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spMC: Modelling Spatial Random Fields
with Continuous Lag Markov Chains
by Luca Sartore

Abstract Currently, a part of the R statistical software is developed in order to deal with spatial models.
More specifically, some available packages allow the user to analyse categorical spatial random
patterns. However, only the spMC package considers a viewpoint based on transition probabilities
between locations. Through the use of this package it is possible to analyse the spatial variability of
data, make inference, predict and simulate the categorical classes in unobserved sites. An example is
presented by analysing the well-known Swiss Jura data set.

Introduction

Originally, the spMC package (Sartore, 2013) was developed with the purpose of analysing categorical
data observed in 3-D locations. It deals with stochastic models based on Markov chains, which may
be used for the analysis of spatial random patterns in continuous multidimensional spaces (Carle
and Fogg, 1997). Its results are easily interpretable and it is a good alternative to the T-PROGS
software developed by Carle (1999), which is oriented towards modelling groundwater systems. The
models considered in the spMC package are used to analyse any categorical random variable Z(s)
at the d-dimensional position s ∈ Rd which satisfies the Markov property. Other R packages are
also helpful for analysing categorical spatial data. For example, the gstat package (Pebesma, 2004)
allows for analyses using traditional methods such as the parameter estimation of spatial models
based on variograms and kriging techniques for predictions. All these methods and their variants are
also available in other packages, e.g. geoRglm (Christensen and Ribeiro Jr, 2002) and RandomFields
(Schlather, 2013). When Z(s) is assumed to be linked to a continuous hidden random process, these
packages are useful for studying the covariance structure of the data.

The spMC package extends the functionality of the T-PROGS software to R users. New useful
functions are included for faster modelling of transition probability matrices, and efficient algorithms
are implemented for improving predictions and simulations of categorical random fields. The main
tasks and their functions are clearly summarised in Table 1. Three different fitting methods were
implemented in the package. The first is based on the estimates of the main features that characterise
the process, the second focuses on the minimisation of the discrepancies between the empirical and
theoretical transition probabilities, and the third follows the maximum entropy approach. Once the
model parameters are properly estimated, transition probabilities are calculated through the matrix-
valued exponential function (see Higham, 2008, Algorithm 10.20 in Chapter 10). These transition
probabilities are then combined to predict the category in an unsampled position. Three algorithms
are used to simulate spatial random fields; those based on the kriging techniques (Carle and Fogg,
1996), those using fixed and random path methods (Li, 2007a; Li and Zhang, 2007), or those using
multinomial categorical simulation proposed by Allard et al. (2011). In order to reduce computation
time through OpenMP API (version 3.0; OpenMP Architecture Review Board, 2008), the setCores()
function allows the user to change the number of CPU cores, so that one can mix shared memory
parallel techniques with those based on the Message Passing Interface (The MPI Forum, 1993) as
described in Smith (2000).

Here, it will be shown how to perform a geostatistical analysis of the Jura data set (Goovaerts,
1997) using the spMC package (version 0.3.1). The data set consists of 359 sampled spatial coordinates
and their respective observed realisations of two categorical variables (related to the rock-type and the
land use) and some continuous variables (corresponding to the topsoil content).

Brief overview of the models

The spMC package deals with both one-dimensional and multidimensional continuous lag models.
If Z(sl) denotes a categorical random variable in a location sl , for any l = 1, . . . , n, its outcome
conventionally takes values in the set of mutually exclusive states {z1, . . . , zK}, where K represents the
total number of observable categories. A continuous lag Markov chain model organises the conditional
probabilities

tij(sl − sk) = Pr(Z(sl) = zj|Z(sk) = zi),

for any i, j = 1, . . . , K, in a K× K transition probability matrix. Generally speaking, such a model is a
transition probability matrix-valued function depending on one-dimensional or multidimensional
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Tasks and functions Techniques implemented in the spMC package

Estimations of one-dimensional continuous lag models
transiogram Empirical transition probabilities estimation
tpfit One-dimensional model parameters estimation
tpfit_ils Iterated least squares method for one-dimensional model parameters estimation
tpfit_me Maximum entropy method for one-dimensional model parameters estimation
tpfit_ml Mean length method for one-dimensional model parameters estimation

Estimations of multidimensional continuous lag models
pemt Pseudo-empirical multidimensional transiograms estimation
multi_tpfit Multidimensional model parameters estimation
multi_tpfit_ils Iterated least squares method for multidimensional model parameters estimation
multi_tpfit_me Maximum entropy method for multidimensional model parameters estimation
multi_tpfit_ml Mean length method for multidimensional model parameters estimation

Categorical spatial random field simulation and prediction
sim Random field simulation
sim_ck Conditional simulation based on indicator cokriging
sim_ik Conditional simulation based on indicator kriging
sim_mcs Multinomial categorical simulation
sim_path Conditional simulation based on path algorithms

Graphical tools
plot.transiogram Plot one-dimensional transiograms
mixplot Plot of multiple one-dimensional transiograms
contour.pemt Display contours with pseudo-empirical multidimensional transiograms
image.pemt Images with pseudo-empirical multidimensional transiograms
image.multi_tpfit Images with multidimensional transiograms

Table 1: Most important user functions in the spMC package.

lags, i.e.
T(hφ) : Rd → [0, 1]K×K ,

wherein hφ denotes a d-dimensional continuous lag along the direction φ ∈ Rd. Such a lag corre-
sponds to the difference between the location coordinates and is proportional to the direction φ. The
exponential form,

T(hφ) = exp
(
‖hφ‖Rφ

)
, (1)

=
∞

∑
u=0

‖hφ‖u

u!
Ru

φ,

is usually adopted to model the observed variability and local anisotropy. The components of the
transition rate matrix Rφ ∈ RK×K (the model coefficients) depend on the direction φ and they must
satisfy the following properties (Norris, 1998, Section 2.1):

• rii ≤ 0, for any i = 1, . . . , K.

• rij ≥ 0, if i 6= j.

• The row sums satisfy
K

∑
j=1

rij = 0.

• The column sums satisfy
K

∑
i=1

pirij = 0,

where pi is the proportion of the i-th category.
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The components of R−φ may be computed through the relation

rij, −φ =
pj

pi
rji, φ ∀i, j = 1, . . . , K,

where −φ denotes the opposite direction.

Transition rate matrix estimation

In order to obtain an estimate of the transition rate matrix along the direction φ, the package provides
two solutions, i.e. by following the one-dimensional approach or the multidimensional. The latter
estimates the matrix Rφ by the ellipsoidal interpolation of d matrices, which are computed along the
axial directions through one-dimensional procedures.

The one-dimensional techniques related to the tpfit_ml() and tpfit_me() functions are based
on mean lengths Li, φ and transition frequencies of embedded occurrences f ∗kj, φ. The iterated least
squares method is implemented through the tpfit_ils() function.

The first two functions estimate the stratum mean lengths for each category through the mlen()
function. The mean lengths are computed either with the average of the observed stratum lengths or
their expectation based on the maximum likelihood estimate by assuming that the observed lengths are
independent realisations of a log-normal random variable. In order to verify the distributional assump-
tion on the lengths, the function getlen() estimates stratum lengths of embedded Markov chains
along a chosen direction, while other functions such as boxplot.lengths(), density.lengths(),
hist.lengths() are used for graphical diagnostics.

The tpfit_ml() function computes the transition frequencies of embedded occurrences as an
average through the function embed_MC(). The maximum entropy method, adopted by the tpfit_me()
function, calculates the transition frequencies of embedded occurrences through the iterative propor-
tion fitting (Goodman, 1968). The algorithm may be summarised as follows:

1. Initialise fi, φ with pi/Li, φ.

2. Compute f ∗ij, φ = fi, φ f j, φ ∀i, j = 1, . . . , K.

3. Compute

fi, φ =
pi ∑K

k=1 ∑K
j 6=k f ∗kj, φ

Li, φ ∑K
j 6=i f ∗ij, φ

.

4. Repeat the second and the third step until convergence.

Both tpfit_ml() and tpfit_me() functions estimate the autotransition rates as rii = −1/Li, φ,
while the rates for any i 6= j are calculated as rij, φ = f ∗ij, φ/Li, φ.

The tpfit_ils() function estimates the transition rate matrix by minimising the sum of the
squared discrepancies between the empirical probabilities given by the transiogram() function and
theoretical probabilities given by the model. The bound-constrained Lagrangian method (Conn et al.,
1991) is performed in order to have a proper transition rate matrix, which satisfies the transition rate
properties.

The multidimensional approach is computationally efficient. In fact a generic entry of the matrix
Rφ is calculated by the ellipsoidal interpolation as

|rij, φ| =

√√√√ d

∑
v=1

(
hv, φ

‖hφ‖
rij, ev

)2
, (2)

where hv, φ is the v-th component of the vector hφ, ev represents the standard basis vector, and the
rate rij, ev is replaced by rij, −ev for components hv, φ < 0. In this way, it is only necessary to have in
memory the estimates for the main directions.

The multi_tpfit_ml(), multi_tpfit_me() and the multi_tpfit_ils() functions automatically
perform the estimation of d transition rate matrices along the axial directions with respect to the chosen
one-dimensional method.
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Prediction and simulation based on transition probabilities

Several methods were developed to predict or simulate the category in an unobserved location s0
given the knowledge of the sample positions s1, . . . , sn. The conditional probability,

Pr

(
Z(s0) = zi

∣∣∣∣∣ n⋂
l=1

Z(sl) = z(sl)

)
,

is used to predict or simulate the category in s0, where zi represents the i-th category and z(sl) is the
observed category in the l-th sample location.

Usually such a probability is approximated through

• Kriging- and Cokriging-based methods, implemented in the sim_ik() and sim_ck() functions.

• Fixed or random path algorithms, available in sim_path().

• Multinomial categorical simulation procedure, sim_mcs() function.

The approximation proposed by Carle and Fogg (1996) is implemented in the functions sim_ik()
and sim_ck(). Both of them use some variant of the following

Pr

(
Z(s0) = zj

∣∣∣∣∣ n⋂
l=1

Z(sl) = z(sl)

)
≈

n

∑
l=1

K

∑
i=1

wij, l cil ,

where

cil =

{
1 if z(sl) = zi,
0 otherwise,

and the weights wij, l are calculated by solving the following system of linear equations:T(s1 − s1) · · · T(sn − s1)
...

. . .
...

T(s1 − sn) · · · T(sn − sn)


W1

...
Wn

 =

T(s0 − s1)
...

T(s0 − sn)

 ,

where

Wl =

w11, l · · · w1K, l
...

. . .
...

wK1, l · · · wKK, l

 .

This approximation does not satisfy the probability axioms, because such probabilities might lie
outside the interval [0, 1] and it is not ensured that they sum up to one. To solve the former problem
truncation is considered, but the usual normalisation is not adopted to solve the latter; in fact, after the
truncation, these probabilities might also sum up to zero instead of one. The implemented stabilisation
algorithm translates the probabilities with respect to the minimum computed for that point. Then, the
probabilities are normalised as usual.

To improve the computational efficiency of the algorithm, the m-nearest neighbours are considered
in the system of equations instead of all sample points; in so doing, a decrease in computing time is
noted and the allocated memory is drastically reduced to a feasible quantity.

For the approximation adopted in the sim_path() function, conditional independence is assumed
in order to approximate the conditional probability as in the analysis of a Pickard random field
(Pickard, 1980). This method, as described in Li (2007b), considers m known neighbours in the axial
directions, so that the probability is computed as

Pr

(
Z(s0) = zi

∣∣∣∣∣ n⋂
l=1

Z(sl) = z(sl)

)
≈ Pr

(
Z(s0) = zi

∣∣∣∣∣ m⋂
l=1

Z(sl) = zkl

)
∝

∝ tk1i(s0 − s1)
m

∏
l=2

tikl
(s0 − sl).

The method proposed by Allard et al. (2011) is implemented in the sim_mcs() function. It was
introduced to improve the computational efficiency of the Bayesian maximum entropy approach
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proposed by Bogaert (2002). Here, the approximation of the conditional probability is

Pr

(
Z(s0) = zi

∣∣∣∣∣ n⋂
l=1

Z(sl) = z(sl)

)
≈

pi

n

∏
l=1

tikl
(s0 − sl)

K

∑
i=1

pi

n

∏
l=1

tikl
(s0 − sl)

.

Also in this case, the user can choose to apply this approximation by considering all data or only the
m-nearest neighbours, with the same advantages described above.

Once the conditional probabilities are computed, the prediction is given by the highest probable
category, while the simulation is given by randomly selecting one category according to the computed
probabilities.

After the first simulation is drawn, the sim_ik() and sim_ck() functions execute an optimisation
phase in order to avoid “artifact discontinuities”, wherein the simulated patterns do not collimate
with the conditioning data (Carle, 1997). The user can then choose to perform simulated annealing or
apply a genetic algorithm in order to reduce the quantity

K

∑
i=1

K

∑
j=1

(
rij, SIM − rij, MOD

)2
+

K

∑
i=1

(
pi, SIM − pi, MOD

)2 ,

where rij, SIM and pi, SIM are coefficients estimated from the pattern to optimise, while rij, MOD and
pi, MOD are those used to generate the initial simulation. Other comparison methods are also available
through the argument optype.

An example with the Jura data set

The data set consists of spatial coordinates and the observed values of both categorical and continuous
random variables collected at 359 locations in the Jura region in Switzerland. In particular, we will
deal with the rock-type categorical variable of the geological map created by Goovaerts (1997, see
Figure 4), which consists of 5957 sites. The aim of these analyses is related to the parameters estimation
of the model in (1), and its interpretation through graphical methods. These analyses are useful to
check the model assumptions and to ensure the accuracy of the predictions.

First, the spMC package and the Jura data set in the gstat package are loaded as follows:

library(spMC)
data(jura, package = "gstat")

If the package is compiled with the OpenMP API, the number of CPU cores to use can be set by

setCores(4)

otherwise a message will be displayed and only one core can be internally used by the spMC package.

In order to study the spatial variability of the data and interpret the transitions from a geometrical
viewpoint, the empirical transition probabilities along the main axes are calculated. These probabilities
point out the persistence of a category according to the lag between two points. They also provide
juxtapositional and asymmetrical features of the process, which are not detected by adopting indicator
cross-variograms (Carle and Fogg, 1996). Therefore, all couples of points along axial directions
are chosen such that their lag-length is less than three. After, we calculate the empirical transition
probabilities for twenty points within the maximum distance. This can be conducted with the execution
of the following code:

data <- jura.grid[, 4]
coords <- jura.grid[, 1:2]
Trg <- list()
Trg[[1]] <- transiogram(data, coords, max.dist = 3, mpoints = 20,

direction = c(1, 0))
Trg[[2]] <- transiogram(data, coords, max.dist = 3, mpoints = 20,

direction = c(0, 1))

If we want to compare these probabilities with the theoretical one, we first need to estimate two
transition rate matrices, i.e. the model coefficients, along the axial directions. Three estimation
methods are available in the spMC package (see Table 1), but only those based on mean lengths and
maximum entropy are shown, even though the iterated least squares may be similarly applied. The
code to estimate the transition rates through the mean lengths method is written as follows:
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One−dimensional transiograms (X−axis)
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One−dimensional transiograms (Y−axis)
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Figure 1: Empirical transiogram (green points) and theoretical probabilities (average method in black
lines, maximum entropy method in red) along the X-axis (left) and along the Y-axis (right).

RTm <- list()
RTm[[1]] <- tpfit_ml(data, coords, direction = c(1, 0))
RTm[[2]] <- tpfit_ml(data, coords, direction = c(0, 1))

In this case, the mean lengths are calculated through the average of the stratum lengths along the
chosen directions. On the other hand, to estimate the transition rate matrices through the maximum
entropy approach, the following code must be executed:

ETm <- list()
ETm[[1]] <- tpfit_me(data, coords, direction = c(1, 0))
ETm[[2]] <- tpfit_me(data, coords, direction = c(0, 1))

Given the model coefficients, the transition probabilities for some specific lags are calculated as in (1).
This is done as follows:

RTr <- list()
ETr <- list()
for (i in 1:2) {

RTr[[i]] <- predict(RTm[[i]], lags = Trg[[i]]$lags)
ETr[[i]] <- predict(ETm[[i]], lags = Trg[[i]]$lags)

}

Since these probabilities are calculated with respect to some fixed directions, i.e. by considering a
one-dimensional perspective, they can be graphically compared. By the use of the mixplot() function,
several transition probability diagrams (transiograms) can be superposed in a unique graphic, e.g.

for (i in 1:2)
mixplot(list(Trg[[i]], RTr[[i]], ETr[[i]]), type = c("p", "l", "l"), pch = "+",

col = c(3, 1, 2), legend = FALSE, main = paste(
"One-dimensional transiograms", c("(X-axis)", "(Y-axis)")[i]))

By looking at the graphics in Figure 1, one can see how well the estimated models fit the observed
probabilities (green points). This kind of graphic may be interpreted as a transition probability matrix;
in fact it shows the probability dynamic related to one-dimensional lags along the specified direction.
For example, let us consider the first horizontal line of graphics in Figure 1 on the left. They denote
the transition probabilities at each lag from the Argovian state to one of the five categories.

These graphics are mainly used to investigate the stationarity of the stochastic process. In particular,
the process is weakly stationary if the expected probabilities are not dependent on the location points,
i.e. IE[Pr(Z(s) = zi)] = pi for all s ∈ Rd. Theoretically, the transition probability matrix in (1) becomes
constant as the lag distance ‖hφ‖ → ∞. In order to check the stationarity property of the process
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Pseudoempirical transiogram (Xloc, Yloc)
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Figure 2: Multidimensional pseudoempirical transiogram.

along one fixed direction φ, we need to look at empirical transition probabilities computed for large
distances. If most of these probabilities reproduce the characteristics already described, the data might
be considered as a realisation from a weakly stationary process.

The comparison can also be made between two or more transiograms drawn for different directions.
In so doing, it is possible to check if the process is anisotropic. This happens when there is directional
dependence in the data. From a probabilistic point of view, the transiogram may show different
dynamics when it approaches the limit probability matrix along different directions. In our case, the
behaviours of the empirical transition probabilities along the axial directions do not match. Although
those based on the estimated model are more regular than the empirical, they are not similar. This
means that the Jura data set is anisotropic.

The function pemt() can be considered as another tool to check the anisotropy of the process.
It estimates the transition rate matrix for each multidimensional lag direction and computes the
transition probabilities as in (1). At the same time the function calculates other probabilities through
the transition rates computed as in (2). Then the probabilities are drawn by use of the function
image.pemt() (see Figure 2). If probabilities at the same level (those with the same colour) are placed
on ellipses, the process is characterised by geometrical anisotropy. Comparisons made by the use of
contour.pemt() are more evident, because contour lines are displayed for both the pseudo-empirical
and the theoretical probabilities in a unique graphic.

The following R code can be executed to obtain Figure 2:

psEmpTr <- pemt(data, coords, 40, max.dist = c(.5, .5))
mycol <- rev(heat.colors(500))
image(psEmpTr, col = mycol, useRaster = TRUE, breaks = c(0:500) / 500)

From a computational point of view, the model based on the ellipsoidal interpolation of transition
rate matrices is the most efficient way to calculate transition probabilities given multidimensional
lags. In these cases, the model coefficients can be separately estimated by a unique R function. Hence,
the functions multi_tpfit_ml() and multi_tpfit_me() provide methods to estimate transition rate

The R Journal Vol. 5/2, December 2013 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 23

Multidimensional transiogram (Xloc, Yloc)
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Figure 3: Multidimensional theoretical transiogram (transition rates are estimated by the average
method (left) and by the maximum entropy method (right).

matrices along axial directions. These functions implement algorithms based on the mean lengths and
the maximum entropy respectively (see Table 1).

MTr <- list()
MTr$average <- multi_tpfit_ml(data, coords)
MTr$entropy <- multi_tpfit_me(data, coords)

With the output of these functions, we can draw the theoretical transition probability maps as
follows:

image(MTr$average, 40, max.dist = 0.25, col = mycol, nlevels = 5,
breaks = 0:500 / 500)

image(MTr$entropy, 40, max.dist = 0.25, col = mycol, nlevels = 5,
breaks = 0:500 / 500)

Both graphics in Figure 3 denote transition probability maps. The way to read these graphics is
almost the same as for one-dimensional transiograms. Each image in this kind of graphic represents a
2-D transition probability section; this means that the probability level is given by the colour of the
points. Each point is located to a specific “bidimensional” lag.

The transition probabilities obtained through maximum entropy rates (see Figure 3 on the right)
are too regular for the process. If we look at the transiogram in Figure 1 on the left, we note that the
red lines are not so close to the empirical transition probabilities and this may create some forecast
problems when we consider the multidimensional lags. In fact, since the model was developed for
stationary processes, its use is suitable when the stochastic process might be considered stationary.

Once the best fitting mdoel is chosen, we can predict the category in the unknown points or
simulate a random field. In any case, we need to consider that the approximation of the simulation
probabilities is affected by further variability due to the ellipsoidal interpolation of the transition
rates. This means that the real transition rates for a non-axial direction can be overestimated or
underestimated with a bigger error than the axial directions.

In this example, 100 observations are sampled from the original geological map and, instead of
re-estimating transition rates, we are going to predict the category in the original locations through
the already estimated rates. From a computational viewpoint, this allows us to compare the prediction
accuracy of the procedures exposed in Table 1.

In real applications, all data may be used to estimate the parameters of the model and get better
predictions. Simulations should be used only for drawing scenarios for non-observed locations.
Obviously, the most probable category in a location is the best prediction.

The following lines of code are executed to plot the Jura geological map (see Figure 4):
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Figure 4: The Swiss Jura geological map (left) and the 100 sampled observations (right).

X <- jura.grid$X
Y <- jura.grid$Y
library(RColorBrewer)
brwCol <- brewer.pal(nlevels(data), "Accent")
par(mfrow = c(1, 1), mar = c(5, 4, 4, 2))
plot(X, Y, col = brwCol[data], pch = 15, main = "Swiss Jura geological map")
legend("topleft", legend = levels(data), col = brwCol, pch = 15)

One hundred observations are randomly selected as follows:

set.seed(29062011)
smp <- sample(length(data):1, 100)

and they are plotted by the following code:

plot(X, Y, type = "n", main = "Sample of 100 observations", xlab = "X", ylab = "Y")
points(X[smp], Y[smp], pch = 19, col = brwCol[data[smp]])
legend("topleft", legend = levels(data), col = brwCol, pch = 15)

Usually, before performing the simulation, a grid of points is generated by the use of the well-
known expand.grid() function. In this example, the simulation grid is set as

grid <- jura.grid[, 1:2]

The kriging algorithm will approximate the conditional probabilities by considering the twelve
nearest neighbours for all points in the simulation grid. Since only predictions will be presented here,
the optimisation phase used to adjust the simulations will be skipped.

iks <- sim_ik(MTr$average, data = data[smp], coords = coords[smp, ],
grid, knn = 12, max.it = 0)

Both fixed and random path simulation methods are performed by considering those nearest
points along the axial directions within a radius of length one.

fpth <- sim_path(MTr$average, data = data[smp], coords = coords[smp, ],
grid, radius = 1, TRUE)

rpth <- sim_path(MTr$average, data = data[smp], coords = coords[smp, ],
grid, radius = 1)

The multinomial categorical simulation method will approximate the prediction probabilities by
considering all sample points.

mcs <- sim_mcs(MTr$average, data = data[smp], coords = coords[smp, ], grid)
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Figure 5: Prediction obtained by kriging probability approximation (left) and by fixed path probability
approximation (right).

All these functions returns a “data.frame” object as output. It contains the coordinates, predictions,
simulations and the approximated probability vector for each point in the simulation grid. Through
these quantities we can plot the prediction maps by the use of the following R code:

posCol <- as.integer(iks$Prediction)
plot(X, Y, pch = 15, col = brwCol[posCol], main = "Kriging prediction map")
legend("topleft", legend = levels(data), col = brwCol, pch = 15)
posCol <- as.integer(fpth$Prediction)
plot(X, Y, pch = 15, col = brwCol[posCol], main = "Fixed path prediction map")
legend("topleft", legend = levels(data), col = brwCol, pch = 15)
posCol <- as.integer(rpth$Prediction)
plot(X, Y, pch = 15, col = brwCol[posCol], main = "Random path prediction map")
legend("topleft", legend = levels(data), col = brwCol, pch = 15)
posCol <- as.integer(mcs$Prediction)
plot(X, Y, pch = 15, col = brwCol[posCol],

main = "Multinomial categorical prediction map")
legend("topleft", legend = levels(data), col = brwCol, pch = 15)

By looking at the graphics in Figures 5 and 6, we can have an idea of the prediction heterogeneity of
these methods. In order to establish which is the best predictor, one should perform these simulations
more than once. At each time, another 100 observations must be randomly selected. However, this is
beyond the aim of this example.

Using only 2% of the original data, we can obtain the results in Table 2 by checking how many
predictions match with the observed categories. Since the data are used in the computations of the
probabilities, the prediction accuracy improves under particular conditions. Essentially, the sample size
should increase while the spatial domain, wherein the observations are taken, is fixed and bounded. In
this example, we can have more accurate predictions by increasing the number of the random selected
observations and keeping the number of points in the simulation grid fixed.

In order to compute the number of matches, we calculate the contingency table as follows:

ikTb <- table(data, iks$Prediction)
fpTb <- table(data, fpth$Prediction)
rpTb <- table(data, rpth$Prediction)
mcTb <- table(data, mcs$Prediction)

The relative frequencies of matches are given by the following code:

ikPr <- sum(diag(ikTb)) / length(data)
fpPr <- sum(diag(fpTb)) / length(data)
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Figure 6: Prediction obtained by random path probability approximation (left) and by multinomial
categorical probability approximation (right).

Probability of coverage

Kriging 0.65452
Fixed path 0.54709

Random path 0.58922
Multinomial 0.60047

Table 2: Percentages of matched categories.

rpPr <- sum(diag(rpTb)) / length(data)
mcPr <- sum(diag(mcTb)) / length(data)

This allows us to obtain the values in Table 2.

Conclusions

Although there exist other approaches to study categorical random fields, the spMC package is a
powerful tool for modelling continuous lag Markov chains. In particular, the user is allowed to
deal with categorical response variables based on spatial stochastic processes without specifying a
variogram model for the spatial dependence structure.

Several functions were developed to investigate graphically the properties of the process (e.g.
stationarity and anisotropies), while others are useful to estimate the parameters, to predict and
simulate the categorical values on unsampled locations. All of the functions in the package were
designed in order to achieve good results in a reasonable time, as well as for large data sets.
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