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ExactCIdiff: An R Package for Computing
Exact Confidence Intervals for the
Difference of Two Proportions
by Guogen Shan and Weizhen Wang

Abstract Comparing two proportions through the difference is a basic problem in statistics and has
applications in many fields. More than twenty confidence intervals (Newcombe, 1998a,b) have been
proposed. Most of them are approximate intervals with an asymptotic infimum coverage probability
much less than the nominal level. In addition, large sample may be costly in practice. So exact
optimal confidence intervals become critical for drawing valid statistical inference with accuracy and
precision. Recently, Wang (2010, 2012) derived the exact smallest (optimal) one-sided 1− α confidence
intervals for the difference of two paired or independent proportions. His intervals, however, are
computer-intensive by nature. In this article, we provide an R package ExactCIdiff to implement the
intervals when the sample size is not large. This would be the first available package in R to calculate
the exact confidence intervals for the difference of proportions. Exact two-sided 1− α interval can be
easily obtained by taking the intersection of the lower and upper one-sided 1− α/2 intervals. Readers
may jump to Examples 1 and 2 to obtain these intervals.

Introduction

The comparison of two proportions through the difference is one of the basic statistical problems. One-
sided confidence intervals are of interest if the goal of a study is to show superiority (or inferiority),
e.g., that a treatment is better than the control. If both limits are of interest, then two-sided intervals
are needed.

In practice, most available intervals, see Newcombe (1998a,b), are approximate ones, i.e., the prob-
ability that the interval includes the difference of two proportions, the so-called coverage probability,
is not always at least the nominal level although the interval aims at it. Also, even with a large sample
size, the infimum coverage probability may still be much less than the nominal level and does not
converge to this quantity. In fact, the Wald type interval has an infimum coverage probability zero
for any sample sizes and any nominal level 1− α even though it is based on asymptotic normality,
as pointed out by Agresti and Coull (1998) and Brown et al. (2001). See Wang and Zhang (in press)
for more examples. Therefore, people may question of using large samples when such approximate
intervals are employed since they cannot guarantee a correct coverage.

Exact intervals which assure an infimum coverage probability of at least 1− α do not have this
problem. But they are typically computer-intensive by nature. In this paper, a new R package
ExactCIdiff (Shan and Wang, 2013) is presented which implements the computation of such intervals
as proposed in Wang (2010, 2012). The package is available from CRAN at http://CRAN.R-project.
org/package=ExactCIdiff/. This package contains two main functions: PairedCI() and BinomCI(),
where PairedCI() is for calculating lower one-sided, upper one-sided and two-sided confidence
intervals for the difference of two paired proportions and BinomCI() is for the difference of two
independent proportions when the sample size is small to medium. Results from ExactCIdiff are
compared with those from the function ci.pd() in the R package Epi (Carstensen et al., 2013), and the
PROC FREQ procedure in the software SAS (SAS Institute Inc., 2011).

Depending on how the data are collected, one group of three intervals is needed for the difference of
two paired proportions and another group for the difference of two independent proportions. Pointed
out by Mehrotra et al. (2003), an exact inference procedure may result in poor powerful analysis if an
impropriate statistic is employed. Wang’s one-sided intervals (Wang, 2010, 2012), obtained through
a carefully inductive construction on an order, are optimal in the sense that they are a subset of any
other one-sided 1− α intervals that preserve the same order, and are called the smallest intervals. See
more details in the paragraph following (6). From the mathematical point of view, his intervals are not
nested, see Lloyd and Kabaila (2010); on the other hand, for three commonly used confidence levels,
0.99, 0.95, 0.9, the intervals are nested based on our numerical study.

Although R provides exact confidence intervals for one proportion, e.g., the function exactci() in
the package PropCIs (Scherer, 2013), the function binom.exact() in the package exactci (Fay, 2010,
2012) and the function binom.test() in the package stats (Version 2.15.2), there is no exact confidence
interval available in R, to the best of our knowledge, for the difference of two proportions, which
is widely used in practice. ExactCIdiff is the first available R package to serve this purpose. The
R package ExactNumCI (Sun and Park, 2013) claims that its function pdiffCI() generates an exact
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S2 F2

S1 N11, p11 N12, p12 p1 = p11 + p12
F1 N21, p21 N22, p22

p2 = p11 + p21 ∑i,j pij = 1

Table 1: Overview of involved quantities in a matched pairs experiment.

confidence interval for the difference of two independent proportions, however, pointed out by a
referee, the coverage probability of a 95% confidence interval, when the numbers of trials in two
independent binomial experiments are 3 and 4, respectively, is equal to 0.8734 when the two true
proportions are equal to 0.3 and 0.5, respectively.

In the rest of the article, we discuss how to compute intervals for the difference of two paired pro-
portions θP defined in (1), then describe the results for the difference of two independent proportions
θI given in (7).

Intervals for the difference of two paired proportions

Suppose there are n independent and identical trials in an experiment, and each trial is inspected
by two criteria 1 and 2. By criterion i, each trial is classified as Si (success) or Fi (failure) for i = 1, 2.
The numbers of trials with outcomes (S1, S2), (S1, F2), (F1, S2) and (F1, F2) are the observations, and
are denoted by N11, N12, N21 and N22, respectively. Thus X = (N11, N12, N21) follows a multinomial
distribution with probabilities p11, p12, p21, respectively. Let pi = P(Si) be the two paired proportions.
The involved quantities are displayed in Table 1. The parameter of interest is the difference of p1 and
p2:

θP
de f
= p1 − p2 = p12 − p21. (1)

To make interval construction simpler, let T = N11 + N22 and pT = p11 + p22. We consider intervals
for θP of form [L(N12, T), U(N12, T)], where (N12, T) also follows a multinomial distribution with
probabilities p12 and pT . The simplified sample space is

SP = {(n12, t) : 0 ≤ n12 + t ≤ n}

with a reduced parameter space HP = {(θP, pT) : pT ∈ D(θP),−1 ≤ θP ≤ 1}, where D(θP) = {pT :
0 ≤ pT ≤ 1− |θP|}. The probability mass function of (N12, T) in terms of θP and pT is

pP(n12, t; θP, pT) =
n!

n12!t!n21!
pn12

12 pt
T pn21

21 .

Suppose a lower one-sided 1− α confidence interval [L(N12, T), 1] for θP is available. It can be
shown that [−1, U(N12, T)] is an upper one-sided 1− α confidence interval for θP if

U(N12, T)
de f
= −L(n− N12 − T, T), (2)

and [L(N12, T), U(N12, T)] is a two-sided 1− 2α interval for θP. Therefore, we focus on the construction
of L(N12, T) only in this section. The R code will provide two (lower and upper) one-sided intervals
and a two-sided interval, all are of level 1− α. The first two are the smallest. The third is the intersection
of the two smallest one-sided 1− α/2 intervals. It may be conservative since the infimum coverage
probability may be greater than 1− α due to discreteness.

An inductive order on SP

Following Wang (2012), the construction of the smallest 1− α interval [L(N12, T), 1] requires a prede-
termined order on the sample space SP. An order is equivalent to assigning a rank to each sample
point, and this rank provides an order on the confidence limits L(n12, t)’s. Here we define that a
sample point with a small rank has a large value of L(n12, t), i.e., a large point has a small rank. Let
R(n12, t) denote the rank of (n12, t). Intuitively, there are three natural requirements for R:

1) R(n, 0) = 1,

2) R(n12, t) ≤ R(n12, t− 1),

3) R(n12, t) ≤ R(n12 − 1, t + 1),
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as shown in the diagram below:

(n12 − 1, t + 1)
≥ 3)

(n12, t)

≤ 2)

(n12, t− 1)

Therefore, R(n− 1, 1) = 2 and a numerical determination is needed for the rest of R(n12, t)’s. Wang
(2012) proposed an inductive method to determine all R(n12, t)’s, which is outlined below.

Step 1: Point (n, 0) is the largest point. Let R1 = {(n, 0)} = {(n12, t) ∈ SP : R(n12, t) = 1}.
. . .

Step k: For k > 1, suppose the ranks, 1, . . . , k, have been assigned to a set of sample points, denoted
by Sk = ∪k

i=1Ri, where Ri contains the ith largest point(s) with a rank of i. Thus, Sk contains the
largest through kth largest points in SP. The order construction is complete if Sk0 = SP for some
positive integer k0, and R assumes values of 1, ..., k0.

Step k + 1: Now we determine Rk+1 that contains the (k + 1)th largest point(s) in SP.

Part a) For each point (n12, t), let N(n12,t) be the neighbor set of (n12, t) that contains the two points
next to but smaller than (n12, t), see the diagram above. Let Nk be the neighbor set of Sk
that contains all sets N(n12,t) for (n12, t) in Sk.

Part b) To simplify the construction on R, consider a subset of Nk, called the candidate set

Ck = {(n12, t) ∈ Nk : (n12, t + 1) /∈ Nk, (n12 + 1, t− 1) /∈ Nk}, (3)

from which Rk+1 is going to be selected.

Part c) For each point (n12, t) ∈ Ck, consider

f ∗(n12,t)(θP) = 1− α, (4)

where

f ∗(n12,t)(θP) = inf
pT∈D(θP)

∑
(n′12,t′)∈(Sk∪(n12,t))c

pP(n′12, t′; θP, pT).

Let

L∗P(n12, t) =
{
−1, if no solution for (4);
the smallest solution of (4), otherwise. (5)

Then define Rk+1 to be a subset of Ck that contains point(s) with the largest value of L∗P.
We assign a rank of k + 1 to point(s) in Rk+1 and let Sk+1 be the union of R1 up to Rk+1.

Since SP is a finite set and Sk is strictly increasing in k, eventually, Sk0 = SP for some positive
integer k0 (≤ (n + 1)(n + 2)/2) and the order construction is complete.

The computation of the rank function R(N12, T) in R

There are three issues to compute the rank function R(n12, t):

i) compute the infimum in f ∗
(n12,t)(θP);

ii) determine the smallest solution of equation (4);

iii) repeat this process on all points in SP.

These have to be done numerically.

Regarding i), use a two-step approach to search for the infimum when pT belongs to interval
D(θP), i.e., in the first step, partition D(θP) into, for example, 30 subintervals, find the grid, say a,
where the minimum is achieved; then in the second step, partition a neighborhood of a into, for
example, 20 subintervals and search the minimal grid again. In total we compute about 50 (= 30 + 20)
function values. On the other hand, if one uses the traditional one-step approach, one has to compute
600 (= 30× 20) function values to obtain a similar result.
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Regarding ii), the smallest solution is found by the bisection method with different initial upper
search points and a fixed initial lower search point −1. The initial upper search point is the lower
confidence limit of the previous larger point in the inductive search algorithm.

Regarding iii), use unique() to eliminate the repeated points in Nk and use which() to search for
Rk+1 from Ck (smaller) rather than Nk.

The smallest one-sided interval under the inductive order

For any given order on a sample space the smallest one-sided 1− α confidence interval for a parameter
of interest can be constructed following the work by Buehler (1957); Chen (1993); Lloyd and Kabaila
(2003) and Wang (2010). This interval construction is valid for any parametric model. In particular,
for the rank function R(n12, t) just derived, the corresponding smallest one-sided 1− α confidence
interval, denoted by LP(n12, t), has a form

LP(n12, t) =
{
−1, if no solution for (6);
the smallest solution of (6), otherwise,

where

f(n12,t)(θP) = 1− α (6)

and

f(n12,t)(θP) = 1− sup
pT∈D(θP)

∑
{(n′12,t′)∈SP :R(n′12,t′)≤R(n12,t)}

pP(n′12, t′; θP, pT),

that are similar to (4) and (5).

Two facts are worth mentioning. a) Among all one-sided 1 − α confidence intervals of form
[L(N12, T), 1] that are nondecreasing regarding the order by the rank function R, L ≤ LP. So [LP, 1] is
the best. b) Among all one-sided 1− α confidence intervals of form [L(N12, T), 1], [LP, 1] is admissible
by the set inclusion criterion (Wang, 2006). So [LP, 1] cannot be uniformly improved. These properties
make [LP, 1] attractive for practice. The computation of LP is similar to that of the rank function R.

Intervals for the difference of two independent proportions

Suppose we observe two independent binomial random variables X ∼ Bin(n1, p1) and Y ∼ Bin(n2, p2)
and the difference

θI = p1 − p2 (7)

is the parameter of interest. The sample space SI = {(x, y) : 0 ≤ x ≤ n1, 0 ≤ y ≤ n2} consists
of (n1 + 1)(n2 + 1) sample points, the parameter space in terms of (θI , p2) is HI = {(θI , p2) : p2 ∈
DI(θI),−1 ≤ θI ≤ 1}, where DI(θI) = {p2 : −min{0, θI} ≤ p2 ≤ 1 −max{0, θI}}. The joint
probability mass function for (X, Y) is

pI(x, y; θI , p2) =
n1!

x!(n1 − x)!
(θI + p2)

x(1− θI − p2)
n1−x n2!

y!(n2 − y)!
py

2(1− p2)
n2−y.

Exact 1− α confidence intervals for θI of form [L(X, Y), 1], [−1, U(X, Y)], [L(X, Y), U(X, Y)] are of
interest. Similar to (2), U(X, Y) = −L(n1 − X, n2 −Y). Therefore, we only need to derive the smallest
lower one-sided 1− α confidence interval for θI , denoted by [LI(X, Y), 1]. Then UI(X, Y) = −LI(n1 −
X, n2 −Y) is the upper limit for the smallest upper one-sided 1− α interval.

An inductive order and the corresponding smallest interval

Following Wang (2010), a rank function RI(X, Y) is to be introduced on SI . This function provides
an order of the smallest one-sided interval LI(x, y). In particular, a point (x, y) with a small RI(x, y)
is considered a large point and has a large value of LI(x, y). Similar to the rank function R in the
previous section, RI should satisfy three rules:

a) RI(n1, 0) = 1,

b) RI(x, y) ≤ RI(x, y + 1),

c) RI(x, y) ≤ RI(x− 1, y),

as shown in the diagram below:
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(x, y + 1)

≥ b)
c)

(x, y− 1) ≤ (x, y)

Repeating the process in the previous section, we can derive this new rank function RI on SI and the
corresponding smallest one-sided 1− α confidence interval [LI(X, Y), 1] for θI by replacing (n12, t)
by (x, y), D(θP) by DI(θI) and pP(N12, T; θP, pT) by pI(x, y; θI , p2). The only thing different is that for
the case of n1 = n2 = n, RI generates ties. For example, RI(x, y) = RI(n− y, n− x) for any (x, y).
However, the procedure developed is still valid for this case. Technical details were given in the
Sections 2 and 3 of Wang (2010).

Examples

Example 1: Exact intervals for the difference of two paired proportions θP

We illustrate the usage of the PairedCI() function to calculate the exact smallest lower one-sided
confidence interval [LP, 1] for θP in (1) with the data from Karacan et al. (1976). In this study, 32
marijuana users are compared with 32 matched controls with respect to their sleeping difficulties, with
n11 = 16, n12 = 9, n21 = 3, and n22 = 4. The second argument in the function is t = n11 + n22 = 20.

Function PairedCI() has the following arguments:

PairedCI(n12, t, n21, conf.level = 0.95, CItype = "Lower", precision = 0.00001,
grid.one = 30, grid.two = 20)

The arguments n12, t, and n21 are the observations from the experiment. The value of conf.level
is the confidence coefficient of the interval, 1− α, which is equal to the infimum coverage probability
here. One may change the value of CItype to obtain either an upper one-sided or a two-sided interval.
The precision of the confidence interval with a default value 0.00001 is rounded to 5 decimals. The
values of grid.one and grid.two are the number of grid points in the two-step approach to search the
infimum. The higher the values of grid.one and grid.two, the more accurate is the solution but the
longer is also the computing time. Based on our extensive numerical study, we find that grid.one =
30 and grid.two = 20 are sufficient enough for the problem.

In the data by Karacan et al. (1976), the researchers wish to see how much more help the marijuana
use provides for sleeping by using a lower one-sided 95% confidence interval [LP(n12, t), 1] for
θP = p1 − p2 at (n12, t) = (9, 20), where p1 is the proportion of marijuana users who have sleeping
improved, and p2 is the proportion in the controls. Given that the package ExactCIdiff is installed to
the local computer, type the following:

> library(ExactCIdiff)
> lciall <- PairedCI(9, 20, 3, conf.level = 0.95) # store relevant quantities
> lciall # print lciall
$conf.level
[1] 0.95 # confidence level
$CItype
[1] "Lower" # lower one-sided interval
$estimate
[1] 0.1875 # the mle of p1 - p2
$ExactCI
[1] 0.00613 1.00000 # the lower one-sided 95% interval
> lci <- lciall$ExactCI # extracting the lower one-sided 95% interval
> lci # print lci
[1] 0.00613 1.00000

The use of marijuana helps sleeping because the interval [0.00613, 1] for θP is positive.

The upper one-sided 95% interval and the two-sided 95% interval for θP are given below for
illustration purpose.

> uci <- PairedCI(9, 20, 3, conf.level = 0.95, CItype = "Upper")$ExactCI
> uci # the upper one-sided 95% interval
[1] -1.00000 0.36234
> u975 <- PairedCI(9, 20, 3, conf.level = 0.975, CItype = "Upper")$ExactCI
> u975 # the upper one-sided 97.5% interval

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 67

[1] -1.00000 0.39521
> l975 <- PairedCI(9, 20, 3, conf.level = 0.975, CItype = "Lower")$ExactCI
> l975 # the lower one-sided 97.5% interval
[1] -0.03564 1.00000
> ci95 <- PairedCI(9, 20, 3, conf.level = 0.95)$ExactCI
> ci95
[1] -0.03564 0.39521 # the two-sided 95% interval

# it is equal to the intersection of two one-sided intervals

In summary, three 95% confidence intervals, [0.00613, 1], [−1, 0.36234] and [−0.03564, 0.39521], are com-
puted for θP. Wang (2012) also provided R code to compute these three intervals, but the calculation
time is about 60 times longer.

Example 2: Exact intervals for the difference of two independent proportions θI

The second data set is from a two-arm randomized clinical trial for testing the effect of tobacco smoking
on mice (Essenberg, 1952). In the treatment (smoking) group, the number of mice is n1 = 23, and the
number of mice which developed tumor is x = 21; in the control group, n2 = 32 and y = 19. The
function BinomCI() computes exact confidence intervals for θI in (7), the difference of proportions
between two groups.

Function BinomCI() has the following arguments:

BinomCI(n1, n2, x, y, conf.level = 0.05, CItype = "Lower", precision = 0.00001,
grid.one = 30, grid.two = 20)

The arguments n1, n2, x and y are the observations from the experiment. The rest of the arguments are
the same as in function PairedCI().

In this clinical trial, the maximum likelihood estimate for the difference between two tumor rates
θI is calculated as

θ̂I =
x

n1
− y

n2
= 0.319293.

The lower confidence interval [L(X, Y), 1] for θI is needed if one wants to see that the treatment
(smoking) increases the risk of tumor. Compute the interval by typing:

> lciall <- BinomCI(23, 32, 21, 19, CItype = "Lower")
> lciall # print lciall
$conf.level
[1] 0.95 # confidence level
$CItype
[1] "Lower"
$estimate
[1] 0.319293 # the mle of p1 - p2
$ExactCI
[1] 0.133 1.00000 # the lower one-sided 95% interval
> lci <- lciall$ExactCI # extracting the lower one-sided 95% interval
> lci
[1] 0.133 1.00000

The lower one-sided 95% confidence interval for θI is [0.133, 1]. Therefore, the tumor rate in the
smoking group is higher than that of the control group.

The following code is for the upper one-sided and two-sided 95% confidence intervals.

> uci <- BinomCI(23, 32, 21, 19, conf.level = 0.95, CItype = "Upper")$ExactCI
> uci # the upper one-sided 95% interval
[1] -1.00000 0.48595
> u975 <- BinomCI(23, 32, 21, 19, conf.level = 0.975, CItype = "Upper")$ExactCI
> u975 # the upper one-sided 97.5% interval
[1] -1.00000 0.51259
> l975 <- BinomCI(23, 32, 21, 19, conf.level = 0.975, CItype = "Lower")$ExactCI
> l975 # the lower one-sided 97.5% interval
[1] 0.09468 1.00000
> ci95 <- BinomCI(23, 32, 21, 19)$ExactCI
> ci95
[1] 0.09468 0.51259 # the two-sided 95% interval

# it is equal to the intersection of two one-sided intervals

They are equal to [−1, 0.48595] and [0.09468, 0.51259], respectively.
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Figure 1: Coverage probability of upper confidence intervals for θI when n1 = n2 = 10 and α = 0.05.

Comparison of results with existing methods

Our smallest exact one-sided confidence interval [−1, UI ] for θI is first compared to an existing
asymptotic interval (Newcombe, 1998b) using the coverage probability. The coverage of an upper
confidence interval [−1, U(X, Y)] as a function of θI is defined as:

Coverage(θI) = inf
p2∈DI (θI )

P(θI ≤ U(X, Y); θI , p2).

Ideally, a 1− α interval requires that Coverage(θI) is always greater than or equal to 1− α for all the
possible values of θI .

The coverage for the exact upper 95% confidence interval [−1, UI ] and the asymptotic upper
confidence interval based on the tenth method of Newcombe (1998b), which is the winner of his
eleven discussed intervals, is shown in Figure 1. The two intervals are calculated by BinomCI() and the
function ci.pd() in the package Epi. The left plot of Figure 1 shows the coverage against θI ∈ [−1, 1]
based on our exact method. As expected, it is always at least 95%. However, the coverage for the
asymptotic interval may be much less than 95% as seen in the right plot of Figure 1. The coverage
of the majority of θI values is below 95% and the infimum is as low as 78.8% for a nominal level of
95%. The similar results are observed for the asymptotic confidence intervals based on other methods,
including the one proposed by Agresti and Caffo (2000).

In light of the unsatisfied coverage for the asymptotic approaches, we next compare our exact
intervals to the exact intervals by the PROC FREQ procedure in the software SAS. First revisit Example
2, where SAS provides a wider exact two-sided 95% interval [0.0503, 0.5530] for θI using the EXACT
RISKDIFF statement within PROC FREQ. This is the SAS default. The other exact 95% interval in SAS
using METHOD = FMSCORE is [0.0627, 0.5292], which is narrower than the default but is wider than our
two-sided interval. Also SAS does not compute exact intervals for θP at all.

Two exact upper intervals produced by BinomCI() in the R package ExactCIdiff and the PROC
FREQ procedure in SAS are shown in Figure 2. The smaller upper confidence interval is preferred
due to the higher precision. Almost all the points in the figure are below the diagonal line, which
confirms a better performance of the interval by BinomCI(). The average lengths of the two-sided
interval for n1 = n2 = 10 and α = 0.1 are 0.636 and 0.712, respectively, for our method and the SAS
default procedure. The newly developed exact confidence intervals have better performance than
other asymptotic or exact intervals due to their guarantee on the coverage or because of their shorter
length.

Summary

A group of three exact confidence intervals (lower one-sided, upper one-sided, and two-sided) are
computed efficiently with the R package ExactCIdiff for each of the differences of two proportions: θP
and θI . Each one-sided interval is admissible under the set inclusion criterion and is the smallest in a
certain class of intervals that preserve the same order of the computed interval. Unlike asymptotic
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Figure 2: Exact upper confidence intervals for θI by BinomCI() and PROC FREQ when n1 = n2 = 10
and α = 0.05.

intervals, these intervals assure that the coverage probability is always not smaller than the nominal
level.

A practical issue for ExactCIdiff is the computation time that depends on the sample size n =
n12 + t + n21 for PairedCI() (n = n1 + n2 for BinomCI()) and the location of observations (n12, t, n21)
((x, y) for BinomCI()), e.g., PairedCI(30,40,30) = [-0.15916,0.15916], with a sample size of 100,
takes about a hour to complete on an HP laptop with Intel(R) Core(TM) i5=2520M CPU@2.50 GHz and
8 GB RAM, and PairedCI(300,10,10,CItype = "Lower") = [0.86563,1.00000], with a sample size
of 320, takes less than one minute. Our exact interval is constructed by an inductive method. By nature,
when there are many sample points, i.e., the sample size is large, deriving an order on all sample points
is very time consuming. Thus the confidence limit on a sample point, which is located at the beginning
(ending) part of the order, needs a short (long) time to calculate. Roughly speaking, when the sample
size is more than 100, one would expect a long computation time for a two-sided interval. More details
may be found at: http://www.wright.edu/~weizhen.wang/software/ExactTwoProp/examples.pdf.
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