
CONTRIBUTED RESEARCH ARTICLES 148

Changes to grid for R 3.0.0
by Paul Murrell

Abstract From R 3.0.0, there is a new recommended way to develop new grob classes in grid.
In a nutshell, two new “hook” functions, makeContext() and makeContent() have been added to
grid to provide an alternative to the existing hook functions preDrawDetails(), drawDetails(), and
postDrawDetails(). There is also a new function called grid.force(). This article discusses why
these changes have been made, provides a simple demonstration of the use of the new functions, and
discusses some of the implications for packages that build on grid.

Introduction

The grid graphics package (Murrell, 2011) provides a low-level graphics system as an alternative to
the default graphics package. Several high-level graphics packages build on grid; for example, if we
use lattice (Sarkar, 2008) or ggplot2 (Wickham, 2009) to draw a plot, then we are also using grid.

This section shows a simple example of using grid that results in a problem, and this problem
provides the motivation for the changes that were made to grid for R 3.0.0.

The following code uses the grid package to draw an axis.

> library(grid)

> grid.xaxis(at=c(0, .5, 1), name="axis-1")

0 0.5 1

In addition to drawing the axis, grid keeps a list of graphical objects, or grobs , that contain
descriptions of what has been drawn. The following code lists the grobs in the current scene: there is
a parent grob called "axis-1" (this is actually a gTree , which is a grob that can have other grobs as
children), and several child grobs including a "major" line, several "ticks" line segments, and several
text "labels", all collected together to make an axis.

> grid.ls(fullNames=TRUE)

xaxis[axis-1]
lines[major]
segments[ticks]
text[labels]

The grid package keeps a list of grobs because it can be useful to access, query, and modify the
grobs in a scene. For example, the following code uses the grid.edit() function to change the lines
on the axis to grey and the text to bold.

> grid.edit("major|ticks", grep=TRUE, global=TRUE, gp=gpar(col="grey"))
> grid.edit("labels", gp=gpar(fontface="bold"))

0 0.5 1

A problem

The next piece of code also draws an axis, but this time we do not specify where the tick marks should
go on the axis. There is also code to show the grobs that grid has kept as a record of this scene. The
important difference to note is that this time the grob listing only shows the "axis-2" gTree; there are
no grobs representing the lines, segments, and text on the axis.

> grid.xaxis(name="axis-2")

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES 149

0 0.2 0.4 0.6 0.8 1

> grid.ls(fullNames=TRUE)

xaxis[axis-2]

This lack of child grobs is a problem because it means that it is not possible to access (or query or
modify) the child grobs. The problem exists because, when the tick mark locations are not specified
for an axis, the axis decides which tick marks to draw every time the axis is drawn - no child grobs are
kept because they are recreated every time.

One of the reasons for the changes to grid in R 3.0.0 is to provide a solution for this problem. It is
important to point out that many grid grobs do not suffer from this issue at all. This problem only
occurs for a small set of grid grobs that decide what to draw at drawing time rather than at creation
time. On the other hand, the problem becomes more likely in packages that build on grid and define
new classes of grid grobs, so fixing the problem in grid has large flow-on effects to other packages.

One of the very visible changes to grid is the new function grid.force(). The following code
shows that the grid.force() function can be used to create permanent versions of the child grobs for
the axis, which then means that it is possible to modify those child grobs.

> grid.force()

> grid.ls(fullNames=TRUE)

forcedgrob[axis-2]
lines[major]
segments[ticks]
text[labels]

> grid.edit("major|ticks", grep=TRUE, global=TRUE, gp=gpar(col="grey"))
> grid.edit("labels", gp=gpar(fontface="bold"))

0 0.2 0.4 0.6 0.8 1

The grid.force() function is just one of the changes to grid for R 3.0.0. This article describes the
full set of changes, including more about grid.force(), and explores some of the other reasons for
change and some of the other benefits that arise from these changes.

A simple grid demonstration

In order to demonstrate the changes in grid, we will consider several different ways to develop a
function that draws a “text box” with grid. This function will draw a text label and surround the text
with a box (with rounded corners). In effect, we are going to create a new class of grob; one that draws
text surrounded by a box.

The simplest way to implement this sort of thing in grid is to write a function that makes several
calls to draw standard grid grobs. For example, the following code defines a textbox() function that
takes a single argument, a text label, and calls textGrob() to create a text grob, roundrectGrob() to
create a box around the label, and then grid.draw() to draw the two grobs. The stringWidth() and
stringHeight() functions are used to make sure that the box is the right size for the label.

> library(grid)

> textbox <- function(label) {
+ tg <- textGrob(label, name="text")
+ rr <- roundrectGrob(width=1.5*stringWidth(label),
+ height=1.5*stringHeight(label),
+ name="box")
+ grid.draw(tg)
+ grid.draw(rr)
+ }

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 150

The following code shows the function in action and the output is shown below the code.

> grid.newpage()
> textbox("test")

test

The code and output below shows that grid has kept a record of the grobs that were drawn.

> grid.ls(fullNames=TRUE)

text[text]
roundrect[box]

One deficiency with the textbox() function is that there is no connection between the two grobs
that it creates. For example, if we modify the text (code below), the roundrect stays the same size and
becomes too small for the text (see the output below the code).

> grid.edit("text", label="hello world")

hello world

An alternative implementation is to group the two grobs together by constructing a gTree to contain
them both. For example, the following code redefines the textbox() function so that it generates a
gTree containing a text grob and a roundrect grob and then draws the gTree.

> textbox <- function(label) {
+ tg <- textGrob(label, name="text")
+ rr <- roundrectGrob(width=1.5*stringWidth(label),
+ height=1.5*stringHeight(label),
+ name="box")
+ gt <- gTree(children=gList(tg, rr), name="tb")
+ grid.draw(gt)
+ }

This version of the function produces the same output as the previous version, but the scene now
consists of a single gTree that contains the text grob and the roundrect grob.

> grid.newpage()
> textbox("test")

test

> grid.ls(fullNames=TRUE)

gTree[tb]
text[text]
roundrect[box]

Unfortunately, the contents of the gTree are fixed at creation time, so if we modify the text grob
child of the gTree, the roundrect child is still not updated.

> grid.edit("tb::text", label="hello world")

hello world

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 151

The old drawDetails() hook

The behaviour of the text box can be made more coherent if we delay the construction of the box
until drawing time (i.e., recalculate the box every time that we draw the text box). That way, the box
will always be the right size for the text. This can be achieved in grid by creating a new class of grob
with the grob() function and then defining a drawDetails() method for this new grob class. For all
grobs, the drawDetails() hook is called whenever the grob is drawn (with the default drawDetails()
method doing nothing).

For example, the following code redefines the textbox() function so that it generates a grob with
the class "textbox" and draws that.

> textbox <- function(label,
+ name=NULL, gp=NULL, vp=NULL) {
+ g <- grob(label=label,
+ name=name, gp=gp, vp=vp,
+ cl="textbox")
+ grid.draw(g)
+ }

Because we have created a new class of grob, grid does not know how to draw it. To tell grid
how to draw a "textbox" grob, we can define a drawDetails() method for "textbox" grobs. Such a
method is shown in the code below, which is almost identical to the previous version of textbox(); all
that we have done is delay the generation of the text grob and roundrect grob until drawing time.

> drawDetails.textbox <- function(x, ...) {
+ tg <- textGrob(x$label, name="text")
+ rr <- roundrectGrob(width=1.5*stringWidth(x$label),
+ height=1.5*stringHeight(x$label),
+ name="box")
+ gt <- gTree(children=gList(tg, rr), name=x$name)
+ grid.draw(gt)
+ }

The following code shows the new textbox() function in action and shows that it produces exactly
the same output as the first version.

> grid.newpage()
> textbox("test", name="tb")

test

One big difference is that only one "textbox" grob was generated, rather than separate text and
roundrect grobs. The latter are only generated at drawing time and are not retained.

> grid.ls(fullNames=TRUE)

textbox[tb]

The advantage that we get is that, if we modify that one grob, both the text and the box are
updated.

> grid.edit("tb", label="hello world")

hello world

The disadvantage is that the individual text and box grobs are no longer visible as separate grobs,
so it is not possible to access the individual text or roundrect grobs. In other words, we have a
convenient high-level interface to the combined text and box, but we only have that high-level interface.
This is the same problem that we had with the axis grob at the start of this article.

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 152

The new makeContent() hook

The new makeContent() function provides an alternative way to specify how to draw a new grid
grob class (an alternative to writing a drawDetails() method). The main difference is that, whereas
a drawDetails() method typically calls grid functions to draw output, a makeContent() method calls
grid functions to generate grobs. The standard behaviour for grobs automatically takes care of drawing
the content.

To continue our example, the following code redefines textbox() yet again. This is very similar to
the previous version of textbox(). The one important difference in this new version is that the gTree()
function is used to generate a new gTree class, rather than calling the grob() function to generate a
new grob class. We do this because we are going to be writing a makeContent() method that creates
more than one grob to draw; we can only use a makeContent() method for a grob class if the method
only creates a single predefined grob to draw.1 The gTree does not get any children when it is created
because the children will be built (and added) at drawing time by a makeContent() method.

> textbox <- function(label,
+ name=NULL, gp=NULL, vp=NULL) {
+ gt <- gTree(label=label,
+ name=name, gp=gp, vp=vp,
+ cl="textboxtree")
+ grid.draw(gt)
+ }

To tell grid how to draw this new gTree class, instead of a drawDetails() method, we define a
makeContent() method. This is similar to the drawDetails() method above because it generates a text
grob and a roundrect grob, but instead of drawing them, it simply adds these grobs as children of the
gTree. The modified gTree must be returned as the result of this function so that grid can draw the
generated content.

> makeContent.textboxtree <- function(x) {
+ t <- textGrob(x$label,
+ name="text")
+ rr <- roundrectGrob(width=1.5*grobWidth(t),
+ height=1.5*grobHeight(t),
+ name="box")
+ setChildren(x, gList(t, rr))
+ }

The following code shows that the new textbox() function produces exactly the same output as
before.

> grid.newpage()
> textbox("test", name="tbt")

test

As with the drawDetails() approach, the scene consists of only one grob, this time a "textboxtree"
grob.

> grid.ls(fullNames=TRUE)

textboxtree[tbt]

Furthermore, if we modify that one grob, both the text and the box are updated.

> grid.edit("tbt", label="hello world")

hello world

1We also create a different class than before, called "textboxtree" so that we do not have both drawDetails()
and makeContent() methods defined for the same class.

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 153

In summary, the makeContent() approach behaves exactly the same as the drawDetails() ap-
proach. The advantages of the makeContent() approach lie in the extra things that it allows us to
do.

The grid.force() function

The new function grid.force() affects any grobs that have a makeContent() method. This function
replaces the original grob with the modified grob that is returned by the makeContent() method.

For example, if we use grid.force() on a scene that contains a "textboxtree" grob, the output of
the scene is unaffected (see below).

> grid.force()

hello world

However, the scene now consists of a gTree with a text grob and a roundrect grob as its children
(rather than just a single "textboxtree" object).

> grid.ls(fullNames=TRUE)

forcedgrob[tbt]
text[text]
forcedgrob[box]

Now that we can see the individual components of the text box, we can modify them independently.
For example, the following code just modifies the box component of the scene, but not the text
component.

> grid.edit("box", gp=gpar(col="grey"))

hello world

In other words, in addition to the convenient high-level interface to the text box, we can now
“force” the high-level gTree to produce a low-level interface to the individual components of the text
box.

Forced grobs

In the list of grobs above, the "tbt" grob is labelled as a "forcedgrob" after the call to grid.force().
This is an additional class that is attached to grobs that have been forced. The "tbt" grob is still a
"textboxtree", as shown below.

> class(grid.get("tbt"))

[1] "forcedgrob" "textboxtree" "gTree" "grob" "gDesc"

The "box" grob in the example above has also been forced because grid "roundrect" grobs now
have a makeContent() method. In this case, the forced grob is now a "polygon" grob (because the
makeContent() method creates a "polygon" to draw based on the description in the "roundrect"
grob).

> class(grid.get("box"))

[1] "forcedgrob" "polygon" "grob" "gDesc"

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 154

The grid.revert() function

One downside of calling grid.force() is that the convenient high-level interface to a grob is no longer
available. For example, changing the label on the text box no longer has any effect.

> grid.edit("tbt", label="test")

hello world

The new grid.revert() function is provided to reverse the effect of grid.force() and replace the
individual components of the forced grob with the original grob. The following code and shows this
function in action. It also demonstrates that the reversion will lose any changes that were made to any
of the individual components. We return to the scene that we had before the call to grid.force().

> grid.revert()

hello world

In other words, for grobs that generate content at drawing time, we can have either the high-level
interface or the low-level interface, but not both at once.

A reminder

All of the discussion in this article applies to the situation where a new grid grob class is created that
needs to calculate what to draw at drawing time. If the entire content of a grob or gTree can be generated
at creation time, rather than having to wait until drawing time, then things are much easier, and it is
possible to have both a high-level interface and low-level access at the same time.

It is only when the content must be generated at drawing time, as is the case for grid axis grobs,
that the design decisions and functions described in this article become necessary.

Review

To review the changes described so far, where once we might have written a drawDetails() method
for a new grid grob or gTree class, we can instead write a makeContent() method. If we do so, the
new grid.force() function can be used to gain access to low-level grobs that otherwise would not be
accessible. One example where this is useful is for grid axis grobs (with no tick location specified), in
order to gain access to the individual lines and text that make up the axis.

Revisiting the simple grid demonstration

In order to demonstrate some of the other changes in grid for R 3.0.0, we will revisit the simple text
box example from before. In the implementations of the textbox() function so far, we have focused
our effort on what content to draw for the text box. In this section, we also consider the context for
drawing; the grid viewports that a text box is drawn within.

In this next implementation, when a text box is drawn, we will set up a viewport to draw the text
box within and then draw a text grob and roundrect grob within that viewport. This will simplify the
creation of the text and roundrect grobs.

This change only requires modifications to the methods for the "textboxtree" class; the textbox()
function remains the same as before.

> textbox <- function(label,
+ name=NULL, gp=NULL, vp=NULL) {
+ gt <- gTree(label=label,

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 155

+ name=name, gp=gp, vp=vp,
+ cl="textboxtree")
+ grid.draw(gt)
+ }

The old preDrawDetails() hook

We can specify how to set up the drawing context for a grob class by defining a preDrawDetails()
method for the class. For all grobs, the preDrawDetails() hook is called before the makeContent() or
drawDetails() hooks (with the default preDrawDetails() method doing nothing). The following code
defines a method for "textboxtree" grobs that pushes a viewport the appropriate size for drawing
the text box.

> preDrawDetails.textboxtree <- function(x) {
+ tbvp <- viewport(width=1.5*stringWidth(x$label),
+ height=1.5*stringHeight(x$label))
+ pushViewport(tbvp)
+ }

With this method defined, the makeContent() method for "textboxtree" grobs becomes much
simpler because the roundrect grob just fills up the viewport that was created by the preDrawDetails()
method (we have already calculated the appropriate size when we created the viewport in the
preDrawDetails() method).

> makeContent.textboxtree <- function(x) {
+ t <- textGrob(x$label, name="text")
+ rr <- roundrectGrob(name="box")
+ setChildren(x, gList(t, rr))
+ }

Whenever a preDrawDetails() method is defined, it must be accompanied by a postDrawDetails()
method, which must revert any changes to the drawing context.

> postDrawDetails.textboxtree <- function(x) {
+ popViewport()
+ }

The following code shows that the textbox() function produces exactly the same output as before.

> grid.newpage()
> textbox("test", name="tbt")

test

The drawing context is regenerated every time the text box is drawn, so modifying the text label
updates the viewport that both text and box are drawn in and the box expands with the text.

> grid.edit("tbt", label="hello world")

hello world

The new makeContext() hook

In parallel with the change from drawDetails() to makeContent(), there is a new makeContext()
generic function to replace the use of preDrawDetails() (and postDrawDetails()).

The main difference is that a makeContext() method must create new viewports and add them to
the vp slot of the grob (rather than pushing the new viewports), and it must return the modified grob.
The following code demonstrates what a makeContext() method looks like for a "textboxtree" grob.

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 156

> makeContext.textboxtree <- function(x) {
+ tbvp <- viewport(width=1.5*stringWidth(x$label),
+ height=1.5*stringHeight(x$label))
+ if (is.null(x$vp))
+ x$vp <- tbvp
+ else
+ x$vp <- vpStack(x$vp, tbvp)
+ x
+ }

This is similar to the preDrawDetails() method, but it has additional code to combine the new
viewport with the current value of the vp slot for the grob. On the plus side, there is no need
for a postDrawDetails() method. In fact, it is essential that we remove the preDrawDetails() and
postDrawDetails() methods for this class; we only need the makeContext() method now.

> rm("preDrawDetails.textboxtree")
> rm("postDrawDetails.textboxtree")

The following code shows that the textbox() function still works and that the box expands if we
modify the text label.

> grid.newpage()
> textbox("test", name="tbt")

test

> grid.edit("tbt", label="hello world")

hello world

Mixing viewports with viewport paths

The example in the previous section contains another subtle change in grid for R 3.0.0. Within
the makeContext() method there is the expression vpStack(x$vp,tbvp). The vpStack() function
combines two viewports into a viewport stack (one or more viewports that will be pushed in series,
one after the other). The second argument to the call, tbvp is a viewport, but the first argument to the
call is the vp slot of a grob, which could be a viewport or it could be a viewport path. The ability to
combine viewport paths with viewports like this is new in R 3.0.0 and is necessary for makeContext()
methods to work.

Another reminder

Modifying the drawing context at drawing time is not always necessary. When creating a new grob
class, it is often simpler just to set up the drawing context at creation time by creating childrenvp
for the children of a gTree. It is only when the generation of drawing context has to be delayed until
drawing time that a makeContext() method becomes necessary.

Review

In addition to the new makeContent() hook for generating content at drawing time, and the new
grid.force() function for exposing content that is only created at drawing time, there is a new
makeContext() hook for generating context at drawing time.

The new makeContext() hook has been described, but it may not be clear what benefits accrue
from it. That is the purpose of the next section.

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 157

Who benefits?

The problem with grid axes that was described at the start of this article has existed for many years.
Having a solution for that problem scratches a years-long itch, but it was not the main reason for
the changes in R 3.0.0. One of the motivations for changes to grid was provided by the difficulties
that the authors of the gtable package (Wickham, 2012) had in implementing "gtable" grobs. The
gtable package is important because it is used by the popular ggplot2 package to arrange the different
components of plots.

The gtable authors had to write not just preDrawDetails() and postDrawDetails() methods, but
also grid.draw() methods to get the behaviour they desired for "gtable" grobs. This is undesirable
because having a grid.draw() method makes "gtable" grobs behave differently from standard grid
grobs. A symptom of this problem is the fact that not all grobs from a "gtable" are accessible for
editing (similar to the axis problem at the start of this article). Having a special grid.draw() method
also causes problems for packages that rely on the behaviour of standard grid grobs (as we shall see
with the gridSVG package below).

The new makeContext() hook makes it possible to implement "gtable" grobs without resorting to
a grid.draw() method. A new implementation is available as a fork of the gtable package on github.2

Another motivator for change was the gridSVG package (Murrell and Potter, 2013). The main
function of this package is to transform every grob in a grid scene into an SVG representation, but this
package could not transform grobs that were not accessible (such as the ticks and labels for an axis
grob). In fact, the package could not transform any grob that had a drawDetails() method because
the grobs produced by a drawDetails() method were not recorded anywhere. The new grid.force()
function (which depends on the new makeContent() hook) means that the gridSVG package can now
access all of the grobs in a scene by “forcing” the scene before transforming it.

A number of grobs within grid itself, such as "roundrect" grobs and "curve" grobs, and several
other packages, such as grImport (Murrell, 2009) and gridGraphviz (Murrell, 2013), have also switched
to using makeContext() and makeContent() methods, with further flow-on effects for gridSVG.

When to use makeContent() or makeContext()

The new functions in grid for R 3.0.0 are only necessary when it is not possible to determine either the
drawing context or the drawing content at creation time.

These functions may be used in other situations. The main text box example used in this article does
not strictly require using makeContent() because an editDetails() method could be used instead.
The editDetails() hook is called whenever a grob is modified by grid.edit(). In the main example,
the box around the text label could be recreated if the text label is modified. So a developer could
elect to use makeContent() in some cases just because it may be easier than writing an editDetails()
method.

Another alternative is to use an edits slot on a grob. This works a bit like a panel function
for lattice plots. The idea is that changes to the children of a gTree can be specified as part of the
description of the gTree and then only applied at drawing time, using applyEdits(), once the children
of the gTree have been created. This approach has actually been implemented for grid axis grobs, but
has not proven popular and has not been implemented anywhere else. One way to look at the changes
to grid for R 3.0.0 is as a replacement for that edits slot approach; one which will hopefully prove
more popular because it has wider benefits.

One reason why a grob may wish to delay construction of its content until drawing time is because
the grob is expected to undergo dramatic changes before drawing occurs. In this case, it is inefficient
to update the contents of the grob every time it is modified; it is better to wait until drawing time and
perform the construction only once. The "gtable" class from the gtable package is an example of this
sort of grob.

These are only examples of situations that might motivate the use of makeContext() and makeContent().
In some cases, the decision will be forced, but in other cases the choice may be deliberate, so there is
no fixed rule for when we might need to use these functions.

It is also important to remember that simpler options may exist because grid already delays many
calculations until drawing time via the use of gp and vp slots on grobs and the use of units for locations
and dimensions. While it would be wrong to characterise these functions as a “last resort”, developers
of new grob classes should think at least twice before deciding that they are the best solution.

2https://github.com/pmur002/gtable

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

http://CRAN.R-project.org/package=gtable
http://CRAN.R-project.org/package=gridSVG
http://CRAN.R-project.org/package=grImport
http://CRAN.R-project.org/package=gridGraphviz
https://github.com/pmur002/gtable

CONTRIBUTED RESEARCH ARTICLES 158

Other hook functions

In addition to the superceded drawDetails(), preDrawDetails(), and postDrawDetails() hook func-
tions, and the editDetails() hook that was mentioned in the previous section, there are several other
hook functions in grid.

The validDetails() function is called whenever a grob is created or edited. This can be used to
check that the slots of a grob contain valid values. It is unaffected by the changes to grid described in
this article.

The widthDetails() function is called when a "grobwidth" unit is evaluated, to determine the
width of a grob. There is a similar function heightDetails(), plus xDetails() and yDetails() for
determining locations on the boundary of a grob. Although these functions are not directly affected by
the changes to grid, there are likely to be opportunities for code sharing between methods for these
functions and makeContent() methods because grobs that have to calculate what to draw at drawing
time are likely to have to also calculate what to draw in order to determine widths and heights or
locations on a grob boundary.

Who else could benefit?

A number of packages besides ggplot2 and gridSVG build on top of grid and therefore could take
advantage of the new changes to grid. One example is version 0.9.1 of the gridExtra package (Auguie,
2012).

> library(gridExtra)

The following code uses the grid.table() function from gridExtra to draw a tabular arrangement
of values from a data frame.

> grid.newpage()
> grid.table(head(iris),
+ v.even.alpha=0.3, v.odd.alpha=1)

1

2

3

4

5

6

Sepal.Length

5.1

4.9

4.7

4.6

5.0

5.4

Sepal.Width

3.5

3.0

3.2

3.1

3.6

3.9

Petal.Length

1.4

1.4

1.3

1.5

1.4

1.7

Petal.Width

0.2

0.2

0.2

0.2

0.2

0.4

Species

setosa

setosa

setosa

setosa

setosa

setosa

The grid.table() function creates a "table" grob with a drawDetails() method that determines
how to arrange the contents of the table only at drawing time. Because of this, none of the grobs that
represent the actual table content are accessible. The call to grid.ls() below only reveals the overall
"table" grob, but no other grobs, so there is no way to access or modify the contents of the table.

> grid.ls()

GRID.table.2

A further consequence is that the gridSVG package, which attempts to transform all grobs in the
current scene to SVG, has nothing to transform; the code below produces a blank SVG image.

> library(gridSVG)

> gridToSVG("blank.svg")

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

http://CRAN.R-project.org/package=gridExtra

CONTRIBUTED RESEARCH ARTICLES 159

If there was a makeContent() method for "table" grobs, instead of a drawDetails() method,
the function grid.table() would produce the same drawing, but it would become possible to
grid.force() a "table" to make the grobs representing the content of the table accessible. The
following code shows an example of how this could work, with grid.edit() used to modify the
background colour for one of the cells in the table.

> grid.newpage()
> grid.table(head(iris),
+ v.even.alpha=0.3, v.odd.alpha=1)
> grid.force()
> grid.edit("core-fill-1", gp=gpar(fill="red"))

1

2

3

4

5

6

Sepal.Length

5.1

4.9

4.7

4.6

5.0

5.4

Sepal.Width

3.5

3.0

3.2

3.1

3.6

3.9

Petal.Length

1.4

1.4

1.3

1.5

1.4

1.7

Petal.Width

0.2

0.2

0.2

0.2

0.2

0.4

Species

setosa

setosa

setosa

setosa

setosa

setosa

Furthermore, export to SVG via the gridSVG package would now work, as shown below.

> gridToSVG("notblank.svg")

Summary

The functions makeContext() and makeContent() provide a new approach to developing a new grid
grob class (replacing the old approach based on drawDetails() and preDrawDetails()).

The advantage of the new approach is that, for grobs that generate content at drawing time, it
is possible to access and edit the low-level content that is generated at drawing time by calling the
grid.force() function.

Together, these new features allow for greater flexibility in the development of new grid grob
classes and greater powers to access and modify the low-level details of a grid scene.

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 160

Availability

The new grid functions makeContext(), makeContent(), grid.force(), and grid.revert() are only
available from R version 3.0.0.

A number of higher-level graphics packages can potentially make use of these new facilities in
grid, but it may take time for the respective package maintainers to make the necessary changes (if
they elect to do so at all). For example, versions 0.9-0 of the grImport package and version 1.3-0 of
the gridSVG package on R-Forge (Theußl and Zeileis, 2009) have incorporated changes. An example
where future development may occur is "gtable" grobs from the gtable package, if changes from the
fork on github are merged back into the original package.

Further reading

A more technical document describing the development and testing of these changes is available from
the R developer web site (http://www.stat.auckland.ac.nz/~paul/R/customGridRedesign.pdf).

An earlier version of this article appeared as Technical Report 2012-9 on the Statistics Technical
Blog of the Department of Statistics at the University of Auckland (Murrell, 2012).

Acknowledgements

Thanks to the reviewers of early versions of this article, who provided many useful suggestions that
improved and expanded the article. Thanks also to the developers of gtable who provided the nudge
to finally tackle the grid axis problem properly.

Bibliography

B. Auguie. gridExtra: Functions in grid graphics, 2012. URL http://CRAN.R-project.org/package=
gridExtra. R package version 0.9.1. [p158]

P. Murrell. Importing vector graphics: The grImport package for R. Journal of Statistical Software, 30(4):
1–37, 2009. URL http://www.jstatsoft.org/v30/i04/. [p157]

P. Murrell. R Graphics. CRC Press, 2 edition, 6 2011. ISBN 9781439831762. [p148]

P. Murrell. Writing grid extensions. Technical Report 2012-9, Department of Statistics, The University
of Auckland, http://stattech.wordpress.fos.auckland.ac.nz/2012-9-writing-grid-extensions/, 2012.
[p160]

P. Murrell. gridGraphviz: Drawing graphs with grid, 2013. URL http://CRAN.R-project.org/package=
gridGraphviz. R package version 0.2. [p157]

P. Murrell and S. Potter. gridSVG: Export grid graphics as SVG, 2013. R package version 1.3-0. [p157]

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer, New York, 2008. URL http:
//lmdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5. [p148]

S. Theußl and A. Zeileis. Collaborative Software Development Using R-Forge. The R Journal, 1(1):9–
14, May 2009. URL http://journal.r-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.
pdf. [p160]

H. Wickham. ggplot2: Elegant graphics for data analysis. Springer New York, 2009. ISBN 978-0-387-98140-
6. URL http://had.co.nz/ggplot2/book. [p148]

H. Wickham. gtable: Arrange grobs in tables., 2012. URL http://CRAN.R-project.org/package=gtable.
R package version 0.1.2. [p157]

Paul Murrell
Department of Statistics
The University of Auckland
New Zealand
paul@stat.auckland.ac.nz

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859

http://www.stat.auckland.ac.nz/~paul/R/customGridRedesign.pdf
http://CRAN.R-project.org/package=gridExtra
http://CRAN.R-project.org/package=gridExtra
http://www.jstatsoft.org/v30/i04/
http://CRAN.R-project.org/package=gridGraphviz
http://CRAN.R-project.org/package=gridGraphviz
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org
http://journal.r-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
http://journal.r-project.org/2009-1/RJournal_2009-1_Theussl+Zeileis.pdf
http://had.co.nz/ggplot2/book
http://CRAN.R-project.org/package=gtable
mailto:paul@stat.auckland.ac.nz

