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ngspatial: A Package for Fitting the
Centered Autologistic and Sparse Spatial
Generalized Linear Mixed Models for
Areal Data
by John Hughes

Abstract Two important recent advances in areal modeling are the centered autologistic model and
the sparse spatial generalized linear mixed model (SGLMM), both of which are reparameterizations
of traditional models. The reparameterizations improve regression inference by alleviating spatial
confounding, and the sparse SGLMM also greatly speeds computing by reducing the dimension of the
spatial random effects. Package ngspatial (’ng’ = non-Gaussian) provides routines for fitting these
new models. The package supports composite likelihood and Bayesian inference for the centered
autologistic model, and Bayesian inference for the sparse SGLMM.

Background and introduction

The traditional autologistic model (Besag, 1972) and areal GLMM (Besag et al., 1991) have enjoyed
widespread popularity: they have been applied thousands of times in many fields, e.g., epidemiology,
marketing, agriculture, ecology, forestry, geography, and image analysis. But it was recently discovered
that both models are spatially confounded (Caragea and Kaiser, 2009; Clayton et al., 1993). This
confounding can cause bias and/or variance inflation in the estimators of regression coefficients,
leading to erroneous regression inference. This is a serious drawback because many spatial modelers
are interested in regression (rather than, or in addition to, prediction).

To address the confounding of the traditional autologistic model, Caragea and Kaiser (2009)
devised the centered autologistic model, so named because it replaces the traditional model’s autoco-
variate with a centered autocovariate (see below for details).

The confounding of the mixed model was first addressed by Reich et al. (2006) using a technique
now known as restricted spatial regression (Hodges and Reich, 2010). This technique alleviates spatial
confounding and also yields a faster mixing Markov chain, but the computational burden remains high
because the dimension of the spatial random effects is reduced only slightly relative to the traditional
model. By using the so called Moran operator, Hughes and Haran (2013) were able to reparameterize
the mixed model in a way that not only improves regression inference but also dramatically reduces
the dimension of the random effects. The resulting model, which we will call the sparse SGLMM, can
be fitted so efficiently that even the largest areal datasets can be analyzed quickly.

These promising new models cannot be applied using existing software, and so we have provided
support for the models in version 1.0 of R package ngspatial, the subject of this article. First we discuss
the two models in some detail. Then we present ngspatial 1.0, which permits composite likelihood
and Bayesian inference for the centered autologistic model, and Bayesian inference for the sparse
SGLMM. We conclude with a summary.

The models supported by ngspatial 1.0

Areal models

The autologistic model and the sparse SGLMM are areal models, i.e., models for data observed at
the vertices of a graph G = (V, E), where V = {1, 2, . . . , n} are the vertices, and E ⊂ V ×V are the
edges. Each vertex of G represents an areal unit, i.e., an area over which measurements have been
aggregated. For example, areal units could be counties, census tracts, voxels, pixels, or provinces. An
edge (i, j) of G represents the spatial adjacency of areal units i and j. Typically, two areal units are
considered adjacent if they share a boundary, but other definitions are possible. We will assume that G
is undirected and free of loops and parallel edges.
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The centered autologistic model

The traditional autologistic model was proposed by Besag (1972). The model is a Markov random
field (MRF) model (Kindermann and Snell, 1980), which is to say that G describes conditional indepen-
dencies among the random variables Zi (i = 1, . . . , n) associated with V. For the autologistic model,
the ith observation is Bernoulli distributed conditional on its neighbors:

log
P(Zi = 1 | {Zj : (i, j) ∈ E})
P(Zi = 0 | {Zj : (i, j) ∈ E}) = x′iβ+ η ∑

j:(i,j)∈E
Zj,

where xi is a p-vector of spatial predictors associated with the ith areal unit, β is a p-vector of spatial
regression coefficients, η is a spatial dependence parameter, and ∑ Zj is the so called autocovariate.

We see that η is a measure of Zi’s reactivity to its neighbors. If η = 0, the model reduces to the
ordinary Bernoulli GLM, while η > 0 (< 0) corresponds to positive (negative) spatial dependence. We
will assume that η > 0 since the model is usually applied to phenomena that exhibit spatial attraction
rather than repulsion.

Caragea and Kaiser (2009) showed that the traditional autologistic model is confounded. This is
because the traditional autocovariate is not well suited to the task of fitting small-scale structure in
the data, i.e., clustering induced by spatial dependence and residual to the large-scale structure x′β.
Instead, the traditional autocovariate and the spatial predictors “compete” to explain the data, which
prevents the model from isolating the role of the spatial predictors.

Caragea and Kaiser (2009) reparameterized the model by centering the autocovariate. The resulting
conditional log odds are

log
P(Zi = 1 | {Zj : (i, j) ∈ E})
P(Zi = 0 | {Zj : (i, j) ∈ E}) = x′iβ+ η ∑

j:(i,j)∈E
(Zj − µj),

where µj = {1 + exp(−x′jβ)}
−1 is the independence expectation of Zj. Centering allows the autoco-

variate to fit only residual structure so that fitting the large-scale structure is left to the regression term.
Thus the centered model restores to β and η their desired interpretations as regression coefficients and
dependence parameter, respectively.

Maximum likelihood and Bayesian inference for the autologistic model are complicated by an
intractable normalizing function. To see this, first let Z = (Z1, . . . , Zn)′; let X be the design matrix; let
A = [1{(i, j) ∈ E}] be the adjacency matrix of G, where 1{·} is the indicator function; let θ = (β′, η)′

be the full parameter vector; and let µ = (µ1, . . . , µn)′ be the vector of independence expectations.
Then, assuming G has clique number 2, the joint pmf of the centered model is

π(Z | θ) = c(θ)−1 exp
(
Z ′Xβ− ηZ ′Aµ+

η

2
Z ′AZ

)
, (1)

where
c(θ) = ∑

Y ∈{0,1}n

exp
(
Y ′Xβ− ηY ′Aµ+

η

2
Y ′AY

)
is the normalizing function (Hughes et al., 2011).

The normalizing function is intractable for all but the smallest datasets because the sample space
{0, 1}n contains 2n points. Our package offers two ways to solve this problem: (1) composite likelihood
inference, which sidesteps c(θ), and (2) auxiliary-variable MCMC for Bayesian inference, which allows
c(θ) to cancel from the Metropolis-Hastings acceptance probability. See below for details.

The sparse spatial generalized linear mixed model

The traditional SGLMM for areal data—sometimes referred to as the BYM model—was proposed by
Besag, York, and Mollié (1991). The BYM model is hierarchical, inducing spatial dependence by way
of a latent autonormal random vector. Conditional on these spatial random effects, the observations
are independent and follow an ordinary GLM. Specifically, the transformed conditional means are

g(µi) = x
′
iβ+ Si, (2)

where g is a link function, µi = E(Zi | Si), and Si is the spatial random effect for the ith areal unit.

The most common specification for S = (S1, . . . , Sn)′ is the so called intrinsic conditional autore-
gression (ICAR), a zero-mean Gaussian Markov random field (GMRF; Rue and Held, 2005) with a
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singular precision matrix that corresponds to the intuitively appealing full conditional distributions

Si | {Sj : (i, j) ∈ E} ∼ N

 1
di

∑
j:(i,j)∈E

Sj,
1

τdi

 ,

where di is the degree of vertex i and τ > 0 is a smoothing parameter. These conditionals correspond
to the joint distribution

S ∼ N{0, (τQ)−1},
where Q = D− A, with D = diag(di). Since Q is singular, the BYM model is employed from the
Bayesian point of view, with the ICAR a prior distribution on S. Packages CARBayes (Lee, 2013) and
spdep (Bivand, 2015) provide tools for fitting the ICAR and other CAR models.

Reich et al. (2006) showed that the BYM model is spatially confounded in the sense that the random
effects can “pollute” the regression manifold C(X), which can lead to a biased and variance-inflated
posterior for β. To see this, first let P be the orthogonal projection onto C(X), so that I − P is the
orthogonal projection onto C(X)⊥. Now eigendecompose P and I− P to obtain orthogonal bases
(Kn×p and Ln×(n−p), say) for C(X) and C(X)⊥. Then (2) can be rewritten as

g(µi) = x
′
iβ+ k′iγ + l′iδ,

where γp×1 and δ(n−p)×1 are random coefficients. This form shows that K is the source of the
confounding, for K and X have the same column space.

Since the columns of K are merely synthetic predictors (i.e., they have no scientific meaning), Reich
et al. (2006) recommend removing them from the model. The resulting model (henceforth the RHZ
model) has

g(µi) = x
′
iβ+ l′iδ,

so that spatial smoothing is restricted to the orthogonal complement of C(X). In a subsequent paper,
Hodges and Reich (2010) referred to this technique as restricted spatial regression.

Restricted spatial regression is not only an effective remedy for confounding but also speeds com-
puting. Because the columns of L are orthogonal, the RHZ model’s random effects are approximately
a posteriori uncorrelated. This yields a fast mixing Markov chain, and the cost per iteration is reduced
because a simple spherical normal proposal is sufficient for updating the random effects. But fitting
the RHZ model to large areal datasets is still quite burdensome computationally because the random
effects remain high dimensional.

By taking full advantage of G, Hughes and Haran (2013) were able to greatly reduce the number
of random effects while also improving regression inference. Hughes and Haran (2013) begin by
defining the so called Moran operator for X with respect to G: (I− P)A(I− P). This operator appears
in the numerator of a generalized form of Moran’s I, a popular nonparametric measure of spatial
dependence (Moran, 1950):

IX(A) =
n

1′A1

Z ′(I− P)A(I− P)Z
Z ′(I− P)Z

.

Boots and Tiefelsdorf (2000) showed that (1) the (standardized) spectrum of a Moran operator com-
prises the possible values for the corresponding IX(A), and (2) the eigenvectors comprise all possible
mutually distinct patterns of clustering residual to C(X) and accounting for G. The positive (nega-
tive) eigenvalues correspond to varying degrees of positive (negative) spatial dependence, and the
eigenvectors associated with a given eigenvalue (λi, say) are the patterns of spatial clustering that data
exhibit when the dependence among them is of degree λi.

In other words, the eigenvectors of the Moran operator form a multiresolutional spatial basis
for C(X)⊥ that exhausts all possible patterns that can arise on G. Since we do not expect to observe
repulsion in the phenomena to which these models are usually applied, we can use the spectrum of the
operator to discard all repulsive patterns, retaining only attractive patterns for our analysis (although
it can be advantageous to accommodate repulsion (Griffith, 2006). The nature of the attractive Moran
eigenvectors is illustrated in Figure 1.

By retaining only eigenvectors that exhibit positive spatial dependence, we can usually reduce the
model dimension by at least half a priori. And Hughes and Haran (2013) showed that a much greater
reduction is possible in practice, with 50–100 eigenvectors being sufficient for most datasets.

Let Mn×q contain the first q� n eigenvectors of the Moran operator. Then the sparse SGLMM has
first stage

g(µi) = x
′
iβ+m′iδs,

wheremi is the ith row of M and δs is a q-vector of random coefficients. This implies p + q + 1 model
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Figure 1: A Moran eigenvector exhibiting strong positive spatial dependence. The graph is the square
100× 100 lattice. The coordinates of the vertices (xi = (xi, yi)

′ for i = 1, . . . , 10 000) were restricted to
the unit square, and those coordinates were used as spatial covariates, i.e., X′ = (x1 · · ·x10 000).

parameters, compared to p + n + 1 for the traditional model and p + (n− p) + 1 = n + 1 for the RHZ
model. This dramatic reduction in dimension speeds computation considerably, allowing even the
largest areal datasets to be analyzed quickly.

We note that the sparse SGLMM was partly inspired by spatial filtering, also known as principle
coordinates of neighbor matrices. See, e.g., Griffith (2003); Dray et al. (2006); Borcard et al. (2011) for
more information. Package spdep provides tools for spatial filtering.

Package ngspatial

Package ngspatial supports composite likelihood and Bayesian inference for the centered autologistic
model, and Bayesian inference for the sparse SGLMM. Usage of the package’s two main functions,
autologistic and sparse.sglmm, is simple and intuitive while offering considerable flexibility.

Fitting the centered autologistic model

The fitting function for the centered autologistic model is called autologistic. This function returns an
object of class "autologistic". Auxiliary functions residuals, summary, and vcov accept an object of
type "autologistic" and return various kinds of residuals, summarize the fit, and return an estimated
covariance matrix, respectively.

A fast perfect sampler for the centered autologistic model

A key component of our autologistic framework is function rautologistic, which simulates a draw
from a centered autologistic model. The function has the following signature.

rautologistic(X, A, theta)

The three arguments are as described above. The functions of ngspatial require that an adjacency
matrix be binary and symmetric (see function isSymmetric from the base package) and of type matrix.
Note that package spdep provides function nb2mat, which constructs an adjacency matrix from a
neighbors list. spdep also provides many other functions that are useful for handling adjacency
structures.

This function employs coupling from the past (Propp and Wilson, 1996) to generate a vector
distributed exactly according to (1). We use perfect sampling, rather than ordinary MCMC, for two
reasons. First, the MCMC algorithm we use to do Bayesian inference requires that we draw a perfect
sample during each iteration (Møller et al., 2006). Were we to use an approximation, the resulting
Markov chain would not necessarily have the true posterior as its stationary distribution (Murray
et al., 2006). Second, although perfect sampling can be computationally burdensome, a carefully
implemented perfect sampler is fast enough to permit composite likelihood analysis of even very large
datasets, while obviating convergence diagnosis.

Our perfect sampler was implemented in C++. More specifically, we used the Armadillo linear
algebra library (Sanderson, 2010), which provides two benefits: (1) intuitive syntax for linear algebra
(e.g., Z ′Xβ can be computed as Z.t() * X * beta), and (2) speed (Armadillo uses delayed evaluation
to combine multiple operations, thus reducing or eliminating the need for temporaries). We integrated
the C++ and R code using the Rcpp and RcppArmadillo packages (Eddelbuettel and François, 2011).
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We tested our Armadillo-based sampler in a number of circumstances and found it to be over three
times as fast as an optimal pure R version.

Composite likelihood inference for the centered autologistic model

One way to overcome the intractability of the normalizing function c(θ) is to avoid it. This can be
accomplished by considering the so called pseudolikelihood (PL), which is a composite likelihood
(Lindsay, 1988) of the conditional type. Each of the n factors in the pseudolikelihood is the likelihood
of a single observation, conditional on said observation’s neighbors:

pi(θ)
zi{1− pi(θ)}1−zi = P(Zi = zi | {Zj : (i, j) ∈ E}) =

exp[zi{x′iβ+ ηAi(Z −µ)}]
1 + exp{x′iβ+ ηAi(Z −µ)}

,

where zi is the observed value of Zi, and Ai is the ith row of A. Since the pi are free of the normalizing
function, so is the log pseudolikelihood, which is given by

`PL(θ) = Z
′{Xβ+ ηA(Z −µ)} −∑

i
log[1 + exp{x′iβ+ ηAi(Z −µ)}]. (3)

Although (3) is not the true log likelihood unless η = 0, Besag (1975) showed that the MPLE converges
almost surely to the maximum likelihood estimator (MLE) as the lattice size goes to ∞ (under an infill
regime). For small samples the MPLE is less precise than the MLE (and the Bayes estimator), but point
estimation of β is generally so poor for small samples that precision is unimportant. When the sample
size is large enough to permit accurate estimation of β, the MPLE is nearly as precise as the MLE
(Hughes et al., 2011).

We find the MPLE θ̃ = arg max `PL(θ) by using the optim function to minimize−`PL(θ). Although
the Nelder-Mead simplex algorithm finds the minimum quickly, we opted for the much faster BFGS
method. To speed computation even further, we supply the score function

∇`PL(θ) = ((Z − p)′(I− ηAD)X, (Z − p)′A(Z −µ))′,

where p = (p1, . . . , pn)′ and D = diag{µi(1− µi)}.
Confidence intervals can be obtained using a parametric bootstrap or sandwich estimation. For the

former we generate b samples from π(Z | θ̃) and compute the MPLE for each sample, thus obtaining
the bootstrap sample θ̃(1), . . . , θ̃(b). Appropriate quantiles of the bootstrap sample are then used to
construct approximate confidence intervals for the elements of θ.

The second approach for computing confidence intervals is based on (Varin et al., 2011)
√

n(θ̃− θ) ⇒ N{0, I−1(θ)J (θ)I−1(θ)}, (4)

where I−1(θ)J (θ)I−1(θ) is the so called Godambe sandwich matrix (Godambe, 1960). The “bread”
in this sandwich is the inverse of the information matrix I(θ) = −E∇2`PL(θ), and the “filling” is the
variance of the score: J (θ) = E∇∇′`PL(θ). We use the observed information (computed by optim)
in place of I and estimate J using a parametric bootstrap. For the bootstrap we simulate b samples
Z(1), . . . ,Z(b) from π(Z | θ̃) and estimate J as

Ĵ (θ̃) =
1
b

b

∑
k=1
∇∇′`PL(θ̃ | Z(k)).

Because the bootstrap sample can be generated in parallel (using the parallel package) and little
subsequent processing is required, these approaches to inference are very efficient computationally,
even for large datasets. We note that sandwich estimation is over twice as fast as the full bootstrap.
Moreover, asymptotic inference and bootstrap inference yield comparable results for practically all
sample sizes because (4) is not, in fact, an asymptotic result. This is because the log pseudolikelihood
is approximately quadratic with Hessian approximately invariant in law, which implies that the MPLE
is approximately normally distributed irrespective of sample size (Geyer, 2013).

Bayesian inference for the centered autologistic model

For Bayesian inference we use the auxiliary-variable MCMC algorithm of Møller et al. (2006), which
allows us to construct a proposal distribution so that the normalizing constant cancels from the
Metropolis-Hastings ratio. The method requires that we can draw independent realizations from the
unnormalized density for any value of θ, which we can do using our perfect sampler.
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Let h(Z | θ) = exp{Q(Z | θ)} denote the unnormalized density, where

Q(Z | θ) = Z ′Xβ− ηZ ′Aµ+
η

2
Z ′AZ

is the so called negpotential function; let Y ∈ Ω denote the auxiliary variable; and let f (·) denote a
prior distribution. Then the Metropolis-Hastings random walk acceptance probability for the algorithm
of Møller et al. is given by

α =
h(Y ∗ | θ̃)h(Z | θ∗)h(Y | θ) f (θ∗)
h(Y | θ̃)h(Z | θ)h(Y ∗ | θ∗) f (θ)

c(θ̃)
c(θ̃)

c(θ)
c(θ∗)

c(θ∗)
c(θ)

=
h(Y ∗ | θ̃)h(Z | θ∗)h(Y | θ) f (θ∗)
h(Y | θ̃)h(Z | θ)h(Y ∗ | θ∗) f (θ)

,

where Y ∗ is the proposed auxiliary variable, θ∗ = (β∗′, η∗)′ is the proposed θ, and θ̃ is the maximum
pseudolikelihood estimate of θ. Thus log α is

log α = Q(Y ∗ | θ̃)−Q(Y ∗ | θ∗) (5)

+ Q(Z | θ∗)−Q(Z | θ)
+ Q(Y | θ)−Q(Y | θ̃)
+ log f (θ∗)− log f (θ)

= Y ∗′X(β̃− β∗) + η̃ − η∗

2
Y ∗′AY ∗ + η∗Y ∗′Aµ∗ − η̃Y ∗′Aµ̃

+Z ′X(β∗ − β) + η∗ − η

2
Z ′AZ + ηZ ′Aµ− η∗Z ′Aµ∗

+Y ′X(β− β̃) + η − η̃

2
Y ′AY + η̃Y ′Aµ̃− ηY ′Aµ

+ log f (θ∗)− log f (θ).

Because the auxiliary proposals cannot be generated in parallel, this approach to Bayesian analysis
is computationally expensive. Our optimized perfect sampler eases the burden somewhat, as does our
Armadillo implementation of (5). We achieve an additional gain in efficiency as follows.

We use a normal random walk Metropolis-Hastings algorithm, and so our proposal for θ is (p + 1)-
variate normal, i.e., θ∗(k+1) | θ∗(k) ∼ Np+1(θ

∗(k), Σ), for a suitably chosen covariance matrix Σ. Taking
Σ = τ2I tends to result in a low acceptance rate unless τ2 is quite small, in which case a long run is
required to adequately explore the posterior. Instead, we begin by using

Σ0 =

(
Σ̂GLM 0
0 0.01

)
,

where Σ̂GLM is the estimated asymptotic covariance matrix for β̂ obtained from fitting the ordinary
logistic model to the data. We use Σ0 for a training run (the number of iterations can be chosen by the
user), and then we use the posterior sample covariance matrix from the training run as the proposal
covariance matrix for a subsequent run. We use the latter sample to do inference. The training run
usually results in a much better mixing chain, which reduces the total number of iterations. Still,
rigorous Bayesian inference (following Møller et al.) is impractical for large lattices because perfect
sampling does not scale well.

As for the prior f (θ), we assume that β and η are a priori independent, i.e., f (θ) = f1(β) f2(η).
The prior for β is N (0, σ2I). The common standard deviation defaults to 1,000 but can be specified by
the user via control parameter sigma. The prior for η is U (0, ηmax). The right endpoint defaults to 2
but can be chosen by the user via control parameter eta.max.

Usage examples for the centered autologistic model

Now we present some usage examples for the autologistic model. The fitting function is called
autologistic and has the following signature.

autologistic(formula, data, A, method = c("PL", "Bayes"), model = TRUE, x = FALSE,
y = FALSE, verbose = FALSE, control = list())

Arguments formula, data, model, x, and y are analogous to those that appear in the signatures of
other commonly used R model fitting functions, e.g., lm and glm. A is of course the binary adjacency
matrix for G. The method argument is used to select pseudolikelihood inference or Bayesian inference.
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If verbose is equal to TRUE, various messages may be sent to the standard output stream. Most of those
messages have to do with the default values for control parameters that were not set by the user via
the control argument.

For the following example the underlying graph is the 50× 50 square lattice. First the correspond-
ing adjacency matrix is constructed. Then the vertices are assigned coordinates restricted to the unit
square centered at the origin. The vertex locations are used as spatial covariates, with regression
coefficients β = (2, 2)′. The resulting independence expectations µ = Xβ, which range from approxi-
mately 0.1 to approximately 0.9, are level plotted in grayscale to show that the large-scale structure
corresponds to a probability gradient that increases as one moves from southwest to northeast. Then,
for η = 0.6, a dataset is simulated and plotted. The dataset is then fitted using the PL method, and no
confidence intervals are computed. Finally, the fit is summarized.

R> library("ngspatial")
R> library("lattice")
R> n <- 50
R> A <- adjacency.matrix(n)
R> x <- rep(0:(n - 1) / (n - 1), times = n) - 0.5
R> y <- rep(0:(n - 1) / (n - 1), each = n) - 0.5
R> X <- cbind(x, y)
R> beta <- c(2, 2)
R> mu <- exp(X %*% beta)
R> mu <- mu / (1 + mu)
R> col1 <- "white"
R> col2 <- "black"
R> colfunc <- colorRampPalette(c(col1, col2))
R> dev.new()
R> levelplot(mu ~ x * y, aspect = "iso", col.regions = colfunc(n^2))
R> theta <- c(beta, eta = 0.6)
R> set.seed(123456)
R> Z <- rautologistic(X, A, theta)
R> dev.new()
R> levelplot(Z ~ x * y, aspect = "iso", col.regions = c("white", "black"),
+ colorkey = FALSE)
R> fit <- autologistic(Z ~ X - 1, A = A, control = list(confint = "none"))
R> summary(fit)

Call:

autologistic(formula = Z ~ X - 1, A = A, control = list(confint = "none"))

Control parameters:

confint none

Coefficients:

Estimate Lower Upper MCSE
Xx 1.846 NA NA NA
Xy 1.920 NA NA NA
eta 0.483 NA NA NA

Number of iterations: 0

The next two examples compute confidence intervals for the same dataset. The first example
uses the normal approximation. The "filling" in the sandwich matrix is estimated using a parallel
parametric bootstrap, where the computation is distributed across six cores on the host workstation.
The second example computes bootstrap confidence intervals, where the size of the bootstrap sample
is 500. The computation is once again parallelized.

R> set.seed(123456)
R> fit <- autologistic(Z ~ X - 1, A = A, verbose = TRUE,
+ control = list(confint = "sandwich", nodes = 6))
R> summary(fit)

Control parameter 'bootit' must be a positive whole number. Setting it to the default
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value of 1,000.

Control parameter 'parallel' must be a logical value. Setting it to the default value
of TRUE.

Control parameter 'type' must be "SOCK", "PVM", "MPI", or "NWS". Setting it to "SOCK".

Warning: Bootstrapping may be time consuming.

Call:

autologistic(formula = Z ~ X - 1, A = A, verbose = TRUE,
control = list(confint = "sandwich", nodes = 6))

Control parameters:

confint sandwich
bootit 1000
parallel TRUE
type SOCK
nodes 6

Coefficients:

Estimate Lower Upper MCSE
Xx 1.846 1.4630 2.2300 NA
Xy 1.920 1.5410 2.2990 NA
eta 0.483 0.3619 0.6042 NA

Number of iterations: 1000

R> set.seed(123456)
R> fit <- autologistic(Z ~ X - 1, A = A, verbose = TRUE,
+ control = list(confint = "bootstrap", bootit = 500, nodes = 6))
R> summary(fit)

Control parameter 'parallel' must be a logical value. Setting it to the default value
of TRUE.

Control parameter 'type' must be "SOCK", "PVM", "MPI", or "NWS". Setting it to "SOCK".

Warning: Bootstrapping may be time consuming.

Call:

autologistic(formula = Z ~ X - 1, A = A, verbose = TRUE,
control = list(confint = "bootstrap", bootit = 500, nodes = 6))

Control parameters:

confint bootstrap
bootit 500
parallel TRUE
type SOCK
nodes 6

Coefficients:

Estimate Lower Upper MCSE
Xx 1.846 1.4980 2.2510 0.007607
Xy 1.920 1.5400 2.3270 0.007098
eta 0.483 0.3595 0.6063 0.003406

Number of iterations: 500
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It took several minutes to run each of the two preceding examples on a Mac Pro with two quad-core
2.8 GHz Intel Xeon CPUs. Since Bayesian inference would be prohibitively expensive for a dataset so
large, the next example was run on a dataset for which G was the 20× 20 square lattice.

We use, and recommend, fixed-width output analysis (Flegal et al., 2008). In fixed-width analysis,
one chooses a tolerance and stops sampling when all Monte Carlo standard errors fall below the
tolerance. The output shown below indicates that the Monte Carlo standard errors fell below the
default tolerance of 0.01 after 714,025 draws were made from the posterior, which is why the analysis
was terminated before having reached the (default) maximum number of iterations (maxit = 1e6).
We use the batchmeans package (Haran and Hughes, 2012) to compute Monte Carlo standard errors
(denoted MCSE in the output).

In this example we use a training run of length 10,000, and the length of the subsequent inferential
run will be at least 10,000.

R> n <- 20
R> A <- adjacency.matrix(n)
R> x <- rep(0:(n - 1) / (n - 1), times = n) - 0.5
R> y <- rep(0:(n - 1) / (n - 1), each = n) - 0.5
R> X <- cbind(x, y)
R> set.seed(123456)
R> Z <- rautologistic(X, A, theta)
R> fit <- autologistic(Z ~ X - 1, A = A, verbose = TRUE, method = "Bayes",
+ control = list(trainit = 10000, minit = 10000))
R> summary(fit)

Control parameter 'tol' must be a positive number. Setting it to the default value
of 0.01.

Control parameter 'maxit' must be a positive whole number greater than or equal to
'minit'. Setting it to 1e+06.

Control parameter 'sigma' must be a positive number. Setting it to the default value
of 1,000.

Control parameter 'eta.max' must be a positive number. Setting it to the default
value of 2.

Warning: MCMC may be time consuming.

Progress => 5%
Progress => 10%
Progress => 15%

Call:

autologistic(formula = Z ~ X - 1, A = A, method = "Bayes", verbose = TRUE,
control = list(trainit = 10000, minit = 10000))

Control parameters:

trainit 1e+04
tol 1e-02
minit 1e+04
maxit 1e+06
sigma 1e+03
eta.max 2e+00

Coefficients:

Estimate Lower Upper MCSE
Xx 2.4450 1.2120 3.667 0.009917
Xy 1.6800 0.4767 2.832 0.009800
eta 0.7363 0.4805 1.028 0.002631

Number of iterations: 714025

The R Journal Vol. 6/2, December 2014 ISSN 2073-4859

http://CRAN.R-project.org/package=batchmeans


CONTRIBUTED RESEARCH ARTICLES 90

The object returned by function autologistic is a list with many useful elements. The following
output resulted from applying the names function to the object returned in the second example above.

R> names(fit)

[1] "coefficients" "fitted.values" "linear.predictors" "residuals" "convergence"
[6] "message" "value" "iter" "sample" "mcse"
[11] "xlevels" "call" "terms" "method" "control"
[16] "model"

The standard coef and fitted functions can be applied to an object of type ‘autologisticṪhe
residuals method for ‘autologistic’ objects can be used to extract deviance (default), Pearson, or
response residuals.

R> library(lattice)
R> dev.new()
R> levelplot(fitted(fit) ~ x * y, aspect = "iso", col.regions = colfunc(n^2))
R> dev.new()
R> levelplot(residuals(fit) ~ x * y, aspect = "iso", col.regions = colfunc(n^2))
R> dev.new()
R> levelplot(residuals(fit, type = "pearson") ~ x * y, aspect = "iso",
+ col.regions = colfunc(n^2))
R> dev.new()
R> levelplot(residuals(fit, type = "response") ~ x * y, aspect = "iso",
+ col.regions = colfunc(n^2))

Other fields of interest are value, which contains −`PL(θ̃), and sample, which contains the boot-
strap or posterior sample.

Fitting the sparse SGLMM

The fitting function for the sparse SGLMM is called sparse.sglmm. The function returns an object
of class "sparse.sglmm". Auxiliary functions residuals, summary, and vcov accept an object of type
"sparse.sglmm" and return various kinds of residuals, summarize the fit, and return an estimated
covariance matrix, respectively.

Bayesian inference for the sparse SGLMM

The second stage of the sparse SGLMM, i.e., the prior for δs, is

f (δs | τs) ∝ τ
q/2
s exp

(
− τs

2
δ′sM′QMδs

)
,

where τs is a smoothing parameter. The prior for β is spherical p-variate normal with mean zero and
common variance sigma.b, which defaults to 1,000 but can be controlled by the user via argument
hyper. The prior for τs is gamma with parameters 0.5 and 2,000 (Kelsall and Wakefield, 1999). This
prior is attractive because it corresponds to the prior belief that the fixed effects are sufficient to explain
the data (since a large value for τs implies small variances for the random effects) and because it
discourages artifactual spatial structure in the posterior.

When the response is normally distributed, the identity link is assumed, in which case the first
stage is

µ = Xβ+ Mδs + Mδh,

where δh are heterogeneity random effects. When the response is Poisson distributed, heterogeneity
random effects are optional. In any case, the prior on δh is spherical q-variate normal with mean zero
and common variance 1/τh. The prior for τh is gamma with parameters a.h and b.h. The default
values for these parameters are 0.01 and 100, respectively, or their values can be set by the user through
argument hyper.

If the response is Bernoulli or Poisson, β and δs are updated using Metropolis-Hastings random
walks with normal proposals. The proposal covariance matrix for β is the estimated asymptotic
covariance matrix from a glm fit to the data. The proposal for δs is spherical normal with common
standard deviation sigma.s. If the response is Poisson distributed and heterogeneity random effects
are included, those random effects are updated using a Metropolis-Hastings random walk with a
spherical normal proposal. The common standard deviation is sigma.h. Both sigma.s and sigma.h
default to 0.01, but they can be set via argument tune.
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Figure 2: The empirical infant mortality rates.

The updates for τs and τh are Gibbs updates irrespective of the response distribution. If the
response is normally distributed, all updates are Gibbs updates.

Usage examples for the sparse SGLMM

Function sparse.sglmm has the following signature.

sparse.sglmm(formula, family = gaussian, data, offset, A, attractive = 50,
repulsive = 0, tol = 0.01, minit = 10000, maxit = 1e+06, tune = list(),
hyper = list(), model = TRUE, x = FALSE, y = FALSE, verbose = FALSE)

Most of the arguments are analogous to those already described above. Arguments attractive
and repulsive are used to select the number of Moran eigenvectors. Both attractive and repulsive
eigenvectors are permitted, although repulsive defaults to 0, which corresponds to pure spatial
smoothing. Function sparse.sglmm checks the validity of attractive and repulsive by eigendecom-
posing the Moran operator and examining the spectrum. Execution is terminated (with an informative
error message) if either value is invalid. Arguments tune and hyper can be used to supply values for
tuning parameters and hyperparameters, respectively, as described above.

We will illustrate the usage of our sparse SGLMM function by analyzing the data shown in Figure 2.
The plot shows infant mortality data for 3,071 US counties. Each shaded peak represents a ratio of
deaths to births, i.e., an empirical infant mortality rate, for a given county. The data were obtained
from the 2008 Area Resource File (ARF), a county-level database maintained by the Bureau of Health
Professions, Health Resources and Services Administration, US Department of Health and Human
Services. Specifically, three variables were extracted from the ARF: the three-year (2002–2004) average
number of infant deaths before the first birthday, the three-year average number of live births, and the
three-year average number of low birth weight infants.

To these data we fit the sparse Poisson SGLMM with

log E(DEATHSi |β, δs) = log BIRTHSi + β0 + β1 LOWi + β2 BLACKi + β3 HISPi + β4 GINIi

+ β5 AFFi + β6 STABi +m
′
iδs,

where DEATHS is the number of infant deaths; BIRTHS is the number of live births; LOW is the rate of
low birth weight; BLACK is the percentage of black residents (according to the 2000 US Census); HISP
is the percentage of hispanic residents (2000 US Census); GINI is the Gini coefficient, a measure of
income inequality (Gini, 1921); AFF is a composite score of social affluence (Yang et al., 2009); and STAB
is residential stability, an average z-score of two variables from the 2000 US Census.

These data were analyzed previously in Hughes and Haran (2013), where it was found that the
model with 50 attractive eigenvectors yields the smallest value of DIC among the sequence of models
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with 25, 50, 100, and 200 attractive eigenvectors. The following code duplicates the analysis of Hughes
and Haran (2013).

R> data(infant)
R> infant$low_weight <- infant$low_weight / infant$births
R> attach(infant)
R> Z <- deaths
R> X <- cbind(1, low_weight, black, hispanic, gini, affluence, stability)
R> data(A)
R> set.seed(123456)
R> fit <- sparse.sglmm(Z ~ X - 1 + offset(log(births)), family = poisson, A = A,
+ tune = list(sigma.s = 0.02), verbose = TRUE)
R> summary(fit)

Hyperparameter 'sigma.b' must be a positive number. Setting it to the default
value of 1,000.

The Moran operator is being eigendecomposed. This operation may be time consuming.

Warning: MCMC may be time consuming.

Progress => 5%
.
.
.
Progress => 100%

Call:

sparse.sglmm(formula = Z ~ X - 1 + offset(log(births)), family = poisson,
A = A, tune = list(sigma.s = 0.02), verbose = TRUE)

Tuning parameters:

sigma.s 0.02

Hyperparameters:

sigma.b 1000

Coefficients:

Estimate Lower Upper MCSE
X -5.435000 -5.621000 -5.250000 9.466e-04
Xlow_weight 8.821000 7.552000 10.050000 5.673e-03
Xblack 0.004184 0.002864 0.005545 6.568e-06
Xhispanic -0.003792 -0.004870 -0.002678 6.342e-06
Xgini -0.553200 -0.984300 -0.126000 2.070e-03
Xaffluence -0.075600 -0.087760 -0.063740 5.148e-05
Xstability -0.028670 -0.043350 -0.013980 6.360e-05

DIC: 10110

Number of iterations: 1000000

The analysis took just under two hours. Fitting the RHZ model to these data took approximately
two weeks and required over 40 GB of secondary storage.

We also used CARBayes to apply the ICAR model to these data. The results for the two fits are
shown together in Table 1. We see that the ICAR fit suffers from spatial confounding. Specifically, some
of the ICAR point estimates differ markedly from the sparse SGLMM estimates, the ICAR intervals
are wider, and the Gini coefficient is not a significant predictor in the ICAR fit.

The object returned by function sparse.sglmm is a list. The following output resulted from
applying the names function to the object produced in the example above.
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Sparse SGLMM ICAR
Covariate Estimate 95% HPD Interval Estimate 95% HPD Interval

Intercept −5.435 (−5.621,−5.250) −5.558 (−5.766,−5.354)
Low Weight 8.821 (7.552, 10.050) 7.754 (6.396, 9.112)
Black 0.004 (0.003, 0.006) 0.004 (0.002, 0.006)
Hispanic −0.004 (−0.005,−0.003) −0.003 (−0.005,−0.002)
Gini −0.553 (−0.984,−0.126) −0.079 (−0.554, 0.406)
Affluence −0.076 (−0.088,−0.064) −0.077 (−0.091,−0.063)
Stability −0.029 (−0.043,−0.014) −0.042 (−0.060− 0.024)

Table 1: Results for sparse SGLMM and ICAR fits to the infant mortality data.

R> names(fit)

[1] "coefficients" "fitted.values" "linear.predictors" "residuals" "beta.sample"
[6] "gamma.sample" "tau.s.sample" "beta.mcse" "gamma.mcse" "tau.s.mcse"
[11] "gamma.est" "tau.s.est" "iter" "D.bar" "pD"
[16] "dic" "beta.accept" "gamma.accept" "xlevels" "call"
[21] "terms" "formula" "family" "offset" "model"
[26] "tune" "hyper"

The standard coef and fitted functions can be applied to an object of type ‘sparse.sglmm’. The
residuals method for ‘sparse.sglmm’ objects can be used to extract deviance (default), Pearson, or
response residuals.

Other particularly useful fields include beta.sample, gamma.sample, and tau.s.sample, which
contain the posterior samples for β, δs, and τs, respectively. (The package uses γ and δ, respectively,
in place of δs and δh. This paper has used δs and δh because here it was necessary to present the RHZ
model, which is not discussed in the package documentation.) Monte Carlo standard errors are also
returned, as are acceptance rates.

Conclusion

This article introduced version 1.0 of R package ngspatial, which supports two promising new models
for areal data, namely, the centered autologistic model and the sparse SGLMM. The package is user
friendly because its model-fitting functions and auxiliary functions were designed to behave like the
analogous functions (e.g., lm, glm, summary) in the stats package. The package is also efficient because
the code uses vector and matrix operations where possible, and because key portions of the code were
written in C++.
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