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frailtyHL: A Package for Fitting Frailty
Models with H-likelihood

by 1l Do Ha, Maengseok Noh and Youngjo Lee

Abstract We present the frailtyHL package for
fitting semi-parametric frailty models using h-
likelihood. This package allows lognormal or
gamma frailties for random-effect distribution,
and it fits shared or multilevel frailty models for
correlated survival data. Functions are provided
to format and summarize the frailtyHL results.
The estimates of fixed effects and frailty parame-
ters and their standard errors are calculated. We
illustrate the use of our package with three well-
known data sets and compare our results with
various alternative R-procedures.

Introduction

Frailty models with a non-parametric baseline haz-
ard have been widely adopted for the analysis of sur-
vival data (Hougaard, 2000; Duchateau and Janssen,
2008). The frailtyHL package (Ha et al., 2012) im-
plements h-likelihood procedures (Ha et al., 2001; Ha
and Lee, 2003, 2005) for frailty models. The package
fits Cox proportional hazards models (PHMs) with
random effects, or frailties. The lognormal or gamma
distribution can be adopted as the frailty distribu-
tion, corresponding to the normal or log-gamma dis-
tribution for the log frailties. H-likelihood obviates
the need for marginalization over the frailty distri-
bution, thereby providing a statistically efficient pro-
cedure for various random-effect models (Lee et al.,
2006).
The main function is frailtyHL (). For instance,

> frailtyHL(Surv(time, status) ~ x + (1]id),

+ RandDist = "Normal",

+ mord = 0, dord =1,

+ Maxiter = 200, convergence = 10"-6,
+ varfixed = FALSE, varinit = 0.1)

fits a lognormal frailty model. The first argument
is a formula object, with the response on the left of
a ~ operator, and the terms for the fixed and ran-
dom effects on the right. The response is a survival
object as returned by the Surv function (Therneau,
2011). Here, time and status denote survival time
and censoring indicator taking value 1 or 0 for un-
censored or censored observations, respectively; x
denotes a fixed covariate and id denotes the subject
identifier. The expression (1|id) specifies a random
intercept model ( (x| id) would specify a random in-
tercept, random slope model). The parameters mord
and dord are the orders of Laplace approximations to
fit the mean parameters (mord = 0 or 1) and the dis-
persion parameters (dord = 1 or 2), respectively. The
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Maxiter parameter specifies the maximum number
of iterations and convergence specifies the tolerance
of the convergence criterion. If varfixed is specified
as TRUE (or FALSE), the value of one or more of the
variance terms for the frailties is fixed (or estimated)
with starting value (e.g. 0.1) given by varinit.

Previously, frailty models have been imple-
mented in several R functions such as the coxph ()
function in the survival package (Therneau, 2010)
and the coxme () function in the coxme package (Th-
erneau, 2011), based on penalized partial likelihood
(PPL), the phmm() function in the phmm package
(Donohue and Xu, 2012), based on a Monte Carlo EM
(MCEM) method, and the frailtyPenal () function
in the frailtypack package (Gonzalez et al., 2012),
based on penalized marginal likelihood. The phmm
package fits one-component frailty models, although
it does allow multivariate frailties. The coxme () func-
tion can fit the multi-component model as shown in
Example 2. Results from frailtyHL are compared
with those from survival, coxme and phmm.

Recently, the h-likelihood procedures of Lee and
Nelder (1996) for fitting hierarchical generalized lin-
ear models (HGLMs) have been implemented using
the hglm() function in the hglm package (Alam etal.,
2010), the HGLMfit () function in the HGLMMM
package (Molas, 2010) and the dhglmfit () function
in the dhglm package (Noh and Lee, 2011). The
frailtyHL package is for fitting frailty models with a
non-parametric baseline hazard, providing estimates
of fixed effects, random effects, and variance compo-
nents as well as their standard errors. In addition,
it provides a statistical test for the variance compo-
nents of frailties and also three AIC criteria for the
model selection.

Frailty models

The frailtyHL package makes it possible to

1. fit models with log-normal and gamma frailty
distributions and

2. estimate variance components when the frailty
structure is shared or nested.

For illustration, we present two models below and
show how to fit these models using frailtyHL() in
the Examples section.

One-component frailty models

Suppose that data consist of right censored time-to-
event observations from g subjects (or clusters), with
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n; observations each; i =1,...,g9. Let Tl-j be the sur-
vival time for the jth observation of the ith subject;
j=1,...,n;. Here, n =) ;n; is the total sample size
and n; is the cluster size. Let C;; be the correspond-
ing censoring time and let y;; = min{T,-j,Cl-]'} and
d;j = I(T;j < Cjj) be the observable random variables,
where I(-) is the indicator function.

Given the common unobserved frailty for the ith
subject u;, the conditional hazard function of Tj; is of
the form

/\ij(t|ui) :Ao(t)exp(xigﬁ)ui, (1)

where Ag(+) is an unspecified baseline hazard func-
tion and B = (B1,...,By)T is a vector of regression
parameters for the fixed covariates x;;. Here, the
term xlg B does not include an intercept term because
of identifiability. Assume that the frailties u; are in-
dependent and identically distributed (i.i.d) random
variables with a frailty parameter a; the gamma and
lognormal frailty models assume gamma and log-
normal distributions for u;, respectively. That is, our
package allows

e gamma frailty with E(u;) =1 and var(u;) = «,
and

¢ lognormal frailty having v; = logu; ~ N(0,«).

The model represented by (1) is known as a shared
or one-component frailty model (Hougaard, 2000).

Multi-component frailty models

We can fit a multi-component model as below (Ha
et al., 2007):

XB+zMoMW) 4 7252 4 ... 4 zKyK), (2)

X is the n x p model matrix, Z() (r=1,2,...,k) are
the nn x g, model matrices corresponding to the g, x 1
frailties v"), and v(") and (") are independent for
r#1.

For example, the CGD data (Fleming and Har-
rington, 1991) have a multilevel structure in which
patients nested within centers have recurrent infec-
tion times.

Later, we analyze these data using model (2) with
k = 2. Here, the frailty structures are:

o(1): center frailty ~ N(0,a1 A1),
v2): patient frailty ~ N(0,a2A5),

where A, = I (r =1,2) are the g, X g, identity ma-
trices, and g1 and g, are the number of centers and
patients, respectively. Notice that the corresponding
ZW to o) (or Z(?) to v(?)) is, respectively, a matrix of
indicator variables such that Z!) =1 (or Zg) =1)if

st
observation s is a member of center (or patient) t and
0 otherwise (Therneau and Grambsch, 2000). This
is called the multilevel frailty model (Yau, 2001; Ha

et al., 2007).

The R Journal Vol. 4/2, December 2012

H-likelihood theory

The h-likelihood # (Ha et al., 2001) for frailty model
(1) is defined by

h=h(B,Ag,a) = Lo+ 1, (3)
where
to = Zlogf(yij, Sij|ui; B,Ao)

7
=) éii{logAo(vij) + 1} — ZAO(]/ij) exp(7;j)
ij

ij

is the sum of conditional log densities for y;; and J;;
given u;, and

= Zlogf(vl-;zx)

is the sum of log densities for v; = logu; with param-
eter «. Here, 17;; = xlg‘B + v; is the linear predictor for
the hazards, and

Ao(t) = /O oK)k

is the baseline cumulative hazard function.

The functional form of Ay(t) in (1) is unknown;
following Breslow (1972), we consider Ay(f) to be a
step function with jumps at the observed event times:

Ao(t)= ), Aok

k:y(k) <t

where Y is the kth (k = 1,...,]) smallest distinct
event time among the y;;’s, and Aox = Ao (y(x))- How-
ever, the dimension of Ay = (Agy,...,Ag)T increases
with the sample size n. For inference, Ha et al. (2001)
proposed the use of the profile h-likelihood with Ag
eliminated, h* = h|, _5 , givenby

h*:h*(ﬁ,a):g3+gl, (4)
where
ly = Zlogf*(yij/5ij|ui;ﬁ)
g

= f (i, 8ij|ui; B,A0)
ij

does not depend on Ay, and

4
L (i,)eR gy P (11if)
are solutions of the estimating equations, 0l /Ay =

0, fork=1,...,I. Here, d(k) is the number of events
at y(x) and

Aoe(Bv) =

Ry =R(ypy) ={01) 1 vij 2 ¥
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is the risk set at y(). Therneau and Grambsch
(2000) and Ripatti and Palmgren (2000) proposed an
h-likelihood (3), while using the partial likelihood
(Breslow, 1974) for ¢y. They call it the penalized par-
tial likelihood (PPL) hj,, defined by

hy(Bv,0) =) 05113~
ij

;d(k) log{ Y. exp(r;j) }+€1-

ijeR(k)

Furthermore, Ha et al. (2001) and Ha et al. (2010)
have shown that 1* is proportional to the PPL &), be-
cause

h = Zd(k) log/);()k + 251]771] - Zd(k) + 0
k i k
= hp + Zd(k) {10gd(k) — 1},
k

where ) d ) {logd ) — 1} is a constant that does not
depend upon unknown parameters. Notice here that
PPL hy, does not depend on nuisance parameters A.
Thus, Lee and Nelder’s (1996; 2001) h-likelihood pro-
cedure for HGLMs can be directly used to fit frailty
models based on /, (Ha et al., 2010).

Review of estimation procedures

Lee and Nelder (1996, 2001) have proposed the use of
the Laplace approximation based on the h-likelihood
when the marginal likelihood, m = log{ [ exp(h)dv},
is hard to obtain. To reduce the bias in small cluster
sizes higher-order approximations for the mean ()
and the frailty variance () have been developed. The
lower-order approximation is computationally effi-
cient, but could have large biases when cluster sizes
are small (Ha and Lee, 2003, 2005; Ha et al., 2010).

The h-likelihood procedures use the Breslow
method for handling tied event times, while the PPL
procedures allow the Efron method. For estimating
B, the h-likelihood methods allow the Laplace ap-
proximation py(hy) to a marginal partial likelihood
my, = log{ [ exp(hy)dv}, but the PPL procedures do
not. For estimating «, the PPL methods use adjusted
profile h-likelihoods py(hy) and pg,(hp) which give
maximum partial likelihood (MPL) and restricted
maximum partial likelihood (REMPL) estimators, re-
spectively. In contrast, the h-likelihood method uses
the restricted partial likelihood (based upon the first-
order Laplace approximation pg ,(hp) or the second-
order Laplace approximation sg,(hy)) for REMPL
estimators. Here py(hp) and pg,(hy) are defined as
follows:

polity) = Iy — 5 1ogdet{D(hy,0) /(270)Hlo=s,

where D(hy,v) = —9%h,/9v* and 0 solves dh, /v =
0, which is the first-order Laplace approximation of
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mp, and

Ppo(hp) = [hp - %1°gdet { w H ’ B=Bo=0,

where D(hy,(B,0)) = —9%h,/3(B,v)* and (B,9)
solves ohy,/ d(B,v) = 0, which becomes the Cox and
Reid (1987) adjusted profile marginal likelihood,
eliminating fixed effects f by conditioning their
asymptotic sufficient statistics 8, in addition to elimi-
nating random effects v by the first-order Laplace ap-
proximation (Ha and Lee, 2003; Lee et al., 2006). The
corresponding second-order approximation is

S,S,v(hp) = Pﬁ,v(hp) - {F(hp)/24}r
with

9*h 3h _19%h
F(hy) = tr [— {3804” + 554 D(hp,v) 1 803”}

xD(hp,v)_z}

v=0.

To reduce the computational burden Ha et al. (2010)
used F(h) instead of F(hy).

Table 1:  Estimation criteria for h-likelihood
(HL(mord, dord)), PPL (coxph(), coxme()) and
marginal likelihood ( phmm()) for lognormal (LN)
and gamma frailty models (FM)

Criterion Literature
Method B o
HL(0,1) hy ppo(hp) Haand Lee (2003)
HL(0,2) hy sg,o(hp) Haand Lee (2003)
HL(L1) | po(hy) ppo(hy) Haetal. (2012)
HL(12) | po(hp) spo(hp) Haetal (2012)
coxph () hy ppo(hp)  Therneau (2010)
for LN FM
coxph () hy m Therneau (2010)
for gamma FM
coxme () hy pv(hp) Therneau (2011)
for LN FM
hn () " m Donohue and
phm Xu (2012)
for LN FM

Table 1 shows historical developments of estimat-
ing criteria for frailty models. The frailtyHL () func-
tion provides estimators based on the h-likelihood.
As the orders in mord and dord increase, the bias
of estimator is reduced, but the calculation becomes
computationally intensive due to the extra terms.
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We recommend the use of HL(1,1) for the lognormal
frailty and of HL(1,2) for the gamma frailty. How-
ever, HL(0,1) for the lognormal frailty and HL(0,2)
for the gamma frailty often perform well if a is not
large. Note that the variance matrices of * = (B,9)
and & are directly obtained from the Hessian matri-
ces, {—09%h,/97%} ! and {—9%pg,(hp)/0a?} !, re-
spectively; the frailtyHL package provides the stan-
dard errors (SEs) of & as well as ﬁ For the use of
standard errors of ¥ — v, see Lee and Ha (2010), Lee
etal (2011) and Ha et al. (2011).

Based on the PPL methods, the coxph() and
coxme () functions, respectively, implement REMPL
and MPL estimators for a in the lognormal frailty
model, and the coxph () function the maximum like-
lihood (ML) estimators, maximizing the marginal
likelihood m, for a in the gamma frailty model.
For comparison, we present the Breslow and Efron
methods for handling ties in survival times in the
coxph () and coxme () functions; Therneau (2010) rec-
ommended the Efron method. For the lognormal
frailty the ML estimator maximizing m is available
via the phmm () function, but care must be taken to en-
sure that the MCEM algorithm has converged (Dono-
hue and Xu, 2012). However, the ML estimator can
be biased when the number of nuisance parameters
increases with the sample size (Ha et al., 2010).

Furthermore, for the lognormal frailty the
coxph () function uses the existing codes in linear
mixed models so that it misses the 99/dx term in
solving the score equation dpg (1) /da = 0; this can
lead to an underestimation of the parameters, espe-
cially when the number of subjects g is large or cen-
soring is high (Lee et al., 2006; Ha et al., 2010). To
overcome this problem, in gamma frailty models Th-
erneau and Grambsch (2000) develop the code for the
ML estimator for a.

Fitting algorithm

Suppose that HL(0,1) is used. The fitting algorithm
is as follows:

Step 1: Take (0,0,0.1) as initial estimates of compo-
nents of (B,v,«).

Step 2: Given &, new estimates (j3,9) are obtained
by solving the joint estimating equations
ahp/a(‘BA,v) = {Bh/a(ﬁ,v)}|/\0:5\0 = 0; then,
given (B,0), new estimates & are obtained by
solving dpg ,(hy)/da = 0.

Step 3: Repeat Step 2 until the maximum absolute

difference between the previous and current es-
timates for (B,v) and « is less than 107°.

After convergence, we compute the estimates of the
standard errors of § and &.
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Illustration: kidney infection data

To demonstrate differences of various estimation
methods in small cluster size n; = 2, we use the kid-
ney infection data (McGilchrist and Aisbett, 1991).
The data consist of times until the first and second
recurrences (1n; = 2 ) of kidney infection in 38 (g = 38)
patients using a portable dialysis machine. Each sur-
vival time (time) is the time until infection since the
insertion of the catheter. The survival times for the
same patient are likely to be related because of a
shared frailty describing the common patient’s effect.
The catheter is later removed if infection occurs and
can be removed for other reasons, which we regard
as censoring; about 24% of the data were censored.

We fit frailty models with two covariates, the sex
(1 = male; 2 = female) and age of each patient, using
the functions (frailtyHL (), coxph() , coxme () and
phmm () ) in the four packages. The results are sum-
marized in Table 2.
Table 2: Comparison of different estimation methods
for the kidney infection data

Sex Age  Patient
Method B1(SE) B2 (SE) & (SE)
lognormal model
HL(0,1) -1.380 0.005 0.535
(0.431) (0.012) (0.338)
HL(1,1) -1.414 0.005 0.545
(0.432) (0.012) (0.340)
coxph () -1.388 0.005 0.551
(Breslow) (0.441) (0.012) (-)
coxph () -1.411 0.005 0.569
(Efron) (0.445) (0.013) (=)
coxme () -1.332 0.005 0.440
(Breslow) (0.414) (0.012) (=)
coxme () -1.355 0.004 0.456
(Efron) (0.417)  (0.012) (=)
phmm () -1.329 0.004 0.378
(0.452) (0.012) (=)
gamma model
HL(0,2) -1.691 0.007 0.561
(0.483) (0.013) (0.280)
HL(1,2) -1.730 0.007 0.570
(0.485) (0.013) (0.281)
coxph () -1.557 0.005 0.398
(Breslow) (0.456) (0.012) (-)
coxph () -1.587  0.005 0.412
(Efron) (0.461) (0.012) (=)

In PPL procedures (coxph() and coxme ()), the
Breslow method provides slightly smaller estimate
for a than the Efron method. In the lognormal frailty,
REMPL procedures (fraityHL() and coxph()) give
larger estimates for a« than ML (phmm()) and MPL
(coxme ()) procedures. However, both ML and MPL
estimates from phmm() and coxme () are somewhat
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different when cluster size is small, n; = 2 for all i.
For the gamma frailty, coxph () uses the ML proce-
dure, but it still gives smaller estimate for a than the
REMPL (h-likelihood) procedures. Compared with
the h-likelihood methods, PPL methods are compu-
tationally more efficient, but could have larger biases
(Ha et al., 2010).

Potential future developments

The current version of the frailtyHL package allows
multi-component (multilevel) frailties. Allowance
for correlation (Ha et al., 2011) between random ef-
fects, for example correlations between random cen-
ter effect and random treatment effect, is currently
in progress. Other developments include dispersion
frailty models based on double HGLMs (Lee and
Nelder, 2006), which allow fixed and random effects
in dispersion parts (i.e. variance of random effects)
of the model as well as the hazard functions, and
joint modelling (Ha et al, 2003) of HGLMs and frailty
models.

Examples

Example 1: Lognormal and gamma frailty
models on rat data

The data set presented by Mantel et al. (1977) is based
on a tumorigenesis study of 50 (g = 50) litters of fe-
male rats. For each litter, one rat was selected to re-
ceive the drug and the other two rats were placebo-
treated controls (n; = 3). Here each litter is treated
as a cluster. The survival time (time) is the time to
development of tumor, measured in weeks. Death
before occurrence of tumor yields a right-censored
observation; forty rats developed a tumor, leading to
censoring of about 73%. The survival times for rats
in a given litter may be correlated due to a random
effect representing shared genetic or environmental
effects.

We fit frailty models with one covariate, rx (1 =
drug; 0 = placebo), using frailtyHL(). Below, we
present the code and results for the lognormal frailty
model with HL(1,1). The output from the R code
shows that the effect of rx is significant (t-value =
2.823 with p-value = 0.005). That is, the rx group
has a significantly higher risk than in control group.
Here, the variance estimate of the frailty is & = 0.427
(with SE = 0.423).

Note that although we report the SE of &, one
should not use it for testing the absence of frailty
« = 0 (Vaida and Xu, 2000). Such a null hypothesis
is on the boundary of the parameter space, so that
the critical value of an asymptotic (x3 + x3) /2 distri-
bution is 2.71 at 5% significant level (Lee et al., 2006;
Ha et al., 2011). The difference in deviance (based on
REMPL) —2pg , (hp) between the Cox model without
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frailty and the lognormal frailty model is 364.15 —
362.56 = 1.59(< 2.71), indicating that the frailty ef-
fect is non-significant, i.e. « = 0. Here, the results
from fitting the Cox model without frailty are avail-
able by adding the two arguments varfixed = TRUE
and varinit = 0inthe frailtyHL(): see below.

> library(survival)
> data(rats)
> frailtyHL(Surv(time, status) ~ rx + (1l|litter),
+ data = rats,
+ varfixed = TRUE, varinit = 0)
iteration :
4
convergence :

4.801639%e-09
1] "converged"
1] "Results from the Cox model"

[

[

[1] "Number of data : "

[1] 150

[1] "Number of event : "

[1] 40

[1] "Model for conditional hazard : "
Surv (time, status) ~ rx + (1 | litter)
[1] "Method : HL(0,1)"

[

1] "Estimates from the mean model"
Estimate Std. Error t-value p-value
X 0.8982 0.3174 2.83 0.004655
[1] "Estimates from the dispersion model"
Estimate Std. Error
litter "0" "NULL"
-2h0 -2*hp -2*p_b, v (hp)
[1,]1 363.69 363.69 364.15
cAIC mAIC rAIC
[1,] 365.69 365.69 364.15

> frailtyHL (Surv(time,status) ~ rx + (1l]litter),
+ data = rats, RandDist = "Normal",
+ mord = 1, dord = 1)
iteration :
87
convergence :
9.97616e-07

1] "converged"

1] "Results from the log-normal frailty model"
1] "Number of data : "

1] 150

1] "Number of event : "

1]
1]

40
"Model for conditional hazard : "
urv(time, status) ~ rx + (1 | litter)
1] "Method : HL(1,1)"
1] "Estimates from the mean model"
Estimate Std. Error t-value p-value
rx 0.9107 0.3226 2.823 0.004754

[1] "Estimates from the dispersion model"
Estimate Std. Error

0.4272 0.4232
-2h0 -2*hp -2*p_v (hp) -2*p_b, v (hp)

litter
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[1,] 335.97 397.36 362.14 362.56
cAIC mAIC  rAIC
[1,] 362.22 366.14 364.56

The code and results for the gamma frailty model
with HL(1,2) are presented below. The output shows
that these results are similar to those of the lognor-
mal frailty, particularly for estimation of 8. The de-
viance difference (based on REMPL) between the
Cox model and gamma frailty model using the
second-order approximation —2sg,(hy) is 364.15 —
362.12 = 2.03(< 2.71), again indicating the absence
of frailty effect (i.e. « = 0) as evident in the lognor-
mal frailty model.

> frailtyHL(Surv(time, status) ~ rx + (1l|litter)
+ data = rats, RandDist = "Gamma",
+ mord = 1, dord = 2)
iteration :
170

convergence :

9.567765e-07
[1] "converged"
[1] "Results from the gamma frailty model"
[1] "Number of data : "
[1] 150
[1] "Number of event : "
[1] 40
[1] "Model for conditional hazard : "
Surv(time, status) ~ rx + (1 | litter)
[1] "Method : HL(1,2)"
[1] "Estimates from the mean model"

Estimate Std. Error t-value p-value
rx 0.9126 0.3236 2.82 0.004806
[1] "Estimates from the dispersion model"
Estimate Std. Error

litter 0.5757 0.5977
-2h0 -2*hp -2*p_v(hp) -2*s_v (hp)
[1,] 331.60 413.85 365.35 361.71
-2*p_b,v(hp) -2*s_b, v (hp)
365.77 362.12
cAIC mAIC rAIC

[1,] 365.30 365.71 364.12

For the selection of a model among nested or
non-nested models such as lognormal and gamma
frailty models, we may use three Akaike informa-
tion criteria (AIC) (Lee et al., 2006; Donohue et al.,
2011; Ha et al., 2007) based on conditional likelihood,
marginal likelihood and restricted likelihood, respec-
tively, defined by

CAIC = —2hg + 2df.,
MAIC = —2p, (I1,) + 2dfm,
rAIC = —2pg o (hp) + 2dfy,

where hg = £ in (4), and
df. = trace {Dfl(hp, (B,v))D(hy, (.3/0))}
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is an ’‘effective degrees of freedom adjustment’
for estimating the fixed and random effects, com-
puted using the Hessian matrices D(h,(B,v)) =
—9%h,/9(B,v)? and D(hg,(B,v)) = —9%ho/d(B,v)%
Note here that dfy, is the number of fixed param-
eters and df; is the number of dispersion parame-
ters (Ha et al., 2007). For calculation of the mAIC
and rAIC of gamma frailty model using HL(0,2) or
HL(1,2), we use the corresponding second-order ap-
proximations, defined by mAIC = —2s,(hp) + 2dfy,
and rAIC = —2sg,(hp) + 2df;. We select a model to
minimize the AIC values among models. If the AIC
difference is larger than 1 the choice can be made
(Sakamoto et al., 1986). However, if the difference
is less than 1 a simpler model can be selected by a
parsimony principle (Donohue et al., 2011).

In the data set, in the Cox model cAIC=365.69,
mAIC=365.69 and rAIC=364.15, and in the log-
normal frailty model cAIC=362.22, mAIC=366.14
and rAIC=364.56, and in the gamma frailty model
cAIC=365.30, mAIC=365.71 and rAIC=364.12. The
likelihood tests based upon the REMPL showed the
absence of frailty effect (« = 0), so that mAIC and
rAIC of all the three models are similar. Thus, we
may choose the parsimonious Cox model. However,
the cAIC selects the lognormal model, indicating that
this model could give better prediction.

Example 2: Multilevel frailty models on
CGD infection data

The CGD data set presented by Fleming and Har-
rington (1991) consists of a placebo-controlled ran-
domized trial of gamma interferon (rIFN-g) in the
treatment of chronic granulomatous disease (CGD).
128 patients (id) from 13 centers (g1 = 13,42 = 128)
were tracked for around 1 year. The number (i.e.
cluster size) of patients per center ranged from 4 to
26. The survival times (tstop-tstart) are the recur-
rent infection times of each patient from the different
centers. Censoring occurred at the last observation
for all patients, except one, who experienced a seri-
ous infection on the day he left the study; in the CGD
study about 63% of the data were censored. The re-
current infection times for a given patient are likely
to be correlated. However, each patient belongs to
one of the 13 centers; hence, the correlation may also
be attributed to a center effect.

Ignoring important random components may
render invalid many of the traditional statistical anal-
ysis techniques. We fit a multilevel lognormal frailty
model with two frailties and a single covariate, treat
(rIFN-g, placebo), using frailtyHL (). Here, the two
frailties are random center and patient effects. The
code and results using HL(1,1) are provided below.
The output shows that the effect of treatment is sig-
nificant (t-value = -3.476 with p-value < 0.001), in-
dicating that rIFN-g significantly reduces the rate of
serious infection in CGD patients. The estimate of
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variance of patient frailty (&, = 1.002) is considerably
larger than variance of center frailty (&; = 0.030), in-
dicating that the random-patient effect is more het-
erogeneous.

> library(survival)

> data(cgd)
> frailtyHL (Surv(tstop-tstart, status) ~ treat +
+ (1]center) + (1]id),
+ data = cgd,
+ RandDist = "Normal", mord = 1, dord = 1)
iteration :
157

convergence :

9.336249e-07
[1] "converged"
[1] "Results from the log-normal frailty model"
[1] "Number of data : "
[1] 203
[1] "Number of event : "
[1] 76
[1] "Model for conditional hazard : "
Surv (tstop-tstart, status)~treat+(1l|center)+(1]id)
[1] "Method : HL(1,1)"
[1] "Estimates from the mean model"

Estimate Std. Error t-value p-value
treatrIFN-g -1.184 0.3407 -3.476 0.0005085
[1] "Estimates from the dispersion model"
Estimate Std. Error

center 0.02986 0.1572
id 1.00235 0.5089
-2h0 -2*hp -2*p_v(hp) -2*p_b, v (hp)
[1,] 603.30 853.66 692.63 692.95
cAIC mAIC rAIC

[1,] 684.92 698.63 696.95

For testing the absence of a random component
(1 = 0 or ap = 0), we use the deviance based on
REMPL, —2pg,,(hp), and fit the following four mod-
els including the Cox model and three lognormal
frailty models using HL(1,1) method,

M1: Cox model without frailty (a7 = 0,a; = 0) has
—2pg0(hy) = 707.48,

M2: model without patient effect (1 > 0,4, =0) has
—2pp(hy) = 703.66,

M3: model without center effect (x; = 0,4, > 0) has
—2pgo(hy) =692.99, and

M4: multilevel model above requiring both pa-
tient and center effects (1 > 0,ap > 0) has
—2ppo(hy) = 692.95.

The deviance difference between M3 and M4 is
692.99 — 692.95 = 0.04 , which is not significant at a
5% level (X%,o.lo = 2.71), indicating the absence of the
random-center effects, i.e. x1 = 0. The deviance dif-
ference between M2 and M4 is 703.66-692.95=10.71,
indicating that the random-patient effects are neces-
sary, i.e. ap > 0. In addition, the deviance difference
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between M1 and M3 is 707.48-692.99=14.49, indicat-
ing that the random-patient effects are indeed neces-
sary with or without random-center effects.

Let us choose a final model using information cri-
teria. For M1 we have cAIC=708.68, mAIC=708.68
and rAIC=707.48; for M2 cAIC=702.96, mAIC=706.88
and rAIC=705.66; for M3 cAIC=684.84, mAIC=696.68
and rAIC=694.99; for M4 cAIC=684.92, mAIC=698.63
and rAIC=696.95. All of the three criteria choose M3
in the CGD data set.

Comparison of results with alternative
procedures

Using the examples in the previous section, we com-
pare the outcomes from frailtyHL and other pack-
ages. We consider the three functions ( coxph(),
coxme () and phmn () ) for the lognormal frailty model
and the coxph() function for the gamma frailty
model.

Example 1: Rat data
The codes of coxph (), coxme () and phmm() for fitting
lognormal frailty model are, respectively, as follows:

>coxph (Surv(time, status) ~ rx +
+ frailty(litter, dist = "gauss"),
+ method = "breslow", rats)
> coxme (Surv(time, status) ~ rx + (1|litter),
+ ties = "breslow", rats)
phmm (Surv(time, status) ~ rx + (1l]litter),

>

+ data = rats, Gbs = 2000,
+ VARSTART = 1, NINIT = 10,
+ MAXSTEP = 200, CONVERG=90)

Gbsvar = 3000,

Table 3 summarizes the estimation results. Even
though cluster size n; = 3 is not large, the results are
similar. For example, MPL and ML estimates for «
from coxme () and phmm () are somewhat different in
Table 2 when n; = 2, while they become similar in
Table 3.

Next, the code of coxph () for fitting the gamma
frailty model is below:

> coxph(Surv(time, status) ~ rx +
+ frailty(litter, dist = "gamma"),
+ method = "breslow", rats)

The results of frailtyHL() (HL(0,2), HL(1,2)) and
coxph () for gamma frailty are also presented in Ta-
ble 3. For the estimation of § both results from
frailtyHL() and coxph() are similar, but for a they
are somewhat different. That is, our REMPL esti-
mates from frailtyHL() (& = 0.575 with HL(0,2) and
& = 0.576 with HL(1,2)) are somewhat larger than the
ML estimates from coxph () (& = 0.474 with Breslow
method and & = 0.499 with Efron method).
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Table 3: Comparison of different estimation methods
for the rat data

Rx Litter
Method B (SE) & (SE)
lognormal model

HL(0,1) 0.906 (0.323)  0.427 (0.423)
HL(1,1) 0.911(0.323) 0.427 (0.423)
coxph () 0.905 (0.322) 0.395(-)
(Breslow)

coxph () 0.913 (0.323) 0.412(-)

(Efron)

coxme () 0.905 (0.322) 0.406 (-)
(Breslow)

coxme () 0.913 (0.323) 0.426 (-)

(Efron)

phmm () 0.920 (0.326) 0.449 (-)

gamma model

HL(0,2) 0.908 (0.324) 0.575 (0.598)
HL(1,2) 0.913 (0.324) 0.576 (0.598)
coxph () 0.906 (0.323) 0.474 (-)
(Breslow)

coxph () 0.914 (0.323) 0.499 (-)

(Efron)

Example 2: CGD data
The code of the coxme () function for fitting multi-
level lognormal frailty model is as follows:

> coxme (Surv(tstop - tstart,status) ~
+ treat + (l|center) + (1]id),
+ ties = "breslow", cgd)

The results of frailtyHL()(HL(0,1), HL(1,1)) and
coxme () are summarized in Table 4. The results from
HL and PPL methods for frailty parameters become
more similar because the cluster sizes (the number of
patients from different centers) are somewhat large,
ranging from 4 to 26.

Table 4: Comparison of different estimation methods
for the CGD data

Treat Center Patient
Method B(SE) & (SE) & (SE)
lognormal model
HL(0,1) -1.074  0.026 0.982
(0.335) (0.153) (0.501)
HL(1,1) -1.184  0.030 1.002
(0.341) (0.157)  (0.509)
coxme () -1.074 0.033 0.939
(Breslow) (0.333) (=) (=)
coxme () -1.074 0.032 0.947
(Efron) (0.333) (-) (-)
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Summary

The h-likelihood method offers novel possibilities
to fit various models with random effects. The
frailtyHL package for frailty models eliminates the
nuisance parameters Ay in the h-likelihood (3) by
profiling. Such models have important applications
in multi-center clinical study (Vaida and Xu, 2000),
meta analysis (Rondeau et al.,, 2008), and genetic
analysis (Lee et al., 2006). Therefore, this package can
be potentially adopted by statisticians in several dif-
ferent fields.
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