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factorplot: Improving Presentation of
Simple Contrasts in Generalized Linear
Models
by David A. Armstrong II

Abstract Recent statistical literature has paid attention to the presentation of pairwise comparisons
either from the point of view of the reference category problem in generalized linear models (GLMs)
or in terms of multiple comparisons. Both schools of thought are interested in the parsimonious
presentation of sufficient information to enable readers to evaluate the significance of contrasts
resulting from the inclusion of qualitative variables in GLMs. These comparisons also arise when
trying to interpret multinomial models where one category of the dependent variable is omitted as
a reference. While considerable advances have been made, opportunities remain to improve the
presentation of this information, especially in graphical form. The factorplot package provides new
functions for graphically and numerically presenting results of hypothesis tests related to pairwise
comparisons resulting from qualitative covariates in GLMs or coefficients in multinomial logistic
regression models.

Introduction

The problem of presenting information about categorical covariates in generalized linear models is
a relatively simple one. Nevertheless, it has received some attention in the recent literature. To be
clear about the problem, consider the following linear model where y is the dependent variable and
G = {1, 2, . . . , m} is a categorical independent variable that can be represented in the regression model
by m− 1 dummy regressors, each one representing a different category of G. The reference category,
of course, is omitted. Thus, the model looks as follows:

E(yi) = µi (1)

g(µi) = β0 + β1Di1 + β2Di2 + · · ·+ βm−1Dim−1 + βmXi1 + . . . + βm+k−1Xik + εi, (2)

where Di1 = 1 if Gi = 1, Di2 = 1 if Gi = 2, etc. Xik represent an arbitrary set of additional
variables of any type. Here, each of the coefficients on the dummy regressors for G (β1, . . . , βm−1)
gives the difference in the conditional transformed mean of y between the category represented by
the dummy regressor and the reference category, controlling for all of the other Xik. However, the
m− 1 coefficients for the categories of G imply m(m−1)

2 simple contrasts representing every pairwise
comparison between categories of G. Any single pairwise comparison of non-reference category
coefficients can be conducted in a straightforward fashion. If the goal is to discern whether the
conditional mean of y given G = 1 is different from the conditional mean of y given G = 2 holding all
of the X variables constant, the quantity of interest is:

t =
b1 − b2√

V(b1 − b2)
, (3)

where
V(b1 − b2) = V(b1) + V(b2)− 2V(b1, b2). (4)

Thus, the calculation is not difficult, but calculating and presenting all of these differences can become
cumbersome, especially as m gets large.1 The problem comes not in the calculation of these quantities,
but in the parsimonious presentation of this information that will allow users to evaluate any desired
(simple) contrasts easily. Below, I discuss two extant methods used to present such information.
Floating absolute risk (FAR) was first suggested by Easton et al. (1991) and was more rigorously
justified, though with different estimation strategies, by Firth and De Menezes (2004); de Menezes
(1999); Plummer (2004). FAR is a means of overcoming the reference category problem by calculating
floating variances for all levels of a factor (including the reference category). These floating variances
can be used to perform hypothesis tests or construct floating confidence intervals that facilitate the
graphical comparison of different categories (i.e., [log-]relative risks). The multiple comparisons
literature has traditionally been focused on finding the appropriate p-values to control either the

1Tools to carry out these computations already exist in the multcomp package in R (Hothorn et al., 2008).
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family-wise error rate (e.g., Holm, 1979) or the false discovery rate (e.g., Benjamini and Hochberg,
1995) in a set of simultaneous hypothesis tests. Presentation of this information has either been in the
form of line displays (e.g., Steel and Torrie, 1980) or compact letter displays (e.g., Gramm et al., 2006)
with more recent innovation here by Graves et al. (2012).

However, when simple contrasts are the only quantities of interest, neither method above is perfect.
When floating/quasi-variances are presented, the user still has to evaluate a potentially large number
of hypothesis tests by either relying on the overlap in the floating confidence intervals or by calculating
the floating t-statistic. Either solution requires a good deal of cognitive energy on the part of the
analyst or reader. Compact letter displays do well at identifying patterns of statistical significance, but
are perhaps cumbersome to investigate when patterns of (in)significance are complicated and, though
mitigated to some degree, the problem still exists for the more recent multcompTs suggested by Graves
et al. (2012). Below, I discuss a means for presenting this information in a manner that will permit the
immediate evaluation of all the m(m− 1)/2 hypothesis tests associated with simple contrasts. The
method I propose can also calculate analytical standard errors that are not prone to the same potential
inferential errors produced by floating variances. I provide methods to summarize, print and plot the
information in a way that is both visually appealing and straightforward to understand.

Solutions to the reference category problem

There are a number of reasonable solutions to the reference category problem.2 The first solution is to
present all of the covariance information required to calculate t-statistics for contrasts of interest (i.e.,
the variance-covariance matrix of the estimators). This solution provides the reader with all necessary
information to make inferences. However, it does not provide an easy way for all of these inferences to
be presented. Another solution is to re-estimate the model with different reference categories in turn.3

This method produces the correct inferential information, but it is inelegant. The modal response to
the reference category problem is a failure to do anything to discover (or allow readers to investigate)
the implied pairwise differences not captured by the estimated coefficients.

Easton et al. (1991) proposed the idea of floating absolute risk as a means for evaluating multiple
comparisons in matched case-control studies. The idea was to provide sufficient information such that
readers could perform multiple comparisons with estimates of floating absolute risk at the expense of
presenting a single extra number for each binary variable representing a level of a categorical covariate
(i.e., risk factor). Although Greenland et al. (1999) disagreed on terminology and on the utility of
Easton’s idea of a floating scale, they agreed on the utility presenting information that would permit
users to easily make the right inferences about relative risks among any levels of a categorical risk
factor. Both Firth and De Menezes (2004) and Plummer (2004) provided a more rigorous statistical
foundation on which to build estimates of floating absolute risk (or as Firth and De Menezes call them,
quasi-variances). Firth and De Menezes’ method has been operationalized in R in the qvcalc package
(Firth, 2010) and both the methods of Plummer as well as Greenland et al. have been operationalized
in the float() and ftrend() functions, respectively, in the Epi package (Carstensen et al., 2013). In
general, these solutions allow sufficient (or nearly sufficient) information to be presented in a single
column of a statistical table that makes valid, arbitrary multiple comparisons possible.

The measures of floating absolute risk are often used to create floating (or quasi-) confidence
intervals.4 Presenting these intervals allows the user to approximately evaluate hypothesis tests about
any simple contrast. While the exact nature of these confidence intervals is somewhat controversial
(for a discussion, see Easton and Peto (2000); Greenland et al. (1999, 2000)), all agree that confidence
intervals can be profitably put around some quantity (either the log-relative risks versus the reference
category or the floating trend) to display the uncertainty around these quantities and permit visual
hypothesis tests.

The methods discussed above still require the analyst or reader to either evaluate the pairwise
hypothesis tests based on the extent to which confidence intervals overlap or calculate the floating
t-statistic for each desired contrast. If the former, readers must still engage in a cognitive task of
position detection (Cleveland, 1985) and then make an inference based on the extent to which intervals
overlap. As the horizontal distance between vertically-oriented floating confidence intervals grows,
this task becomes more difficult. Finally, as Easton et al. (1991) suggests, floating variances are a

2The problem here applies particularly to polytomous, unordered risk factors or covariates. The case of ordinal
risk factors, where only the difference in adjacent categories is of interest, is a bit less troublesome and will not be
dealt with separately here.

3In fact, this re-parameterization method could be used to deal with more complicated contrasts, too. For
example, it could be used to deal with the problem proposed by Greenland et al. (1999) wherein they wanted to
estimate the relative risk of being above a particular category on birthweight.

4Occasionally, quasi-variance estimates are negative, which provide the right inferences, but do not permit
plotting of quasi-confidence intervals.
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“virtually sufficient” summary of the uncertainty relating to relative risks; however, they can produce
erroneous inferences if the error rate is sufficiently high. Both Firth and De Menezes (2004) and
Plummer (2004) provide methods for calculating this error rate, which is often small relative to other
sources of error in the model.

To put a finer point on the problem, consider the example below using data from Ornstein (1976)
from the car package (Fox and Weisberg, 2011). The model of interest is:

Interlocksi ∼ Poisson(µi) (5)

log (µi) = β0 + β1 log2 (Assetsi) + γSectorij + θNationim

where γ represents a set of coefficients on the j = 9 non-reference category dummy variables for the
10 sectors represented in the data and θ is the set of coefficients for the m = 3 coefficients on the
non-reference category dummy variables representing the four nations in the dataset. The goal is to
determine which sectors (and/or nations) have significantly different transformed conditional means
of Interlocks. The quasi-variances can be presented along with the coefficients permitting hypothesis
testing at the reader’s discretion. This approach is economical, but still requires the interested reader
to make 27 pairwise hypothesis tests for sector and three pairwise hypothesis tests for nation, beyond
those presented in the coefficient table.

The plot of the floating confidence intervals provides similar information, but readers are still
required to make judgements about statistical significance with a visual method prone to occasional
inferential errors. Consider Figure 1, which presents confidence intervals using the three different
functions that produce floating variances R — qvcalc(), float() and ftrend().5 In the figure, the
floating confidence interval for the mining sector overlaps four other floating confidence intervals and
does not overlap the remaining five intervals.6 Advice from Smith (1997) suggests that only confidence
intervals not containing the point estimate against which the test is being done are significant. Here,
all of the pairwise differences with the mining coefficient are significant because none of the point
estimates are within the 95% confidence interval for mining. A more conservative strategy is to fail to
reject null hypotheses where confidence intervals overlap and to reject otherwise. Using this criterion,
the mining sector is different from five other coefficients — Agriculture, Banking, Construction,
Finance and Wood. Browne (1979) shows that making inferences from confidence intervals requires
a knowledge of the different sampling variances of the underlying random variables for which the
confidence intervals have been constructed (i.e., the widths of the intervals matter); the decision does
not rest solely on the extent to which the intervals overlap. While Browne’s method may produce
more appropriate inferences, it is hardly less work than producing the hypothesis tests directly. When
the appropriate pairwise hypothesis tests are performed, without adjusting the p-values for multiple
testing, it is clear that the mining coefficient is different from seven coefficients when using a two-sided
test, as Table 1 shows.

Even if the evidence regarding the outcome of a hypothesis test from two confidence intervals
is clear, there are other potential sources of error. Cleveland (1985) finds that detecting position
along a common scale is one of the easiest tasks of graphical perception, but that discerning length
is considerably more difficult. His experiments show that readers are prone to errors in even the
easiest graphical perception tasks and the error rate is nearly twice as high when readers are asked to
adjudicate the relative lengths of lines. Conducting hypothesis tests using confidence intervals is an
endeavor rife with opportunities for inferential errors.

Means for calculating and presenting models with multiple simple contrasts have developed in
the multiple testing literature as well. While the thrust of the literature mentioned above was dealing
with the reference category problem directly, the multiple comparisons literature has placed greater
focus on finding the appropriate p-values for a set of hypothesis tests rather than a single test. This
can be accomplished through controlling the family-wise error rate (the probability of committing a
Type I error on any of the tests in the set) or the false discovery rate (the proportion of falsely rejected
hypotheses among those rejected). Chapter 2 of Bretz et al. (2011) provides a brief, but informative
discussion of these general concepts. While these are useful concepts, and the package discussed below
permits users to adjust p-values in a number of ways to address these issues, I am more interested
in how the multiple testing literature has developed around the presentation of multiple pairwise
comparisons.

5The figure below subtracts the arbitrary constant from the results of ftrend() to put all of these estimates on
the same scale. I recognize that this is not what the authors had intended, but this should not lead to erroneous
inferences in any event (Easton and Peto, 2000).

6Horizontal gray lines have been drawn at the smallest lower- and largest upper-bounds of the mining sector
floating confidence intervals to facilitate comparison. Note that differences across the three methods in the upper
bounds and lower bounds were in the third decimal place.
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Table 1: Analytical Test of Differences between Mining (MIN) and Other Sectors

Contrast Estimate/(SE)

MIN - AGR 0.250*
(0.069)

MIN - BNK 0.416*
(0.084)

MIN - CON 0.739*
(0.210)

MIN - FIN 0.361*
(0.067)

MIN - HLD 0.265*
(0.118)

MIN - MAN 0.128
(0.071)

MIN - MER 0.188*
(0.085)

MIN - TRN 0.098
(0.071)

MIN - WOD -0.248*
(0.072)

∗ p < 0.05, two-sided.
Estimates and standard errors produced by glht() from the multcomp package.

Gramm et al. (2006) discuss the two generally accepted methods for presenting multiple com-
parisons — the line display and the letter display. A line display (see for example, Steel and Torrie,
1980) prints a column where each row represents a single element in the multiple comparisons. In
the example above, using the Ornstein data, these would be the names of the various sectors. Then,
vertical lines are drawn connecting all values that are not significantly different from each other. This
is a relatively simple display, but as shown generally by Piepho (2004) and in this particular case, it
is not always possible to faithfully represent all of the pairwise comparisons with connecting line
segments. Note that in the third line, a discontinuity is required to properly depict all of the pairwise
relationships. Further, this method requires that the levels of factors (at least potentially) be reordered
to identify insignificant differences. This reordering, while reasonable for unordered factors, is not at
all reasonable if the factor is inherently ordered. Figure 2(a) shows the line display for the Ornstein
model above. A compact letter display (Piepho, 2004) places a series of letters by each level of the
categorical variable such that any two levels with the same letter are not significantly different from
each other.7 Each letter essentially defines a set of factor levels that have insignificant differences in
coefficients among them. For example, Banking, Construction and Finance all share the letter “a”,
which means their coefficients are statistically indistinguishable from each other. Note that Wood
is the sole factor level with “f”, meaning that it has a statistically different coefficient than all of the
other factor levels. These are more flexible than line displays, though they can still be improved upon.
Even though these displays do identify all pairwise significant relationships, they do not immediately
identify the sign and size of the differences and what appear to be complicated patterns of significance
may appear more simple with a different mode of display.

Graves et al. (2012) discuss enhancements to the letter display that make it somewhat more visually
appealing and make the cognitive tasks involved less cumbersome. This method is operationalized
by the multcompTs function in the multcompView package. While these functions are potentially
useful, they are A) still improved upon by the method discussed below and B) not intended for use
directly with “glm” class objects or “glht” class objects. Despite the improvements over letter displays,
complicated patterns of (in)significance still result in cluttered displays.

7The boxplot on the graph is a boxplot of the linear predictor from the statistical model. If there were no other
covariates in the model, this would just be a boxplot of the response variable by the different factor levels. While
this does provide some information, it does not indicate how the predicted response changes as a function of the
factor holding other things constant, which would perhaps be more useful.
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Figure 1: Quasi-confidence Intervals for the Ornstein Model
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Figure 2: Line and Letter Displays for Ornstein Model
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An alternative method of presentation

I argue that a good solution to the reference category problem is one that permits the most efficient
presentation and evaluation of a series of hypothesis tests relating to various (simple) factor contrasts.
As discussed above, both the numerical presentation of floating variances and the visual presentation
of floating confidence intervals are not maximally efficient on either dimension (presentation or evalu-
ation) when the analyst desires information about the simple pairwise difference between coefficients
related to the levels of a factor (i.e., simple contrasts). Similarly, I suggested that compact letter displays
(and to a lesser extent multcompTs), though they present all of the appropriate information, are not
maximally efficient at presenting the desired information graphically. As Chambers et al. (1983) and
Cleveland (1985) suggest, one efficient way of presenting many pairwise relationships is through
a scatterplot matrix or a generalized draftsman’s display (a lower- or upper-triangular scatterplot
matrix).8 The important feature of a scatterplot matrix is the organization of pairwise displays in a
common scale. Thus, a display that directly indicates the difference for the simple contrasts of interest
would be superior to one that requires the user to make (m(m− 1))/2 pairwise comparisons from m
floating variances or confidence intervals.

The factorplot function in the package of the same name (version 1.1) for R computes all pairwise
comparisons of coefficients relating to a factor; its print, summary and plot methods provide the
user with a wealth of information regarding the nature of the differences in these coefficients.9 These
functions overcome the problems suffered by previous methods as they present the results of pairwise
hypothesis tests directly in a visually appealing manner.

The function calculates equation (3) for each simple contrast directly through a set of elementary
matrix operations. First, d, a m× m(m−1)

2 matrix in which each column has one entry equal to positive
one, one entry equal to negative one and all the remaining entries equal to zero is created. The
positive and negative ones indicate the comparison being calculated. Using the coefficients for the
desired factor covariate (call them g, a row-vector of length m), I calculate ∆ = gd. Standard errors
for contrasts are calculated using the m rows and columns of the variance-covariance matrix of the
estimators from the model (call this V(g)): V(∆) = d′V(g)d. The ∆ vector and the square root of the
diagonal of V(∆) (both of length m(m−1)

2 ) are then organized into (m− 1)× (m− 1) upper-triangular
matrices where the rows refer to the first m− 1 elements of g and the columns refer to the last m− 1
elements of g. The entries indicate the difference between the coefficient represented by the row and
the coefficient represented by the column and its standard error.

The function has methods for objects of class “lm”, “glm”, “glht” and “multinom” which do
slightly different things depending on the input. The default method will accept a vector of estimates
and either A) a full variance-covariance matrix or B) a vector of quasi or floated variances that will
be turned into a diagonal variance-covariance matrix. The methods for “lm”, “glm”, “glht” and
“summary.glht” objects calculate the pairwise differences in the linear predictor for the values of the
specified factor variable. The method for “multinom” class objects calculates the pairwise differences
in coefficients across the categories of the dependent variable for a single variable (i.e., column of the
model matrix).

Example 1: Ornstein data

The factorplot method for “lm” class objects has six arguments. The first two arguments, obj
and adjust.method, indicate the object and the method by which p-values are to be adjusted for
multiple comparisons (possibilities include all of those to p.adjust from the stats package). The
factor.variable argument indicates the factor for which comparisons are desired. pval allows the
user to set the desired Type I error rate and two.sided allows the user to specify whether the null
hypothesis is tested against a one- or two-sided alternative with the latter as the default. The order
argument sets the ordering of the coefficients, with three possibilities — ‘natural’, ‘alph’ and ‘size’. The
‘natural’ option maintains the original ordering of the factor, the ‘alph’ option sorts them alphabetically
and the ‘size’ option sorts in ascending order of the magnitude of the coefficient. The choices made
here propagate through the plot, print and summary methods.

The plot method for “factorplot” class objects produces something akin to an upper-triangular
scatterplot. The analogy is not perfect, but the idea is similar; each entry of the rows-by-columns
display indicates the pairwise difference between coefficients. The statistical significance of these

8Cleveland (1985) makes the argument in favor of a full scatterplot matrix, but in this case, the information
presented in the upper-triangle is sufficient as nothing new could be learned by examining the full square matrix.

9The methods for “lm”, “glm”, “multinom” and the default method use the calculations mentioned below. The
method for “glht” and “summary.glht” objects uses the built-in functionality from the multcomp package to do
these calculations. The benefit here is that if a small subset of comparisons is desired, this subset can be identified
in the call to glht() and only those comparisons will be computed, thus increasing efficiency.
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differences is indicated by three colors (one for significant-positive, one for significant-negative and
one for insignificant differences). The three colors can be controlled with the polycol argument and the
text color within the polygons can be controlled with the textcol argument.10 The plot method also
allows the user to specify the number of characters with which to abbreviate the factor levels through
the abbrev.char argument. Setting this to an arbitrarily high value will result in no abbreviation.
Finally, the trans argument allows the user to impose a post-hypothesis-test transformation to the
coefficient estimates. For example, if the underlying model is a logistic regression, tests will be done
on the log-relative risks, but the relative risks could be plotted with trans = "exp".11 By default, the
function prints legends identifying the colors and numbers; these can be turned on or off with the
logical arguments print.sig.leg and print.square.leg, respectively. Figure 3 shows the display for
the Ornstein model. The following code produces the result in the figure.

library(factorplot)
library(car)
mod <- glm(interlocks ~ log2(assets) + nation + sector, data = Ornstein,

family = poisson)
fp <- factorplot(mod, adjust.method="none", factor.variable = "sector", pval = 0.05,

two.sided = TRUE, order = "natural")
plot(fp, abbrev.char = 100)

The print method for a “factorplot” object prints all of the pairwise differences, their accompanying
analytical standard errors and (optionally adjusted) p-values. The user can specify the desired number
of decimal places for rounding, with the digits argument. The sig argument is logical allowing the
user to print all pairwise differences if FALSE and only significant differences when TRUE. The print
method also permits the same trans argument as the plot method for objects of class “factorplot”. An
example of the output from the print method is below. Here, twenty-five of the forty-five pairwise
differences are statistically different from zero when.

Figure 3: Plotted factorplot object for Ornstein model
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Significantly < 0
Not Significant
Significantly > 0

bold =  bcol − brow

ital =  SE(bcol − brow)

print(fp, sig = T)
Difference SE p.val

10The printing of the estimates and standard errors can both be turned off with print.est = FALSE and print.se
= FALSE, respectively.

11After the hypothesis tests are done, a matrix named r.bdiff holds the coefficient differences. The transforma-
tion is done as follows: do.call(trans, list(r.bdiff)), so only transformations amenable to this procedure will
work.
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AGR - CON 0.489 0.213 0.023
CON - HLD -0.474 0.235 0.045
BNK - MAN -0.288 0.102 0.005
CON - MAN -0.611 0.215 0.005
FIN - MAN -0.233 0.082 0.005
BNK - MER -0.228 0.106 0.032
CON - MER -0.551 0.220 0.013
AGR - MIN -0.250 0.069 0.000
BNK - MIN -0.416 0.084 0.000
CON - MIN -0.739 0.210 0.001
FIN - MIN -0.361 0.067 0.000
HLD - MIN -0.265 0.118 0.026
MER - MIN -0.188 0.085 0.029
BNK - TRN -0.318 0.082 0.000
CON - TRN -0.641 0.217 0.004
FIN - TRN -0.263 0.070 0.000
AGR - WOD -0.498 0.076 0.000
BNK - WOD -0.665 0.095 0.000
CON - WOD -0.988 0.215 0.000
FIN - WOD -0.610 0.077 0.000
HLD - WOD -0.513 0.121 0.000
MAN - WOD -0.376 0.080 0.000
MER - WOD -0.437 0.090 0.000
MIN - WOD -0.248 0.072 0.001
TRN - WOD -0.346 0.081 0.000

The summary method for “factorplot” objects prints the number of coefficients that are significantly
smaller than the one of interest and the number of coefficients larger than the one of interest for each
level of the factor. While this is not a common means of presenting the results, this does nicely
summarize the extent of significant differences among the coefficients. Below is an example of printout
from the summary method. It is easy to see that the wood industry (WOD) has the highest conditional
means as it is significantly bigger than all of other categories. It is also easy to see that the construction
industry (CON) has one of the smallest conditional means as it is significantly smaller than seven of
the other categories and not significantly bigger than any.

summary(fp)
sig+ sig- insig

AGR 1 2 6
BNK 0 5 4
CON 0 7 2
FIN 0 4 5
HLD 1 2 6
MAN 3 1 5
MER 2 2 5
MIN 6 1 2
TRN 3 1 5
WOD 9 0 0

Together, the factorplot function and its associated print, plot and summary methods provide a
wealth of information including direct hypothesis tests using analytical standard errors for the simple
contrasts most commonly desired in (G)LMs.

Example 2: H. pylori and gastric precancerous lesions

Plummer et al. (2007) were interested in discerning the extent to which infection with H. pylori
containing the cytotoxin-associated (cagA) gene increased the severity of gastric precancerous lesions.
They found that cagA+ patients had increased risks of more severe lesions while cagA- patients
were only at significantly higher risk (than their uninfected counterparts) of chronic gastritis. Table 2
summarizes the results of the relative risk of the various types of gastric lesions versus the baseline of
normal or superficial gastritis.

The default method for the factorplot function allows the user to supply a vector of point esti-
mates and (floating) variances rather than an estimated model object. This function will be particularly
useful for those scholars in epidemiology, where floating standard errors are more routinely presented.
With 7 levels of the factor in Table 2, there are 21 pairwise comparisons implied, which would require
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Table 2: Results from Plummer et al. (2007)

cagA- cagA+

OR FSE OR FSE

Normal and superficial gastritis 1.00 0.242 1.00 0.320
Chronic gastritis 2.12 0.096 4.33 0.101
Chronic atrophic gastritis 1.44 0.156 3.89 0.160
Intestinal metaplasia I 1.31 0.140 4.14 0.141
Intestinal metaplasia II 1.44 0.380 10.8 0.349
Intestinal metaplasia III 1.46 0.484 21.9 0.431
Dysplasia 0.90 0.375 15.5 0.311

OR = odds ratio
FSE = floating standard error
Adapted from Figure 1 in Plummer et al. (2007, p1331).

users to do a lot of calculations. However, inputting the estimates and floated variances into R and
subjecting them to the factorplot function can do all of the calculations automatically. Below is an
example of how the results could be used in conjunction with the factorplot suite of functions.

est1 <- log(c(1.00,2.12,1.44,1.31,1.44,1.46,0.90))
var1 <- c(0.242,0.096,0.156,0.140,0.380,0.484,0.375)^2
est2 <- log(c(1.00,4.33,3.89,4.14,10.8,21.9,15.5))
var2 <- c(0.320,0.101,0.160,0.141,0.349,0.431,0.311)^2
resdf <- 48+16+27+532+346+144+144+124+58+166+162+75+24+

53+10+15+61+6+18+90+12-18
names(est1) <- names(est2) <- c(

"Normal Gas","Chronic Gas", "Chronic A. Gas",
"IM I", "IM II", "IM III", "Dysplasia")

plummer_fp1 <- factorplot(est1, var = var1, resdf = resdf, adjust.method = "none")
plummer_fp2 <- factorplot(est2, var = var2, resdf = resdf, adjust.method = "none")
plot(plummer_fp1, trans = "exp", abbrev.char = 100, scale.text = 1.5,

scale.space = 1.5)
plot(plummer_fp2, trans = "exp", abbrev.char = 100, scale.text = 1.5,

scale.space = 1.5)

The plots are displayed in Figure 4. The left-hand plot suggests that H. pylori cagA- seems to raise
the risk of chronic gastritis relative to Intestinal metaplasia I and the reference group of normal and
superficial gastritis. The differences in the risk of chronic gastritis and chronic atrophic gastritis or
dysplasia are also significant. The right-hand plot indicates that there are no significant differences
among the second through fourth diagnoses and the fifth through seventh diagnoses. The difference
between the risk of intestinal metaplasia I and II (for cagA+) is also significant.

Example 3: vote choice in France

When factorplot() encounters an object of class multinom, it will make comparisons within the same
variable across all levels of the dependent variable. The coefficient table presents a specific set of
pairwise comparisons — namely those indicating the relationship of each variable to the binary choice
of each non-reference category versus the reference category. However, other comparisons implied by
that coefficient table may be interesting or useful and should be investigated.

In the example below, I estimate a multinomial logistic regression model of vote choice (vote) on a
number of standard controls: retrospective national economic evaluations (retnat), self-placement on
the left-right ideological continuum (lrself), gender (male) and age (age).12

library(nnet)
data(france)
france.mod <- multinom(vote ~ retnat + lrself + male + age, data = france)

12See help for france in the package factorplot for more details about the origin and coding of the data.
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Figure 4: Results from Plummer et al. (2007) Presented as factorplots
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fp3 <- factorplot(france.mod, variable = "age")
plot(fp3)

Figure 5 shows that as people get older, they are more likely to vote for RPR or UDF than the
Greens or Communists (PCF) and more likely to vote for the Socialists (PS) than the Greens. If one is
interested in whether variables have significant effects on vote choice, all pairwise comparisons should
be considered. factorplot makes it easy for users to appropriately evaluate all relevant pairwise
comparisons.

Conclusion

Easton’s (1991) contribution of floating absolute risk has been influential, especially in epidemiology
and medicine, allowing researchers to present easily information that permits the reader to make
any pairwise comparison among the different levels of a risk factor. Firth and De Menezes (2004);
de Menezes (1999) and Plummer (2004) have provided not only a rigorous, model-based foundation
for this idea, but have also provided software that easily produces these quantities for a wide array of
statistical models. I argue that while these quantities are interesting and useful, floating confidence
intervals, which are often provided ostensibly to permit hypothesis testing can be imprecise and
potentially misleading, as regards hypothesis testing. Compact letter displays (Piepho, 2004) are a step
in the right direction, but I argue that they can still be improved upon in terms of graphically presenting
information of interest to many researchers. In the common situation wherein one is interested in
simple contrasts, the factorplot() functions and their associated print, plot and summary methods
discussed above provide much greater transparency with respect to the presentation and evaluation
of hypothesis tests than floating absolute risk or quasi-variance estimates. The visual presentation
of direct hypothesis tests requires much less effort to adjudicate significance and uncover patterns
in the results than other methods, including compact letter displays. While the calculation of these
hypothesis tests is not novel, the methods of presenting and summarizing the information represent a
significant advance over the previously available general solutions available in R.
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Figure 5: Plotted factorplot object for Age from Multinomial Logit model
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