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Numerical Evaluation of the Gauss
Hypergeometric Function with the
hypergeo Package
by Robin K. S. Hankin

Abstract This paper introduces the hypergeo package of R routines for numerical calculation of
hypergeometric functions. The package is focussed on efficient and accurate evaluation of the Gauss
hypergeometric function over the whole of the complex plane within the constraints of fixed-precision
arithmetic. The hypergeometric series is convergent only within the unit circle, so analytic continuation
must be used to define the function outside the unit circle. This short document outlines the numerical
and conceptual methods used in the package; and justifies the package philosophy, which is to
maintain transparent and verifiable links between the software and Abramowitz and Stegun (1965).
Most of the package functionality is accessed via the single function hypergeo(), which dispatches to
one of several methods depending on the value of its arguments. The package is demonstrated in the
context of game theory.

Introduction

The geometric series ∑∞
k=0 tk with tk = zk may be characterized by its first term and the constant ratio

of successive terms tk+1/tk = z, giving the familiar identity ∑∞
k=0 zk = (1− z)−1. Observe that while

the series has unit radius of convergence, the right hand side is defined over the whole complex plane
except for z = 1 where it has a pole. Series of this type may be generalized to a hypergeometric series
in which the ratio of successive terms is a rational function of k:

tk+1
tk

=
P(k)
Q(k)

where P(k) and Q(k) are polynomials. If both numerator and denominator have been completely
factored we would write

tk+1
tk

=
(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)(k + 1)
z

where z is the ratio of the leading terms of P(k) and Q(k) (the final term in the denominator is due to
historical reasons), and if we require t0 = 1 then we write

∞

∑
k=0

tkzk = pFq

[
a1, a2, . . . , ap

b1, b2, . . . , bq
; z
]

(1)

where it is understood that q > p− 1. The series representation, namely

1 +
∏

p
i=1 ai

∏
q
i=1 bi

z +
∏

p
i=1 ai (ai + 1)

∏
q
i=1 bi (bi + 1) 2!

z2 + · · ·+ ∏
p
i=1 ai (ai + 1) · · · (ai + k)

∏
q
i=1 bi (bi + 1) · · · (bi + k) k!

zk + · · · (2)

is implemented in the package as genhypergeo_series() and operates by repeatedly incrementing
the upper and lower index vectors

(
a1, . . . , ap

)
and

(
b1, . . . , bq

)
, and taking an appropriate running

product. Terms are calculated and summed successively until a new term does not change the sum.

In most cases of practical interest one finds that p = 2, q = 1 suffices (Seaborn, 1991). Writing a, b, c
for the two upper and one lower argument respectively, the resulting function 2F1 (a, b; c; z) is known
as the hypergeometric function, or Gauss’s hypergeometric function. Many functions of elementary
analysis are of this form; examples would include logarithmic and trigonometric functions, Bessel

functions, etc. For example, 2F1

(
1
2 , 1; 3

2 ;−z2
)
= z−1 arctan z.

Michel and Stoitsov (2008) state that physical applications are “plethora”; examples would include
atomic collisions (Alder et al., 1956), cosmology (de la Cruz-Dombriz and Dobado, 2006), and analysis
of Feynman diagrams (Davydychev and Kalmykov, 2004). In addition, naturally-occuring combinato-
rial series frequently have a sum expressible in terms of hypergeometric functions (Petkovšek et al.,
1997). One meets higher-order hypergeometric functions occasionally; the hypergeometric distribution,
for example, has a cumulative distribution function involving the 3F2 generalized hypergeometric
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function. An example from the author’s work in the field of game theory is given below.

Numerical implementations

There are two other numerical implementations for the hypergeometric function for R: the gsl pack-
age (Hankin, 2006b), a wrapper for the Gnu Scientific Library, although this does not cover complex
values (Galassi et al., 2013); and the appell package (Bove et al., 2013) which implements the Gauss
hypergeometric function as hyp2f1().

Outside the R world, there are several proprietary implementations but the evaluation methodol-
ogy is not available for inspection. Open-source implementations include that of Sage (Stein et al.,
2015) and Maxima (2014). The hypergeo package is offered as an R-centric suite of functionality with
an emphasis on multiple evaluation methodologies, and transparent coding with nomenclature and
structure following that of Abramowitz and Stegun (1965). An example is given below in which the
positions of the cut lines may be modified.

Equivalent forms

The hypergeometric function’s series representation, namely

2F1 (a, b; c; z) =
∞

∑
k=0

(a)k (b)k
(c)k k!

zk, (a)k = Γ(a + k)/Γ(a) (15.1.1)

has unit radius of convergence by the ratio test [NB: equations with three-part numbers, as 15.1.1
above, are named for their reference in Abramowitz and Stegun (1965)]. However, the integral form

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

t=0
tb−1(1− t)c−b−1(1− tz)−a dt, (15.3.1)

due to Gauss, furnishes analytic continuation; it is usual to follow Riemann and define a cut along the
positive real axis from 1 to ∞ and specify continuity from below (but see below). This is implemented
as f15.3.1() in the package and exhibits surprisingly accurate evaluation.

Gauss also provided a continued fraction form for the hypergeometric function (implemented
as hypergeo_contfrac() in the package) which has superior convergence rates for parts of the complex
plane at the expense of more complicated convergence properties (Cuyt et al., 2008).

The hypergeo package

The hypergeo package provides some functionality for the hypergeometric function. the emphasis is
on fast vectorized R-centric code, complex z and moderate real values for the auxiliary parameters a, b, c.
Extension to complex auxiliary parameters might be possible but Michel and Stoitsov (2008) caution
that this is not straightforward. The package is released under GPL-2.

The majority of the package functionality is accessed via the hypergeo() function whose behaviour
is discussed below.

Observing the slow convergence of the series representation 15.1.1, the complex behaviour of the
continued fraction representation, and the heavy computational expense of the integral representa-
tion 15.3.1, it is clear that non-trivial numerical techniques are required for a production package.

The package implements a generalization of the method of Forrey (1997) to the complex case. It
utilizes the observation that the ratio of successive terms approaches z, and thus the strategy adopted
is to seek a transformation which reduces the modulus of z to a minimum. Abramowitz and Stegun
give the following transformations:
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Figure 1: View of the complex plane showing which of equations 15.3.4 to 15.3.9 transforms to the
value of smallest modulus. The yellow, green, and red region is the unit circle.

2F1 (a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z
z− 1

)
(15.3.4)

= (1− z)−b
2F1

(
a, c− a; c;

z
z− 1

)
(15.3.5)

=
Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b) 2F1 (a, b; a + b− c + 1; 1− z)

+ (1− z)c−a−b Γ (c) Γ (a + b− c)
Γ (a) Γ (b) 2F1 (c− a, c− b; c− a− b + 1; 1− z) (15.3.6)

=
Γ (c) Γ (b− a)
Γ (b) Γ (c− a)

(−z)−a
2F1

(
a, 1− c + a; 1− b + a;

1
z

)
+

Γ (c) Γ (a− b)
Γ (a) Γ (c− b)

(−z)−b
2F1

(
b, 1− c + b; 1− a + b;

1
z

)
(15.3.7)

= (1− z)−a Γ (c) Γ (b− a)
Γ (b) Γ (c− a) 2F1

(
a, c− b; a− b + 1;

1
1− z

)
+ (1− z)−b Γ (c) Γ (a− b)

Γ (a) Γ (c− b) 2F1

(
b, c− a; b− a + 1;

1
1− z

)
(15.3.8)

=
Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b)

z−a
2F1

(
a, a− c + 1; a + b− c + 1; 1− 1

z

)
+

Γ (c) Γ (a + b− c)
Γ (a) Γ (b)

(1− z)c−a−bza−c
2F1

(
c− a, 1− a; c− a− b + 1; 1− 1

z

)
.

(15.3.9)

The primary argument in equations 15.3.4–15.3.9 is a member of the set

M =

{
z,

z
z− 1

, 1− z,
1
z

,
1

1− z
, 1− 1

z

}
;

and, observing that M is closed under functional composition, we may apply each of the trans-
formations to the primary argument z and choose the one of smallest absolute value to evaluate
using genhypergeo_series(); see Figure 1 for a diagram showing which parts of the complex plane
use which transformation.

Given the appropriate transformation, the right hand side is evaluated using direct summation.
If |z| < 1, the series is convergent by the ratio test, but may require a large number of terms to achieve
acceptable numerical precision. Summation is dispatched to genhypergeo_series() which evaluates
the generalized hypergeometric function, Equation 1; the R implementation uses multiplication by
repeatedly incremented upper and lower indices ai, bi.

Thus for example if (1− z)−1 is small in absolute value we would use function f15.3.8():
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Figure 2: Different integration paths for evaluating 2F1 (3 + i) from a start point of i/2. The straight
line path avoids the conventional cut line (green), unlike the semicircular path, which would be
consistent with the alternative cut line (purple). The values at z = 3 + i differ because of the residue
at z = 1.

> require("hypergeo")
> f15.3.8

function(A, B, C, z, tol = 0, maxiter = 2000) {
jj <- i15.3.8(A, B, C)
jj[1] * (1-z)^(-A) * genhypergeo(U = c(A, C-B), L = A-B+1, z = 1/(1-z), tol = tol,

maxiter = maxiter) + jj[2] * (1-z)^(-B) * genhypergeo(U = c(B, C-A), L = B-A+1,
z = 1/(1-z), tol = tol, maxiter = maxiter)

}

(slightly edited in the interests of visual clarity). This is a typical internal function of the package and
like all similar functions is named for its equation number in Abramowitz and Stegun (1965). Note the
helper function i15.3.9(), which calculates the Gamma coefficients of the two hypergeometric terms
in the identity. This structure allows transparent checking of the code.

Cut lines

The hypergeometric differential equation

z(1− z)F′′(z) + [c− (a + b + 1)z] F′(z)− ab F(z) = 0, (15.5.1)

together with a known value of F(z) and F′(z) may be used to define 2F1(z). Because z = 1 and z = ∞
are in general branch points, requiring F(·) to be single valued necessitates a cut line that connects
these two points. It is usual to specify a a cut line following the real axis from 1 to ∞; but sometimes
this is inconvenient. Figure 2 shows an example of different integration paths being used to relocate
the cut line.

The package includes functionality for solving equation 15.5.1 using ode() from the deSolve
package (Soetaert et al., 2010):

> f15.5.1(
+ A = 1.1, B = 2.2, C = 3.5, z = 3+1i, startz = 0.5i,
+ u = function(u) straight(u, 0.5i, 3+1i),
+ udash = function(u) straightdash(u, 0.5i, 3+1i))

[1] -0.5354302+0.7081344i

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 85

> f15.5.1(
+ A = 1.1, B = 2.2, C = 3.5, z = 3+1i, startz = 0.5i,
+ u = function(u) semicircle(u, 0.5i, 3+1i, FALSE),
+ udash = function(u) semidash(u, 0.5i, 3+1i, FALSE))

[1] -1.395698-0.043599i

> hypergeo(1.1, 2.2, 3.5, 3+1i)

[1] -0.5354302+0.7081338i

See how the different integration paths give different results; the straight path value matches that
of hypergeo(). The package also provides hypergeo_press(), which is somewhat more user-friendly
but less flexible, and uses the method recommended by Press et al. (1992).

Special cases

The series methods detailed above are not applicable for all values of the parameters a, b, c. If, for
example, c = a + b±m, m ∈N (a not uncommon case), then equation 15.3.6 is not useful because each
term has a pole; and it is numerically difficult to approach the limit. In this case the package dispatches
to hypergeo_cover1() which uses 15.3.4 through 15.3.9 but with 15.3.6 replaced with suitable limiting
forms such as

2F1 (a, b; a + b; z) =
Γ(a + b)
Γ(a)Γ(b)

∞

∑
n=0

(a)n(b)n

(n!)2 [2ψ(n + 1)− ψ(a + n)− ψ(b + n)− log(1− z)] (1− z)n,

π < |arg(1− z)| < π, |1− z| < 1
(15.3.10)

This equation is comparable to 15.3.6 in terms of computational complexity but requires evaluation
of the digamma function ψ. Equation 15.3.10 is evaluated in the package using an algorithm similar to
that for genhypergeo_series() but includes a runtime option which specifies whether to evaluate ψ (·)
ab initio each time it is needed, or to use the recurrence relation ψ (z + 1) = ψ (z) + 1/z at each iteration
after the first. These two options appear to be comparable in terms of both numerical accuracy and
speed of execution, but further work would be needed to specify which is preferable in this context.

A similar methodology is used for the case b = a±m, m = 0, 1, 2, . . . in which case the package
dispatches to hypergeo_cover2().

However, the case c− a = 0, 1, 2, . . . is not covered by Abramowitz and Stegun (1965) and the
package dispatches to hypergeo_cover3() which uses formulae taken from the Wolfram functions
site (Wolfram, 2014). For example w07.23.06.0026.01() gives a straightforwardly implementable
numerical expression for 2F1 as a sum of two finite series and a generalized hypergeometric function 3F2
with primary argument z−1.

In all these cases, the limiting behaviour is problematic. For example, consider a case where |1− z| �
1 and a + b− c is close to, but not exactly equal to, zero. Then equation 15.3.10 is not applicable. The
analytic value of the hypergeometric function in these circumstances is typically of moderate modulus,
but both terms of equation 15.3.6 have large modulus and the numerics are susceptible to cancellation
errors. However, in practice this issue seems to be rare as it arises only in contrived situations where
one is deliberately testing the system. If a user really was interested in exploring this part of parameter
space to high numerical precision then the package provides alternative methodologies such as the
integral form f15.3.1() or the continued fraction form genhypergeo_contfrac().

Critical points

All the above methods fail when z = 1
2 ± i

√
3

2 , because none of the transformations 15.3.6–15.3.9
change the modulus of z from 1. The function is convergent at these points but numerical evaluation
is difficult. This issue does not arise in the real case considered by Forrey (1997).

These points were considered by Buhring (1987) who presented a computational method for
these values; however, his method is not suitable for finite-precision arithmetic (a brief discussion
is presented at ?buhring) and the package employs either hypergeo_gosper() which uses iterative
scheme due to Gosper (Johansson et al., 2013), or the residue theorem if z is close to either of these
points.
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Figure 3: View of the function 2F1

(
2, 1

2 ; 2
3 ; z
)

evaluated over a part of the complex plane using the
hypergeo package. Function visualization following Thaller (1998) and the elliptic package (Hankin,
2006a); hue corresponds to argument and saturation to modulus. Solid contour lines correspond to
real function values and dotted to imaginary function values. Note the cut line along the real axis
starting at (1, 0), made visible by an abrupt change in hue.

Package testing suite

The package comes with an extensive test suite in the tests/ directory. The tests fall into two
main categories, firstly comparison with either Maple or Mathematica output following Becken and
Schmelcher (2000); and secondly, verification of identities which appear in Abramowitz and Stegun
(1965) as elementary special cases. Consider, for example,

2F1

(
a, 1− a;

3
2

; sin2 (z)
)
=

sin [(2a− 1) z]
(2a− 1) sin z

(15.1.15)

The left and right hand sides are given by eqn15.1.15a() and eqn15.1.15b() respectively which
agree to numerical precision in the test suite; but care must be taken with regard to the placing of
branch cuts. Further validation is provided by checking against known analytical results. For example,
it is known that

2F1

(
2, b;

5− b
2

;−1
2

)
= 1− b

3
(3)

so, for example,

> hypergeo(2, 1, 2, -1/2)

[1] 0.66666666666667+0i

The package in use

The hypergeo package offers direct numerical functionality to the R user on the command line.
The package is designed for use with R and Figure 3 shows the package being used to visual-

ize 2F1

(
2, 1

2 ; 2
3 ; z
)

over a region of the complex plane.

A second example is given from the author’s current work in game theory. Consider a game in
which a player is given n counters each of which she must allocate into one of two boxes, A or B.
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At times t = 1, 2, 3 . . . a box is identified at random and, if it is not empty, a counter removed from
it; box A is chosen with probability p and box B with probability 1− p. The object of the game is to
remove all counters as quickly as possible. If the player places a counters in box A and b in B, then the
probability mass function (PMF) of removing the final counter at time t = a + b + r is

pa(1− p)b
[(

a + b + r− 1
a− 1, b + r

)
(1− p)r +

(
a + b + r− 1
a + r, b− 1

)
pr
]

, r = 0, 1, 2, . . . . (4)

The two terms correspond to the final counter being removed from box A or B respectively. The PMF
for r has expectation

pa(1− p)b
[

p
(

a + b
a + 1, b− 1

)
2F1 (a + b + 1, 2; a + 2; p) +

(1− p)
(

a + b
a− 1, b + 1

)
2F1 (a + b + 1, 2; b + 2; 1− p)

]
(5)

with R idiom:

> expected <- function(a, b, p) {
+ Re(
+ choose(a+b, b) * p^a * (1-p)^b *
+ (p * b/(1+a) * hypergeo(a+b+1, 2, a+2, p) +
+ (1-p) * a/(1+b) * hypergeo(a+b+1, 2, b+2, 1-p)))
+ }

Thus if p = 0.8 and given n = 10 counters we might wonder whether it is preferable to allocate
them (8, 2) or (9, 1):

> c(expected(8, 2, 0.8), expected(9, 1, 0.8))

[1] 3.019899 1.921089

showing that the latter allocation is preferable in expectation.

Conclusions

Evaluation of the hypergeometric function is hard, as evidenced by the extensive literature concerning
its numerical evaluation (Becken and Schmelcher, 2000; Michel and Stoitsov, 2008; Forrey, 1997;
Buhring, 1987). The hypergeo package is presented as a modular, R-centric implementation with
multiple evaluation methodologies, providing reasonably accurate results over the complex plane and
covering moderate real values of the auxiliary parameters a, b, c.
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