an analytic function of several complex variables.
The complex variance matrix was specified using a novel parameterization which accommodated
non-real covariances in the context of circulary symmetric random variables. Further work might
include numerical support for the complex multivariate Student ¢ distribution.
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