
CONTRIBUTED RESEARCH ARTICLES 16

Automatic Conversion of Tables to
LongForm Dataframes
by Jimmy Oh

Abstract TableToLongForm automatically converts hierarchical Tables intended for a human reader
into a simple LongForm dataframe that is machine readable, making it easier to access and use the data
for analysis. It does this by recognising positional cues present in the hierarchical Table (which would
normally be interpreted visually by the human brain) to decompose, then reconstruct the data into a
LongForm dataframe. The article motivates the benefit of such a conversion with an example Table,
followed by a short user manual, which includes a comparison between the simple one argument call
to TableToLongForm, with code for an equivalent manual conversion. The article then explores the
types of Tables the package can convert by providing a gallery of all recognised patterns. It finishes
with a discussion of available diagnostic methods and future work.

Introduction

TableToLongForm is an R package that automatically converts hierarchical Tables1 intended for a
human reader into a LongForm R "data.frame" that is machine readable .2 While several tools exist
that can aid in manipulation of data, such as OpenRefine (OpenRefine, 2013), which can be used to
clean messy data, the speedr R package (Visne et al., 2012), which can aid in filtering data, and R
packages like reshape2 (Wickham, 2007) and plyr (Wickham, 2011), which enable restructuring of
the data to focus on specific aspects of the data, for these tools to work their magic you first need
machine readable data. However, data released as Tables are not machine readable. At best, such
tools will provide some aid in manually converting the data to something that is machine readable,
a process that is costly in terms of both time and effort. TableToLongForm is an automatic tool for
converting a family of Tables to a machine readable form, and once so converted the user is free to use
their favourite tool, R or otherwise, to make full use of the data.

The article motivates the benefit of such a conversion with an example Table, followed by a short
user manual, which includes a comparison between the simple one argument call to TableToLongForm,
with code for an equivalent manual conversion. The article then explores the types of Tables the
package can convert by providing a gallery of all recognised patterns. It finishes with a discussion of
available diagnostic methods and future work.

Motivation

There is still a prevalence of data releases being made for direct human consumption in formats that
are not machine readable, a significant barrier to effective utilisation of the data. One symptom of
this is the release of data in tabular form that relies on a hierarchy that can only be understood after
identifying patterns and discerning the structure of the Table, a task easy for a human brain but rather
difficult for a computer.

An example of such a Table is shown in Figure 1. For such a Table, the computer will be unable to
easily read in the data due to the difficulty in finding all information related to a piece of data. Take
the number ‘876’ in cell (5, 9) for instance; to collect all the information linked to that number we must
look at cell (5, 1) for the time period (‘2007Q4’), cell (4, 9) for the data heading (‘Total Labour Force’),
cell (3, 2) for the ethnic category (‘European Only’) and cell (2, 2) for the gender category (‘Male’). Note
that, aside from the time period and the data heading, the other information related to cell (5, 9) were
neither in the same row nor the same column. The human brain can interpret the positional cues to
understand the hierarchy fairly easily; the computer requires a lot more work.

Preparing such data for use would normally require a non-trivial time investment to restructure
the data in a manner that can be machine read and used. If such preparatory work was done manually,
such work will have to be repeated multiple times as the data is updated. In some cases the data will
be spread across multiple files, which means that much more preparatory work. Even if the work is
scripted, small changes in the format can easily throw a wrench into the works and break it. All of this
quickly adds up to a significant time cost to make use of data released in Tables.

1Table , with a capital T, is used in this article to specifically mean hierarchical tables, e.g. Figure 1.
2Machine readable is used to mean that the format is intended for access and manipulation by computers,

and it is thus much easier to use the data for various purposes, such as statistical analysis. It can alternatively be
described as Tidy Data (Wickham, 2014), with the conversion taking the data closer to the ideal ‘tidy’ form.

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=TableToLongForm
http://CRAN.R-project.org/package=reshape2
http://CRAN.R-project.org/package=plyr

CONTRIBUTED RESEARCH ARTICLES 17

LongForm is a simple alternative data format that most R users will find familiar as an R
"data.frame" object, the format that most R functions require of their data. TableToLongForm
automatically converts Tables to LongForm dataframes,3 which can mean significant savings in time
while enabling much greater utilisation of the data. Figure 2 shows Figure 1 after automatic conversion
using TableToLongForm, which took around a tenth of a second on the author’s machine. In particu-
lar, note that the same data we examined above, ‘876’ now in cell (2, 11), has all related information in
the same row (except for the column heading, which is in the same column), making it easy for the
computer to understand and manipulate.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11
Labour Force Status by Sex by Sing/Comb Ethnic Group (Qrtly−Mar/Jun/Sep/Dec)

2007Q4
2008Q1
2008Q2
2008Q3
2008Q4
2009Q1
2009Q2
2009Q3
2009Q4
2010Q1

Male
European Only
Persons Employed in Labour Force

856
863
850
840
855
845
832
813
831
822

Persons Unemployed in Labour Force
20
25
26
30
30
35
35
42
40
36

Not in Labour Force
280
284
281
286
275
279
280
290
277
283

Working Age Population
1,156
1,172
1,157
1,155
1,159
1,160
1,146
1,146
1,148
1,142

Labour Force Participation Rate
76
76
76
75
76
76
76
75
76
75

Unemployment Rate
2
3
3
3
3
4
4
5
5
4

Employment Rate
74
74
74
73
74
73
73
71
72
72

Total Labour Force
876
888
876
869
884
880
866
856
871
859

Maori Only
Persons Employed in Labour Force

71
69
67
72
76
75
74
71
72
72

Persons Unemployed in Labour Force
6
8
6
9
8
8

10
11
14
11

Figure 1: An example of a hierarchical Table. The Table is of the Labour Force Status data (Statistics
New Zealand, 2013) and in total spans 240 columns. The Table is too large to be immediately useful for
humans, and cannot even be easily manipulated with a computer, as understanding the data requires
linking information across different rows and columns.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11

Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male

European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only
European Only

2007Q4
2008Q1
2008Q2
2008Q3
2008Q4
2009Q1
2009Q2
2009Q3
2009Q4
2010Q1
2010Q2
2010Q3
2010Q4

Persons Employed in Labour Force
856
863
850
840
855
845
832
813
831
822
825
837
838

Persons Unemployed in Labour Force
20
25
26
30
30
35
35
42
40
36
40
31
40

Not in Labour Force
280
284
281
286
275
279
280
290
277
283
290
287
277

Working Age Population
1,156
1,172
1,157
1,155
1,159
1,160
1,146
1,146
1,148
1,142
1,155
1,155
1,155

Labour Force Participation Rate
76
76
76
75
76
76
76
75
76
75
75
75
76

Unemployment Rate
2
3
3
3
3
4
4
5
5
4
5
4
4

Employment Rate
74
74
74
73
74
73
73
71
72
72
71
72
73

Total Labour Force
876
888
876
869
884
880
866
856
871
859
865
868
878

Figure 2: An example of a LongForm dataframe. This is the Table in Figure 1 after automatic conversion
with TableToLongForm and in total spans 660 rows. Now all related information can be found in the
same row or column, making the data much more useful.

User manual

Loading the data

TableToLongForm’s preferred argument is a "matrix" of mode "character". If a "data.frame" is
supplied instead, it is coerced to a "matrix" with a warning. Empty cells should be classed as "NA"
for correct operation of the algorithms. Currently TableToLongForm does not distinguish between
missing values and empty space, both are treated as "NA" values.

As the Labour Force Status data used in Figure 1 classifies missing values as ‘..’, we must ensure
R correctly reads these, in addition to empty cells, as "NA" values.4

LabourForce = as.matrix(read.csv("StatsNZLabourForce.csv",
header = FALSE, na.strings = c("", "..")))

3I use the term LongForm loosely and in some cases TableToLongForm will result in WideForm output as the
difference can depend on contextual information the computer cannot comprehend. However, the output will
be machine readable and many tools, such as those mentioned in the opening paragraph, can be used to further
reformat the data, including conversions between LongForm and WideForm.

4This Table, after being read in as a "matrix" as shown, is included in TableToLongForm as part of
data(TCData), and can be accessed with TCData[["StatsNZLabourForce"]]

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 18

Calling TableToLongForm

If the Table can be recognised by TableToLongForm, a simple call to TableToLongForm with just a
single argument is all that is needed. TableToLongForm has additional optional arguments used
primarily for diagnostic purposes, which are covered in the diagnostics section at the end of the article.

LabourForce.converted = TableToLongForm(LabourForce)

Aside: manual conversion

For comparison the code for manual conversion of the table is provided below. We note after careful
observation of the data that:

• There are 3 gender categories: ‘Male’, ‘Female’ and ‘Total Both Sexes’, each 80 columns in
width.

• There are 10 ethnic categories, each a consistent 8 columns in width.

• The data are found in rows 5 to 26.

Armed with this knowledge, we can write the above code that, with some trial and error and
cross-checking of results, will successfully convert the Table to a LongForm. This code is fairly compact
and efficiency-wise beats TableToLongForm, taking a little over a thousandth of a second to make
the conversion (compared to about a hundredth of a second for a call to TableToLongForm) on the
author’s machine. However, it took a non-trivial investment of time to code and test the results (it
took the author about 30 minutes), is mostly useless for any other Table, and if any of the many strong
assumptions it makes are violated (e.g. a new row of data is added), it breaks and requires fixing,
which means even more time consumed. All this work and hassle to just read in the data in a useful
format.

LFout = NULL
chYear = LabourForce[5:26, 1]
for(Gender in 0:2)
for(Ethni in 0:9){
chGender = LabourForce[2, 2 + Gender * 80]
chEthni = LabourForce[3, 2 + Ethni * 8]
LFout = rbind(LFout,
cbind(chGender, chEthni, chYear,
LabourForce[5:26, 2 + Gender * 80 + (Ethni * 8):((Ethni + 1) * 8 - 1)])

)
}

colnames(LFout) = c("Gender", "Ethnicity", "Time.Period", LabourForce[4, 2:9])

IdentResult

For a successful conversion, TableToLongForm must first find the Table, that is, it must Identify the
rows and columns in which the labels and data values can be found. This task can be surprisingly
difficult, requiring many fringe-case checks and exception handling. The current core identification
algorithm searches for blocks (rectangular regions) of numbers in the supplied "matrix". This region
is assumed to contain the data and from it TableToLongForm infers the locations of the corresponding
labels. The result, after some extra work to handle fringe-cases and the like, is the IdentResult, a
"list" which specifies the rows and columns in which the labels and the data can be found.

If TableToLongForm fails to correctly Identify the correct rows and columns, it is possible to
manually specify the IdentResult as an argument. This is the case for the Table in Figure 3, where one
of the row label columns is a Year column consisting only of numbers. TableToLongForm’s numeric
label detection algorithm is still quite primitive and fails to correctly identify column 3 as a label, but
by manually specifying the IdentResult, TableToLongForm can still successfully convert the Table;
the resulting "data.frame" is shown in Figure 4. Even for cases such as this where the IdentResult
must be manually specified, the work required for the conversion with TableToLongForm will be
strictly less than for a manual conversion as we would need the same information, and more, to
convert manually.

TableToLongForm(NEET, IdentResult = list(rows = list(label = 3:4, data = 5:46),
cols = list(label = 2:3, data = 4:24)))

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 19

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11
TABLE 1: (a) Number of 16−24 year olds Not in Education, Employment or Training (NEET) and (b) associated Confidence Intervals by Region

Quarterly LFS series
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3

2000
2000
2000
2001
2001
2001
2001
2002
2002
2002

(a) Number of 16−24 year olds NEET
England

652,000
750,000
629,000
667,000
650,000
774,000
660,000
699,000
703,000
795,000

North East
61,000
57,000
48,000
53,000
42,000
50,000
46,000
51,000
45,000
49,000

North West
92,000

113,000
97,000

114,000
112,000
132,000
110,000
114,000
117,000
115,000

Yorks & Humber
72,000
87,000
72,000
77,000
77,000
84,000
75,000
83,000
84,000

111,000

East Midlands
60,000
69,000
57,000
58,000
53,000
60,000
50,000
59,000
55,000
58,000

West Midlands
75,000
89,000
84,000
82,000
75,000
79,000
79,000
88,000
85,000
96,000

East of England
53,000
64,000
55,000
61,000
62,000
75,000
60,000
61,000
61,000
71,000

London
127,000
131,000

93,000
100,000
111,000
140,000
116,000
111,000
123,000
143,000

Figure 3: Another example of a hierarchical Table. The Table is of the NEET statistics (Department for
Education (UK), 2013) and is relatively tame in terms of complexity. The work required to manually
convert and read in such a Table would be light, but still enough to be an annoying time sink.
Highlighted are the three regions TableToLongForm must identify for successful conversion, and
if automatic identification of these regions fail, the rows and columns corresponding to these three
rectangular regions can be specified manually.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1 2 3 4 5 6 7 8 9 10 11

(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET
(a) Number of 16−24 year olds NEET

Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2

2000
2000
2000
2001
2001
2001
2001
2002
2002
2002
2002
2003
2003

England
652,000
750,000
629,000
667,000
650,000
774,000
660,000
699,000
703,000
795,000
660,000
730,000
709,000

North East
61,000
57,000
48,000
53,000
42,000
50,000
46,000
51,000
45,000
49,000
49,000
51,000
51,000

North West
92,000

113,000
97,000

114,000
112,000
132,000
110,000
114,000
117,000
115,000
100,000

99,000
107,000

Yorks & Humber
72,000
87,000
72,000
77,000
77,000
84,000
75,000
83,000
84,000

111,000
74,000
95,000
87,000

East Midlands
60,000
69,000
57,000
58,000
53,000
60,000
50,000
59,000
55,000
58,000
55,000
54,000
59,000

West Midlands
75,000
89,000
84,000
82,000
75,000
79,000
79,000
88,000
85,000
96,000
77,000
90,000
88,000

East of England
53,000
64,000
55,000
61,000
62,000
75,000
60,000
61,000
61,000
71,000
69,000
78,000
66,000

London
127,000
131,000

93,000
100,000
111,000
140,000
116,000
111,000
123,000
143,000
113,000
122,000
112,000

Figure 4: Another example of a LongForm dataframe. This is the Table in Figure 3 after automatic
conversion with TableToLongForm. Although the conversion required the aid of a human to specify
the optional argument IdentResult to be successful, the work required with TableToLongForm will
be strictly less than for a manual conversion as we would need the same information, and more, to
convert manually.

Recognised patterns

TableToLongForm consists of a number of algorithms that can collectively process a variety of so-
called recognised patterns of hierarchical structure (also called the parentage of the labels). Any Table
that consists of some combination of the recognised patterns can be automatically converted with
TableToLongForm. It is not strictly necessary for a user to know what the patterns are, as they can
simply try calling TableToLongForm on the Table to see if it converts. All the recognised patterns are
listed here for reference.5 For an example of a real Table that demonstrates a combination of the
recognised patterns, refer to Real Example - NZQA located at the end of this section.

For each pattern an example table is first shown using toy data, that displays the pattern, fol-
lowed by a short description of the pattern, and ending with the example table converted with
TableToLongForm.

Many of the recognised patterns apply only for row labels. Column labels are recognised by
noticing that the transpose of column labels can often be processed as row labels, though there are
several fringe cases that must be corrected for.

5All the Tables demonstrating the recognised patterns are included in TableToLongForm as part
of data(TCData). TableToLongForm can be called on these Tables for the converted versions, e.g.
TableToLongForm(TCData[["ToyExByEmptyBelow"]])

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 20

Empty Below

1
2
3
4
5

1 2 3 4 5 6

Row Parent1

Row Parent2

Row Child1
Row Child2
Row Child1
Row Child2

Column 1
10
11
12
13

Column 2
20
21
22
23

Column 3
30
31
32
33

Column 4
40
41
42
43

Above, we have an example of the Empty Below pattern, the most simple type of parentage. Here
the parent and children are in different columns and we can see which of the children belong to which
parent through the use of empty space below each parent. The Table after conversion to a LongForm
follows.

1
2
3
4
5

1 2 3 4 5 6

Row Parent1
Row Parent1
Row Parent2
Row Parent2

Row Child1
Row Child2
Row Child1
Row Child2

Column 1
10
11
12
13

Column 2
20
21
22
23

Column 3
30
31
32
33

Column 4
40
41
42
43

Empty Right 1

1
2
3
4
5
6
7

1 2 3 4 5 6 7

Row Parent1
Row Child1
Row Child2
Row Parent2
Row Child1

Row Child−Child1
Row Child−Child2

Row Child−Child1
Row Child−Child2

Column 1
10
11
12
13
14
15

Column 2
20
21
22
23
24
25

Column 3
30
31
32
33
34
35

Column 4
40
41
42
43
44
45

Above, we have an example of the most basic form of the Empty Right pattern. In this situation
we have children in the same column as their parent. We can still recognise these as children if the
children have children (Child-Child) in a different column, while the parent does not (and hence the
parent is Empty Right). Note the values pertaining to the Parent (if any) are discarded. This is because
they are assumed to simply represent the sum of their children’s values. The Table after conversion to
a LongForm follows.

1
2
3
4
5

1 2 3 4 5 6 7

Row Parent1
Row Parent1
Row Parent2
Row Parent2

Row Child1
Row Child2
Row Child1
Row Child1

Row Child−Child1
Row Child−Child2
Row Child−Child1
Row Child−Child2

Column 1
11
12
14
15

Column 2
21
22
24
25

Column 3
31
32
34
35

Column 4
41
42
44
45

Empty Right 2

1
2
3
4
5
6
7

1 2 3 4 5 6

Row Parent1

Row Parent2

Row Child1
Row Child2

Row Child1
Row Child2

Column 1
10
11
12
13
14
15

Column 2
20
21
22
23
24
25

Column 3
30
31
32
33
34
35

Column 4
40
41
42
43
44
45

Above, we have an example of both Empty Below and Empty Right. Either algorithm can handle this
situation, but simply due to the ordering of the algorithms such situations are handled as Empty Right.
The Table after conversion to a LongForm follows.

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 21

1
2
3
4
5

1 2 3 4 5 6

Row Parent1
Row Parent1
Row Parent2
Row Parent2

Row Child1
Row Child2
Row Child1
Row Child2

Column 1
11
12
14
15

Column 2
21
22
24
25

Column 3
31
32
34
35

Column 4
41
42
44
45

Empty Right 3

1
2
3
4
5
6
7
8
9
10
11

1 2 3 4 5 6 7 8

Row Super−Parent1
Row Parent1
Row Child1
Row Parent2
Row Child1
Row Super−Parent2
Row Parent1
Row Child1
Row Parent2
Row Child1

Row Child−Child1

Row Child−Child1

Row Child−Child1

Row Child−Child1

Column 1
10
11
12
13
14
15
16
17
18
19

Column 2
20
21
22
23
24
25
26
27
28
29

Column 3
30
31
32
33
34
35
36
37
38
39

Column 4
40
41
42
43
44
45
46
47
48
49

Above, we have an example of a complex version of the Empty Right pattern. The “parent-child in the
same column” situation has been extended further and we now have parents (Super-Parent) who have
children (Parent), who each further have children (Child), all in the same column. Such situations can
still be recognised if the lowest-level children in the column (Child) have children in a different column
(Child-Child), while its direct parents (Parent) each have children in the same column (Child) but not in
a different column (is Empty Right), and the top-most parents (Super-Parents) also have no children in
a different column (is also Empty Right). The algorithm cannot currently handle super-super-parents.
The Table after conversion to a LongForm follows.

1
2
3
4
5

1 2 3 4 5 6 7 8

Row Super−Parent1
Row Super−Parent1
Row Super−Parent2
Row Super−Parent2

Row Parent1
Row Parent2
Row Parent1
Row Parent2

Row Child1
Row Child1
Row Child1
Row Child1

Row Child−Child1
Row Child−Child1
Row Child−Child1
Row Child−Child1

Column 1
12
14
17
19

Column 2
22
24
27
29

Column 3
32
34
37
39

Column 4
42
44
47
49

Multi-row Column Label

1
2
3
4
5
6

1 2 3 4 5 6

Row 1
Row 2
Row 3
Row 4

Column
Child1

10
11
12
13

Column
Child2

20
21
22
23

Column
Child3

30
31
32
33

Column
Child4

40
41
42
43

Above, we have an example of Multi-row Column Labels. Often column labels are physically split
over multiple rows rather than making use of line breaks in the same cell. In such occurrences, any
row not identified as a parent are collapsed into a single row of labels. The Table after conversion to a
LongForm follows.

1
2
3
4
5

1 2 3 4 5 6

Row 1
Row 2
Row 3
Row 4

Column Child1
10
11
12
13

Column Child2
20
21
22
23

Column Child3
30
31
32
33

Column Child4
40
41
42
43

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 22

Mismatched Column Label

1
2
3
4
5

1 2 3 4 5 6 7 8 9

Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13

Col Child2
20
21
22
23

Col Child3
30
31
32
33

Col Child4
40
41
42
43

Above, we have an example of Mismatched Column Labels. Sometimes the column labels are in a
different column to the data, usually due to a misguided attempt at visual alignment of labels to
the data. As long as the correct rows and columns were identified for the data and the labels (see
User manual subsection on IdentResult), and if there are the same number of data columns as label
columns, these mismatched column labels will be paired with the data columns. The Table after
conversion to a LongForm follows.

1
2
3
4
5

1 2 3 4 5 6 7 8 9

Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13

Col Child2
20
21
22
23

Col Child3
30
31
32
33

Col Child4
40
41
42
43

Misaligned Column Label

1
2
3
4
5
6

1 2 3 4 5 6 7 8 9

Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13

Col Parent1
Col Child2

20
21
22
23

Col Child3
30
31
32
33

Col Child4
40
41
42
43

Col Child1
50
51
52
53

Col Parent2
Col Child2

60
61
62
63

Col Child3
70
71
72
73

Col Child4
80
81
82
83

Above, we have an example of Misaligned Column Labels. Often column parents are physically centred
over their children (N.B. where a spreadsheet’s cell-merge feature is used to do the centering, the actual
value is usually stored in the top-left cell and hence causes no problems). TableToLongForm makes
use of pattern recognition to identify repeating patterns in the labels, or in empty cells surrounding
the labels, to correct for the misalignment. For the Column Parents row, we find (starting from column
2, the first data column) a pattern of Empty-NonEmpty-Empty-Empty, with the pattern occurring
twice. In the Col Child row, we also find a pattern of length 4 occurring twice. This can be used to
correctly align the Column Parents to its children. The Table after conversion to a LongForm follows.

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

Col Parent1
Col Parent1
Col Parent1
Col Parent1
Col Parent2
Col Parent2
Col Parent2
Col Parent2

Row 1
Row 2
Row 3
Row 4
Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13
50
51
52
53

Col Child2
20
21
22
23
60
61
62
63

Col Child3
30
31
32
33
70
71
72
73

Col Child4
40
41
42
43
80
81
82
83

Misaligned Column Label 2

1
2
3
4
5
6
7

1 2 3 4 5 6 7 8 9

Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13

Col Parent1
Col Child2

20
21
22
23

Col Super−Parent

Col Child3
30
31
32
33

Col Child4
40
41
42
43

Col Child1
50
51
52
53

Col Parent2
Col Child2

60
61
62
63

Col Child3
70
71
72
73

Col Child4
80
81
82
83

Above, we have a generalised example of Misaligned Column Labels. We now have Column Super-
Parent which is misaligned to both its direct children, the Column Parents, and to the lowest-level
children. The Table after conversion to a LongForm follows.

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 23

1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9

Col Super−Parent
Col Super−Parent
Col Super−Parent
Col Super−Parent
Col Super−Parent
Col Super−Parent
Col Super−Parent
Col Super−Parent

Col Parent1
Col Parent1
Col Parent1
Col Parent1
Col Parent2
Col Parent2
Col Parent2
Col Parent2

Row 1
Row 2
Row 3
Row 4
Row 1
Row 2
Row 3
Row 4

Col Child1
10
11
12
13
50
51
52
53

Col Child2
20
21
22
23
60
61
62
63

Col Child3
30
31
32
33
70
71
72
73

Col Child4
40
41
42
43
80
81
82
83

Real Example - NZQA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1 2 3 4 5 6 7 8 9 10 11 12 13
Scholarship Entries and Results by Gender and Ethnicity (Broken down by Decile)

Results

All Subjects

Accounting
NZ Maori

NZ European

Pasifika Peoples

Asian

Other/Unspecified Ethnicity

Agricultural & Horticultural Science
NZ Maori

NZ European

Male
Female
Male
Female
Unknown
Male
Female
Male
Female
Male
Female

Male
Female
Male

of
Entries

714

22
2
0
2
3
0
2
6
5
2
0
0

0
0
0
0

Decile 1−3

Absent

148

4
1
0
0
0
0
0
2
0
1
0
0

0
0
0
0

SNA

13

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

Assessed

553

18
1
0
2
3
0
2
4
5
1
0
0

0
0
0
0

Not
Achieved

462

16
1
0
1
2
0
2
4
5
1
0
0

0
0
0
0

Scholarship

81

2
0
0
1
1
0
0
0
0
0
0
0

0
0
0
0

Outstanding

10

0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

of
Entries

6,482

156
2
7

51
44

0
3
4

29
15

0
1

15
0
0

10

Decile 4−7

Absent

1,772

41
1
2

13
12

0
0
2
4
7
0
0

3
0
0
1

Above, we have an example of real data released in a Table6 that demonstrates a combination of many
of the patterns listed above. The data comes from the New Zealand Qualifications Authority (NZQA,
2012) regarding the entries and results for their Scholarship Exams. The Table demonstrates Empty
Below, Empty Right (including Type 3, as ‘All Subjects’ is a super-parent), Multi-row Column Labels,
and Misaligned Column Labels. The Table is substantially more complex than the Labour Force Status
data used in Figure 1, and will require considerably more work to convert manually. Worse, each
year of the data is stored in a separate Table, each with slight differences in format. Thus the manual
conversion code would have to either be individually tweaked for each year (requiring yet more
work), or be flexible enough to handle these differences (requiring substantially more work). Other
data from NZQA faces bigger problems; though the Scholarships data can all be obtained in a mere 8
Tables (for 8 years from 2004 to 2011), the Subjects data not only requires a separate Table for each
year, but also for each subject (of which there are 91). Obtaining the greatest breakdown possible for
the Subjects data across all other variables requires thousands of individual Tables. Without automatic
conversion with TableToLongForm, simply reading in such data for use would require too much
work to be practical. The Table after conversion to a LongForm follows.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1 2 3 4 5 6 7 8 9 10 11 12 13

Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3
Decile 1−3

All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects
All Subjects

Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Accounting
Agricultural & Horticultural Science
Agricultural & Horticultural Science
Agricultural & Horticultural Science
Agricultural & Horticultural Science
Agricultural & Horticultural Science
Agricultural & Horticultural Science
Agricultural & Horticultural Science
Agricultural & Horticultural Science
Agricultural & Horticultural Science
Agricultural & Horticultural Science
Agricultural & Horticultural Science
Art History
Art History

NZ Maori
NZ Maori
NZ European
NZ European
NZ European
Pasifika Peoples
Pasifika Peoples
Asian
Asian
Other/Unspecified Ethnicity
Other/Unspecified Ethnicity
NZ Maori
NZ Maori
NZ European
NZ European
NZ European
Pasifika Peoples
Pasifika Peoples
Asian
Asian
Other/Unspecified Ethnicity
Other/Unspecified Ethnicity
NZ Maori
NZ Maori

Male
Female
Male
Female
Unknown
Male
Female
Male
Female
Male
Female
Male
Female
Male
Female
Unknown
Male
Female
Male
Female
Male
Female
Male
Female

of Entries
2
0
2
3
0
2
6
5
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2

Absent
1
0
0
0
0
0
2
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

SNA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Assessed
1
0
2
3
0
2
4
5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2

Not Achieved
1
0
1
2
0
2
4
5
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2

Scholarship
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Outstanding
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6This Table is included in TableToLongForm as part of data(TCData), and can be accessed with
TCData[["NZQAScholarships"]]

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 24

Diagnostics

The primary limitation of TableToLongForm is that the function will be a black box to most users.
After running the function on a Table, the user will either be given back a "data.frame" with no
easy way of verifying if the result is correct, or be confronted with an error with little idea of what
went wrong. Based on ad hoc tests conducted so far, TableToLongForm will either succeed, or fail
catastrophically in a manner that is easily recognised as utter failure. However methods for verifying
correct operation (or to understand failures) would be desirable.

The simplest method currently available is to examine the additional output returned when
TableToLongForm is called with the optional argument fulloutput = TRUE. This will return the ’final
product’ of TableToLongForm’s algorithms in the form of ‘IdentResult’, ‘rowplist’ and ‘colplist’.

IdentResult was covered above in the User manual section and contains information on where the
data and labels are found.

rowsplist and colsplist stand for Row/Column Parentage List which are nested "list" objects that
represents all the hierarchical relationships in the Table, as identified by TableToLongForm.
For easier reading they are assigned the "plist" class which has a custom ‘print’ method. An
example of a ‘colplist’ is shown in Figure 5.

> TableToLongForm(LabourForce, fulloutput = TRUE)[["colplist"]]
+ Male (1, 2)
- + European Only (1, 3)
- - + Persons Employed in Labour Force (1, 4)
- - + Persons Unemployed in Labour Force (2, 4)
- - + Not in Labour Force (3, 4)
- - + Working Age Population (4, 4)
- - + Labour Force Participation Rate (5, 4)
- - + Unemployment Rate (6, 4)
- - + Employment Rate (7, 4)
- - + Total Labour Force (8, 4)
- + Maori Only (9, 3)
- - + Persons Employed in Labour Force (9, 4)
Output truncated

Figure 5: A truncated example of the ‘colplist’ for the Labour Force Status data used in Figure 1.
It represents the hierarchical relationships of the column labels, as identified by TableToLongForm.
We can see that it has correctly identified ‘Male’ as a top-level parent with the ethnic categories, such
as ‘European Only’, nested inside, which are in turn a parent to the lowest-level categories, such as
‘Employment Rate’.

Unfortunately this output has two key limitations. First, it is not obvious from this output what
went wrong (or if nothing went wrong), requiring some detective work to piece together the evidence.
Second, if anything did go wrong, the user still does not know why.

The option with the potential to provide the most information is calling TableToLongForm with
the optional argument diagnostics = TRUE, which will write diagnostic output to a file, printing
key variables at each major stage of the conversion process. This output can thus be used to track
TableToLongForm’s progress as it works to convert the Table, enabling fairly accurate assessment of
where exactly it went wrong. Some example diagnostic output is shown in Figure 6. Unfortunately,
understanding this output requires familiarity with the workings of the code and is unlikely to be of
much use to anyone other than the author.

Discussion

This article has introduced TableToLongForm, an R package that can automatically convert hierarchi-
cal Tables that would normally rely on the discerning powers of a human brain, to a simple LongForm
dataframe that any decent software package can easily manipulate and use. While it can handle a
variety of Tables automatically, and an even greater variety with some aid from the human user, it is
not without limitations. Ultimately, TableToLongForm still uses algorithms to detect a known set of
recognised patterns and any Table that deviates from these patterns will break TableToLongForm.

There is work to be done in refining and generalising existing algorithms and creating new
algorithms so that TableToLongForm can successfully handle more cases, while also reducing the

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 25

###TCR CIMCB rowData
[1] 5 26
###TCR CIMCB colData
[1] 2 241
###TCR IOOC plist
$rows
[1] 1 2 3 4 5 6 7 8
$cols
[1] 4

###TCR IOOC res
+ Persons Employed in Labour Force (1, 4)
+ Persons Unemployed in Labour Force (2, 4)
+ Not in Labour Force (3, 4)
+ Working Age Population (4, 4)
+ Labour Force Participation Rate (5, 4)
+ Unemployment Rate (6, 4)
+ Employment Rate (7, 4)
+ Total Labour Force (8, 4)

Figure 6: A few examples of the diagnostic output generated by TableToLongForm when called with
‘diagnostics = TRUE’ on the Labour Force Status data used in Figure 1. The diagnostic output is
printing key variables at each major stage of the conversion process. ‘###TCR’ indicates an identi-
fier line, the following word indicates the part of the function generating this output (e.g. ‘CIMCB’,
which is short for Call Identification algorithm Most-Common-Boundary), the last word indicates the
name of the variable being printed (e.g. ‘rowData’). The diagnostic output can be used to see what
TableToLongForm is getting right (or wrong)... assuming the user is familiar with the code.

possibility of a false positive. These range from adding more robust checks to the algorithms to verify
correct detection, such as sum-checks or pattern recognition, to more fundamental changes, such
as altering the "NA" classification to distinguish between empty space and missing values. A recent
addition to the package (introduced in version 1.3.0) is to enable new, custom algorithms to be used in
place of the default ones included with the package. More information on this can be found in the
official webpage for the package.

There is also work to be done in diagnostics output, not only in the formal diagnostic output, but
also in the form of error and warning messages. Consider for instance the following error message if
we call TableToLongForm on the Table in Figure 3 without specifying the correct IdentResult. From
these messages it is not at all obvious that the problem is an incorrect IdentResult, which is a problem
that is relatively easy to address if only it can correctly be identified by the user.

Error in 1:ncol(datbit) : argument of length 0
In addition: Warning message:
In rbind(matColLabel[!fullrows, , drop = FALSE], collapsedlabels) :
number of columns of result is not a multiple of vector length (arg 2)

In terms of formal diagnostic output, various ideas are being tried such as graphical representations of
the information provided by fulloutput = TRUE by drawing the original Table with the regions being
highlighted in some way. Such a method would, for example, make it easier to see a problem with
IdentResult, as it should become apparent on the drawn Table that the incorrect regions are being
highlighted.

This article has been written for TableToLongForm version 1.3.1. The code for reproducing the
figures in this article, as well as more detailed documentation on the code itself, can be found at https:
//www.stat.auckland.ac.nz/~joh024/Research/TableToLongForm/. The development version can
be found on github at https://github.com/joh024/TableToLongForm.

Bibliography

Department for Education (UK). NEET statistics quarterly brief: April to June, 2013. URL
https://www.gov.uk/government/publications/neet-statistics-quarterly-brief-april-to-
june-2013. [p19]

NZQA. Secondary School Statistics, 2012. URL http://www.nzqa.govt.nz/. [p23]

OpenRefine. OpenRefine, 2013. URL http://openrefine.org/. [p16]

Statistics New Zealand. Infoshare, 2013. URL http://www.stats.govt.nz/infoshare/. [p17]

I. Visne, A. Yildiz, E. Dilaveroglu, K. Vierlinger, C. Nöhammer, F. Leisch, and A. Kriegner. speedR:
An R package for interactive data import, filtering and ready-to-use code generation. Journal of
Statistical Software, 51(2):1–12, 2012. URL http://www.jstatsoft.org/v51/i02/. [p16]

H. Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 21(12):1–20, 2007.
URL http://www.jstatsoft.org/v21/i12/. [p16]

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

https://www.stat.auckland.ac.nz/~joh024/Research/TableToLongForm/
https://www.stat.auckland.ac.nz/~joh024/Research/TableToLongForm/
https://github.com/joh024/TableToLongForm
https://www.gov.uk/government/publications/neet-statistics-quarterly-brief-april-to-june-2013
https://www.gov.uk/government/publications/neet-statistics-quarterly-brief-april-to-june-2013
http://www.nzqa.govt.nz/
http://openrefine.org/
http://www.stats.govt.nz/infoshare/
http://www.jstatsoft.org/v51/i02/
http://www.jstatsoft.org/v21/i12/

CONTRIBUTED RESEARCH ARTICLES 26

H. Wickham. The split-apply-combine strategy for data analysis. Journal of Statistical Software, 40(1):
1–29, 2011. URL http://www.jstatsoft.org/v40/i01/. [p16]

H. Wickham. Tidy data. Journal of Statistical Software, 59(10), 9 2014. ISSN 1548-7660. URL http:
//www.jstatsoft.org/v59/i10. [p16]

Jimmy Oh
Department of Statistics
The University of Auckland
New Zealand
joh024@aucklanduni.ac.nz

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

http://www.jstatsoft.org/v40/i01/
http://www.jstatsoft.org/v59/i10
http://www.jstatsoft.org/v59/i10
mailto:joh024@aucklanduni.ac.nz

