
CONTRIBUTED RESEARCH ARTICLES 27

Prinsimp
by Jonathan Zhang, Nancy Heckman, Davor Cubranic, Joel G. Kingsolver, Travis Gaydos and J.S.
Marron

Abstract Principal Components Analysis (PCA) is a common way to study the sources of variation in
a high-dimensional data set. Typically, the leading principal components are used to understand the
variation in the data or to reduce the dimension of the data for subsequent analysis. The remaining
principal components are ignored since they explain little of the variation in the data. However, the
space spanned by the low variation principal components may contain interesting structure, structure
that PCA cannot find. Prinsimp is an R package that looks for interesting structure of low variability.
“Interesting” is defined in terms of a simplicity measure. Looking for interpretable structure in a low
variability space has particular importance in evolutionary biology, where such structure can signify
the existence of a genetic constraint.

Principal component analysis

Principal Components Analysis is simply an eigenanalysis of a covariance or correlation matrix. To
learn more about PCA, see any standard multivariate analysis text, such as Johnson and Wichern (2007).
Through an eigenanalysis, a d× d covariance matrix G can be decomposed in terms of its eigenvectors,
v1, . . . , vd, and the corresponding eigenvalues, λ1, . . . , λd: G = ∑d

1 λjvjvT
j . The eigenvalue, λj, can be

interpreted as the variance in G in the direction of vj and λj/ ∑d
k=1 λk as the proportion of variance

explained by vj. Often, G is well-approximated using the first J eigenvectors and eigenvalues. Typically,
data analysts only consider these J eigenvectors, and for that reason, we call the space that these
eigenvectors span the model space. We call the orthogonal complement of the model space (which is
simply the space spanned by the last d− J eigenvectors) the nearly null space.

Researchers can use existing R functions princomp and prcomp to calculate the eigenvectors,
eigenvalues and proportion of variance explained. Likewise, our library prinsimp (Cubranic et al.,
2013) can be used to study eigenvectors and their properties. In addition, prinsimp allows researchers
to more carefully study the nearly null space, by calculating simple and easily interpretable basis
vectors.

We focus on analysis of covariance matrices, although the user can input a correlation matrix for
analysis. As in usual PCA, the choice between using a correlation matrix and a covariance matrix
depends upon the types of responses and the question of interest. A correlation matrix should be used
when the responses under consideration have non-comparable units of measurement, such as meters
for measuring the response, height, and kilograms for measuring the response, weight. In all of our
applications, the responses are directly comparable: they are from the same variable measured under
different conditions (e.g., the variable weight measured at different ages). To study structure in such
data, analysis of the covariance matrix is most useful. In addition, such data usually have natural
simplicity measures, whereas non-comparable data do not.

Details of the methodology that prinsimp implements appear in Gaydos et al. (2013), a paper
which also discusses the importance of studying genetic constraints.

Simplicity and the simplicity basis

The simplicity of a vector v ∈ <d is defined in terms of a non-negative definite symmetric d× d matrix
Λ: the simplicity of v is equal to vTΛv, with large values meaning v is simple. This simplicity measure
allows us to construct the simplicity basis of the L = d− J dimensional nearly null space.

A simplicity basis for an L-dimensional linear subspace V of<d is an orthonormal basis {w1, . . . , wL}
where the wk’s are in decreasing order of simplicity, as defined by Λ. To calculate a simplicity basis,
first let u1, . . . , uL be an orthonormal basis of V and let P be the d× L matrix with kth column equal to
uk. So P is a projection matrix onto V . Let a1, . . . , aL be the eigenvectors of PTΛP with corresponding
eigenvalues γ1 ≥ γ2 ≥ · · · ≥ γL. Then it is straightforward to show that {Pa1, . . . , PaL} is a simplicity
basis of V . If the eigenvalues of Λ are distinct, then any orthonormal basis {u1, . . . , uL} will lead to the
same set of {w1, . . . , wL}. For our purposes, we set {u1, . . . , uL} equal to the last L eigenvectors of G.

Note that we require that simple v’s have large values of vTΛv. However, in some cases, the
simplicity measure is most easily defined in terms of a non-negative definite matrix Λ∗ with simple
v’s having small values of vTΛ∗v. In such a case, we simply set Λ = λ∗I−Λ∗ where λ∗ is the largest
eigenvalue of Λ∗. Then Λ is non-negative definite and simple v’s will have large values of vTΛv, as
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desired.

Examples of quadratic simplicity measures can be found in smoothing and penalized regression.
See Eilers and Marx (1996) and Green and Silverman (1994). Different examples of simplicity measures
are discussed in the next section, in particular the built-in measures of the simpart function.

Examples of simplicity measures

The function simpart has three built-in simplicity measures of vectors in <d: the default measure
based on first divided differences as defined in Gaydos et al. (2013), another measure based on second
divided differences and a third based on periodicity. These three measures are defined in terms of a
vector x ∈ <d containing values of an explanatory variable. The periodicity simplicity measure is most
natural when x contains times and the researcher believes that responses are periodic or approximately
periodic with known period.

Simplicity measure of a vector v using divided differences based on x

Divided differences are often used to approximate derivatives of a function. For instance, the first
divided difference of the differentiable function f using x1 and x2 is [ f (x2)− f (x1)]/[x2 − x1], which
serves as an approximation of f ′(x1). Our divided difference simplicity measures are appropriate
when the observed data can be considered as arising from function evaluations.

To define a divided difference simplicity measure of a vector based on the vector of explanatory
variables, x = (x[1], . . . , x[d])T , let the (d− 1)× d difference matrix Dd be

Dd =


−1 1 0 · · · 0

0 −1 1 · · ·
...

...
. . .

. . . 0
0 · · · 0 −1 1


and let W be the (d − 1) × (d − 1) diagonal matrix with W[j, j] = x[j + 1] − x[j], that is, with the
diagonal of W equal to Ddx.

First divided difference simplicity measure of v based on x

The first divided difference simplicity measure of the vector v = (v[1], . . . , v[d])T is the default measure
in simpart. To define it, write

d−1

∑
j=1

(v[j + 1]− v[j])2

x[j + 1]− x[j]
= ||W−1/2Ddv||2 = vT DT

d W−1Ddv.

This expression is a complexity measure, with large values indicating that v is complex. However, we
will define a simplicity measure, with large values indicating that v is simple. In addition, we will
scale our measure using a result of Schatzman (2002), that the eigenvalues of DT

d W−1Dd are always
between 0 and 4/∆x, where ∆x ≡ minj x[j + 1]− x[j]. We define the simplicity of v as v′Λ1v where
Λ1 = 4I − ∆xDT

d W−1Dd. Then the value of this simplicity measure is always between 0 and 4 and

the simplest vector v satisfies ∑d−1
j=1

(
v[j + 1]− v[j]

)2/(x[j + 1]− x[j]) = 0, that is, the components of
v are equal.

Second divided difference simplicity measure of v based on x

To define the simplicity measure based on second divided differences, let

δj =
v[j + 2]− v[j + 1]
x[j + 2]− x[j + 1]

− v[j + 1]− v[j]
x[j + 1]− x[j]

, j = 1, . . . , d− 2.

Our simplicity measure of the vector v is defined in terms of

d−2

∑
j=1

δ2
j

x[j + 2]− x[j]
. (1)
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We consider v simple if this expression is small. One can easily show that this sum of squares is equal
to 0 if and only if v[j] = α + βx[j] for some α and β.

To write (1) in matrix form, write δ1
...

δd−2

 = Dd−1W−1Ddv

and let W2 be the (d− 2)× (d− 2) diagonal matrix with W2[j, j] = x[j + 2]− x[j]. Thus (1) is equal to
vT DT

d W−1DT
d−1W−1

2 Dd−1W−1Ddv≡ vTΛ∗2v. To make this a simplicity measure, we set Λ2 = λ∗I−Λ∗2 ,
with λ∗ equal to the largest eigenvalue of Λ∗2 . The simplicity measure of v is vTΛ2v. The function
simpart calculates λ∗ numerically, via eigenanalysis of Λ∗2 .

Periodicity simplicity measure of v using x

In some applications, responses may vary periodically. For instance, the growth of a plant may have
a daily cycle caused by the natural daily cycle of sunlight. However, this periodic variation may be
swamped by larger sources of variation and thus not detectable by Principal Components Analysis.
In this case, we need new methods to look for small-variation periodic structure, that is, to look for
periodic structure in the nearly null space.

To use prinsimp’s periodic simplicity measure, the user must input a period. For example, if plant
height had a daily cycle and was measured hourly, then the input period would be 24. Our periodic
simplicity measure is equal to 1 if and only if the plant heights are exactly periodic. The definition of
the simplicity measure is somewhat technical, and so we provide it in the following separate section,
for the interested reader.

Details of the definition of the periodic simplicity measure of v using x

As noted, to define a periodicity measure of a vector, the user must specify an index period p, a positive
integer. We say that v = (v[1], . . . , v[d])T is periodic with index period p if and only if v[j + p] = v[j],
j = 1, d− p.

This definition of periodicity only makes practical sense if v is a vector of responses corresponding
to a vector x = (x[1], . . . , x[d])T with the x[j]’s being time points that “match”the index period. That
is, to make practical sense, the data analyst would want x to support periodicity with time period π and
index period p: that x[j + p] = x[j] + π, j = 1, . . . , d− p. However, the formal definitions that follow do
not require the vector x.

The periodic simplicity measure of a vector v ∈ <d for a given index period p is defined as follows.
Write d = pl + k with 0 ≤ k < p. First suppose that k = 0, so that d is divisible by p. Then we can
partition the vector v into l segments each of length p: vT ≡ (v(1)T , . . . , v(l)T). Let v̄∗ ∈ <p be the
component-wise average of the v(i)’s. So v̄∗’s jth component is

v∗[j] =
1
l

l

∑
i=1

v(i)[j].

The periodic simplicity measure of v, a vector of length d = lp, is defined in terms of the complexity
measure

l

∑
i=1
||v(i) − v∗||2. (2)

This measure is zero if and only if the vector v is periodic with index period p, that is, if and only if
v[j + p] = v[j] for all j = 1, . . . , d− p.

If the length of v is d = lp + k with 0 < k < p, then we divide v into l + 1 segments vT ≡
(v(1)T , . . . , v(l)T , v(l+1)T) with v(i) ∈ <p, i = 1, . . . , l and v(l+1) ∈ <k. We define v̄∗ ∈ <p as a
component-wise average, in the obvious way:

v∗[j] =

{
1

l+1 ∑l+1
i=1 v(i)[j] for 1 ≤ j ≤ k

1
l ∑l

i=1 v(i)[j] for k + 1 ≤ j ≤ p.

The periodic simplicity measure of v, a vector of length d = lp + k, 0 < k < p, is defined in terms of
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the complexity measure

l

∑
i=1
||v(i) − v∗||2 +

k

∑
j=1

(
v(l+1)[j]− v∗[j]

)2
. (3)

This measure is 0 if and only if v(1) = · · · = v(l) and the components of v(l+1) are equal to the first k
components of v(1), that is, if and only if v is periodic with index period p.

We can easily find Λ∗π so that v′Λ∗πv equals the complexity measures in (2) and (3). Since these
expressions are small when v is close to periodic, we let Λπ = λ∗I− Λ∗π where λ∗ is the largest
eigenvalue of Λ∗π and set our simplicity measure of v equal to vTΛπv. To find the largest eigenvalue
of Λ∗π , we can show that Λ∗π is a projection matrix, that is, that Λ∗Tπ Λ∗π = Λ∗π . So the eigenvalues of
Λ∗π are all equal to 0 or 1. Thus, λ∗ = 1 and Λπ = I−Λ∗π . Since v′Λ∗πv = 0 if and only if v is periodic
with index period p and this subspace of v’s is of dimension p, Λπ has eigenvalues equal to 1, of
multiplicity p, and eigenvalues equal to 0, of multiplicity d− p. Eigenvectors of Λπ corresponding to
eigenvalues equal to 1 are periodic with index period p.

For an alternative method for finding periodic structure in functional data, see Zhao et al. (2004).

Prinsimp specifics

The main function, simpart, of the package prinsimp is designed for analysis of a d× d covariance
matrix – either supplied by the user or calculated by simpart from data. If the user has data consisting
of responses vectors yj ∈ <d, j = 1, . . . , n, the user can input the n× d matrix, y, with jth row equal to
yT

j and simpart will calculate the required sample covariance matrix. For some data, for instance, if
the yj’s are different lengths, the user must supply a d× d covariance matrix estimated by an external
method, such as random regression analysis (Demidenko, 2004) or PACE (Yao et al., 2005). Sometimes,
the user must supply a vector of independent variable values, x ∈ <d, to simpart.

The simpart function uses the covariance matrix to partition <d into two subspaces, the model
space and the nearly null space. The model space is spanned by the eigenvectors of the covariance matrix
with the largest eigenvalues, that is, by the leading principal components from principal component
analysis (PCA). The nearly null space is the orthogonal complement of the model space and explains a
small amount of the variability in the data. The user specifies the dimension of the nearly null space
and thus the dimension of the model space. The prinsimp package and the simpart function help
the user to look for “simple” and “interesting” structure in the nearly null space. The main output of
simpart is two sets of orthogonal basis vectors: those that span the model space and those that span
the nearly null space. The output also includes information about these basis vectors, such as their
simplicity measures and the percents of variance they explain. The plot and basisplot functions
allow the user to visually study simpart’s output.

This section guides the reader through the capabilities of prinsimp using analyses of two data sets.
We begin with an analysis of caterpillar data, illustrating the basic simpart function and its default
print, summary and plot methods and how to use the argument reverse. This example follows the
analysis from Gaydos et al. (2013). The second data set is simulated using sine functions and, in the
analysis, we study periodicity in the nearly null space. We use the built-in measure periodic and we
also define a function that supplies simpart a tailor-made definition of periodic simplicity. At the end
of this section, we give an additional example to show how to use a tailored simplicity measure. The
option for the user to provide a tailored simplicity measure gives simpart the flexibility needed to
answer a specific scientific question.

Example: caterpillar data

We start with a simple example that replicates some of the analysis from Gaydos et al. (2013). We use
the estimated genetic covariance matrix of the caterpillar growth rate data described in Kingsolver et al.
(2004). Growth rates (mg/hour) were recorded on 529 individuals from 35 families at six temperatures:
11, 17, 23, 29, 35, 40 degrees Centigrade. Thus, the x vector input to simpart is

> x.cat <- c(11, 17, 23, 29, 35, 40)

We have a choice of the dimension of model space J = 6, 5, . . . , 1, 0 with corresponding dimension
of the nearly null space of simpledim = 0, 1, 2, . . . , 5, 6. We load the prinsimp library and access the
genetic covariance matrix, caterpillar.

> library(prinsimp)
> data(caterpillar)
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Throughout this example, we will use the default simplicity measure of first divided differences.

First consider a model space of dimension 6, so the nearly null space has dimension equal to 0.

> cat.sim.6 <- simpart(caterpillar, simpledim = 0, x = x.cat, cov = TRUE)

Since the input caterpillar is a covariance matrix and not the original data, we must set cov = TRUE.
The argument measure = "first" is not needed because "first" is the default. When we choose
simpledim = 0, the resulting model space basis vectors are simply the usual principal components of
the covariance matrix, that is, they are the eigenvectors of caterpillar. Recall that, for all values of
simpledim, the model space basis vectors are always the eigenvectors of caterpillar corresponding
to the largest eigenvalues. As in usual principal component analysis, the components of an eigenvector
are called loadings. We extend this terminology to any basis vector.

Due to rounding, the covariance matrix, caterpillar, has one negative eigenvalue. The function
simpart automatically sets negative eigenvalues equal to 0, reconstructs the covariance matrix and
prints a warning.

We plot our results by the command

> plot(cat.sim.6)

The resulting plot appears in Figure 1.
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Figure 1: Analysis of the genetic covariance matrix of the caterpillar data using a model space of
dimension 6 and first divided difference simplicity measure. Shown is the default output of the plot
method: the six principal components of the covariance matrix and the variance-simplicity view and
percent of variance explained panel.

The summary method and display=list() argument for the caterpillar data

Now consider the case with model space of dimension J = 5 and simpledim = 1, the dimension of the
nearly null space. In this case, the nearly null space is the same space as that spanned by the sixth
principal component. Thus the simpart output and plot will be identical to Figure 1, save for colour
labelling.

> cat.sim.5 <- simpart(caterpillar, simpledim = 1, x = x.cat, cov = TRUE)

The summary method prints the simplicity measures, the percents of variance explained and the
cumulative percents of variance explained of the basis vectors of both the model space and the nearly
null space. If we set loadings=TRUE, then the summary method also prints the basis vectors of both the
model space and the nearly null space.
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> summary(cat.sim.5, loadings = TRUE)
Simple partition (first divided differences): 1 simple basis

model 1 model 2 model 3 model 4 model 5 simple 1
Simplicity 1.85 3.54 1.25 2.47 3.55 2.68
%-var explained 59.5 19.2 14.7 5.85 0.731 <.1
Cumulative %-var 59.5 78.7 93.4 99.3 100 <.1

Loadings:
model 1 model 2 model 3 model 4 model 5 simple 1

11 0.022 -0.031 0.059 0.022 0.948 -0.308
17 -0.038 0.384 -0.141 -0.479 0.270 0.727
23 0.243 0.317 0.698 0.510 0.047 0.300
29 0.074 0.284 -0.687 0.650 0.074 0.121
35 -0.512 0.736 0.088 -0.082 -0.102 -0.413
40 0.819 0.359 -0.098 -0.284 -0.098 -0.317

In calculating the percent of total variance explained, summary “restarts” the accumulation for the
simplicity basis. In the summary output, we see, for example, that the basis vector in the 1-dimensional
nearly null space has a simplicity score of 2.68 and explains less than 1% of the total variance. The
cumulative percent of total variance explained is also less than 1% – this provides no additional
information in this case, when the nearly null space is 1-dimensional. We know, due to the required
reconstruction of the matrix caterpillar, that the percent is actually equal to 0. We can check this
with the following command.

> cat.sim.5$variance
$model
[1] 0.618482630 0.199899686 0.153080939 0.060800542 0.007597639
$simple
[1] 2.305732e-17
$full
[1] 0.618482630 0.199899686 0.153080939 0.060800542 0.007597639 0.000000000

We see that cat.sim.5$variance$simple is essentially equal to 0 and that cat.sim.5$variance$full[6],
the variance associated with the sixth eigenvalue from the full eigenanalysis, is equal to 0.

We now consider a more interesting higher-dimensional nearly null space, setting simpledim = 2.
The resulting model basis vectors are identical to the first four model basis vectors in Figures 1, as
these are the first four principal components of caterpillar. We can make a plot similar to Figure 1,
but instead we plot just the two basis vectors of the nearly null space. We do this with the display =
list() argument in the plot method.

> cat.sim.4 <- simpart(caterpillar, simpledim = 2, x = x.cat, cov = TRUE)
> plot(cat.sim.4, display = list(simple = c(1, 2)))

This is shown in Figure 2.

Recall that the default plot, without the display = list() argument, would contain all of the
model and nearly null space basis vectors. If the data vectors or the covariance matrix have high
dimension, an unappealing number of subplots would be generated. Because of this, the plot method
plots a maximum of six basis vectors. With the caterpillar data, this is not an issue because the data are
only 6-dimensional. If the data are higher-dimensional, the user must either specify six or fewer basis
vectors to plot or resort to another plotting method, such as using basisplot, illustrated in the next
section.

The print command for the caterpillar data

The print command gives simplicity measure information: the measures of the basis vectors con-
structed according to the simpart call and the measures of the “full space” simplicity basis vectors -
that is, the basis vectors of <d that would be constructed if we were to set simpledim equal to d.

> print(cat.sim.4)
Call:
simpart(y = caterpillar, simpledim = 2, x = x.cat, cov = TRUE)

Simplicity measure: first divided differences

Partition simplicity (2 simple basis):
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model 1 model 2 model 3 model 4 simple 1 simple 2
1.848069 3.539756 1.245756 2.471847 3.726200 2.501706

Full space simplicity:
full 1 full 2 full 3 full 4 full 5 full 6

4.000000 3.773655 3.132870 2.237603 1.370816 0.818390

Note that the maximum simplicity score is 4, as claimed. We now study the percent of variance
explained in the nearly null space.

> cat.sim.4$varperc$simple
[1] 0.6244724 0.1061671
> summary(cat.sim.4)
Simple partition (first divided differences): 2 simple basis

model 1 model 2 model 3 model 4 simple 1 simple 2
Simplicity 1.85 3.54 1.25 2.47 3.73 2.50
%-var explained 59.5 19.2 14.7 5.85 0.624 0.106
Cumulative %-var 59.5 78.7 93.4 99.3 0.624 0.731

The simplest vector in the nearly null space explains 0.624% of the variance, and the two dimensional
nearly null space explains 0.731% of the variance. The simplest vector is a contrast between lower and
higher temperatures (see Figure 2). Interpretation of this simplest vector with respect to genetic con-
straints can be found in Gaydos et al. (2013). Other analyses of this data set, using simpledim=3,2,1,0,
are left to the user.
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Figure 2: Analysis of the genetic covariance matrix of the caterpillar data using a model space of
dimension 4 and first divided difference simplicity measure. Shown are the two basis vectors spanning
the nearly null space, the variance-simplicity view and percent of variance explained panel.

The reverse argument for the caterpillar data

In principal component analysis, the signs of the loadings are arbitrary and so, in simpart, each basis
vector can have one of two possible directions. To improve interpretability the user may want to
reverse the direction of a basis vector by multiplying all of its components by −1. This can be done
with the rev argument in simpart. The rev argument takes a logical vector specifying which basis
vector directions we want to reverse. For example if we would like to reverse model basis vector 2 and
keep the other basis vectors’ directions unchanged, we would use the following command.

> plot(simpart(caterpillar, simpledim = 2, x = x.cat, cov = TRUE,
+ measure = "first",
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+ rev = c(FALSE, TRUE, FALSE, FALSE, FALSE, FALSE)))
> # Reverses the second basis vector, in this case the second principal component

This is shown in Figure 3. The subplot in the second row of the first column contains the reversed
second principal component. Compare this subplot with the one in the same position in Figure 1: it is
the same except for the sign of the loadings. We would not, in general, prefer the subplot in Figure 3
because all of the loadings are negative. Indeed, if we were to see such a plot in our analysis we would
use the rev command to reverse its direction.
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Figure 3: Analysis of the genetic covariance matrix of the caterpillar data using a model space of
dimension 4 and first divided difference simplicity measure. Shown are the four basis vectors spanning
the model space, the two simplicity basis vectors spanning the nearly null space, the variance-simplicity
view and percent of variance explained panel. The second model basis vector is reversed.

Simulated periodic data

In this section we analyze simulated data with two simplicity measures that are useful when we
expect the data to have some periodic structure “hidden” in the nearly null space. The first measure
is the built-in periodic measure. While this built-in measure may be fine on its own, it produces
simplicity basis vectors that are rough. We have found that the periodic simplicity measure is most
useful in combination with a divided difference measure, to force smoothness of basis functions. That
is the subject of our second analysis, which demonstrates how to input a function for a user-defined
simplicity measure.

For both examples we use simulated data generated from sine functions. Parts of this analysis can
be seen in the R demo in prinsimp via the command demo(periodic), which will also provide the
user with the function periodic.example. We have fine-tuned the data parameters to make our point,
but have left enough flexibility in our code to allow the interested user to experiment.

The data from the ith sampling unit, i = 1, . . . , n, are constructed from the process

yi (x) = α0,i + α1,i sin (2πx/L) + α2,i sin (2πx/M) +
N+2

∑
k=3

αk,i sin (2π (k− 2) x/K)

where αk,i is distributed as N(0, a2
k), k = 0, . . . , N + 2. The data are yij ≡ yi(j) + εij with εij distributed

as N(0, e2) for j = 1, . . . , J. All random variables are independent.

The function periodic.example produces one simulated data set of n independent vectors, each
of length J =x.max.
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> periodic.example(L = 72, M = 5, K = 12, a0, a1, a2, sd.sigma, e, n = 100, x.max)

The arguments of periodic.example are L, M and K, which define the periods of the different compo-
nents of the N + 2 underlying sine functions, and the standard deviations of the random variables: a0
= a0, a1 = a1, a2 = a2, sd.sigma equals the vector (a3, . . . , aN+2)

T and e = e. We simulate a J = 72 by
n = 100 data matrix for analysis.

> # Simulate using demo(periodic)
> example <- periodic.example(a0 = 4, a1 = 4, a2 = 0, sd.sigma = 0.2,
+ e = 1, x.max = 72)

Thus the data from subject i are obtained from the process

yi (x) = α0,i + α1,i sin (2πx/72) + α3,i sin (2πx/12)

observed at x = 1, . . . , 72, with measurement error added, with error standard deviation 1. The
standard deviations of α0,i, α1,i and α3,i are, respectively, 4, 4 and 0.2. Figure 4 contains a plot of the
the first 15 data sets.
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Figure 4: The plot of the data from the first 15 of the 100 curves of simulated periodic data observed at
72 values of x.

We will use simpart to analyze our high-dimensional data and see if we can locate any periodic
structure. Recall that we simulated the data {yij} using sine functions sin (2π · /72) and sin (2π · /12),
functions whose periods are, respectively, 72 and 12, and that the variance of the random coefficient
of the period 12 function is small. We show that PCA will not pick up the period 12 variability in
the data, nor will simpart with the periodic simplicity measure. However, simpart with a smoothed
periodic simplicity measure easily identifies the period 12 structure.

We begin with model space determination. This determination is the same as determining the
number of components to retain in principal component analysis: by using either princomp or simpart
with simpledim = 0, we can study the percent of variance explained. With this analysis, we see that
a model space of dimension J = 2 explains approximately 96% of the sample variability, and the
third principal component only explains an additional 0.22%. Figure 5 shows that the first principal
component captures the constant function structure while the second principal component captures
the structure with period 72. Moreover, we see no structure in the third through the sixth principal
components. Figure 5 was produced as follows, using basisplot.

> # We do not need to specify the x vector because
> # the data are present in unit increments from 1 to 72, the default for x
> periodic.full <- simpart(example, simpledim = 0, "periodic", period = 12)
> par(mfrow = c(3, 2))
> basisplot(periodic.full, display = list(model = 1:6))
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The chosen measure has no effect on the model basis vectors, as these vectors are simply the principal
components of the covariance matrix.
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Figure 5: Analysis of the 100 curves of the simulated periodic data set (see Figure 4). Plotted are the
first six principal components of the 72× 72 sample covariance matrix, illustrating that PCA is unable
to capture the period-12 component of variation.

Most researchers would see no reason to look beyond a 2-dimensional model space. But suppose
we expect to find low variability structure with period of 12 in our data. We input our data to simpart
specifying a periodic simplicity measure with period of 12. Since x = (1, 2, . . . , 72)T , the index period
and the usual time-based period are the same.

> periodic.sim <- simpart(example, simpledim = 70, measure = "periodic", period = 12)
> # Produce Figure 6.
> par(mfrow = c(3, 4)); basisplot(periodic.sim, display = list(simple = 1:12))

In Figure 6, we see that the first 12 vectors in the simplicity basis are quite rough and explain little of
the variance. Our goal is to find simplicity basis vectors that are simple (periodic or close to periodic
with period 12) and explain some non-negligible proportion of the variance. The easiest way to find
these simplicity basis vectors is via the plot in Figure 7, produced by the following.

> plot(periodic.sim$variance$simple, periodic.sim$simplicity$simple,
+ xlab = "Variance", ylab = "Simplicity")

We see that there are no vectors that have both a high simplicity score and explain noticeably more
variance than the others.

Plotting individuals’ simplicity and pc scores

Just as in principal components analysis, we can look at individuals’ scores to detect outliers or
group structure. For a given basis vector v and an individual with mean-centered data vector w, the
associated score is v′w. When v is a model space basis vector, v′w is the usual principal components
score. If v is a nearly null space basis vector, we say that v′w is the simplicity score. Figure 8 shows the
plot generated by the following command. The plot isn’t very interesting, due to the regularity of our
simulated data.

> plot(periodic.sim$scores[,1], periodic.sim$scores[,3],
+ xlab = "Score on first model basis vector",
+ ylab = "Score on first simplicity basis vector")

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 37

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x

Lo
ad

in
gs

1 var: <.1%

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x

Lo
ad

in
gs

2 var: <.1%

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x

Lo
ad

in
gs

3 var: <.1%

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x

Lo
ad

in
gs

4 var: <.1%

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x

Lo
ad

in
gs

5 var: <.1%

0 10 20 30 40 50 60 70
−

0.
2

0.
0

0.
2

0.
4

x

Lo
ad

in
gs

6 var: <.1%

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x

Lo
ad

in
gs

7 var: <.1%

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x

Lo
ad

in
gs

8 var: 0.12%

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x

Lo
ad

in
gs

9 var: <.1%

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x

Lo
ad

in
gs

10 var: <.1%

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x
Lo

ad
in

gs

11 var: <.1%

0 10 20 30 40 50 60 70

−
0.

2
0.

0
0.

2
0.

4

x

Lo
ad

in
gs

12 var: <.1%

Figure 6: Prinsimp analysis of the simulated periodic data set. Plotted are the first 12 simplicity basis
vectors using a model space of dimension 2 and periodic simplicity measure with period of 12. We see
that this analysis is unable to capture the period-12 component of variation

Periodic example with user defined simplicity measure

In addition to simpart’s three built-in measures, simpart allows the user to pass a user-defined
function to measure. We provide details for one function, which calculates a weighted combination of
the two built-in measures, the second-divided difference measure and the periodic simplicity measure.

The previous simpart analysis used measure = "periodic". However, the periodic simplicity
measure was not able to pick up any structure in the nearly null space. In addition, the simplicity
basis vectors were very rough. If we expect to see low variability structure in our data that is not only
periodic but also smooth, we should incorporate smoothness into our periodic simplicity measure. An
easy way to do that is by using a simplicity measure that is a weighted sum of the periodic and the
second divided difference measures. This will force the leading periodic simplicity basis vectors to be
smoother. We show how to define such a simplicity measure by writing the function blend_measures
and passing it to simpart. If Λ2 and Λπ are the d× d non-negative definite matrices that define the
second divided differences measure and periodic simplicity measure, respectively, then we combine
them by defining our new simplicity measure based on (1− α)Λ2 + αΛπ for a user-chosen α in [0, 1].
The function blend_measures creates this matrix.

> blend_measures <- function(alpha, x, period) {
(1-alpha) * prinsimp:::lambda_second(x) +

(alpha) * prinsimp:::lambda_periodic(x, period)
}
> # Recall that the periodic simplicity measure requires an extra period argument

Notice that if we set alpha = 1 then we have the built-in periodic simplicity measure, and alpha = 0
gives us the second divided difference measure. Note that all user defined functions must include the
argument x, but can also have additional arguments that are provided in the call to simpart, in this
case alpha and period.

We analyze the same simulated data set as in the previous section, still using a two-dimensional
model space. As before, we analyze our data with a period of 12 in the periodic simplicity measure
and try to find important simplicity basis vectors by considering Figure 9.

> # We will use a 50-50 weighting of the two periodic and
> # second divided difference Lambda matrices
> periodic.blend <- simpart(example, simpledim = 70,
+ measure = "blend_measures", alpha = 0.5, period = 12)
> plot(periodic.blend$variance$simple, periodic.blend$simplicity$simple,
+ xlab = "Variance", ylab = "Simplicity Score")
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Figure 7: From the analysis as in Figure 6, a plot of the simplicity scores versus the associated variance
explained for the 70 simplicity basis vectors. No simplicity basis vector stands out as “important” - as
explaining a lot of the variaion and having a high simplicity score.

The outlying point in the upper right corner is from the second simplicity basis vector. This vector
corresponds to a variance of 2.20, which explains about 0.14% of the total variability. Clearly, the
second simplicity basis vector captures variability caused by the sine function of period 12 (Figure 10).
For this information and to create Figure 10, we used the following code.

> periodic.blend$variance$simple[2]
> periodic.blend$varperc$simple[2]
> basisplot(periodic.blend, display = list(simple = 2))
> lines(0.16 * sin(2*pi*(1:72)/12))

This analysis shows how to use the function blend_measures to locate an important and simple
direction of variability, a direction that was not captured by principal component analysis. This
example also demonstrates how the periodic measure is used: the user has some idea about the
structure of data and so can propose a period. The user is encouraged to experiment with the
measures.

A simple user defined simplicity measure

In some applications, we may want to consider that a vector is complex if the variance of its components
is large - that is, if the components are very dissimilar. This might be sensible if, for instance, the
data vectors’ entries are different variables measured on similar scales, such as test scores. Thus, the
complexity of the n-vector v is ∑j(v[j]− v̄)2 where v̄ is the average of the components of v. We can
write this complexity as a quadratic form vTΛ∗v: ∑j(v[j]− v̄)2 = vTv− v̄2/n = vT(I− 11T/n)v where
1 is an n-vector of ones. Since the maximum eigenvalue of I− 11T/n is 1, our simplicity measure
uses the matrix Λ = 11T/n. We can use this simplicity measure in simpart by defining the function
constant_simple. Since our simplicity measure only depends on the length of the input vector, we
simply input any x that is the same length as a data vector v.

> constant_simple <- function(x) {
n <- length(x)
matrix(1,n,n)/n

}

We use this function in simpart via measure=constant_simple as follows.

> constant.example <- simpart(caterpillar, simpledim = 4,
+ measure = "constant_simple", x = x.cat)
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Figure 8: From the analysis as in Figures 6 and 7, a scatterplot of individuals’ first principal components
scores and first simplicity basis scores.

Implementation details

The core functionality of the prinsimp package is accessed through the simpart function. This
function, as illustrated in examples above, takes in the data y in the form of a matrix or a formula
object, the independent variable x, the dimension of the nearly null space (argument simpledim), and
the simplicity measure (argument measure). Optionally, y can contain the covariance matrix itself,
which is signalled with argument cov=TRUE.

The value returned by simpart is an S3 object of class "simpart", with the following named
components:

• model, simple: basis of the model and nearly null space, respectively, with vectors arranged in
columns.

• variance: a list of variances associated with the vectors in the model and nearly null spaces
(components model and simple), as well as the eigenvalues of the covariance matrix (component
full).

• varperc: a list of the percent of variance explained by the corresponding basis vector in the
model and nearly null space (components model and simple).

• simplicity: a list of simplicity values of vectors in the model and simplicity basis (compo-
nents model and simple), and the simplicity values of the simplicity basis when simpledim=d
(component full).

• measure, call: the simplicity measure used and the call object

In addition, when the y argument is a data rather than covariance matrix, the result includes the
component scores, for scores on the basis vector loadings.

The prinsimp package provides a range of methods to view objects of class simpart. In addition to
the print and summary methods for printing out the basis vectors, simplicity scores, and variances to
the console, the user can also view them graphically. The plot method that we have used above puts
together the collage of basis vectors along with variance-simplicity view and the percent of variance
explained panel. The individual subplots can also be displayed alone, using the functions basisplot,
varsimp, and varperc. (The plot method merely sets up the layout and calls those functions for the
actual plotting.)
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Figure 9: The simplicity score versus the variance explained of the 70 simplicity basis vectors in the
analysis of the periodic data with the blended periodic-smooth simplicity measure and period 12. The
outlying point in the upper right corner indicates an “important” simplicity basis vector - one that
explains a lot of the variability and has a high simplicity score. This outlying point corresponds to the
second simplicity basis vector, shown in the next figure.

Writing custom simplicity functions

As mentioned earlier, as an alternative to using one of the built-in simplicity measures, the user can
provide his or her own measure by passing a custom function as the value of the measure argument.
This function returns the Λ matrix of the measure; i.e., the simplicity score of a vector v ∈ <d is
vTΛ v. The custom function has to have at least one argument, named x, that receives values of
the independent variable x as given to simpart. The custom function is allowed to have additional
arguments; these are included in the call to simpart, and simply passed through to the measure
function.
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