
CONTRIBUTED RESEARCH ARTICLES 185

Manipulation of Discrete Random
Variables with discreteRV
by Eric Hare, Andreas Buja and Heike Hofmann

Abstract A prominent issue in statistics education is the sometimes large disparity between the
theoretical and the computational coursework. discreteRV is an R package for manipulation of
discrete random variables which uses clean and familiar syntax similar to the mathematical notation in
introductory probability courses. The package offers functions that are simple enough for users with
little experience with statistical programming, but has more advanced features which are suitable for
a large number of more complex applications. In this paper, we introduce and motivate discreteRV,
describe its functionality, and provide reproducible examples illustrating its use.

Introduction

One of the primary hurdles in teaching probability courses in an undergraduate setting is to bridge the
gap between theoretical notation from textbooks and lectures, and the statements used in statistical
software required in more and more classes. Depending on the background of the student, this
missing link can manifest itself differently: some students master theoretical concepts and notation,
but struggle with the computing environment, while others are very comfortable with statistical
programming, but find it difficult to translate their knowledge back to the theoretical setting of the
classroom.

discreteRV (Buja et al., 2015) is an approach to help with bringing software commands closer to
the theoretical notation. The package provides a comprehensive set of functions to create, manipulate,
and simulate from discrete random variables. It is designed for introductory probability courses.
discreteRV uses syntax that closely matches the notation of standard probability textbooks to allow for
a more seamless connection between a probability classroom setting and the use of statistical software.
discreteRV is available for download on the Comprehensive R Archive Network (CRAN). discreteRV
was derived from a script written by Dr. Andreas Buja for an introductory statistics class (Buja). The
package rv2 (Buja and Wickham, 2014), available on GitHub, provides a useful example of using
devtools (Wickham and Chang, 2015) to begin basic package development, and also uses Dr. Buja’s
code as a starting point. The goal of rv2 seems more focused on learning package development, while
the goal of discreteRV is to be a useful statistics education and probability learning tool.

The functions of discreteRV are organized into two logical areas, termed probabilities and simula-
tions. This document will illustrate the use of both sets of functions. All code used in this document is
available in a vignette, accessible by loading discreteRV and calling vignette("discreteRV").

Probabilities

discreteRV includes a suite of functions to create, manipulate, and compute distributional quantities
for discrete random variables. A list of these functions and brief discriptions of their functionality is
available in Table 1.

Creating random variables

The centerpiece of discreteRV is a set of functions to create and manipulate discrete random variables.
A random variable X is defined as a theoretical construct representing the value of an outcome
of a random experiment (see e.g. Wild and Seber, 1999). A discrete random variable is a special
case that can only take on a countable set of values. Discrete random variables are associated with
probability mass functions, which map the set of possible values of the random variable to probabilities.
Probability mass functions must therefore define probabilities which are between zero and one, and
must sum to one.

Throughout this document, we will work with two random variables, a simple example of a
discrete random variable representing the value of a roll of a fair die, and one representing a realization
of a Poisson random variable with mean parameter equal to two. Formally, we can define such random
variables and their probability mass functions as follows:

Let X be a random variable representing a single roll of a fair die; i.e., the sample space Ω =
{1, 2, 3, 4, 5, 6} and X is the identity, mapping the upturned face of a die roll to the corresponding
number of dots visible. Then,

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://CRAN.R-project.org/package=discreteRV
http://CRAN.R-project.org/package=devtools

CONTRIBUTED RESEARCH ARTICLES 186

Name Description

Creation

RV Create a random variable consisting of possible outcome values and their
probabilities or odds

as.RV Turn a probability vector with possible outcome values in the names()
attribute into a random variable

jointRV Create a joint random variable consisting of possible outcome values and
their probabilities or odds

Manipulation

iid Returns a random variable with joint probability mass function of random
variable Xn

independent Returns a boolean indicating whether two RVs X and Y are independent
joint Returns a random variable with joint probability mass function of random

variables X and Y
marginal The specified marginal distribution of a joint random variable
margins All marginal distributions of a joint random variable
SofI Sum of independent random variables
SofIID Sum of independent identically distributed random variables

Probabilities

P Calculate probabilities of events
probs Probability mass function of random variable X
E Expected value of a random variable
V Variance of a random variable
SD Standard deviation of a random variable
SKEW Skewness of a random variable
KURT Kurtosis of a random variable

Methods for "RV" objects

plot Plot a random variable of class "RV"
print Print a random variable of class "RV"
qqnorm Normal quantile plot for "RV" objects to answer the question how close to

normal it is

Table 1: Overview of functions provided in discreteRV ordered by topics.

f (x) = P(X = x) =
{

1/6 x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

Let Y be a random variable distributed according to a Poisson distribution with mean parameter λ.
In this case, Y takes on values in the non-negative integers {0, 1, 2, . . .}. Then,

f (y) = P(Y = y) =

{
λye−λ

y! y ∈ {0, 1, 2, . . .}
0 otherwise

In discreteRV, a discrete random variable is defined through the use of the RV function. RV accepts
a vector of outcomes, a vector of probabilities, and returns an "RV" object. The code to create X, a
random variable representing the roll of a fair die, is as follows:

> (X <- RV(outcomes = 1:6, probs = 1/6))

Random variable with 6 outcomes

Outcomes 1 2 3 4 5 6
Probs 1/6 1/6 1/6 1/6 1/6 1/6

Defaults are chosen to simplify the random variable creation process. For instance, if the probs
argument is left unspecified, discreteRV assumes a uniform distribution. Hence, the following code is
equivalent for defining a fair die:

> (X <- RV(1:6))

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 187

discreteRV Casella and Berger

E(X) E(X)
P(X == x) P(X = x)
P(X >= x) P(X ≥ x)
P((X < x1) %AND% (X > x2)) P(X < x1 ∩ X > x2)
P((X < x1) %OR% (X > x2)) P(X < x1 ∪ X > x2)
P((X == x1) | (X > x2)) P(X < x1|X > x2)
probs(X) f (x)
V(X) Var(X)

Table 2: Probability functions in discreteRV and their corresponding syntax in introductory statistics
courses.

Random variable with 6 outcomes

Outcomes 1 2 3 4 5 6
Probs 1/6 1/6 1/6 1/6 1/6 1/6

Outcomes can be specified as a range of values, which is useful for distributions in which the outcomes
that can occur with non-zero probability are unbounded. This can be indicated with the range
argument, which defaults to TRUE in the event that the range of values includes positive or negative
infinity. To define our Poisson random variable Y, we specify the outcomes as a range and the
probabilities as a function:

> pois.func <- function(y, lambda) { return(lambda^y * exp(-lambda) / factorial(y)) }
> (Y <- RV(outcomes = c(0, Inf), probs = pois.func, lambda = 2))

Random variable with outcomes from 0 to Inf

Outcomes 0 1 2 3 4 5 6 7 8 9 10 11
Probs 0.135 0.271 0.271 0.180 0.090 0.036 0.012 0.003 0.001 0.000 0.000 0.000

Displaying first 12 outcomes

Several common distributions are natively supported so that the functions need not be defined
manually. For instance, an equivalent method of defining Y is:

> (Y <- RV("poisson", lambda = 2))

Random variable with outcomes from 0 to Inf

Outcomes 0 1 2 3 4 5 6 7 8 9 10 11
Probs 0.135 0.271 0.271 0.180 0.090 0.036 0.012 0.003 0.001 0.000 0.000 0.000

Displaying first 12 outcomes

The RV function also allows the definition of a random variable in terms of odds. We construct a loaded
die in which a roll of one is four times as likely as any other roll as:

> (X.loaded <- RV(outcomes = 1:6, odds = c(4, 1, 1, 1, 1, 1)))

Random variable with 6 outcomes

Outcomes 1 2 3 4 5 6
Odds 4:5 1:8 1:8 1:8 1:8 1:8

Structure of an "RV" object

The syntactic structure of the included functions lends itself both to a natural presentation of elementary
probabilities and properties of probability mass functions in an introductory probability course, as
well as more advanced modeling of discrete random variables. In Table 2, we provide an overview
of the notational similarities between discreteRV and the commonly used probability textbook by
Casella and Berger (2001).

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 188

A random variable object is constructed by defining a standard R vector to be the possible outcomes
that the random variable can take (the sample space Ω). It is preferred, though not required, that
these be encoded as numeric values, since this allows the computation of expected values, variances,
and other distributional properties. This vector of outcomes then stores attributes which include the
probability of each outcome. By default, the print method for a random variable will display the
probabilities as fractions in most cases, aiding in readability. The probabilities can be retrieved as a
numeric vector by using the probs function:

> probs(X)

1 2 3 4 5 6
0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667

Probability-based calculations

By storing the outcomes as the principal component of the object X, we can make a number of
probability statements in R. For instance, we can calculate the probability of obtaining a roll greater
than 1 by using the code P(X > 1). R will check which of the values in the vector X are greater than
1. In this case, these are the outcomes 2, 3, 4, 5, and 6. Hence, R will return TRUE for these elements
of X, and we compute the probability of this occurrence in the function P by simply summing over
the probability values stored in the names of these particular outcomes. Likewise, we can make
slightly more complicated probability statements such as P(X > 5∪ X = 1), using the %OR% and %AND%
operators. Consider our Poisson random variable Y, and suppose we want to obtain the probability
that Y is within a distance δ of its mean parameter λ = 2:

> delta <- 3; lambda <- 2
> P((Y >= lambda - delta) %AND% (Y <= lambda + delta))

[1] 0.9834364

Alternatively, we could have also used the slightly more complicated looking expression:

> P((Y - lambda)^2 <= delta^2)

[1] 0.9834364

Conditional probabilities often provide a massive hurdle for students of introductory probability
classes. These types of questions often make it necessary to first translate the problem from everyday
language into the mathematical concept of conditional probability, e.g., what is the probability that
you will not need an umbrella when the weather forecast said it was not going to rain? Similarly,
what is the probability that a die shows a one, if we already know that the roll is no more than 3?
The mathematical solution is, of course, P(X = 1 | X ≤ 3). In discreteRV this translates directly
to a solution of P(X == 1 | X <= 3). The use of the pipe operator may be less intuitive to the
seasoned R programmer, but overcomes a major notational issue in that conditional probabilities are
most commonly specified with the pipe. Using the pipe for conditional probablity, we had to create
alternative %OR% and %AND% operators, as specified previously.

We can compute several other distributional quantities, including the expected value and the
variance of a random variable. In notation from probability courses, expected values can be found
with the E function. To compute the expected value for a single roll of a fair die, we run the code E(X).
The expected value for a Poisson random variable is its mean, and hence E(Y) in our example will
return the value two. The function V(X) computes the variance of random variable X. Alternatively, we
can also work from first principles and assure ourselves that the expression E((X -E(X))ˆ2) provides
the same result:

> V(X)

[1] 2.916667

> E((X - E(X))^2)

[1] 2.916667

Joint distributions

Aside from moments and probability statements, discreteRV includes a powerful set of functions
used to create joint probability distributions. Once again letting X be a random variable representing a

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 189

Outcome 1,1 1,2 1,3 1,4 1,5 1,6 2,1 2,2
Probability 1/36 1/36 1/36 1/36 1/36 1/36 1/36 1/36

Table 3: First eight outcomes and their associated probabilities for a variable representing two inde-
pendent rolls of a die.

single die roll, we can use the iid function to compute the probability mass function of n trials of X.
Table 3 gives the first eight outcomes for n = 2, and Table 4 gives the first eight outcomes for n = 3.
Notice again that the probabilities have been coerced into fractions for readability. Notice also that the
outcomes of the joint distribution are encoded by the outcomes on each trial separated by a comma.

Outcome 1,1,1 1,1,2 1,1,3 1,1,4 1,1,5 1,1,6 1,2,1 1,2,2
Probability 1/216 1/216 1/216 1/216 1/216 1/216 1/216 1/216

Table 4: First eight outcomes and their associated probabilities for a variable representing three
independent rolls of a die.

The * operator has been overloaded in order to allow a more seamless syntax for defining joint
distributions. Suppose we wish to compute the joint distribution of X, our toss of a fair coin, and a
coin flip. After defining the coin flip variable, the joint distribution can be defined as follows:

> Z <- RV(0:1)
> X * Z

Random variable with 12 outcomes

Outcomes 1,0 1,1 2,0 2,1 3,0 3,1 4,0 4,1 5,0 5,1 6,0 6,1
Probs 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12

Note that the behavior is slightly different when using the * operator on the same random variable.
That is, X * X will not compute a joint distribution of two realizations of X, but will rather return the
random variable with the original outcomes squared, and the same probabilities. This allows us to
perform computations such as E(Xˆ2) without encountering unexpected behavior.

Joint distributions need not be the product of iid random variables. Joint distributions in which
the marginal distributions are dependent can also be defined. Consider the probability distribution
defined in Table 5. Note that A and B are dependent, as the product of the marginal distributions
does not equal the joint. We can define such a random variable in discreteRV by using the jointRV
function, which is a wrapper for RV:

> (AandB <- jointRV(outcomes = list(1:3, 0:2), probs = 1:9 / sum(1:9)))

Random variable with 9 outcomes

Outcomes 1,0 1,1 1,2 2,0 2,1 2,2 3,0 3,1 3,2
Probs 1/45 2/45 1/15 4/45 1/9 2/15 7/45 8/45 1/5

The individual marginal distributions can be obtained by use of the marginal function:

> A <- marginal(AandB, 1)
> B <- marginal(AandB, 2)

Although the marginal distributions allow all the same computations of any univariate random
variable, they maintain a special property. The joint distribution that produced the marginals is stored
as attributes in the object. This allows for several more advanced probability calculations, involving
the marginal and conditional distributions:

> P(A < B)

[1] 0.06666667

> P(A == 2 | B > 0)

[1] 0.3333333

> P(A == 2 | (B == 1) %OR% (B == 2))

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 190

1 2 3

0 1/45 4/45 7/45
1 2/45 1/9 8/45
2 1/15 2/15 1/5

Table 5: Outcomes and their associated probabilities for a joint distribution of random variables A
(along the columns) and B (along the rows).

Outcome 2 3 4 5 6 7 8 9 10 11 12
Probability 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

Table 6: Outcomes and their associated probabilities for a variable representing the sum of two
independent rolls of a die.

[1] 0.3333333

> independent(A, B)

[1] FALSE

> A | (A > 1)

Random variable with 2 outcomes

Outcomes 2 3
Probs 5/13 8/13

> A | (B == 2)

Random variable with 3 outcomes

Outcomes 1 2 3
Probs 1/6 1/3 1/2

> E(A | (B == 2))

[1] 2.333333

discreteRV also includes functions to compute the sum of independent random variables. If the
variables are identically distributed, the SofIID function can be used to compute probabilities for
the sum of n independent realizations of the random variable. In our fair die example, SofIID(X,2)
creates a random variable object for the sum of two fair dice as shown in Table 6.

The SofI function computes the random variable representing the sum of two independent, but
not necessarily identically distributed, random variables. The + operator is overloaded to make this
computation even more syntactically friendly. Note, however, that similar limitations apply as in the
joint distribution case:

> X + Z

Random variable with 7 outcomes

Outcomes 1 2 3 4 5 6 7
Probs 1/12 1/6 1/6 1/6 1/6 1/6 1/12

> X + X # Note that this is NOT a random variable for X1 + X2

Random variable with 6 outcomes

Outcomes 2 4 6 8 10 12
Probs 1/6 1/6 1/6 1/6 1/6 1/6

> 2 * X # Same as above

Random variable with 6 outcomes

Outcomes 2 4 6 8 10 12
Probs 1/6 1/6 1/6 1/6 1/6 1/6

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 191

1 2 3 4 5 6

0.
16

50
0.

16
65

0.
16

80

Possible Values

P
ro

ba
bi

lit
ie

s

2 4 6 8 10 12

0.
04

0.
08

0.
12

0.
16

Possible Values

P
ro

ba
bi

lit
ie

s

Figure 1: Left: plot method called on a fair die random variable; right: plot method called on a sum of
two fair die random variables.

40 60 80 100

0.
00

0.
02

0.
04

Possible Values

P
ro

ba
bi

lit
ie

s

−6 −4 −2 0 2 4 6

40
60

80
10

0

Normal Quantiles

R
an

do
m

 V
ar

ia
bl

e
Q

ua
nt

ile
s

Figure 2: Left: plot method called on a sum of 20 fair die random variables; right: qqnorm method
called on a sum of 20 fair die random variables.

Plotting

discreteRV includes a plot method for random variable objects so that visualizing outcomes and their
probabilities is as simple as calling plot(X). Figure 1 on the left shows a visual representation of the
probability mass function (pmf) of a fair die. The x axis includes all outcomes, and the y axis includes
the probabilities of each particular outcome. Figure 1 on the right shows the pmf of the sum of two
independent rolls of a fair die. The pmf of a sum of 20 independent rolls of a die is given in Figure 2
on the left.

In addition to a plotting method, there is also a method for qqnorm to allow assessment of normality
for random variable objects, as displayed in Figure 2 on the right. While very close to a normal, the
sum of 20 independent rolls of a fair die still shows a slight S curve in the Q-Q plot.

Simulation

discreteRV also includes a set of functions to simulate trials from a random variable. A list of these
functions and brief discriptions of their functionality is available in Table 7.

Creation

Creating a simulated random vector is done by using the rsim function. rsim accepts a parameter X
representing the random variable to simulate from, and a parameter n representing the number of
independent trials to simulate. For example, suppose we would like to simulate ten trials from a fair
die. We have already created a random variable object X, so we simply call rsim as follows:

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 192

Name Description

plot Plot method for a simulated random vector, i.e., an object of class "RVsim"
Prop Proportion of an event observed in a vector of simulated trials
props Proportions of observed outcomes in one or more vectors of simulated trials
rsim Simulate n independent trials from a random variable X
skewSim Skew of the empirical distribution of simulated data

Table 7: List of the simulation functions contained in discreteRV.

> (X.sim <- rsim(X, 10))

Simulated Vector: 4 3 2 3 4 2 2 3 6 5

Random variable with 6 outcomes

Outcomes 1 2 3 4 5 6
Probs 1/6 1/6 1/6 1/6 1/6 1/6

The object returned is a vector of simulated values, with an attribute containing the random variable
that was used for the simulation. If we would like to retrieve only the simulated values and exclude
the attached probabilities, we can coerce the object into a vector using R’s built-in as.vector function.

> as.vector(X.sim)

[1] 4 3 2 3 4 2 2 3 6 5

It is also possible to retrieve some quantities from the simulation. We can retrieve the empirical
distribution of simulated values with the props function. This will return the outcomes from the
original random variable object, and the observed proportion of simulated values for each of the
outcomes. We can also compute observed proportions of events by using the Prop function. Similar
to the P function for probability computations on random variable objects, Prop accepts a variety of
logical statements.

> props(X.sim)

RV
1 2 3 4 5 6

0.0 0.3 0.3 0.2 0.1 0.1

> Prop(X.sim == 3)

[1] 0.3

> Prop(X.sim > 3)

[1] 0.4

Extended example: playing Craps

Craps is a common dice game played in casinos. The game begins with what is called the “Come Out”
roll, in which two fair dice are rolled. If a sum of seven or eleven is obtained, the player wins. If a sum
of two, three, or twelve is obtained, the player loses. In all other cases, the roll obtained is declared the
“Point” and the player rolls again in an attempt to obtain this same point value. If the player rolls the
Point, they win, but if they roll a seven, they lose. Rolls continue until one of these two outcomes is
achieved.

discreteRV allows for a seamless analysis and simulation of the probabilities associated with
different events in Craps. Let us begin by asking “What is the probability that the game ends after the
first roll?” To answer this question we construct two random variables. We note that calling RV(1:6)
returns a random variable for a single roll of a fair die, and then we use the overloaded + operator to
sum over two rolls to obtain the random variable Roll.

> (Roll <- RV(1:6) + RV(1:6))

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 193

Random variable with 11 outcomes

Outcomes 2 3 4 5 6 7 8 9 10 11 12
Probs 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

Recall that the game ends after the first roll if and only if a seven or eleven is obtained (resulting in a
win), or a two, three, or twelve is obtained (resulting in a loss). Hence, we calculate the probability
that the game ends after the first roll as follows:

> P(Roll %in% c(7, 11, 2, 3, 12))

[1] 0.3333333

Now suppose we would like to condition on the game having ended after the first roll. Using the
conditional probability operator in discreteRV, we can obtain the probabilities of winning and losing
given that the game ended after the first roll:

> P(Roll %in% c(7, 11) | Roll %in% c(7, 11, 2, 3, 12))

[1] 0.6666667

> P(Roll %in% c(2, 3, 12) | Roll %in% c(7, 11, 2, 3, 12))

[1] 0.3333333

Now, let us turn our attention to calculating the probability of winning a game in two rolls. Recall that
we can use the iid function to generate joint distributions of independent and identically distributed
random variables. In this case, we would like to generate the joint distribution for two independent
rolls of two dice. Now, we will have 112 possible outcomes, and our job is to determine which
outcomes result in a win. We know that any time the first roll is a seven or eleven, we will have won.
We also know that if the roll is between four and ten inclusive, then we will get to roll again. To win
within two rolls given that we have received a four through ten requires that the second roll matches
the first. We can enumerate the various possibilities to calculate the probability of winning in two rolls,
which is approximately 30%.

> TwoRolls <- iid(Roll, 2)
> First <- marginal(TwoRolls, 1)
> Second <- marginal(TwoRolls, 2)
> P(First %in% c(7, 11) %OR% (First %in% 4:10 %AND% (First == Second)))

[1] 0.2993827

Finally, suppose we are interested in the empirical probability of winning a game of Craps. Using
the simulation functions in discreteRV, we can write a routine to simulate playing Craps. Using the
rsim function, we simulate a single game of Craps by rolling from our random variable Roll, which
represents the sum of two dice. We then perform this simulation 100000 times. The results indicate
that the player wins a game of craps approximately 49% of the time.

> craps_game <- function(RV) {
+
+ my.roll <- rsim(RV, 1)
+
+ if (my.roll %in% c(7, 11)) { return(1) }
+ else if (my.roll %in% c(2, 3, 12)) { return(0) }
+ else {
+ new.roll <- 0
+ while (new.roll != my.roll & new.roll != 7) {
+ new.roll <- rsim(RV, 1)
+ }
+
+ return(as.numeric(new.roll == my.roll))
+ }
+ }
> sim.results <- replicate(100000, craps_game(Roll))
> mean(sim.results)

[1] 0.4944

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 194

Conclusion

The power of discreteRV is truly in its simplicity. Because it uses familiar introductory probability
syntax, it allows students who may not be experienced or comfortable with programming to ease into
computer-based computations. Nonetheless, discreteRV also includes several powerful functions for
analyzing, summing, and combining discrete random variables which can be of use to the experienced
programmer.

Bibliography

A. Buja. Basic Probability in R. URL http://stat.wharton.upenn.edu/~buja/STAT-101/src-
probability.R. [p185]

A. Buja and H. Wickham. rv2: Discrete Random Variables, 2014. URL https://github.com/hadley/rv2.
R package version 0.1. [p185]

A. Buja, E. Hare, and H. Hofmann. discreteRV: Create and Manipulate Discrete Random Variables, 2015.
URL http://CRAN.R-project.org/package=discreteRV. R package version 1.2.1. [p185]

G. Casella and R. L. Berger. Statistical Inference, volume 2. Cengage Learning, 2001. [p187]

H. Wickham and W. Chang. devtools: Tools to Make Developing R Packages Easier, 2015. URL http:
//CRAN.R-project.org/package=devtools. R package version 1.7.0. [p185]

C. Wild and G. Seber. Chance Encounters: A First Course in Data Analysis and Inference. John Wiley &
Sons, 1999. [p185]

Eric Hare
Iowa State University
1121 Snedecor Hall
Ames, IA, 50011
erichare@iastate.edu

Andreas Buja
University of Pennsylvania
400 Jon M. Huntsman Hall
Philadelphia, PA, 19104
buja.at.wharton@gmail.com

Heike Hofmann
Iowa State University
2413 Snedecor Hall
Ames, IA, 50011
hofmann@iastate.edu

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://stat.wharton.upenn.edu/~buja/STAT-101/src-probability.R
http://stat.wharton.upenn.edu/~buja/STAT-101/src-probability.R
https://github.com/hadley/rv2
http://CRAN.R-project.org/package=discreteRV
http://CRAN.R-project.org/package=devtools
http://CRAN.R-project.org/package=devtools
mailto:erichare@iastate.edu
mailto:buja.at.wharton@gmail.com
mailto:hofmann@iastate.edu

