
CONTRIBUTED RESEARCH ARTICLES 197

Possible Directions for Improving
Dependency Versioning in R
by Jeroen Ooms

Abstract One of the most powerful features of R is its infrastructure for contributed code. The
built-in package manager and complementary repositories provide a great system for development
and exchange of code, and have played an important role in the growth of the platform towards the
de-facto standard in statistical computing that it is today. However, the number of packages on CRAN
and other repositories has increased beyond what might have been foreseen, and is revealing some
limitations of the current design. One such problem is the general lack of dependency versioning in
the infrastructure. This paper explores this problem in greater detail, and suggests approaches taken
by other open source communities that might work for R as well. Three use cases are defined that
exemplify the issue, and illustrate how improving this aspect of package management could increase
reliability while supporting further growth of the R community.

Package management in R

One of the most powerful features of R is its infrastructure for contributed code (Fox, 2009). The base R
software suite that is released several times per year ships with the base and recommended packages
and provides a solid foundation for statistical computing. However, most R users will quickly resort
to the package manager and install packages contributed by other users. By default, these packages
are installed from the “Comprehensive R Archive Network” (CRAN), featuring over 4300 contributed
packages as of 2013. In addition, other repositories like BioConductor (Gentleman et al., 2004) and
Github (Dabbish et al., 2012) are hosting a respectable number of packages as well.

The R Core team has done a tremendous job in coordinating the development of the base software
along with providing, supporting, and maintaining an infrastructure for contributed code. The system
for sharing and installing contributed packages is easily taken for granted, but could in fact not
survive without the commitment and daily efforts from the repository maintainers. The process
from submission to publication of a package involves several manual steps needed to ensure that all
published packages meet standards and work as expected, on a variety of platforms, architectures
and R versions. In spite of rapid growth and limited resources, CRAN has managed to maintain high
standards on the quality of packages. Before continuing, we want to express appreciation for the
countless hours invested by volunteers in organizing this unique forum for statistical software. They
facilitate the innovation and collaboration in our field, and unite the community in creating software
that is both of the highest quality and publicly available. We want to emphasize that suggestions made
in this paper are in no way intended as criticism on the status quo. If anything, we hope that our ideas
help address some challenges to support further growth without having to compromise on the open
and dynamic nature of the infrastructure.

The dependency network

Most R packages depend on one or more other packages, resulting in a complex network of recursive
dependencies. Each package includes a ‘DESCRIPTION’ file which allows for declaration of several
types of dependencies, including Depends, Imports, Suggests and Enhances. Based on the type of
dependency relationship, other packages are automatically installed, loaded and/or attached with
the requested package. Package management is also related to the issue of namespacing , because
different packages can use identical names for objects. The ‘NAMESPACE’ file allows the developer to
explicitly define objects to be exported or imported from other packages. This prevents the need to
attach all dependencies and lookup variables at runtime, and thereby decreases chances of masking
and naming-conflicts. Unfortunately, many packages are not taking advantage of this feature, and
thereby force R to attach all dependencies, unnecessarily filling the search path of a session with
packages that the user has not asked for. However, this is not the primary focus of this paper.

Package versioning

Even though CRAN consistently archives older versions of every package when updates are published,
the R software itself takes limited advantage of this archive. The package manager identifies packages
by name only when installing or loading a package. The install.packages function downloads and
installs the current version of a CRAN package into a single global library. This library contains a

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

http://CRAN.R-project.org/package=CRAN

CONTRIBUTED RESEARCH ARTICLES 198

single version of each package. If a previous version of the package is already installed on the system,
it is overwritten without warning. Similarly, the library function will load the earliest found package
with a matching name.

The ‘DESCRIPTION’ file does allow the package author to specify a certain version of a dependency
by postfixing the package name with >=, <= or == and a version string. However, using this feature
is actually dangerous because R might not be able to satisfy these conditions, causing errors. This is
again the result of R libraries, sessions and repositories being limited to a single current version of each
package. When a package would require a version of a dependency that is not already installed or
current on CRAN, it can not be resolved automatically. Furthermore, upgrading a package in the global
library to the current CRAN version might break other packages that require the previously installed
version. Experienced R users might try to avoid such problems by manually maintaining separate
libraries for different tasks and projects. However, R can still not have multiple versions of a package
loaded concurrently. This is perhaps the most fundamental problem because it is nearly impossible to
work around. If package authors would actually declare specific versions of dependencies, any two
packages requiring different versions of one and the same dependency will conflict and cannot be
used together. In practice, this limitation discourages package authors to be explicit about dependency
versions. The >= operator is used by some packages, but it only checks if an installed dependency is
outdated and needs to be synchronized with CRAN. It still assumes that any current or future version
will suffice, and does not protect packages from breaking when their dependency packages change.
The <= and == operators are barely used at all.

When identifying a package by its name only, we implicitly make the assumption that different
versions of the package are interchangeable. This basic assumption has far-reaching implications and
consequences on the distributed development process and reliability of the software as a whole. In the
context of the increasingly large pool of inter-dependent packages, violations of this assumption are
becoming increasingly apparent and problematic. In this paper we explore this problem is greater
detail, and try to make a case for moving away from this assumption, towards systematic versioning of
dependency relationships. The term dependency in this context does not exclusively refer to formally
defined relations between R packages. Our interpretation is a bit more general in the sense that any
R script, Sweave document, or third party application depends on R and certain packages that are
needed to make it function. The paper is largely motivated by personal experiences, as we have come
to believe that limitations of the current dependency system are underlying multiple problems that
R users and developers might experience. Properly addressing these concerns could resolve several
lingering issues at once, and make R a more reliable and widely applicable analytical engine.

Use cases

A dependency defines a relationship wherein a certain piece of software requires some other software
to run or compile. However, software constantly evolves, and in the open source world this happens
largely unmanaged. Consequently, any software library might actually be something different today
than it was yesterday. Hence, solely defining the dependency relationship in terms of the name of
the software is often insufficient. We need to be more specific, and declare explicitly which version(s),
branch(es) or release(s) of the other software package will make our program work. This is what we
will refer to as dependency versioning .

This problem is not at all unique to R; in fact a large share of this paper consists of taking a closer
look at how other open source communities are managing this process, and if some of their solutions
could apply to R as well. But first we will elaborate a bit further on how this problem exactly appears
in the context of R. This section describes three use cases that reveal some limitations of the current
system. These use cases delineate the problem and lead towards suggestions for improvements in
subsequent sections.

Case 1: Archive / repository maintenance

A medium to large sized repository with thousands of packages has a complicated network of
dependencies between packages. CRAN is designed to consider the very latest version of every
package as the only current version. This design relies on the assumption that at any given time, the
latest versions of all packages are compatible. Therefore, R’s built-in package manager can simply
download and install the current versions of all dependencies along with the requested package,
which seems convenient. However, to developers this means that every package update needs to
maintain full backward compatibility with all previous versions. No version can introduce any
breaking changes, because other packages in the repository might be relying on things in a certain
way. Functions or objects may never be removed or modified; names, arguments, behavior, etc, must
remain the same. As the dependency network gets larger and more complex, this policy becomes

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 199

increasingly vulnerable. It puts a heavy burden on contributing developers, especially the popular
ones, and results in increasingly large packages that are never allowed to deprecate or clean up old
code and functionality.

In practice, the assumption is easily violated. Every time a package update is pushed to CRAN,
there is a real chance of some reverse dependencies failing due to a breaking change. In the case of the
most popular packages, the probability of this happening is often closer to 1 than to 0, regardless of the
author. Uwe Ligges has stated in his keynote presentation at useR that CRAN automatically detects
some of these problems by rebuilding every package up in the dependency tree. However, only a small
fraction of potential problems reveal themselves during the build of a package, and when found, there
is no obvious solution. One recent example was the forced roll-back of the ggplot2 (Wickham, 2009)
update to version 0.9.0, because the introduced changes caused several other packages to break. The
author of the ggplot2 package has since been required to announce upcoming updates to authors of
packages that depend on ggplot2, and provide a release candidate to test compatibility. The dependent
packages are then required to synchronize their releases if any problems arise. However, such manual
solutions are far from flawless and put even more work on the shoulders of contributing developers.
It is doubtful that all package authors on CRAN have time and resources to engage in an extensive
dialogue with other maintainers for each update of a package. We feel strongly that a more systematic
solution is needed to guarantee that software published on CRAN keeps working over time; current
as well as older versions.

When the repository reaches a critical size, and some packages collect hundreds of reverse depen-
dencies, we have little choice but to acknowledge the fact that every package has only been developed
for, and tested with, certain versions of its dependencies. A policy of assuming that any current or
future version of a dependency should suffice is dangerous and sets the wrong incentives for package
authors. It discourages change, refactoring or cleanup, and results in packages accumulating an
increasingly heavy body of legacy code. And as the repository grows, it is inevitable that packages will
nevertheless eventually break as part of the process. What is needed is a redesign that supports the
continuous decentralized change of software and helps facilitate more reliable package development.
This is not impossible: there are numerous open source communities managing repositories with
more complex dependency structures than CRAN. Although specifics vary, they form interesting role
models to our community. As we will see later on, a properly archived repository can actually come to
be a great asset rather than a liability to the developer.

Case 2: Reproducibility

Replication is the ultimate standard by which scientific claims are judged. However, complexity of
data and methods can make this difficult to achieve in computational science (Peng, 2011). As a leader
in scientific computing, R takes a pioneering role in providing a system that encourages researchers to
strive towards the gold standard. The CRAN Task View on Reproducible Research states that:

The goal of reproducible research is to tie specific instructions to data analysis and experimental
data so that scholarship can be recreated, better understood and verified.

In R, reproducible research is largely facilitated using literate programming techniques implemented in
packages like Sweave that mix (weave) R code with LATEX-markup to create a “reproducible document”
(Leisch, 2002). However, those ever faced with the task of actually reproducing such a document
might have experienced that the Sweave file does not always compile out of the box. Especially if it
was written several years ago and loads some contributed packages, chances are that essential things
have changed in the software since the document was created. When we find ourselves in such a
situation, recovering the packages needed to reproduce the document might turn out to be non-trivial.

An example: suppose we would like to reproduce a Sweave document which was created with
R 2.13 and loads the caret package (Kuhn, 2013). If no further instructions are provided, this means
that any of the approximately 25 releases of caret in the life cycle of R 2.13 (April 2011 to February
2012) could have been used, making reproducibility unlikely. Sometimes authors add comments in
the code where the package is loaded, stating that e.g. caret 4.78 was used. However, this information
might also turn out to be insufficient: caret depends on 4 packages, and suggests another 59 packages,
almost all of which have had numerous releases in R 2.13 time frame. Consequently, caret 4.78 might
not work anymore because of changes in these dependencies. We then need to do further investigation
to figure out which versions of the dependency packages were current at the time of the caret 4.78
release. Instead, lets assume that the prescient researcher anticipated all of this, and saved the full
output of sessionInfo() along with the Sweave document, directly after it was compiled. This output
lists the version of each loaded package in the active R session. We could then proceed by manually
downloading and installing R 2.13 along with all of the required packages from the archive. However,
users on a commercial operating systems might be up for another surprise: unlike source packages,

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 200

binary packages are not fully archived. For example, the only binary builds available for R 2.13 are
respectively caret 5.13 on Windows, and caret 5.14 on OSX. Most likely, they will face the task of
rebuilding each of the required packages from source in an attempt to reconstruct the environment of
the author.

Needless to say, this situation is suboptimal. For manually compiling a single Sweave document
we might be willing to make this effort, but it does not provide a solid foundation for systematic or
automated reproducible software practices. To make results generated by R more reproducible, we
need better conventions and/or native support that is both explicit and specific about contributed
code. For an R script or Sweave document to stand the test of time, it should work at least on the same
version of R that was used by the author. In this respect, R has higher requirements on versioning than
other software. Reproducible research does not just require a version that will make things work, but
one that generates exactly the same output. In order to systematically reproduce results R, package
versions either need to be standardized, or become a natural part of the language. We realize this will
not archive perfect reproducibility, as problems can still arise due to OS or compiler specific behavior.
However, it will be a major step forward that has the potential of turning reproducibility into a natural
feature of the software, rather than a tedious exercise.

Case 3: Production applications

R is no longer exclusively used by the local statistician through an interactive console. It is increasingly
powering systems, stacks and applications with embedded analytics and graphics. When R is part of
say, an application used in hospitals to create on-demand graphics from patient data, the underlying
code needs to be stable, reliable, and redistributable. Within such an application, even a minor change
in code or behavior can result in complete failure of the system and cannot easily be fixed or debugged.
Therefore, when an application is put in production, software has to be completely frozen.

An application that builds on R has been developed and tested with certain versions of the base
software and R packages used by the application. In order to put this application in production, exactly
these versions need to be shipped, installed and loaded by the application on production servers.
Managing, distributing and deploying production software with R is remarkably hard, due to limited
native dependency versioning and the single global library design. Administrators might discover
that an application that was working in one place does not work elsewhere, even though exactly the
same operating system, version of R, and installation scripts were used. The problem of course is that
the contributed packages constantly change. Problems become more complicated when a machine is
hosting many applications that were developed by different people and depend on various packages
and package versions.

The default behavior of loading packages from a global library with bleeding edge versions is
unsuitable for building applications. Because the CRAN repository has no notion of stable branches,
one manually needs to download and install the correct versions of packages in a separate library
for each application to avoid conflicts. This is quite tricky and hard to scale when hosting many
applications. In practice, application developers might not even be aware of these pitfalls, and design
their applications to rely on the default behavior of the package manager. They then find out the hard
way that applications start breaking down later on, because of upstream changes or library conflicts
with other applications.

Solution 1: staged distributions

The problem of managing bottom-up decentralized software development is not new; rather it is a
typical feature of the open source development process. The remainder of this paper will explore two
solutions from other open source communities, and suggest how these might apply to R. The current
section describes the more classic solution that relies on staged software distributions .

A software distribution (also referred to as a distribution or a distro) is a collection of software
components built, assembled and configured so that it can be used essentially "as is" for its intended
purpose. Maintainers of distributions do not develop software themselves; they collect software
from various sources, package it up and redistribute it as a system. Distributions introduce a formal
release cycle on the continuously changing upstream developments and maintainers of a distribution
take responsibility for ensuring compatibility of different packages within a certain release of the
distribution. Software distributions are most commonly known in the context of free operating systems
(BSD, Linux, etc). Staging and shipping software in a distribution has proven to scale well to very
large code bases. For example, the popular Debian GNU/Linux distribution (after which R’s package
description format was modeled) features over 29000 packages with a large and complex dependency
network. No single person is familiar with even a fraction of the code base that is hosted in this

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 201

repository. Yet through well organized staging and testing, this distribution is known to be one of
the most reliable operating systems today, and is the foundation for a large share of the global IT
infrastructure.

The release cycle

In a nutshell, a staged distribution release can be organized as follows. At any time, package authors
can upload new versions of packages to the devel pool, also known as the unstable branch. A release
cycle starts with distribution maintainers announcing a code freeze date, several months in advance.
At this point, package authors are notified to ensure that their packages in the unstable branch are
up to date, fix bugs and resolve other problems. At the date of the code freeze, a copy (fork) of the
unstable repository is made, named and versioned, which goes into the testing phase. Software in
this branch will then be subject to several iterations of intensive testing and bug fixing, sometimes
accompanied by alpha or beta releases of the distribution. However, software versions in the testing
branch will no longer receive any major updates that could potentially have side effects or break other
packages. The goal is to converge to increasingly stable set of software. When after several testing
rounds the distribution maintainers are confident that all serious problems are fixed, the branch is
tagged stable and released to the public. Software in a stable release will usually only receive minor
non-breaking updates, like important compatibility fixes and security updates. For the next “major
release” of any software, the user will have to wait for the next cycle of the distribution. As such,
everyone using a certain release of the distribution is using exactly the same versions of all programs
and libraries on the system. This is convenient for both users and developers and gives distributions a
key role in bringing decentralized open source development efforts together.

R: downstream staging and repackaging

The semi annual releases of the r-base software suite can already be considered as a distribution of the
29 base and recommended packages. However in the case of R, this collection is limited to software
that has been centrally developed and released by the same group of people; it does not include
contributed code. Due to the lack of native support for dependency versioning in R, several third party
projects have introduced some form of downstream staging in order to create stable, redistributable
collections R software. This section lists some examples and explains why this is suboptimal. In the
next section we will discuss what would be involved with extending the R release cycle to contributed
packages.

One way of staging R packages downstream is by including them in existing software distributions.
For example, Eddelbuettel and Blundell (2009) have wrapped some popular CRAN packages into
deb packages for the Debian and Ubuntu systems. Thereby, pre-compiled binaries are shipped in
the distribution along with the R base software, putting version compatibility in the hands of the
maintainers (among other benefits). This works well, but requires a lot of effort and commitment from
the package maintainer, which is why this has only been done for a small subset of the CRAN packages.
Most distributions expect high standards on the quality of the software and package maintenance,
which makes this approach hard to scale up to many more packages. Furthermore, we are tied to the
release cycle of the distribution, resulting in a somewhat arbitrary and perhaps unfortunate snapshot
of CRAN packages when the distribution freezes. Also, different distributions will have different
policies on if, when and which packages they wish to ship with their system.

Another approach is illustrated by domain-specific projects like BioConductor (genomic data) and
REvolution R Enterprise (big data). Both these systems combine a fixed version of R with a custom
library of frozen R packages. In the case of REvolution, the full library is included with the installer; for
BioConductor they are provided through a dedicated repository. In both cases, this effectively prevents
installed software from being altered unexpectedly by upstream changes. However, this also leads
to a split in the community between users of R, BioConductor, and REvolution Enterprise. Because
of the differences in libraries, R code is not automatically portable between these systems, leading to
fragmentation and duplication of efforts. E.g. BioConductor seems to host many packages that could
be more generally useful; yet they are unknown to most users of R. Furthermore, both projects only
target a limited set of packages; they still rely on CRAN for the majority of the contributed code.

The goal of staging is to tie a fixed set of contributed packages to a certain release of R. If these
decisions are passed down to distributions or organizations, a multitude of local conventions and
repositories arise, and different groups of users will still be using different package versions. This
leads to unnecessary fragmentation of the community by system, organization, or distribution channel.
Moreover, it is often hard to assess compatibility of third party packages, resulting in somewhat
arbitrary local decision making. It seems that the people who are in the best position to manage
and control compatibility are the package authors themselves. This leads us to conclude that a more

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 202

appropriate place to organize staging of R packages is further upstream.

Branching and staging in CRAN itself

Given that the community of R contributors evolves mainly around CRAN, the most desirable
approach to organizing staging would be by integrating it with the publication process. Currently,
CRAN is managed as what distributions would consider a development or unstable branch. It
consists of the pool of bleeding-edge versions, straight from package authors. Consequently it is wise
to assume that software in this branch might break on a regular basis. Usually, the main purpose of
an unstable branch is for developers to exchange new versions and test compatibility of software.
Regular users obtain software releases from stable branches instead. This does not sound unfamiliar:
the r-base software also distinguishes between stable versions r-release and r-release-old , and an
unstable development version, r-devel .

The fact that R already has an semi-annual release cycle for the 29 base and recommended packages,
would make it relatively straightforward to extend this cycle to CRAN packages. A snapshot of
CRAN could be frozen along with every version of r-release , and new package updates would only
be published to the r-devel branch. In practice, this could perhaps quite easily be implemented by
creating a directory on CRAN for each release of R, containing symbolic links to the versions of the
packages considered stable for this release. In the case of binary packages for OSX and Windows,
CRAN actually already has separate directories with builds for each release of R. However currently
these are not frozen and continuously updated. In a staged repository, newly submitted packages are
only build for the current devel and testing branches; they should not affect stable releases. Exceptions
to this process could still be granted to authors that need to push an important update or bugfix within
a stable branch, commonly referred to as backporting , but this should only happen incidentally.

To fully make the transition to a staged CRAN, the default behavior of the package manager must
be modified to download packages from the stable branch of the current version of R, rather than the
latest development release. As such, all users on a given version of R will be using the same version of
each CRAN package, regardless on when it was installed. The user could still be given an option to try
and install the development version from the unstable branch, for example by adding an additional
parameter to install.packages named devel=TRUE. However when installing an unstable package,
it must be flagged, and the user must be warned that this version is not properly tested and might
not be working as expected. Furthermore, when loading this package a warning could be shown
with the version number so that it is also obvious from the output that results were produced using a
non-standard version of the contributed package. Finally, users that would always like to use the very
latest versions of all packages, e.g. developers, could install the r-devel release of R. This version
contains the latest commits by R Core and downloads packages from the devel branch on CRAN, but
should not be used or in production or reproducible research settings.

Organizational change

Appropriate default behavior of the software is a key element to encourage adoption of conventions
and standards in the community. But just as important is communication and coordination between
repository maintainers and package authors. To make staging work, package authors must be notified
of upcoming deadlines, code freezes or currently broken packages. Everyone must realize that the
package version that is current at the time of code freeze, will be used by the majority of users of the
upcoming version of R. Updates to already released stable branches can only be granted in exceptional
circumstances, and must guarantee to maintain full backward compatibility. The policies of the
BioConductor project provide a good starting point and could be adapted to work for CRAN.

Transitioning to a system of “stable” and “development” branches in CRAN, where the stable
branch is conventional for regular users, could tremendously improve the reliability of the software.
The version of the R software itself would automatically imply certain versions of contributed packages.
Hence, all that is required to reproduce a Sweave document created several years ago, is which version
of R was used to create the document. When deploying an application that depends on R 2.15.2 and
various contributed packages, we can be sure that a year later the application can be deployed just as
easily, even though the authors of contributed packages used by the application might have decided
to implement some breaking changes. And package updates that deprecate old functionality or might
break other packages that depend on it, can be uploaded to the unstable branch without worries, as
the stable branches will remain unchanged and users won’t be affected. The authors of the dependent
packages that broke due to the update can be warned and will have sufficient time to fix problems
before the next stable release.

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 203

Solution 2: versioned package management

The previous section described the “classical” solution of creating distributable sets of compatible,
stable software. This is a proven approach and has been adopted in some way or another by many
open-source communities. However, one drawback of this approach might be that some additional
coordination is needed for every release. Another drawback is that it makes the software a bit more
conservative, in the sense that regular users will generally be using versions of packages that are at
least a couple of months old. The current section describes a different approach to the problem that is
used by for example the Javascript community. This method is both reliable and flexible, however
would require some more fundamental changes to be implemented in R.

Node.js and NPM

One of the most recent and fastest growing open source communities is that of the node.js software
(for short: node), a Javascript server system based on the open source engine V8 from Google. One
of the reasons that the community has been able to grow rapidly is because of the excellent package
manager and identically named repository, NPM . Even though this package manager is only 3 years
old, it is currently hosting over 30000 packages with more than a million downloads daily, and has
quickly become the standard way of distributing Javascript code. The NPM package manager is a
powerful tool for development, publication and deployment of both libraries and applications. NPM
addresses some problems that Javascript and R actually have in common, and makes an interesting
role model for a modern solution to the problem.

The Javascript community can be described as decentralized, unorganized and highly fragmented
development without any quality control authority. Similar to CRAN, NPM basically allows anyone to
claim a “package name” and start publishing packages and updates to the repositories. The repository
has no notion of branches and simply stores every version of a package indefinitely in its archives.
However, a major difference with R is how the package manager handles installation, loading and
namespacing of packages.

Dependencies in NPM

Every NPM package ships with a file named ‘package.json’, which is the equivalent of the ‘DESCRIPTION’
in R packages, yet a bit more advanced. An overview of the full feature set of the package manager is
beyond the scope of this paper, but the interested reader is highly encouraged to take a look over the
fence at this well designed system: https://npmjs.org/doc/json.html. The most relevant feature in
the context CRAN is how NPM declares and resolves dependencies.

Package dependencies are defined using a combination of the package name and version range
descriptor. This descriptor is specified with a simple dedicated syntax, that extends some of the
standard versioning notation. Below a snippet taken from the ‘package.json’ file in the NPM manual:

"dependencies" : {
"foo" : "1.0.0 - 2.9999.9999",
"bar" : ">=1.0.2 <2.1.2",
"baz" : ">1.0.2 <=2.3.4",
"boo" : "2.0.1",
"qux" : "<1.0.0 || >=2.3.1 <2.4.5",
"asd" : "http://asdf.com/asdf.tar.gz",
"til" : "~1.2",
"elf" : "~1.2.3",
"two" : "2.x",
"thr" : "3.3.x",

}

The version range descriptor syntax is a powerful tool to specify which version(s) or version range(s)
of dependencies are required. It provides the exact information needed to build, install and/or load

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

https://npmjs.org/doc/json.html

CONTRIBUTED RESEARCH ARTICLES 204

the software. In contrast to R, NPM takes full advantage of this information. In R, all packages are
installed in one or more global libraries, and at any given time a subset of these packages is loaded in
memory. This is where NPM takes a very different approach. During installation of a package, NPM
creates a subdirectory for dependencies inside the installation directory of the package. It compares
the list of dependency declarations from the ‘package.json’ with an index of the repository archive,
and then constructs a private library containing the full dependency tree and precise versions as
specified by the author. Hence, every installed package has its own library of dependencies. This
works recursively, i.e. every dependency package inside the library again has its own dependency
library.

jeroen@ubuntu:~/Desktop$ npm install d3
jeroen@ubuntu:~/Desktop$ npm list
/home/jeroen/Desktop

d3@2.10.3
jsdom@0.2.14

contextify@0.1.3
bindings@1.0.0

cssom@0.2.5
htmlparser@1.7.6
request@2.12.0
form-data@0.0.3

async@0.1.9
combined-stream@0.0.3
delayed-stream@0.0.5

mime@1.2.7
sizzle@1.1.0

By default, a package loads dependencies from its private library, and the namespace of the dependency
is imported explicitly in the code. This way, an installed NPM package is completely unaffected by
other applications, packages, and package updates being installed on the machine. The private library
of any package contains all required dependencies, with the exact versions that were used to develop
the package. A package or application that has been tested to work with certain versions of its
dependencies, can easily be installed years later on another machine, even though the latest versions
of dependencies have had major changes in the mean time.

Back to R

A similar way of managing packages could be very beneficial to R as well. It would enable the same
dynamic development and stable installation of packages that has resulted in a small revolution within
the Javascript community. The only serious drawback of this design is that it requires more disk
space and slightly more memory, due to multiple versions of packages being installed and/or loaded.
Yet the memory required to load an additional package is minor in comparison with loading and
manipulating a medium sized dataset. Considering the wide availability of low cost disk space and
memory these days, we expect that most users and developers will happily pay this small price for
more reliable software and reduced debugging time.

Unfortunately, implementing a package manager like NPM for R would require some fundamental
changes in the way R installs and loads packages and namespaces, which might break backward
compatibility at this point. One change that would probably be required for this is to move away from
the Depends relation definition, and require all packages to rely on Imports and a NAMESPACE file to
explicitly import objects from other packages. A more challenging problem might be that R should be
able to load multiple versions of a package simultaneously while keeping their namespaces separated.
This is necessary for example when two packages are in use, which both depend on different versions
of one and the same third package. In this case, the objects, methods and classes exported by the
dependency package should affect only the package that imported them.

Finally, it would be great if the package manager was capable of installing multiple versions of a
package inside a library, for example by appending the package version to the name of the installation
directory (e.g. MASS_7.3-22). The library and require functions could then be extended with an
argument specifying the version to be loaded. This argument could use the same version range
descriptor syntax that packages use to declare dependencies. Missing versions could automatically be
installed, as nothing gets overwritten.

library(ggplot2, version="0.8.9")
library(MASS, version="7.3-x")
library(Matrix, version=">=1.0")

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 205

Code as above leaves little ambiguity and tremendously increases reliability and reproducibility
of R code. When the code is explicit about which package versions are loaded, and packages are
explicit about dependency versions, an R script or Sweave document that once worked on a certain
version of R, will work for other users, on different systems, and keep working over time, regardless
of upstream changes. For users not concerned with dependency versioning, the default value of the
version argument could be set to "*". This value indicates that any version will do, in which case the
package manager gives preference to the most recent available version of the package.

The benefits of a package manager capable of importing specific versions of packages would
not just be limited to contributed code. Such a package manager would also reduce the necessity
to include all of the standard library and more in the R releases. If implemented, the R Core team
could consider moving some of the base and recommended packages out of the r-base distribution, and
offer them exclusively through CRAN. This way, the R software could eventually become the minimal
core containing only the language interpreter and package manager, similar to e.g. Node and NPM.
More high-level functionality could be loaded on demand as versioning is controlled by the package
manager. This would allow for less frequent releases of the R software itself, and further improve
compatibility and reproducibility between versions of R.

Summary

The infrastructure for contributed code has supported the steady growth and adoption of the R
software. For the majority of users, contributed code is just as essential in their daily work as the R
base software suite. But the number of packages on CRAN has grown beyond what could have been
foreseen, and practices and policies that used to work on a smaller scale are becoming unsustainable.
At the same time there is an increasing demand for more reliable, stable software, that can be used
as part of embedded systems, enterprise applications, or reproducible research. The design and
policies of CRAN and the package manager shape the development process and play an important
role in determining the future of the platform. The current practice of publishing package updates
directly to end-users facilitates a highly versatile development, but comes at the cost of reliability. The
default behavior of R to install packages in a single library with only the latest versions is perhaps
more appropriate for developers than regular users. After nearly two decades of development, R has
reached a maturity where a slightly more conservative approach could be beneficial.

This paper explained the problem of dependency versioning, and tried to make a case for tran-
sitioning to a system that does not assume that package versions are interchangeable. The most
straightforward approach would be by extending the r-release and r-devel branches to the full CRAN
repository, and only publish updates of contributed packages to the r-devel branch of R. This way,
the stable versions of R are tied to a fixed version of each CRAN package, making the code base and
behavior of a given release of R less ambiguous. Furthermore, a release cycle allows us to concen-
trate coordination and testing efforts for contributed packages along with releases of R, rather than
continuously throughout the year.

In the long term, a more fundamental revision of the packaging system could be considered, in
order to facilitate dynamic contributed development without sacrificing reliability. However, this
would involve major changes in the way libraries and namespaces are managed. The most challenging
problem will be support for concurrently loading multiple versions of a package. But when the
time is ready to make the jump to the next major release of R, we hope that R Core will consider
revising this important part of the software, adopting modern approaches and best practices of
package management that are powering collaboration and uniting efforts within other open source
communities.

Bibliography

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: transparency and collaboration
in an open software repository. In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, pages 1277–1286. ACM, 2012. [p197]

D. Eddelbuettel and C. Blundell. cran2deb: A fully automated CRAN to Debian package generation
system. Presented at UseR Conference, July 10-12, Rennes, 2009. URL https://r-forge.r-project.
org/projects/cran2deb/. [p201]

J. Fox. Aspects of the Social Organization and Trajectory of the R project. The R Journal, 1(2):5–13, 2009.
[p197]

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

https://r-forge.r-project.org/projects/cran2deb/
https://r-forge.r-project.org/projects/cran2deb/

CONTRIBUTED RESEARCH ARTICLES 206

R. Gentleman, V. Carey, D. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry,
et al. Bioconductor: open software development for computational biology and bioinformatics.
Genome biology, 5(10):R80, 2004. [p197]

M. Kuhn. caret: Classification and Regression Training, 2013. URL http://CRAN.R-project.org/
package=caret. R package version 5.16-04. [p199]

F. Leisch. Sweave. Dynamic generation of statistical reports using literate data analysis. Report Series
SFB "Adaptive Information Systems and Modelling in Economics and Management Science", 2002. URL
http://epub.wu.ac.at/1788/1/document.pdf. [p199]

R. D. Peng. Reproducible research in computational science. Science, 334(6060):1226–1227, 2011. [p199]

H. Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009. ISBN 978-0-387-98140-6.
URL http://had.co.nz/ggplot2/book. [p118, 199]

Jeroen Ooms
Department of Statistics
University of California
Los Angeles
jeroen.ooms@stat.ucla.edu
http://jeroenooms.github.io/

The R Journal Vol. 5/1, June 2013 ISSN 2073-4859

http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret
http://epub.wu.ac.at/1788/1/document.pdf
http://had.co.nz/ggplot2/book
mailto:jeroen.ooms@stat.ucla.edu
http://jeroenooms.github.io/

