
CONTRIBUTED RESEARCH ARTICLES 89

SRCS: Statistical Ranking Color Scheme
for Visualizing Parameterized Multiple
Pairwise Comparisons with R
by Pablo J. Villacorta and José A. Sáez

Abstract The problem of comparing a new solution method against existing ones to find statistically
significant differences arises very often in sciences and engineering. When the problem instance being
solved is defined by several parameters, assessing a number of methods with respect to many problem
configurations simultaneously becomes a hard task. Some visualization technique is required for
presenting a large number of statistical significance results in an easily interpretable way. Here we
review an existing color-based approach called Statistical Ranking Color Scheme (SRCS) for displaying
the results of multiple pairwise statistical comparisons between several methods assessed separately on
a number of problem configurations. We introduce an R package implementing SRCS, which performs
all the pairwise statistical tests from user data and generates customizable plots. We demonstrate
its applicability on two examples from the areas of dynamic optimization and machine learning, in
which several algorithms are compared on many problem instances, each defined by a combination of
parameters.

Introduction

When carrying out research in statistics, operational research and computer science, the problem of
comparing a novel algorithm against other state-of-the-art techniques arises very often. The same
idea can be applied to many other fields of science when introducing a new method for solving a
well-known task, with the purpose of demonstrating the superiority of the proposed approach by
numerically comparing the results with those obtained by already existing methods.

For some time now, it is widely accepted that statistical tests are required to compare several
techniques that solve one given task (Demšar, 2006; García et al., 2010). This is motivated by the
fact – also shown by Eugster et al. (2014) – that the performance of a technique for solving a task
(for example, supervised classification) heavily depends on the characteristics of the concrete task
instance (in this case, the data to which a classifier is to be fitted) and thus the experiments should
randomize over a large number of datasets. Even with the same dataset, the results may vary when
considering different subsets of training/test data (the former are used for fitting the model, and
the latter for evaluating the model once it has been learned and does not change any more). The
same applies to other very common machine learning tasks such as regression (Graczyk et al., 2010),
approximate optimization using metaheuristics (García et al., 2009), and computational intelligence
in general (Derrac et al., 2011). It should be noted that metaheuristics employed in optimization are
by themselves randomized algorithms. Therefore, multiple runs of the same algorithm on the same
optimization problem are required to assess an algorithm, as well as testing the performance over
several different functions; we will further elaborate on this later. In order to analyze the results of
these randomized trials, statistical tests are applied to draw a conclusion about the superiority of one
method over the rest. A vast amount of literature exists dealing with this specific problem, see Coffin
and Saltzman (2000); Shilane et al. (2008); García et al. (2010) and references therein, just to cite a few.

If one aims to visualize the results of statistical pairwise comparisons, the volume of data to
display grows a lot if we take into account many problem configurations at the same time. The use
of tables is very common as they summarize a lot of data in a compact way but they become hard to
interpret when the results they contain are grouped in more than two parameters. It is usually very
difficult to draw conclusions from big result tables, and for that reason, authors have developed data
visualization techniques more sophisticated than boxplots or line charts, such as the figures presented
in Demšar (2006) to distinguish between statistically different and indistinguishable algorithms, and
other approaches explained in Bartz-Beielstein et al. (2010). A tool for the same purpose that is worth
mentioning is the Model Viewer feature of the SPSS software (IBM Corp., 2012). When applied
to hypothesis testing, it displays the multiple pairwise comparisons output as a complete graph
where nodes represent the groups being compared, and arcs between them are colored differently
according to the p-value of the corresponding comparison (in orange when the p-value is below a fixed
significance threshold, and in black otherwise). Two remarkable tools are available for the R language.
The paircompviz package (Burda, 2014), closely related to ours, makes use of Hasse diagrams with
p-values in the arcs to represent the outcome of statistical tests. However, it does not use colors and it
is not well suited for representing a large number of comparisons at once (as happens when we deal

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

http://www.bioconductor.org/packages/release/bioc/html/paircompviz.html


CONTRIBUTED RESEARCH ARTICLES 90

with many different problem configurations) since the resulting Hasse diagram would be too complex.
The factorplot package recently published in this journal (Armstrong, 2013) focuses on hypothesis
testing concerning the coefficients of generalized linear models or coefficients in multinomial logistic
regression models, representing the results of the comparisons in grayscale grid plots. Our approach
is more general and is oriented mainly to simulation-based studies.

Approximate optimization and machine learning constitute two areas of knowledge in which the
problem of representing statistical results under several factors arises naturally. In both cases, we
often want to compare the algorithm performance separately on different problem setups to highlight
the conditions under which certain algorithms may work specially well. Existing studies in the field
of dynamic optimization employ up to 40 numeric tables or graphs in a paper to summarize their
results, due to the number of different experimental settings tested and the large amount of parameters
involved in each problem configuration. Obviously, interpreting such a huge amount of numeric
results becomes unfeasible. Moreover, none of the aforementioned visualization approaches deals
well with multiple factor problems.

In order to solve this problem, a novel color-based technique for multiple pairwise statistical
comparisons under several factors, called Statistical Ranking Color Scheme (SRCS), was introduced in
del Amo and Pelta (2013) for comparing the performance of several dynamic optimization algorithms
under a number of different problem configurations (del Amo et al., 2012). The method relies on
a wise use of color scales that simplifies the identification of overall trends along many different
problem settings simultaneously, thus enabling better understanding and interpretation of the results,
and providing an overview of the circumstances under which each algorithm outperforms (or is
outperformed by) the rest. However, no software package was available so far to automatically
generate this kind of graphs at once from a dataset that collects the numerical results. The code
published in del Amo and Pelta (2013) only calculates the ranking obtained by several algorithms on a
fixed problem configuration, but does not plot the results nor allows for an automatic computation
over a whole set of different problem configurations in order to obtain the images shown in del Amo
et al. (2012).

Our aim here is to present an easy-to-use R package called SRCS (Villacorta, 2015) for creating
fully customizable plots from a results file in experiments involving several factors, so that the user
can configure how the plots should be arranged in the figure and has control over all graphical details
of it, such as colors, fonts, titles, etc. Furthermore, we demonstrate the applicability of our package
in two different contexts. The first is the comparison of algorithms to solve dynamic optimization
problems (DOPs), which is the setting for which SRCS was originally conceived. The second is a novel
application to machine learning tasks, where SRCS is used to compare the performance of several
supervised classification algorithms over synthetic datasets created based on several parameters.
Examples of these are noisy and/or imbalanced data for which parameters like the severity and type
of noise, or the imbalance ratio are considered when generating the dataset from an originally clear
one.

The remainder of this contribution is structured as follows. After the introduction the foundation
of the SRCS technique and how multiple statistical significance results are displayed in color plots is
reviewed. The next section presents an R package implementing SRCS, with a detailed description of
the most important functions, their common uses and how they should be called. Then we explain two
case studies where SRCS has been applied to visualize the statistical results of comparing a number
of algorithms for two very different tasks, namely dynamic optimization and supervised classification
when the data from which the classifier is learned contain noise or are imbalanced. Finally, the last
section is devoted to conclusions and further work.

Statistical ranking color scheme

In this section we briefly review the foundations of SRCS (del Amo and Pelta, 2013). SRCS was
developed for analyzing the relative performance of algorithms on a problem, rather than the absolute
one. In other words, the outcome is a rank for each algorithm that depends on how many algorithms
are better, equal or worse than the algorithm being ranked, where the decision on each pairwise
comparison is given by a non-parametric statistical test over two sets of samples corresponding to
multiple runs of each algorithm in exactly the same conditions. No distinction is made concerning the
magnitude of the advantage or disadvantage in the performance comparison: SRCS is interested only
in whether one algorithm is statistically better or worse than another, but not in how much.

The rank assigned to an algorithm Ai on a problem configuration c (determined by at most 3
parameters) is the sum of the scores obtained by the algorithm when comparing its performance
{perfk}c

i , k = 1, . . . , K against the rest of the algorithms (all pairwise comparisons) over the same
problem configuration c. The performance is given by a sample composed by K repeated observations
obtained after K independent runs of Ai over the same problem configuration. It is assumed that

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=factorplot
https://CRAN.R-project.org/package=SRCS


CONTRIBUTED RESEARCH ARTICLES 91

either the nature of Ai is itself randomized and gives a different output in each run, as happens with
stochastic optimization algorithms, or the input data used by Ai are a random sample and thus differ
for each run, as happens for instance when using cross-validation (CV) for assessing a classification
algorithm with a given dataset. In the m-fold CV method (typically m = 5 or m = 10), m− 1 folds
are used for building a model and the remaining fold is used for evaluating it and collecting the
performance measure (accuracy or any other). This is repeated until every fold has been used exactly
once as the test fold, hence collecting m different performance values. If the complete m-fold CV
process is repeated r times, each time taking a different m-fold partition of the whole dataset, we
obtain K = m· r independent measurements of the classifier’s performance.

Ranks are calculated as follows. For each j 6= i, if the sample {perfk}c
i is statistically better (in the

sense of the performance measure we are using) than {perfk}c
j , then Ai adds 1 point to its rank, and

Aj subtracts 1 point; if the opposite occurs, Ai subtracts 1 point and Aj adds 1 point. Otherwise, both
algorithms are statistically equivalent so none of them modifies its rank. The initial rank of every
algorithm is 0. With this approach, when comparing N algorithms, the maximum rank attainable by
an algorithm is N − 1, which means it outperforms the rest, and the minimum is −(N − 1), meaning
it is outperformed by the rest.

The statistical test applied in pairwise comparisons could be customized by the user. In our
implementation, we abide by the original proposal of del Amo and Pelta (2013) and use the pairwise
Wilcoxon rank sum test with Holm’s correction for multiple comparisons. Whether the test should be
paired or not depends on the concrete problem we are facing, and can be set by the user. When assessing
optimization algorithms, for instance, the test will most likely be non-paired since usually there is
no relation between, say, the first execution of Ai and the first execution of Aj on the same problem
configuration. In machine learning, the test should most likely be paired because all algorithms should
be evaluated exactly with the same folds, hence the performance of the first execution of Ai is paired
with the first execution of Aj because both were done with the same training and test subsets.

The strength of SRCS lies in its capability of arranging in a single plot the ranks obtained by many
algorithms when tested separately over a lot of different problem configurations. Therefore, one can
quickly visualize which configurations are the most favorable to each algorithm. This is done by using
a grid of heatmaps. A heatmap represents three variables, namely the rank using a color scheme, and
two variables in the X and Y axis of the heatmap, which we call the inner X and Y variables. At the
same time, the whole heatmap is associated with one level of the other two variables, called the outer
X and Y variables.

Figure 1 shows a toy example1 of ranking calculation and depiction of a simulated problem
involving four algorithms that constitute the four levels of the outer Y variable. The problem involves
three more variables, namely the outer X variable (from which only the level outX1 is displayed), the
inner Y variable with four possible levels, and the inner X variable with four possible levels as well. In
Figure 1c the arrangement within the global plot is displayed for a concrete problem configuration
that is allocated in the top left-most corner (as inner X variable = 1, inner Y variable = 4) of the left-most
column of heatmaps (since outer X variable = outX1). The number of levels of all variables does not
have to be the same as in this particular case.

An R package implementing SRCS

The aim of the SRCS package is to offer a set of functions to obtain figures similar to the one above in
a straightforward manner and, at the same time, provide R users with full customization capabilities
over graphical aspects like font size, color, axes aspect and so on. This has been accomplished by
accepting tagged lists that are passed almost unchanged to some built-in graphical functions of the
base package graphics on which our code relies. This package is very flexible and can be easily
adapted so that the final plot has exactly the desired appearance. Package grid was also considered
initially, but the adaptation would require more coding since the default aspect (more elegant) is
slightly more complicated to fit our exact needs.

The general workflow can be summarized as:

1. Use function SRCSranks on the data being analyzed in order to compute the rank for each
combination of factors according to the performance exhibited by that combination, following
the rules explained in the preceding section.

2. Use function plot on the object returned by SRCSranks, indicating where each factor should
be placed in the resulting plot, in order to obtain a color plot depicting the ranks calculated
previously for all the factor combinations.

1Refer to Section Case studies for real examples.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 92

A
lg

 1
A

lg
 2

A
lg

 3
A

lg
 4

0.2 0.4 0.6 0.8

Performance

(a) Performance after K independent runs. Dashed
lines indicate no statistically significant differences.

Algorithm Better Equal Worse Rank Colorthan to than

Alg 1 3 0 0 3
Alg 2 1 1 1 0
Alg 3 0 2 1 −1
Alg 4 0 1 2 −2

(b) Rank calculation and color assigned.

A
lg

or
ith

m

Outer X variable

outX1

A
lg

 4

In
ne

r 
Y

 v
ar

ia
bl

e

1

2

3

4

−2

−1

0

1

2

3

A
lg

 3

In
ne

r 
Y

 v
ar

ia
bl

e

1

2

3

4

−2

−1

0

1

2

3

A
lg

 2

In
ne

r 
Y

 v
ar

ia
bl

e

1

2

3

4

−2

−1

0

1

2

3

A
lg

 1

In
ne

r 
Y

 v
ar

ia
bl

e

1

2

3

4

1 2 3 4

−2

−1

0

1

2

3

Inner X variable

(c) Arrangement in the plot.

Figure 1: Rank calculation of the relative performance of four algorithms in a problem configuration
defined by Inner X variable = 1, Inner Y variable = 4, Outer X variable = outX1.

3. (If needed) Use function SRCScomparison on the object returned by SRCSranks, specifying
a concrete factor combination as well, to obtain a qualitative table describing the relative
performance (measured from a statistical point of view) of every pair of levels of the target
variable on the factor combination indicated. Each cell of the table contains a sign "=", ">" or
"<" comparing the level on that row with the level on that column, where "=" stands for "no
statistically significant differences found".

4. (If needed) Use function animatedplot on the object returned by SRCSranks, provided that the
user data had more than one performance column, to visualize a video in which each video
frame displays the ranks plot obtained by one performance column.

5. (If needed) Use function singleplot on the object returned by SRCSranks, specifying a factor
combination that leaves two factors free, to visualize the ranks of one square of the full grid.

Functions SRCSranks and SRCScomparison

Our package exports five functions. Note that most of the arguments have default values to allow for
a straightforward use if no customization is needed. The one that should be called first, prior to the
plotting functions, is the following:

SRCSranks(data, params, target, performance, pairing.col = NULL,
test = c("wilcoxon", "t", "tukeyHSD", "custom"), fun = NULL,
correction = p.adjust.methods, alpha = 0.05, maximize = TRUE, ncores = 1,
paired = FALSE)

We review the meaning of the arguments below. For further details please refer to the corresponding
help pages.

• data is a data frame containing the repeated performance measures together with their problem
configuration (Table 1).

• params is a vector of strings with the names of the columns that define a problem configuration
(here: c("A","B","C")).

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 93

A B C Target Performance Fold

a1 b1 c1 Alg1 72.45 1
...

...
...

...
...

...
a1 b1 c1 Alg1 72.36 K

a1 b1 c1 Alg2 70.12 1
...

...
...

...
...

...
a1 b1 c1 Alg2 69.89 K

a1 b1 c1 Alg3 85.40 1
...

...
...

...
...

...
a1 b1 c1 Alg3 85.21 K

...
...

...
...

...
...

Table 1: A subset of the input data in a problem with a 3-level target variable, three problem-defining
parameters A, B, and C, with K observations of the performance per problem combination, and pairing
between the samples. Showing only a fixed problem configuration defined by A = a1, B = b1, C = c1. In
this case, the column called Fold acts as the pairing column as it links the performance values within a
given problem configuration for the paired statistical tests.

• target is the name of the target column whose levels are compared within each problem
configuration (here, "Target").

• performance is the name of the column containing one or more observations of the response (or
performance) variable associated to a problem configuration and a target level. It can be a string
or a vector of strings, in which case the ranking process will be done independently for each
of the performance columns indicated in the vector. This feature is used for composing videos
showing the evolution of the performance at several time instants.

• pairing.col is the name of the column that indicates which performance values (corresponding
to the same parameter configuration but different levels of the target variable) are linked with
respect to the statistical tests. This value only makes sense if we set paired = TRUE; otherwise,
it will be ignored.

• test is the statistical test (defaults to Wilcoxon) to be used for the pairwise comparisons (paired
indicates whether a paired version of the test will be used or not). "custom" means a custom
test will be applied, implemented by the function passed in the fun argument (which otherwise
will be ignored).

• fun is a function implementing a custom statistical test for two samples that should return a
tagged list with a p.values field, as occurs with pairwise.t.test and paired.wilcox.test,
containing a matrix of p-values whose rows and columns have proper names.

• correction is the p-value adjustment method for multiple pairwise comparisons (defaults to
Holm’s procedure). It must be one of those natively implemented by R (ignored when test =
"tukeyHSD").

• alpha is the significance threshold for the statistical test.

• maximize indicates whether the larger the performance, the better (default) or vice versa.

• ncores is the number of physical cores to be used in the computations. Parallelization is
achieved through the function parLapply of the parallel package.

• paired indicates whether the multiple pairwise comparison tests should be paired or not
(defaults to FALSE). When set to TRUE, the repeated performance observations are taken to be
linked according to the values of the pairing.col column. For a given combination of params,
the multiple observations associated to distinct levels of the target variable but sharing the same
value of pairing.col are linked, as shown in column Fold of Table 1. Hence, all the pairwise
comparisons between any two levels of the target variable will be paired.

The above function receives a data frame, chunks it according to all possible combinations of the
values of params, and compares the levels of the target variable within each group by applying a
statistical test to each binary comparison with the selected p-value adjustment method. When running
in parallel, each processor manages a subset of all the chunks generated, where a chunk is composed

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 94

of all the rows corresponding to a problem configuration. Therefore the input data are distributed
among the processors by subsets of consecutive rows.

The output of the function is an object belonging to the S3 class ‘SRCS’ and extending class
‘data.frame’, which is actually a data frame containing all the params and target columns, a new rank
column, two more columns with the average and the standard deviation of the performance for each
problem combination, and additional columns summarizing the p-values of pairwise comparisons. In
case more than one performance column was passed to the function, the output data frame will not
contain the average, standard deviation and p-values columns, but just one rank column for each of
the performance columns of the input data. The resulting object has been given an S3 class name ‘SRCS’
so that function plot can be applied on it after properly implementing a specific S3 method described
below.

Function SRCScomparison receives the ‘SRCS’ object calculated by SRCSranks together with a prob-
lem configuration, and summarizes the p-values of the multiple pairwise comparisons. All the data are
already present in the data frame returned by SRCSranks but not in an easily interpretable disposition.
Therefore this function basically collects the p-values and prints them on screen in a nice way, either
as a p-value table or showing only the qualitative result of every statistical comparison, i.e., >,=,<
for a fixed α, without presenting the actual p-values. The function only works if the previous call to
SRCSranks was done with only one performance column, because otherwise no p-values or average
performances are calculated in the output data frame. The signature is the following:

SRCScomparison(rankdata, target, alpha = 0.05, pvalues = FALSE, ...)

where rankdata is the data frame produced by SRCSranks, target is the name of the target column in
rankdata, alpha is the significance threshold, pvalues indicates whether p-values or qualitative results
of the comparisons should be printed, and ... is a succession of named arguments corresponding
to columns of rankdata and their values to fully determine a problem configuration. These named
arguments are used for subsetting rankdata. The number of rows of this subset should be equal to the
number of levels of the target variable; otherwise an error is thrown.

The S3 plot method for ‘SRCS’ objects

The data frame produced by SRCSranks is usually passed on to the next function, which is the S3 plot
method for ‘SRCS’ objects and constitutes the main component of the package:

plot(x, yOuter, xOuter, yInner, xInner, zInner = "rank",
out.Y.par = list(), out.X.par = list(),
inner.X.par = list(), inner.Y.par = list(),
colorbar.par = list(), color.function = heat.colors,heatmaps.per.row = NULL,
heatmaps.titles = NULL, annotation.lab = NULL, show.colorbar = TRUE,
heat.cell.par = list(), heat.axes.par = list(), colorbar.cell.par = list(),
colorbar.axes.par = list(), annotation.text.par = list())

Below we provide a brief description of all the parameters. For further details please refer to the
package help pages. Notice only the first five arguments are mandatory.

• x is an ‘SRCS’ object usually generated by a call to SRCSranks but can also be directly composed
by the user. This way, the user can create his own ranks and use the SRCS package only to plot
them, as long as they are properly arranged in a data frame with class ‘SRCS’ as those generated
by SRCSranks.

• yOuter, xOuter, yInner, xInner, zInner are the names of the columns that will be plotted in
each of the dimensions of the plot; see Figure 1c, where the Algorithm plays the role of the outer
Y variable. The zInner variable corresponds to the rank column, which is plotted using colors
in the heatmaps: the higher the value of zInner, the better, and hence, the lighter the color
assigned to it. The location of the levels both in the outer and inner variables depends on the
factor levels for these variables when transforming them to factors, a conversion that takes place
inside the function.

• out.Y.par,out.X.par,inner.X.par,inner.Y.par are tagged lists to customize how variable
labels and level labels are displayed. Some options include hiding a label, setting the char-
acter size, color, location, orientation, whether it should be placed inside a rectangle or not,
border and background color of such a rectangle, and other parameters that will be passed di-
rectly to the text function in the graphics package. Arguments heat.cell.par, heat.axes.par,
colorbar.cell.par, colorbar.axes.par and annotation.text.par play a similar role.

• color.function is a function returning a vector of hexadecimal color codes of length (maxrank
− minrank + 1) which will be used for displaying the heatmaps. Can be either a custom

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 95

function or one of the existing palettes such as heat.colors, terrain.colors, etc. The function
will be called with one argument, namely the number of colors to be returned, (maxrank −
minrank + 1).

• heatmaps.per.row is an integer indicating whether all the levels of the outer X variable are
shown horizontally, or broken in two or more sub-rows.

• show.colorbar is a Boolean that displays or hides a colorbar used as the legend of the figure.

• heatmaps.titles is a vector of strings with the titles of every individual heatmap, if needed.

• annotation.lab is an annotation string that will be displayed on the top left corner of the plot.
This is useful for labeling individual plots when composing videos.

The function relies on the layout function of the graphics package to automatically compose a
suitable layout, taking into account the number of levels of each variable and the user’s choices.

Functions animatedplot and singleplot

Function animatedplot enables composing videos from sequences of plots like Figure 3. This enables
the user to visualize time as a new dimension by plotting statistical pairwise comparison results at
different time moments. This can be useful, for instance, when comparing convergence speed between
many algorithms about which the best solution so far has been annotated at different moments of the
optimization process. The function relies on R’s built-in capability to automatically compose counter-
based filenames when successively generating plots to image files, and then calls ImageMagick (Still,
2005), a widely used open-source software for Windows and Linux, to join them together into a video
file. A number of image formats can be used for the images generated prior to composing the video.
Note that those files are not automatically deleted; the user will have to do it by himself. It is necessary
that the user has previously installed ImageMagick.

The function signature is the following:

animatedplot(x, filename, path.to.converter,
yOuter, xOuter, yInner, xInner, zInner,
width = 800, height = 800, res = 100, pointsize = 16,
delay = 30, type = c("png", "jpeg", "bmp", "tiff"), quality = 75,
compression = c("none", "rle", "lzw", "jpeg", "zip"),
annotations = NULL, ...)

In this case, zInner should be a vector with the names of the columns in x containing the performance
measures to be plotted successively. The video will have as many frames as elements there are in
zInner. The argument path.to.converter is a string with the full path of the converter program
that comes with ImageMagick, e.g., "C:/Program Files/ImageMagick-<version>/convert.exe". The
rest of the arguments allow setting the name of the output video file (including the file format) and
configure the size, resolution, delay between the frames (in 1/100th of a second), percentage of quality
and type of compression. The function also gives the possibility to set an independent annotation in
the upper-left corner of each frame by passing a vector of strings, where each element is the annotation
of the corresponding frame of the sequence. The ... argument accepts any subset of the optional
arguments to be passed to the S3 plot method for ‘SRCS’ objects that plots every frame.

Function singleplot creates a single heatmap focused on the problem configuration defined by
the user. It has the following signature:

singleplot(x, yInner, xInner, zInner = "rank", color.function = heat.colors,
labels.par = list(), colorbar.par = list(), heat.axes.par = list(),
colorbar.axes.par = list(), haxis = TRUE, vaxis = TRUE, title = "",
show.colorbar = TRUE, ...)

The parameters are similar to those already described. The ... argument in this case stands for a
succession of named arguments (as many as necessary) that will be used to subset the data argument.
From that subset, the values of the zInner column will be depicted in a single heatmap, in the locations
indicated the by yInner and xInner columns. If any pair of values of columns (xInner,yInner) is
found more than once after subsetting, an error is thrown.

Case studies

In this section, two examples representative of those typically faced by potential users will be presented,
with the purpose of illustrating the package capabilities and ease of use. None of them is aimed at
finding the best algorithm for the posed problems, but at showing the applicability of the package

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 96

in different areas of knowledge when analyzing experimental results. Therefore, the details of the
experimental framework in each example (such as the tuning of the parameters, the concrete algorithms
and datasets tested and so on) are not relevant for the aforementioned purpose2.

The first example analyses the results of dynamic optimization algorithms while the second deals
with typical machine learning problems where several classification algorithms are compared under
different settings or problem configurations. Note that the package is oriented at the analysis of
experimental results, which do not necessarily come from R code or even from a computer program.
In our case, the techniques assessed in the first example have been implemented in Java and are not
available in R.

Application to dynamic optimization problems

DOPs (Branke, 2001) are a variant of classical optimization problems in which the function being
optimized has time-dependent properties, i.e., changes along the time during the execution of the
optimization algorithm itself. The changes may affect the fitness function, the constraints, the number
of variables of the function or their domain, etc. DOPs have attracted increasing attention due to their
closeness to many real-world changing problems, as explained in the aforementioned work.

Many algorithms have been proposed to solve DOPs as explained in Cruz et al. (2011), most of
them based on Evolutionary Algorithms and other population-based metaheuristics. Here we will
reproduce one of the plots published in del Amo et al. (2012) representing a broad DOP algorithm
comparison, including the R code necessary to obtain them in a straightforward way. The numerical
results represented in the plots have been included as a data frame object called MPB in the SRCS
package. Details on the algorithms compared can be found in the aforementioned work. Below
we briefly comment on the meaning of the parameters involved in a problem configuration, the
performance measure collected in the file and the fitness function we are optimizing.

In a DOP, the fitness function changes along the time. Several aspects modulate how this happens,
such as the time passed between two consecutive changes, or the severity of the change (how different
the function is with respect to the previous version). None of these parameters is known in advance by
any algorithm. The third parameter known to affect the performance is the dimension of the function,
which is user-configurable but remains invariant during the execution.

The fitness function employed, known as the Moving Peaks Benchmark (MPB, Branke 1999; see
Figure 2a), was specifically designed as a DOP benchmark. The problem consists in maximizing a con-
tinuous n-dimensional function that results from the superposition of m peaks, each one characterized
by its own height (hj ∈ R), width (wj ∈ R) and location of its centre (pj ∈ Rn):

MPB(x) =
j

max

{
hj − wj

√
n

∑
i=1

(xi − pj
i)

2

}
, j = 1, . . . , m. (1)

The global optimum is the centre of the peak with the highest parameter hj. To make this function
dynamic, the parameters of the peaks are initialized to some prefixed values, but then change every ω
function evaluations according to certain laws (refer to Branke 1999; del Amo et al. 2012 for details).
The values of the parameters used in the experiments are summarized in Figure 2b. The first three
rows can vary to define every single problem configuration, while the rest are fixed for all problem
configurations.

A lot of different performance measures have been proposed for DOPs as mentioned in Cruz et al.
(2011). Here we employ the most widely accepted one, namely the offline error (del Amo et al., 2012):

eo f f =
1

Nc

Nc

∑
i=1

1
Ne(i)

Ne(i)

∑
j=1

( f ∗i − fij), (2)

where Nc is the total number of changes in the environment during the execution, Ne(i) is the total
number of evaluations allowed in the i-th change, f ∗i is the optimum value of the i-th change, and
fij is the best value found by the algorithm since the beginning of the i-th change up to the j-th
evaluation. It is defined this way to favor those algorithms which converge to good solutions very
quickly after each change. Furthermore, since changes take place at a fixed rate in our experiments
(Ne(i1) = Ne(i2) = . . . = Ne), the formula simplifies to

eo f f =
1

Nc Ne

Nc

∑
i=1

Ne

∑
j=1

( f ∗i − fij). (3)

2This section has been expanded in the package vignette with a third case study.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 97

0
20

40
60

80
100

0
20

40
60

80
100

0

20

40

60

−10

0

10

20

30

40

50

60

70

(a) The MPB function in two variables.

Parameter Values tested

Dimension (n) {5, 10, 15, 20, 25}
Change period (ω) {40, 100, 200, ..., 1000} · n
Severity (s) {2%, 4%, ..., 20%} · x range

x range [0, 100] for every variable
Correlation coef. (λ) 0.5
Number of peaks (m) 100
Peak heights (hj) U [30, 70]
Peak widths (wj) U [1, 12]
Height severity (hs) 7.0
Width severity (ws) 1.0

(b) Parameters used in the MPB experiments.

Figure 2: Experimental setup in the MPB.

As this is a maximization problem, f ∗i − fij remains always positive. For each problem configuration
{change period, severity, dimension}, every algorithm is run K = 50 independent times, thus collecting
50 offline error measurements which will be used to perform the pairwise statistical tests. In each run,
the fitness function changes Nc = 100 times along the execution, at regular time intervals.

The R code used to plot the results is the following:

> library(SRCS)
> str(MPB)
'data.frame': 220000 obs. of 5 variables:
$ Algorithm: Factor w/ 8 levels "reactive-cs",..: 7 7 7 7 7 7 7 7 7 7 ...
$ Dim : int 5 5 5 5 5 5 5 5 5 5 ...
$ CF : int 40 40 40 40 40 40 40 40 40 40 ...
$ Severity : int 2 2 2 2 2 2 2 2 2 2 ...
$ OffError : num 21.8 19.5 16.7 18.3 22.6 ...

> head(MPB)
Algorithm Dim CF Severity OffError

1 agents 5 40 2 21.81232
2 agents 5 40 2 19.53094
3 agents 5 40 2 16.73922
4 agents 5 40 2 18.32204
5 agents 5 40 2 22.61913
6 agents 5 40 2 19.17223

The above output is the first part of the 50 performance observations of algorithm agents in the problem
configuration defined by Dim = 5, CF = 40, Severity = 2. Note that the tests should be non-paired as
there is no relation between the runs of the algorithms.

> ranks <- SRCSranks(MPB, params = c("Dim", "CF", "Severity"),
+ target = "Algorithm", performance = "OffError", maximize = FALSE, ncores = 2)
> head(ranks);

Algorithm Dim CF Severity rank mean sd agents.pval independent-cs.pval
1 agents 5 40 2 0 18.16 2.698 NA 8.993e-12
2 independent-cs 5 40 2 -5 22.86 1.850 8.993e-12 NA
3 mqso 5 40 2 3 16.86 1.824 1.346e-01 1.324e-15
4 mqso-both 5 40 2 4 16.58 2.094 2.646e-02 5.349e-15
5 mqso-change 5 40 2 4 16.58 2.094 2.646e-02 5.349e-15
6 mqso-rand 5 40 2 4 16.58 2.094 2.646e-02 5.349e-15
reactive-cs.pval mqso.pval mqso-both.pval mqso-change.pval mqso-rand.pval

1 8.993e-12 1.346e-01 2.646e-02 2.646e-02 2.646e-02
2 1.000e+00 1.324e-15 5.349e-15 5.349e-15 5.349e-15
3 1.324e-15 NA 1.000e+00 1.000e+00 1.000e+00
4 5.349e-15 1.000e+00 NA 1.000e+00 1.000e+00
5 5.349e-15 1.000e+00 1.000e+00 NA 1.000e+00
6 5.349e-15 1.000e+00 1.000e+00 1.000e+00 NA
soriga.pval

1 2.812e-12

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 98

2 1.466e-01
3 4.419e-15
4 5.349e-15
5 5.349e-15
6 5.349e-15

Note that the K rows per problem configuration present in the input data have now collapsed into
one row per problem configuration, containing the average performance of the K observations, their
standard deviation, the rank achieved by that configuration, and the corrected p-values of the multiple
pairwise statistical tests against the other levels of the target variable in the same problem configuration.
We can now plot these results with the following code:

> plot(ranks, yOuter = "Algorithm", xOuter = "Dim", yInner = "CF", xInner = "Severity",
+ ## all the remaining arguments are optional, for customizing the appearance
+ inner.Y.par = list(levels.at = c("40", "200", "400", "600", "800", "1000"),
+ lab = "Change\n period", levels.loc = "left"),
+ out.Y.par = list(levels.lab.textpar = list(cex = 1, col = "white"),
+ levels.bg = "black", levels.border = "white"),
+ out.X.par = list(lab = "Dimension", levels.bg = "gray"),
+ colorbar.par = list(levels.at = c("-7", "0", "7")),
+ colorbar.axes.par = list(cex.axis = 0.8),
+ show.colorbar = TRUE
+ )

The results are depicted in Figure 3, which should be interpreted as follows: for a given value of
Dimension, one should look at the whole column of heatmaps vertically to know how the algorithms
behave for that dimension. The arrangement of the cells within the heatmaps is analogous to Figure 1c.
From the figure, we can see that, for instance, soriga only behaves well (although it is not the best
one) when the change period is short, and this is enhanced when increasing the dimensionality of the
problem. This amounts to say that soriga is specially good at detecting a change and recovering from it
by quickly discovering promising regions after the change, although it is not so good at exploiting
these regions (it is beaten by other algorithms when the change period gets larger). On the other hand,
agents also improves its behaviour when the dimensionality grows above 15 (otherwise, mqso-rand
dominates the rest when considering a 5- or 10-variable fitness function), but also when severity
increases, becoming the best algorithm in those cases (right part of the heatmaps).

We could ask for a single heatmap as well, defined by some values of the outer Y and X variables,
for instance Algorithm = soriga and Dimension = 25, using the following call:

> singleplot(x = ranks, zInner = "rank", yInner = "CF",
xInner = "Severity", colorbar.par = list(levels.at = c("-7", "0", "7")),
labels.par = list(ylab = "Change period"), Algorithm = "soriga", Dim = "25")

The output is shown in Figure 4. To obtain a qualitative performance comparison for a given
problem configuration, for instance when Change period = 40, Dimension = 25, Severity = 20, we can use
the following call:

SRCScomparison(ranks, "Algorithm", CF = 40, Dim = 25, Severity = 20, pvalues = FALSE)

which will produce the following matrix object as a result:

agents indep-cs mqso mqso-both mqso-change mqso-rand reactive-cs soriga
agents NA "<" "<" "<" "<" "<" "<" "<"
indep-cs ">" NA "<" "<" "<" "<" "=" ">"
mqso ">" ">" NA ">" "=" ">" ">" ">"
mqso-both ">" ">" "<" NA "<" "=" ">" ">"
mqso-change ">" ">" "=" ">" NA ">" ">" ">"
mqso-rand ">" ">" "<" "=" "<" NA ">" ">"
reactive-cs ">" "=" "<" "<" "<" "<" NA ">"
soriga ">" "<" "<" "<" "<" "<" "<" NA

Composing a video file to visualize convergence In the vignette associated to this package it is
shown how to create a video to visualize an extra temporal component in the results. The data were
collected from the aforementioned executions of dynamic optimization algorithms over the MPB
problem, annotating the offline error at the instant before every change. Both the data, the R script
and the resulting video can be downloaded from the first author’s personal home page3, which is also
given as URL in the package description. Please refer to the vignette for further details.

3http://decsai.ugr.es/~pjvi/r-packages.html

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

http://decsai.ugr.es/~pjvi/r-packages.html


CONTRIBUTED RESEARCH ARTICLES 99

A
lg

or
ith

m

Dimension

5 10 15 20 25

so
rig

a

C
ha

ng
e

pe
rio

d

40
200
400
600
800

1000

-7

0

7

ag
en

ts

C
ha

ng
e

pe
rio

d

40
200
400
600
800

1000

-7

0

7

m
q

so

C
ha

ng
e

pe
rio

d

40
200
400
600
800

1000

-7

0

7

m
qs

o-
ch

an
ge

C
ha

ng
e

pe
rio

d

40
200
400
600
800

1000

-7

0

7

m
qs

o-
ra

nd

C
ha

ng
e

pe
rio

d

40
200
400
600
800

1000

-7

0

7

m
qs

o-
bo

th

C
ha

ng
e

pe
rio

d

40
200
400
600
800

1000

-7

0

7

in
de

pe
nd

en
t-

cs

C
ha

ng
e

pe
rio

d

40
200
400
600
800

1000

-7

0

7

re
ac

tiv
e-

cs

C
ha

ng
e

pe
rio

d

40
200
400
600
800

1000

2 8 14 20 2 8 14 20 2 8 14 20 2 8 14 20 2 8 14 20

-7

0

7

Severity Severity Severity Severity Severity

Figure 3: Results of several dynamic optimization algorithms on the MPB. This plot mirrors Figure 5
of del Amo et al. (2012).

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 100

Severity

C
ha

ng
e 

pe
rio

d

40

100

200

300

400

500

600

700

800

900

1000

2 4 6 8 10 12 14 16 18 20

−7

0

7

Figure 4: A single heatmap generated by singleplot for problem configurations where Algorithm =
soriga, Dimension = 25.

Dataset #EX #AT #CL Dataset #EX #AT #CL

automobile 159 25 (15/10) 6 glass 214 9 (9/0) 7
balance 625 4 (4/0) 3 ionosphere 351 33 (33/0) 2
cleveland 297 13 (13/0) 5 pima 768 8 (8/0) 2
ecoli 336 7 (7/0) 8 vehicle 846 18 (18/0) 4

Table 2: Description of the classification datasets.

Application to machine learning: Noisy datasets

The second case study is a machine learning experiment involving six supervised classification
algorithms tested over a number of noisy datasets with several types of noise and noise severities. The
aim is to assess how noise affects each of the classifiers and whether the behaviour changes with those
parameters. The algorithms tested were the following: (a) the k-Nearest-Neighbours classifier with three
different values of k (k = 1, k = 3 and k = 5), (b) Repeated Incremental Pruning to Produce Error Reduction
(RIPPER), (c) a Support Vector Machine (SVM), and (d) the C4.5 tree-based rule induction classifier. The
reader may refer to Cohen (1995); Bishop (2006) for a review of all these algorithms.

R implementations have been used in all cases. We coded the k-NN to incorporate the HVDM
distance (Wilson and Martinez, 1997) for heterogeneous (continuous and nominal) attributes. The
SVM was taken from the e1071 package, version 1.6-4 (Meyer et al., 2014), which contains a wrapper
for the libsvm C++ library (Chang and Lin, 2001). Algorithms C4.5 and RIPPER were taken from
RWeka, version 0.4-24 (Hornik et al., 2009), which offers an R interface to the Weka framework (Witten
and Frank, 2005). The datasets employed in the experiment (Table 2) have been taken from the UCI
repository (Lichman, 2013), and are among the most widely used in machine learning studies. For
each dataset, the number of classes (#CL), the number of examples (#EX) and the number of attributes
(#AT), along with the number of numeric and nominal attributes are presented.

In the literature, two types of noise can be distinguished in a dataset (Zhu and Wu, 2004): (i)
class noise (examples labeled with a class distinct from the true one) and attribute noise (that usually
refers to erroneous attribute values). The amount and type of noise present in real-world datasets are
usually unknown. In order to control the amount of noise in the datasets and check how it affects the
classifiers, noise is introduced into each dataset in a controlled manner. Four different noise schemes
have been used in order to introduce a noise level x% into each dataset (Zhu and Wu, 2004):

1. Introduction of class noise.

• Random class noise (CLA_RAND). x% of the examples are randomly selected and turned
corrupt. The class labels of these examples are randomly replaced by another one from
the M classes.

• Pairwise class noise (CLA_PAIR). Let X be the majority class and Y the second majority
class. An example with the label X has a probability of x/100 of being incorrectly labeled
as Y.

2. Introduction of attribute noise.

• Random attribute noise (ATT_RAND). x% of the values of each attribute in the dataset are
randomly selected and turned corrupt. To corrupt each attribute ATi, x% of the examples
in the dataset are chosen, and their ATi value is replaced by a random value from the

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=RWeka


CONTRIBUTED RESEARCH ARTICLES 101

domain Di of the attribute ATi. An uniform distribution is used for both numerical and
nominal attributes.

• Gaussian attribute noise (ATT_GAUS). This scheme is similar to the uniform attribute noise,
but in this case, the ATi values are corrupted, adding a random value to them following a
Gaussian distribution of mean = 0 and standard deviation = (max−min)/5, being max and
min the limits of the attribute domain (Di). Nominal attributes are treated as in the case of
the uniform attribute noise.

The four noise schemes have been considered independently and for each type of noise, the noise
levels ranging from x = 0% (base datasets) to x = 50%, by increments of 5%, have been studied. The
accuracy estimation of the classifiers in a dataset is obtained by means of a stratified 5-fold cross-
validation, which is the standard in the field. For obtaining multiple observations, the cross-validation
procedure was repeated five times, thus obtaining K = 25 performance (accuracy rate) values for each
algorithm in each problem configuration, defined by {dataset, noise type, noise severity}. These values
will later be used in pairwise statistical comparisons. For a given problem configuration, exactly the
same partitions of a dataset were used with all the algorithms, and for that reason, the observations
are paired (recall Table 1).

Performing pairwise comparisons separating the results by dataset can be particularly useful in
certain machine learning works which include a very small number of datasets. In those studies, the
conventional approach consisting in summarizing the performance of an algorithm over a dataset
with a single value and applying post-hoc pairwise comparisons between the algorithms with these
summaries does not work, because each of the samples being compared has too few elements (due to
the reduced number of datasets) to apply a statistical test. In such cases, the SRCS approach would be
more suitable and would yield a reliable comparison for each dataset separately.

The R script which runs the algorithms over the datasets mentioned and generates the results to be
analyzed can be downloaded from the first author’s home page mentioned before, together with the
datasets. The performance results obtained are already included in the package, to save time. When
SRCS is loaded, a data frame object called ML1 containing the results of this experiment is created:

> str(ML1)

'data.frame': 52800 obs. of 6 variables:
$ Algorithm : Factor w/ 6 levels "1-NN","3-NN",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Dataset : Factor w/ 8 levels "automobile","balance",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Noise type : Factor w/ 4 levels "ATT_GAUS","ATT_RAND",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Noise ratio: num 0 0 0 0 0 0 0 0 0 0 ...
$ Fold : int 1 2 3 4 5 6 7 8 9 10 ...
$ Performance: num 77.4 54.5 86.7 81.2 84.8 ...

> head(ML1)

Algorithm Dataset Noise type Noise ratio Fold Performance
1 1-NN automobile ATT_GAUS 0 1 77.41935
2 1-NN automobile ATT_GAUS 0 2 54.54545
3 1-NN automobile ATT_GAUS 0 3 86.66667
4 1-NN automobile ATT_GAUS 0 4 81.25000
5 1-NN automobile ATT_GAUS 0 5 84.84848
6 1-NN automobile ATT_GAUS 0 6 84.37500

The R code to compute and plot the ranks with SRCS is the following.

> ranks <- SRCSranks(ML1, params = c("Dataset", "Noise type", "Noise ratio"),
+ target = "Algorithm", performance = "Performance", pairing.col = "Fold",
+ maximize = TRUE, ncores = 1, paired = TRUE)
> plot(ranks, yOuter = "Dataset", xOuter = "Algorithm", yInner =
+ "Noise type", xInner = "Noise ratio", zInner = "rank", out.X.par =
+ list(levels.lab.textpar = list(col = "white"), levels.bg = "black",
+ levels.border = "white"), out.Y.par = list(levels.bg = "gray"),
+ colorbar.axes.par = list(cex.axis = 0.8), show.colorbar = TRUE)

The results are summarized in Figure 5. This figure shows that higher values of k in the k-NN classifier
make the model perform better than lower values of k (with the exception of the automobile dataset,
where the opposite happens). Thus, 5-NN generally is better than 3-NN, and 3-NN is better than
1-NN for the different datasets considered. This fact is in accordance with the work of Kononenko
and Kukar (2007) that claimed that the value of k in k-NN determines a higher or lower sensitivity to

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 102

D
at

as
et

Algorithm

1-NN 3-NN 5-NN C4.5 RIPPER SVM

ve
hi

cl
e

N
oi

se
 ty

pe
ATT_GAUS
ATT_RAND
CLA_PAIR

CLA_RAND

-4
-2
0
2
4

pi
m

a

N
oi

se
 ty

pe

ATT_GAUS
ATT_RAND
CLA_PAIR

CLA_RAND

-4
-2
0
2
4

io
no

sp
he

re

N
oi

se
 ty

pe

ATT_GAUS
ATT_RAND
CLA_PAIR

CLA_RAND

-4
-2
0
2
4

gl
as

s

N
oi

se
 ty

pe

ATT_GAUS
ATT_RAND
CLA_PAIR

CLA_RAND

-4
-2
0
2
4

ec
ol

i

N
oi

se
 ty

pe

ATT_GAUS
ATT_RAND
CLA_PAIR

CLA_RAND

-4
-2
0
2
4

cl
ev

el
an

d

N
oi

se
 ty

pe

ATT_GAUS
ATT_RAND
CLA_PAIR

CLA_RAND

-4
-2
0
2
4

ba
la

nc
e

N
oi

se
 ty

pe

ATT_GAUS
ATT_RAND
CLA_PAIR

CLA_RAND

-4
-2
0
2
4

au
to

m
ob

ile

N
oi

se
 ty

pe

ATT_GAUS
ATT_RAND
CLA_PAIR

CLA_RAND

0 20 45 0 20 45 0 20 45 0 20 45 0 20 45 0 20 45

-4
-2
0
2
4

Noise ratio Noise ratio Noise ratio Noise ratio Noise ratio Noise ratio

Figure 5: Results of six supervised classification algorithms on eight noisy datasets.

noise. SVM presents variable results, depending on the dataset analyzed. For some of them, such as
automobile or glass, the results are predominantly in red colours. Other datasets, such as vehicle or
cleveland, show that SVM can work relatively well when the noise level is low, but its performance is
deteriorated when the noise level increases. These facts agree with the results of the literature that
state that SVM is usually noise-sensitive, particularly with high noise levels (Nettleton et al., 2010).
However, for other datasets considered, such as balance, SVM obtains good results. Finally, one must
note that both C4.5 and RIPPER, which are considered robust to noise (Zhu and Wu, 2004), obtain
intermediate results in the eight datasets considered.

Conclusions and further work

In this paper we have introduced an R package called SRCS, aimed at testing and plotting the results
of multiple pairwise statistical comparisons in different configurations of a problem, defined by several
parameters. The package implements a previously published visualization technique to summarize
the output of many comparisons at the same time by using a careful spatial arrangement to display
the result for each problem configuration defined by a parameter combination. As we have explained,
our code gives the user full control over all the graphical options so as to fully customize the plot.
Furthermore, we have taken this approach a step further by considering the time as another parameter.
This turns static images into videos to take into account this new dimension, but allows constructing
convergence plots for all problem configurations simultaneously. It should be noticed that, while
videos have been conceived to represent convergence, they can also be used with another variable in

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 103

any setting in which it makes sense to watch the evolution of statistical results.

We have successfully applied our package to two very different problems, namely dynamic
optimization problems and machine learning problems. The latter represents a novel use of SRCS that
has proven very helpful for comparing classification algorithms under different circumstances of noise
type, noise levels, imbalance ratios and shape of the data. The SRCS approach enables visualizing
the results of a number of algorithms at a glance, which in turns leads to an easier interpretation and
may also reveal trends relating different problem configurations that otherwise would be harder to
uncover, such as the configurations where each algorithm (or family of algorithms) performs best.

An interesting improvement would consist in adding interactivity to the plots. The user could
manually re-arrange the plots or add/remove problem parameters and/or target levels, and visually
check whether such modifications cause a strong change in the results or not as the plot would be
automatically updated.

Acknowledgments

This work is supported by projects TIN2011-27696-C02-01 from the Spanish Ministry of Science
and Innovation, P11-TIC-8001 from the Andalusian Government, and FEDER funds. P. J. Villacorta
acknowledges support from an FPU scholarship from the Spanish Ministry of Education, and J. A. Sáez,
from EC under FP7, Coordination and Support Action, Grant Agreement Number 316097, ENGINE
European Research Centre of Network Intelligence for Innovation Enhancement (http://engine.
pwr.wroc.pl/). We are thankful to Dr. Antonio D. Masegosa from the University of Deusto, Spain,
for suggesting the use of video sequences for visualizing the convergence of dynamic optimization
algorithms, which has proven very successful for this purpose.

Bibliography

D. A. Armstrong. factorplot: Improving presentation of simple contrasts in generalized linear models.
The R Journal, 5(2):4–15, 2013. [p90]

T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors. Experimental Methods for the
Analysis of Optimization Algorithms. Springer-Verlag, Berlin Heidelberg, 2010. [p89]

C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer,
2006. [p100]

J. Branke. Memory enhanced evolutionary algorithms for changing optimization problems. In IEEE
Congress on Evolutionary Computation (CEC), pages 1875–1882, 1999. [p96]

J. Branke. Evolutionary Optimization in Dynamic Environments. Genetic Algorithms and Evolutionary
Computation (Book 3). Kluwer Academic Publishers, MA, USA, 2001. [p96]

M. Burda. paircompviz: An R Package for Visualization of Multiple Pairwise Comparison Test Results, 2014.
URL https://www.bioconductor.org/packages/release/bioc/html/paircompviz.html. R pack-
age version 1.0.0. [p89]

C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support Vector Machines, 2001. URL http://www.csie.
ntu.edu.tw/~cjlin/libsvm. [p100]

M. Coffin and M. J. Saltzman. Statistical analysis of computational tests of algorithms and heuristics.
INFORMS Journal on Computing, 12(1):24–44, 2000. [p89]

W. W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth International Conference on
Machine Learning, pages 115–123. Morgan Kaufmann Publishers, 1995. [p100]

C. Cruz, J. R. González, and D. A. Pelta. Optimization in dynamic environments: A survey on
problems, methods and measures. Soft Computing, 15(7):1427–1448, 2011. [p96]

I. G. del Amo and D. A. Pelta. SRCS: A technique for comparing multiple algorithms under several
factors in dynamic optimization problems. In E. Alba, A. Nakib, and P. Siarry, editors, Metaheuristics
for Dynamic Optimization, volume 433 of Studies in Computational Intelligence, pages 61–77. Springer-
Verlag, Berlin Heidelberg, 2013. [p90, 91]

I. G. del Amo, D. A. Pelta, J. R. González, and A. D. Masegosa. An algorithm comparison for dynamic
optimization problems. Applied Soft Computing, 12(10):3176–3192, 2012. [p90, 96, 99]

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

http://engine.pwr.wroc.pl/
http://engine.pwr.wroc.pl/
https://www.bioconductor.org/packages/release/bioc/html/paircompviz.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


CONTRIBUTED RESEARCH ARTICLES 104

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006. [p89]

J. Derrac, S. García, D. Molina, and F. Herrera. A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms.
Swarm and Evolutionary Computation, 1(1):3–18, 2011. [p89]

M. J. Eugster, F. Leisch, and C. Strobl. (Psycho-)analysis of benchmark experiments: A formal frame-
work for investigating the relationship between data sets and learning algorithms. Computational
Statistics & Data Analysis, 71:986–1000, 2014. [p89]

S. García, D. Molina, M. Lozano, and F. Herrera. A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on
real parameter optimization. Journal of Heuristics, 15(6):617–644, 2009. [p89]

S. García, A. Fernández, J. Luengo, and F. Herrera. Advanced nonparametric tests for multiple com-
parisons in the design of experiments in computational intelligence and data mining: Experimental
analysis of power. Information Sciences, 180(10):2044–2064, 2010. [p89]

M. Graczyk, T. Lasota, Z. Telec, and B. Trawiński. Nonparametric statistical analysis of machine
learning algorithms for regression problems. In R. Setchi, I. Jordanov, R. Howlett, and L. Jain,
editors, Knowledge-Based and Intelligent Information and Engineering Systems, volume 6276 of Lecture
Notes in Computer Science, pages 111–120. Springer-Verlag, Berlin Heidelberg, 2010. [p89]

K. Hornik, C. Buchta, and A. Zeileis. Open-source machine learning: R meets Weka. Computational
Statistics, 24:225–232, 2009. [p100]

IBM Corp. IBM SPSS Statistics for Windows, Version 21. Armonk, NY, 2012. URL http://www-
01.ibm.com/software/analytics/spss/products/statistics/. [p89]

I. Kononenko and M. Kukar. Machine Learning and Data Mining: Introduction to Principles and Algorithms.
Horwood Publishing Limited, 2007. [p101]

M. Lichman. UCI Machine Learning Repository, 2013. URL http://archive.ics.uci.edu/ml. [p100]

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. e1071: Misc Functions of the
Department of Statistics (e1071), TU Wien, 2014. URL https://CRAN.R-project.org/package=e1071.
R package version 1.6-4. [p100]

D. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different types of noise on the
precision of supervised learning techniques. Artificial Intelligence Review, 33:275–306, 2010. [p102]

D. Shilane, J. Martikainen, S. Dudoit, and S. J. Ovaska. A general framework for statistical performance
comparison of evolutionary computation algorithms. Information Sciences, 178(14):2870–2879, 2008.
[p89]

M. Still. The Definitive Guide to ImageMagick. Apress, NY, 2005. [p95]

P. J. Villacorta. SRCS: Statistical Ranking Color Scheme for Multiple Pairwise Comparisons, 2015. URL
https://CRAN.R-project.org/package=SRCS. R package version 1.1. [p90]

D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions. Journal of Artificial
Intelligence Research, 6:1–34, 1997. [p100]

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2005. [p100]

X. Zhu and X. Wu. Class noise vs. attribute noise: A quantitative study. Artificial Intelligence Review, 22:
177–210, 2004. [p100, 102]

Pablo J. Villacorta
Department of Computer Science and Artificial Intelligence,
University of Granada,
ETSIIT, C/Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain
pjvi@decsai.ugr.es

José A. Sáez
ENGINE Centre,
Wrocław University of Technology,
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
jose.saezmunoz@pwr.edu.pl

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://archive.ics.uci.edu/ml
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=SRCS
mailto:pjvi@decsai.ugr.es
mailto:jose.saezmunoz@pwr.edu.pl

