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gset: An R Package for Exact Sequential
Test of Equivalence Hypothesis Based on
Bivariate Non-Central t-Statistics
by Fang Liu

Abstract The R package gset calculates equivalence and futility boundaries based on the exact
bivariate non-central t test statistics. It is the first R package that targets specifically at the group
sequential test of equivalence hypotheses. The exact test approach adopted by gset neither assumes
the large-sample normality of the test statistics nor ignores the contribution to the overall Type I error
rate from rejecting one out of the two one-sided hypotheses under a null value. The features of gset
include: error spending functions, computation of equivalence boundaries and futility boundaries,
either binding or nonbinding, depiction of stagewise boundary plots, and operating characteristics
of a given group sequential design including empirical Type I error rate, empirical power, expected
sample size, and probability of stopping at an interim look due to equivalence or futility.

Introduction

Group sequential tests are repeated significance testing on data accumulated during a study, in contrast
to the traditional one-time analysis at the end of the study. Since the same hypothesis is repeatedly
tested, it is critical to compute the proper critical values at each interim analysis to keep the overall
Type I error rate at a prespecified nominal level. Applied appropriately, group sequential designs
(GSDs) can help saving resources, shortening study duration, and stopping ineffective treatments
much earlier than the traditional non-sequential designs. There are existing software applications,
both commercial and open-source, of GSDs in studies, including PROC SEQDESIGN and PROC SEQTEST
procedures in SAS©, EAST© developed by Cytel, as well as the R packages gsDesign (general
GSDs and operating characteristics; Anderson 2014), GroupSeq (GSD via the Type I error spending
approach; Pahl 2014), the ldBand function from Hmisc (GSD via from the Lan-DeMets method with a
variety of α-spending functions; Harrell Jr 2014), ldbands (boundary calculation using the Lan-DeMets
α spending function approach), PwrGSD (evaluation of interim analysis plans for GSD on a survival
endpoint; construction of efficacy and futility boundaries, and calculation of power of a GSD; Izmirlian
2014), AGSDest (parameter estimation in adaptive GSDs; Hack et al. 2013), clinfun (design and
analysis of clinical trials; Seshan 2014).

This discussion focuses on GSDs in studies with equivalence hypotheses. Equivalence studies
concern “equivalence” between two groups. Since mathematical equivalence is impossible to establish,
the concept of “equivalence bounds” is often applied. Denote the parameter that represents the
dissimilarity in a response variable between two groups by θ, then the hypothesis set being tests in
equivalence studies can be expressed as two one sided hypotheses {H10: θ < L v.s. H11: θ > L} and
{H20: θ > U v.s. H21: θ < U}, where equivalence bounds L and U are located on the opposite sides of
the value that represents mathematical equivalence though not necessarily symmetric. The choice of
(L, U) is primarily driven by practical and scientific justifications, or set by regulatory requirements in
case of pharmaceutical studies. Simultaneous rejection of H10 and H20 leads to the claim of equivalence.
GSDs with equivalence hypotheses have been discussed in the literature (see Jennison and Turnbull
1989; Durrleman and Simon 1990; Jennison and Turnbull 1993; Gould 1995; Whitehead 1996; Hwang
1996; Huang and Self 2010; Potvin et al. 2008; Montague et al. 2012). Many test procedures discussed
the literature are based on the large-sample normality assumption of the test statistics. This could be
problematic in sequential tests given that the stagewise sample sizes at the early looks can be small.
Secondly, to facilitate the computation of the critical values, rather than working with the dual test
statistics (one for each of the two one-sided hypothesis), which is computationally more demanding,
an analytical approximation that ignores the contribution to the probability of rejecting one H0 out of
the two under H0 is commonly applied in practice. Though this approach is valid in the sense that it
guarantees the Type I error rate at or below the nominal level, it can be overly conservative when the
Type I error rate or sample size is small, which can be the very situation that GSDs have to deal with
in early stages. The exact test procedure formed with the duel t statistics in the latest work of Liu and
Li (2014) overcomes these major methodological shortcomings in the GSDs of equivalence studies.

To the best of our knowledge, there are no software packages or tools that target specifically at the
GSDs of equivalence studies. Though some existing software applications, which are not designed
for GSD in equivalence studies, can be tricked into doing sequential tests on equivalence hypotheses,
the tricking process itself can be confusing and error-prone. Even if the tricking is successful, other
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potential problems still exist. First, many of the procedures are based on the large sample normality
assumption. Second, the futility boundaries are calculated from testing H0 : θ = 0. Since θ = 0
represents perfect equivalence, rejecting θ = 0 to claim futility is inappropriately conservative and
results in inflated Type II error rate since any other θ ∈ (L, U) per the equivalence hypothesis also
falls within the range of “equivalence”. Third, the existing GSD software packages, because they are
not designed for equivalence studies, can only accommodate symmetric equivalence bounds about 0:
(−∆, ∆), which can be restrictive in some real life applications.

In this discussion, we introduce the R package gset that fills the software gap in GSDs for studies
with equivalence hypotheses. The stagewise equivalence and futility boundaries, either binding or
nonbinding, are back-calculated from the equations that are formed based on the exact dual t test
statistics. The procedure works given any θ ∈ (L, U) rather than just θ = 0. Furthermore, symmetry of
the equivalence bounds L and U about 0 is not required. In the rest of the paper, we will provide more
details on the following topics: the method and computation employed by gset, the functions and
outputs from the package gset, and some examples on applying the package gset in designing GSDs
in equivalence studies.

Exact test procedure based on bivariate t statistics

Denote by θ the true difference between two groups of normally distributed variables Y1 and Y2.
The estimate of θ is denoted by θ̂; and its standard error is σθ̂ , which is estimated by s. If the
original data deviates significantly from the normal distribution, an appropriate transformation can
be used, and θ would be the difference on the transformed scale. A familiar example is the area
under the concentration curve (AUC) and the maximum concentration (Cmax) following a drug
administration in bioequivalence studies, which are often modeled by the log-normal distribution.
The comparisons between two groups on AUC and Cmax are often performed on the log-scale after
the log transformation.

The t statistics for testing the dual hypotheses H10 and H20 in equivalence studies (in the non-

sequential testing) are T(L) = (θ̂ − L)s−1 and T(U) = (θ̂ −U)s−1 =
(θ̂−L)/σθ̂+(L−U)/σθ̂

(s/σθ̂)
, respectively.

{T(L), T(U)} jointly follow a bivariate non-central t distribution; and marginally, T(L) follows a
central t distribution and T(U) follows a non-central t distribution with non-centrality parameter
(L−U)/σθ̂ . A decision rule would reject both H0 simultaneously and should control the overall Type
I error rate at a nominal level α. In the sequential test case, the dual test statistics are denoted by
Tk(L) = (θ̂k − L)/sk and Tk(U) = (θ̂k −U)/sk, where θ̂k and sk are computed with the data accrued
up to stage k (k = 1, . . . , K; K is the total number of looks). At an interim look k (k < K), there are 3
stopping options: a) stop the trial and reject both H10 and H20 to claim equivalence; b) stop the trial
and “reject” either H21 or H22 to conclude futility; c) move on to the next stage if the test statistics do
no cross either the equivalence or the futility boundaries. The rejection regionRk in stage k (to claim
equivalence), acceptance region Ak (to conclude futility), and the continuation region Ck are:

Rk = {Tk(L) > cL
k } ∩ {Tk(U) < cU

k }, (1)

Ak = {Tk(L) < dL
k } ∪ {Tk(U) > dU

k }, (2)

Ck = (Rk ∪Ak)
c , (3)

where (cL
k , cU

k ) are the equivalence boundaries, and (dL
k , dU

k ) are the futility boundaries. In the last
stage K, Pr(CK) is necessarily 0 to allow a final dichotomous decision made between rejection and
acceptance of non-equivalence.

The futility boundaries can be binding or non-binding, depending on whether the equivalence
boundaries are affected by the action of stopping for futility or not. When the futility boundaries are
binding, the decisions to stop for equivalence or futility are “competitive”; that is, the trial will stop at
the time point whichever boundaries are crossed first. Otherwise, the overall Type I error rate would
be inflated. The equivalence and binding futility boundaries can be determined from the following
equation system

Pr(R1 | θ = L) = Pr(R1 | θ = U) = α(t1) (4)

Pr(C1 ∩ · · · ∩ Ck−1 ∩Rk | θ = L) = Pr(C1 ∩ · · · ∩ Ck−1 ∩Rk | θ = U) = α(tk)− α(tk−1) (5)

Pr(A1 | θ ∈ (L, U)) = β(t1) (6)

Pr(C1 ∩ · · · ∩ Ck−1 ∩Ak | θ ∈ (L, U)) = β(tk)− β(tk−1), (7)

where k = 2, . . . , K in Equations (5) and (7). α(tk) and β(tk) are the cumulative Type I and II error
rates at stage k that can be conveniently specified using the error spending functions (Lan and DeMets,
1983; Hwang et al., 1990). The α- and β-spending functions do not have to be the same.
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In many practical cases, the study sponsors would want an option to continue the trial even
when the interim data suggests stopping for futility. The futility boundaries calculated under this
circumstance are referred to as “non-binding”. A study with non-binding futility boundaries can
stop for futility at an interim look when the futility boundaries are crossed, or not. Non-binding
futility provides more flexibility to a study without inflating Type I error rate. The equivalence and
non-binding futility can be determined from Equations (4), (6), and (7), plus the equation below

Pr(Rc
1 ∩ · · · ∩ Rc

k−1 ∩Rk | θ = L) = Pr(Rc
1 ∩ · · · ∩ Rc

k−1 ∩Rk | θ = U) = α(tk)− α(tk−1). (8)

In terms of the actual computation of the critical values, gset employs the Monte Carlo (MC) simulation
approach to calculate equivalence and futility boundaries (either non-binding or binding) from the
two equation systems given above. Liu and Li (2014) prove that there are some inherent constraints
among the critical values including cU

k + cL
k = 0 in both the binding and non-binding cases, as well

as dU
k + dL

k = 0 in the non-binding case. In the binding case, some constraint has to be imposed on
(dL

k , dU
k ) in order to obtain unique solutions on the boundaries since the the number of unknowns

outnumber the number of equations. We adopt the probability symmetry constraint as suggest by Liu
and Li (2014). That is, the likelihood that equivalence is rejected due to rejecting H10 is the same as the
likelihood of rejecting from H20. It turns out that the probability symmetry constraint can be reduced
to the simple constraint dL

k = −dU
k as in the non-binding case if (θ − L)σ−1

θ̂
� 1 and (U − θ)σ−1

θ̂
� 1,

which is the case in many real-life situations. With the appropriate constraints in place, the boundaries
in the non-binding case are calculated in two steps: first solve for (cL

k , cU
k ) as if there were no futility

boundaries, and then compute (dL
k , dU

k ) conditional on the calculated (cL
k , cU

k ) from the previous step
(Cytel, 2009). In the case of binding futilities, ck and dk will need to be determined simultaneously.
After the first look, calculation of (cL

k , cU
k ) will be conditional on the values (dL

k , dU
k ) computed from

the previous step, and vice versa.

In the last step, the equivalence and futility boundaries must meet so that a final dichotomous
decision on whether equivalence is achieved can be made. If the originally planned n is not large
enough, the two types of boundaries will not meet. One simple approach is to force |dL

K | ≡ |dU
K | =

|cL
K | ≡ |cU

K |, with the side effect of inflating the Type II error rate. An alternative, which is better, is
to calculate the minimum required n that guarantees that the equivalence and futility boundaries
will meet in the last step. In gset, this minimum required n is denoted by nminimax, “max” because
nminimax would be the maximum used subjects of a study if it makes it into the last stage K. In gset,
nminimax is searched by a simple bisection approach, with a user-supplied search region.

Implementation in R

The package gset contains 8 functions (Table 1). Among the 8 functions, 4 functions can be used to
compute the equivalence and futility boundaries (equivonly, nonbinding, binding, nminmax). The
futility critical values calculated by nonbinding and binding in the last step are forced to equal to the
equivalence critical values by default so that a dichotomous decision on equivalence can be made in
the last stage, though users can use argument force = FALSE to not force them to be the same. The
sample size where the futility and equivalence critical values naturally coincide in the last stage are
calculated by function nminmax, with the nominal Type I and II error rates maintained. In other words,
the futility and equivalence boundaries agree naturally in the last stage with nminmax. Different sample
sizes would only affect the futility boundaries, but not the equivalence boundaries. One function
(nfix) computes the sample size of an equivalence study in the traditional non-sequential setting. Two
functions generate the stagewise boundary plots (figureE, figureEF); and one function (oc) examines
the operating characteristics of a given GSD in equivalence studies; including the empirical Type I
error rate, empirical power, expected sample size, and the probabilities of stopping at interim looks
due to equivalence or futility.

Table 2 lists the arguments to be supplied by users for calculating equivalence and futility bound-
aries. To calculate the sample size of an equivalence study in the traditional non-sequential setting
via nfix, besides l, u, theta, sigma, type1, type2 as listed in Table 2, users also need to supply the
sampling ratio between the two groups: r, and a 2-dimensional vector containing the end-points of
the interval from which the sample size will be solved: nrange; the default is c(0,1000). To calculate
the sample size of an equivalence study in the GSD setting via nminmax, besides l, u, theta, sigma,
t.vec, type1, type2, gamma, n.sim as given in Table 2, users also need to specify a logical argument
binding: whether the futility boundaries are binding, and n1.lower, n1.upper, n2.lower, n2.upper,
which represent the lower and upper bounds of the interval from which nminmax in groups 1 and 2
will be solved using a bisection method. The boundary plots are generated directly from functions
equivonly, nonbinding and binding by default (users can suppress the plots by specifying binding =
FALSE), or they can be generated by functions figureE and figureEF by taking the boundary outputs
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Function Description

equivonly computes equivalence boundaries for GSD in equivalence studies that only stop
for equivalence

nonbinding computes equivalence and non-binding futility boundaries for GSD in equivalence
studies

binding computes equivalence and binding futility boundaries for GSD in equivalence
studies

nminmax calculates the sample size of an equivalence study in the sequential setting as well
as the equivalence and futility boundaries (either binding or non-binding) under
the calculated sample size

nfix calculates the sample size of an equivalence study in the traditional non-sequential
setting

figureE generates the stagewise equivalence boundary plots
figureEF generates the stagewise equivalence and futility boundary plots
oc examines the operating characteristics of a given GSD in equivalence studies

Table 1: Functions in package gset.

Argument Description

l the lower equivalence bound as given in the equivalence hypothesis
u the upper equivalence bound as given in the equivalence hypothesis
theta the true mean difference between 2 groups
sigma between-subject standard deviation of the response variable y for two independent

samples; and within-subject SD of y for paired samples.
n1 size of group 1
n2 size of group 2
t.vec cumulative interim look time points assuming a constant accrual rate. For example,

if a study has equally spaced 4 looks, then t.vec = 1:4/4. t.vec can be any vector
as long as it is monotonically increasing and the last element is 1

type1 overall Type I error rate
type2 overall Type II error rate
gamma the gamma parameter in the gamma cumulative error spending function. gamma

is a scalar for equivonly, and a 2-dimensional vector for binding, nonbinding,
nminmax; it can be any value; default is −4, which produces O’Brien-Fleming type
error spending function.

crange a 2-dimensional vector containing the end-points of the interval from the equivalence
boundaries will be solved; default is c(-10, 10).

drange a 2-dimensional vector containing the end-points of the interval from which the
futility boundaries will be solved; default is c(-10, 10).

force whether to force the futility boundaries to equal to the equivalence boundaries in
the last look; default is force = TRUE.

plot whether to generate the boundaries plot. Default plot = TRUE.
ll a parameter in the boundary plot; the short arm of the t(L) and t(U) axes
ul a parameter in the boundary plot; the long arm of the t(L) and t(U) axes
n.sim number of randomly simulated samples in the MC computation of the boundaries;

default n.sim = 105

seed seed used in the MC computation. If non-specified, the seed is set randomly.

Table 2: Arguments to be supplied by users to calculate equivalence and futility boundaries.

from equivonly, nonbinding, binding, nminmax as their input.

As for the error spending function employed by gset, the gamma error spending function as
introduced by Hwang et al. (1990) is used on both Type I and Type II error. The function, using Type
I error rate α as an example, is f (t) = α(1− e−tγ)(1− e−γ)−1 if γ 6= 0 or αt if γ = 0. The values of
γ can be different for α and β spending. The error spending function is versatile and yield a wide
range of spending patterns by varying γ on a continuous scale. For example, γ = −4 corresponds to
more conservative spending at early stages and gradually become liberal toward the end (producing
O’Brien-Fleming like boundaries), and γ = 1 corresponds to more spending at early stages than the
later stages (producing Pocock-like boundaries).
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Examples

In this section, we illustrate the implementation of package gset with 3 examples. In all examples,
the base design is the complete crossover design, there are 4 looks of the GSD in each example. The
equivalence bounds in the hypothesis are (L, U) = (−0.2, 0.2), the assumed true different θ = 0, the
within-subject standard deviation σ = 0.4, and the overall Type I and Type II error rates are 0.05 and
0.2, respectively. The O’Brien-Fleming type error spending function is used for both the Type I and
Type II error rates (γ = −4), which is the default. Since the critical values and the sample size in gset
are calculated via the MC simulation, there will be some MC errors in the results. In other words,
the results will be slightly different when re-running the commands. To decrease the MC errors, the
number of simulations can be increased; the default n.sim is 105. Users can fix the random effect using
set.seed to have their results reproduced in different runs.

library(gset)
#### specify the parameters
L <- -0.2
U <- 0.2
theta <- 0
sigma <- 0.4
alpha <- 0.05
beta <- 0.2
K <- 4
r <- 1
#### sample size in the non-sequential setting
n.fix <- nfix(r, L, U, theta, sigma, alpha, beta)

The output is given below. The sample size is 69 for a non-sequential crossover design.

$n1
[1] 69
$n2
[1] 69

Example 1: If a study considers only stopping for equivalence, then the following command computes
the equivalence boundaries and generates the boundary plots.

bound1<- equivonly(L, U, sigma, n.fix$n1, n.fix$n2, 1:K/K, alpha, beta)
#### the boundary plot can be regenerated by using figureE(bound1, K)

The output is given below. It contains the cumulative Type I error spending and the equivalence
critical values at each look. If T(L) > 1.858 and T(U) < −1.858 at the first interim look of a GSD, the
study stops for equivalence; otherwise, the study continues. The usage of the critical values at other
looks are similar. The boundary plots are given in Figure 1.

$typeI
[1] 0.001602930 0.005960146 0.017804287 0.050000000
$equivL
[1] 1.857541 2.151003 2.212045 1.739736
$equivU
[1] -1.857541 -2.151003 -2.212045 -1.739736

The operating characteristics of the GSD with the calculated equivalence boundaries can be investi-
gated by applying commands oc(L,U,theta = L,sigma,K,69,69,bound1,futility = FALSE) (under
H0) and oc(L,U,theta = 0,sigma,K,69,69,bound1,futility = FALSE) (under H1). The outputs are
not provided due to space limitation.

Example 2: If a study considers stopping for equivalence and futility but would like to have the
flexibility to continue even if the futility boundaries are crossed at an interim look, then the following
commands can be used to get the critical values for a GSD with non-binding futility. By default, the
futility boundaries in the last step are forced to equal to the equivalence boundaries; users can use
argument force = FALSE to remove the constraint.

bound2 <- nonbinding(L, U, theta, sigma, n.fix$n1, n.fix$n2, 1:K/K, alpha, beta)
### the boundary plot can be regenerated by using figureEF(bound2, K)

The output is given below. It contains the cumulative error spending and the equivalence and non-
binding futility boundaries at each look. Note that the equivalence critical values with non-binding
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Figure 1: Stagewise boundary plot in Example 1.

futility in theory should be the same as the equivalence critical values in a study with equivalence
boundaries only. Comparing the results from equivonly above, we can see that the critical values are
close but not exactly the same due to the MC errors. If the same random seed had been used, the
results would have been the same.

$typeI
[1] 0.001602930 0.005960146 0.017804287 0.050000000
$typeII
[1] 0.006411721 0.023840584 0.071217148 0.200000000
$equivL
[1] 1.829343 2.160757 2.197812 1.721998
$equivU
[1] -1.829343 -2.160757 -2.197812 -1.721998
$futilL
[1] -1.2607491 -0.2314749 0.6712118 1.7219983
$futilU
[1] 1.2607491 0.2314749 -0.6712118 -1.7219983

The boundary plots are given in Figure 2. Since T(L) > T(U), the region above the identity
line T(U) = T(L) is impossible. In this particular example, the futility critical values at the 1rd

and 2nd interim looks appear above the identity line (in the 2nd quadrant, specifically), implying
that the trial cannot stop for futility in the first two looks. The operating characteristics of the
GSD with the calculated equivalence and futility boundaries can be investigated by applying com-
mands oc(L,U,theta = L,sigma,K,69,69,bound2,futility = TRUE) (under H0) and oc(L,U,theta
= 0,sigma,K,69,69,bound2,futility = TRUE) (under H1). The outputs are given in Table 3. The
empirical Type I error (0.048) is maintained at the nominal level (5%). At n = 69, the study is a little
underpowered (empirical power = 78.7%, below the desired level 80%). The expected sample size is
smaller under H1 compared to that under H0 but close, and both are smaller than the fixed sample
size n = 69. The probability of stopping due to equivalence at look 3 when H1 is true is large (25.4%),
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Figure 2: Stagewise boundary plot in Example 3.

under H0 under H1

$reject.rate
[1] 0.0479
$accept.rate
[1] 0.9521
$En1
[1] 66.9
$En2
[1] 66.9
$prob.stop
[1] 0.008025 0.022650 0.055450 0.913875
$prob.stopE
[1] 0.002075 0.004375 0.010900 0.030550
$prob.stopF
[1] 0.005950 0.018275 0.044550 0.883325

$reject.rate
[1] 0.787275
$accept.rate
[1] 0.223075
$En1
[1] 62.3
$En2
[1] 62.3
$prob.stop
[1] 0.011450 0.052500 0.299125 0.636925
$prob.stopE
[1] 0.005325 0.034550 0.253925 0.493475
$prob.stopF
[1] 0.006125 0.017950 0.045200 0.153800

Table 3: Output from command oc on the operating characteristics of the GSD under H0 and H1 in
Example 2 when n = 69.

but not at other looks. This is partly due to the conservative spending of the Type I error rate in early
stages of the O’Brien-Fleming type error spending, making it harder to reject early, especially with the
slight under-power.

To calculate the sample size that yields the desirable power (80%), the following command can be
used. The equivalence boundaries should remain the same (except than some MC numerical errors) as
those under n = 69, but the futility boundaries would alter.

bound3 <- nminmax(L, U, theta, sigma, 69, 69, 1:K/K, alpha, beta)
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The outputs are given below.

$n1minmax
[1] 75
$n2minmax
[1] 75
$typeI
[1] 0.001602930 0.005960146 0.017804287 0.050000000
$typeII
[1] 0.006411721 0.023840584 0.071217148 0.200000000
$equivL
[1] 1.852941 2.193359 2.208099 1.729116
$equivU
[1] -1.852941 -2.193359 -2.208099 -1.729116
$futilL
[1] -1.2006119 -0.1403367 0.8067496 1.7291157
$futilU
[1] 1.2006119 0.1403367 -0.8067496 -1.7291157

The new sample size is 75. The boundary plot, which can be obtained using figureEF(bound3,K),
is similar to Figure 2, and not provided due to space limitation. The operating characteristics of the
GSD with n = 75 can be also investigated by applying the following commands oc(L,U,theta =
L,sigma,K,75,75,bound3,futility = FALSE) (under H0) and oc(L,U,theta = 0,sigma,K,75,75,
bound3,futility = FALSE) (under H1). Due to space limitation, the output is not shown. The
empirical power with n = 75 now increases to 82.7%. The probabilities of stopping due to equivalence
in early stages also increase under H1. The empirical Type I error rate remains controlled at 0.05 under
H0.

Example 3: If a study plans to stop the study whenever the equivalence or the flexibility boundaries
are crossed at an interim look, then the following command can be used. By default, the futility
boundaries in the last step are forced to equal to the equivalence boundaries; users can use argument
force = FALSE to remove the constraint.

bound4 <- binding(L, U, theta, sigma, n.fix$n1, n.fix$n2, 1:K/K, alpha, beta)
### the boundary plot can be regenerated by using figureEF(bound4, K)

The output is given below. The equivalence critical values (binding futility) are different from those
from studies with nonbinding futilities (Example 2). The boundary plots are given in Figure 3. The
futility critical values at the first and second interim looks appear above the identity line in this
example, and the trial cannot stop for futility in the first two looks.

$typeI
[1] 0.001602930 0.005960146 0.017804287 0.050000000
$typeII
[1] 0.006411721 0.023840584 0.071217148 0.200000000
$equivL
[1] 1.806721 2.155557 2.220632 1.730838
$equivU
[1] -1.806721 -2.155557 -2.220632 -1.730838
$futilL
[1] -1.2525572 -0.2457909 0.6858693 1.7308381
$futilU
[1] 1.2525572 0.2457909 -0.6858693 -1.7308381

The operating characteristics of the GSD with the equivalence and binding futility boundaries
can be investigated by applying commands oc(L,U,theta = L,sigma,K,69,69,bound4,futility
= TRUE,binding = TRUE) (under H0) and oc(L,U,theta = 0,sigma,K,69,69,bound4,futility =
TRUE,binding = TRUE) (under H1). The output is given in Table 4. The empirical Type I error (0.049)
is maintained at the nominal level (5%). At n = 69, the GSD study is a bit underpowered (empirical
power = 76.8%, below the nominal level 80%). It is interesting to note that the expected sample
size is much smaller if H0 is true compared to that under H1, which is exactly the opposite than the
non-binding case though the difference is not as dramatic. This is because the study will have to stop
if the futility boundaries are crossed under H0.

To calculate the sample size that yields the desirable power (80%) in Example 3, the following
command can be used. The equivalence boundaries should remain the same (except for some MC
numerical errors) as those under n = 60, but the futility boundaries would alter.
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Figure 3: Stagewise boundary plot in Example 3.

under H0 under H1

$reject.rate
[1] 0.0491
$accept.rate
[1] 0.9509
$En1
[1] 46.7
$En2
[1] 46.7
$prob.stop
[1] 0.114075 0.306725 0.354850 0.224350
$prob.stopE
[1] 0.002075 0.004200 0.011050 0.031775
$prob.stopF
[1] 0.112000 0.302525 0.343800 0.192575

$reject.rate
[1] 0.76775
$accept.rate
[1] 0.23225
$En1
[1] 61.9
$En2
[1] 61.9
$prob.stop
[1] 0.011675 0.052475 0.275500 0.660350
$prob.stopE
[1] 0.005325 0.036075 0.227675 0.498675
$prob.stopF
[1] 0.006350 0.016400 0.047825 0.161675

Table 4: Output from command oc on the operating characteristics of the GSD under H0 and H1 in
Example 3 when n = 69.

bound5 <- nminmax(L, U, theta, sigma, 69, 69, 1:K/K, alpha, beta, binding = TRUE)

The outputs are given below. The new sample size is 73. The boundary plot, which can be
obtained using figureEF(bound5,K) is not provided due to space limitation. The operating char-
acteristics of the GSD with n = 73 can be investigated by applying commands oc(L,U,theta =
L,sigma,K,73,73,bound5,futility = FALSE,binding = TRUE) (under H0) and oc(L,U,theta =
0,sigma,K,73,73,bound5,futility = FALSE,binding = TRUE) (under H1). Due to space limitation,
the output is not shown. The empirical power with n = 75 increases to 80.3%.

$n1minmax
[1] 73
$n2minmax
[1] 73
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$typeI
[1] 0.001602930 0.005960146 0.017804287 0.050000000
$typeII
[1] 0.006411721 0.023840584 0.071217148 0.200000000
$equivL
[1] 1.881127 2.187860 2.217254 1.716097
$equivU
[1] -1.881127 -2.187860 -2.217254 -1.716097
$futilL
[1] -1.2035253 -0.1731546 0.7543735 1.7160975
$futilU
[1] 1.2035253 0.1731546 -0.7543735 -1.7160975

Conclusion

We have introduced the R package gset that computes the stagewise critical values and sample size
for testing equivalence hypothesis in GSDs. We outlined the underlying theory and computation
approach that gset is based on, and illustrated the usage of the package with several GSD examples.
gset can compute the critical values for GSDs that stop only for equivalence, or stop for equivalence
and futility – either binding or non-binding. It also produces 2-dimensional boundary plots which
give a direct visualization of the stagewise stopping boundaries. The operating characteristics of the a
proposed GSD can be examined in gset via the computation of empirical Type I error rates, empirical
power, stopping probabilities at the interim looks, and expected sample sizes.

gset is the first package in R that targets specifically at the GSD with equivalence hypothesis.
Furthermore, it is based on the exact bivariate t test statistics, making it a fitting choice for GSDs
with small (stagewise) sample size cases and small stagewise Type I error rates. gset is based on
the traditional GSD framework and it does not accommodate sample size re-estimation during a
study when interim data becomes available, a feature of “flexible” GSDs. gset assumes the analyzed
variables follow a normal distribution. If there is severe deviation from normality, transformation can
be applied before applying the package.
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