
CONTRIBUTED RESEARCH ARTICLES 45

xgrid and R: Parallel Distributed
Processing Using Heterogeneous Groups
of Apple Computers
by Sarah C. Anoke, Yuting Zhao, Rafael Jaeger and
Nicholas J. Horton

Abstract The Apple Xgrid system provides ac-
cess to groups (or grids) of computers that can be
used to facilitate parallel processing. We describe
the xgrid package which facilitates access to this
system to undertake independent simulations
or other long-running jobs that can be divided
into replicate runs within R. Detailed examples
are provided to demonstrate the interface, along
with results from a simulation study of the per-
formance gains using a variety of grids. Use of
the grid for “embarassingly parallel” indepen-
dent jobs has the potential for major speedups
in time to completion. Appendices provide guid-
ance on setting up the workflow, utilizing add-
on packages, and constructing grids using exist-
ing machines.

Introduction

Many scientific computations can be sped up by di-
viding them into smaller tasks and distributing the
computations to multiple systems for simultaneous
processing. Particularly in the case of embarrassingly
parallel (Wilkinson and Allen, 1999) statistical simu-
lations, where the outcome of any given simulation
is independent of others, parallel computing on ex-
isting grids of computers can dramatically increase
computation speed. Rather than waiting for the pre-
vious simulation to complete before moving on to the
next, a grid controller can distribute tasks to agents
(also known as nodes) as quickly as they can process
them in parallel. As the number of nodes in the grid
increases, the total computation time for a given job
will generally decrease. Figure 1 provides a concep-
tual model of this framework.

Several solutions exist to facilitate parallel com-
putation within R. Wegener et al. (2007) developed
GridR, a condor-based environment for settings
where one can connect directly to agents in a grid.
The Rmpi package (Yu, 2002) is an R wrapper for
the popular Message Passing Interface (MPI) proto-
col and provides extremely low-level control over
grid functionality. The rpvm package (Li and Rossini,
2001) provides a connection to a Parallel Virtual Ma-
chine (Geist et al., 1994). The snow package (Rossini
et al., 2007) provides a simpler implementation of
Rmpi and rpvm, using a low-level socket function-
ality. The multicore package (Urbanek, 2011) pro-

vides several functions to divide work between a sin-
gle machine’s multiple cores. Starting with release
2.14.0, snow and multicore are available as slightly
revised copies within the parallel package in base R.

The Apple Xgrid (Apple Inc., 2009) technology
is a parallel computing environment. Many Ap-
ple Xgrids already exist in academic settings, and
are straightforward to set up. As loosely organized
clusters, Apple Xgrids provide graceful degradation,
where agents can easily be added to or removed from
the grid without disrupting its operation. Xgrid sup-
ports heterogeneous agents (also a plus in many set-
tings, where a single grid might include a lab, class-
room, individual computers, as well as more pow-
erful dedicated servers) and provides automated
housekeeping and cleanup. The Xgrid Admin pro-
gram provides a graphical overview of the controller,
agents and jobs that are being managed (instructions
on downloading and installing this tool can be found
in Appendix C).

We created the xgrid package (Horton and
Anoke, 2012) to provide a simple interface to this dis-
tributed computing system. The package facilitates
use of an Apple Xgrid for distributed processing of
a simulation with many independent repetitions, by
simplifying job submission (or grid stuffing) and col-
lation of results. It provides a relatively thin but use-
ful layer between R and Apple’s ‘xgrid’ shell com-
mand, where the user constructs input scripts to be
run remotely. A similar set of routines, optimized for
parallel estimation of JAGS (just another Gibbs sam-
pler) models is available within the runjags package
(Denwood, 2010). However, with the exception of
runjags, none of the previously mentioned packages
support parallel computation over an Apple Xgrid.

We begin by describing the xgrid package in-
terface to the Apple Xgrid, detailing two examples
which utilize this setup, summarizing simulation
studies that characterize the performance of a variety
of tasks on different grid configurations, then close
with a summary. We also include a glossary of terms
and provide three appendices detailing how to ac-
cess a grid using R (Appendix A), how to utilize add-
on packages within R (Appendix B), and how to con-
struct a grid using existing machines (Appendix C).

Controlling an Xgrid using R

To facilitate use of an Apple Xgrid using R, we cre-
ated the xgrid package, which contains support rou-

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://cran.r-project.org/package=GridR
http://cran.r-project.org/package=Rmpi
http://cran.r-project.org/package=snow
http://cran.r-project.org/package=multicore
http://cran.r-project.org/package=xgrid
http://cran.r-project.org/package=runjags

46 CONTRIBUTED RESEARCH ARTICLES

1. Initiate simulations. 2. Simulations transferred to controller.

7. Controller retrieves and collates
individual job results and returns
them to the client.

3. Controller splits simula-
tions into multiple jobs.

4. Jobs are transferred to
the agents on the network
as they become available.

6. Agents return job results.

5. Agents compute a single job with multiple tasks.

Client Controller

Agents

Figure 1: Conceptual model of the Apple Xgrid framework (derived from graphic by F. Loxy)

tines to split up, submit, monitor, then retrieve re-
sults from a series of simulation studies.

The xgrid() function connects to the grid by re-
peated calls to the xgrid command at the Mac OS X
shell level on the client. Table 1 displays some of the
actions supported by the xgrid command and their
analogous routines in the xgrid package. While users
will ordinarily not need to use these routines, they
are helpful in understanding the workflow. These
routines are designed to call a specified R script with
suitable environment (packages, input files) on a re-
mote machine. The remote job is given arguments as
part of a call to ‘R CMD BATCH’, which allow it to cre-
ate a unique location to save results, which are com-
municated back to the client by way of R object files
created with the R saveRDS() function. Much of the
work involves specifying a naming structure for the
jobs, to allow the results to be automatically collated.

The xgrid() function is called to start a series of
simulations. This function takes as arguments the R
script to run on the grid (by default set to ‘job.R’),
the directory containing input files (by default set to
‘input’), the directory to save output created within R
on the agent (by default set to ‘output’), and a name
for the results file (by default set to ‘RESULTS.rds’).
In addition, the total number of iterations in the sim-
ulation (numsim) and number of tasks per job (ntask)
can be specified. The xgrid() function divides the to-
tal number of iterations into numsim/ntask individ-
ual jobs, where each job is responsible for calculating
the specified number of tasks on a single agent (see
Figure 1). For example, if 2,000 iterations are desired,

these could be divided into 200 jobs each running 10
of the tasks. The number of active jobs on the grid can
be controlled using the throttle option (by default,
all jobs are submitted then queued until an agent is
available). The throttle option helps facilitate shar-
ing a large grid between multiple users (since by de-
fault the Apple Xgrid system provides no load bal-
ancing amongst users).

The xgrid() function checks for errors in
specification, then begins to repeatedly call the
xgridsubmit() function for each job that needs
to be created. The xgrid() function also calls
xgridsubmit() to create a properly formatted ‘xgrid
-job submit’ command using Mac OS X through the
R system() function. This has the effect of execut-
ing a command of the form ‘R CMD BATCH file.R’ on
the grid, with appropriate arguments (the number of
repetitions to run, parameters to pass along and the
name of the unique filename to save results). The re-
sults of the system() call are saved to be able to de-
termine the identification number for that particular
job. This number can be used to check the status of
the job as well as retrieve its results and delete it from
the system once it has completed.

Once all of the jobs have been submitted, xgrid()
then periodically polls the list of active jobs un-
til they are completed. This function makes a call
to xgridattr() and determines the value of the
jobStatus attribute. The function waits (sleeps) be-
tween each poll, to lessen load on the grid.

When a job has completed, its results are re-
trieved using xgridresults() then deleted from the

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 47

Action R Function Description

submit xgridsubmit() submit a job to the grid controller
attributes xgridattr() check on the status of a job
results xgridresults() retrieve the results from a completed job
delete xgriddelete() delete the job

Table 1: Job actions supported by the xgrid command and their analogous functions in the xgrid package

system using xgriddelete(). This capability relies
on the properties of the Apple Xgrid, which can be
set up to have all files created by the agent when run-
ning a given job copied to the ‘output’ directory on
the client computer. When all jobs have completed,
the individual result files are combined into a single
data frame in the current directory. The ‘output’ direc-
tory has a complete listing of the individual results
as well as the R output from the remote agents. This
directory can be useful for debugging in case of prob-
lems and the contents are typically accessed only in
those cases.

To help demonstrate how to access an existing
Xgrid, we provide two detailed examples: one in-
volving a relatively straightforward computation as-
sessing the robustness of the one-sample t-test and
the second requiring use of add-on packages to un-
dertake simulations of a latent class model. These ex-
amples are provided as vignettes within the package.
In addition, the example files are available for down-
load from http://www.math.smith.edu/xgrid.

Examples

Example 1: Assessing the robustness of the
one-sample t-test

The t-test is remarkedly robust to violations of its un-
derlying assumptions (Sawiloswky and Blair, 1992).
However, as Hesterberg (2008) argues, not only is it
possible for the total non-coverage to exceed α, the
asymmetry of the test statistic causes one tail to ac-
count for more than its share of the overall α level.
Hesterberg found that sample sizes in the thousands
were needed to get symmetric tails.

In this example, we demonstrate how to utilize an
Apple Xgrid cluster to investigate the robustness of
the one-sample t-test, by looking at how the α level
is split between the two tails. When the number of
simulation iterations is small (< 100,000), this study
runs very quickly as a loop in R. Here, we provide
the computation of a study consisting of 106 itera-
tions. A more efficient alternative would be to use
pvec() or mclapply() of the multicore package to
distribute this study over the cores of a single ma-
chine. However for the purposes of illustration, we
conduct this simple statistical investigation over an
Xgrid to demonstrate package usage, and to compare
the results and computation time to the same study

run with a for loop on a local machine.

Our first step is to set up an appropriate directory
structure for our simulation (see Figure 5; Appendix
A provides an overview of requirements). The first
item is the folder ‘input’, which contains two files that
will be run on the remote agents. The first of these
files, ‘job.R’ (Figure 2), defines the code to run a par-
ticular task, ntask times.

In this example, the job() function begins by gen-
erating a sample of param exponential random vari-
ables with mean 1. A one-sample t-test is conducted
on this sample and logical (TRUE/FALSE) values de-
noting whether the test rejected in that tail are saved
in the vectors leftreject and rightreject. This
process is repeated ntask times, after which job() re-
turns a data frame with the rejection results and the
corresponding sample size.

Assess the robustness of the one-sample
t-test when underlying data are exponential.
This function returns a data frame with
number of rows equal to the value of "ntask".
The option "param" specifies the sample size.
job <- function(ntask, param) {

alpha <- 0.05 # how often to reject under null
leftreject <- logical(ntask) # placeholder
rightreject <- logical(ntask) # for results
for (i in 1:ntask) {

dat <- rexp(param) # generate skewed data
left <- t.test(dat, mu = 1,

alternative = "less")
leftreject[i] <- left$p.value <= alpha/2
right <- t.test(dat, mu = 1,

alternative = "greater")
rightreject[i] <- right$p.value <= alpha/2

}
return(data.frame(leftreject, rightreject,

n = rep(param, ntask)))
}

Figure 2: Contents of ‘job.R’

The folder ‘input’ also contains ‘runjob.R’ (Fig-
ure 3), which retrieves command line arguments
generated by xgrid() and passes them to job(). The
results from the completed job are saved as res0,
which is subsequently saved to the ‘output’ folder.

The folder ‘input’ may also contain other files (in-
cluding add-on packages or other files needed for the
simulation; see Appendix B for details).

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://www.math.smith.edu/xgrid

48 CONTRIBUTED RESEARCH ARTICLES

source("job.R")
commandArgs() is expecting three arguments:
1) number of tasks to run within this job
2) parameter to pass to the function
3) place to stash the results when finished
args <- commandArgs(trailingOnly = TRUE)
ntask1 <- as.numeric(args[1])
param1 <- args[2]
resfile <- args[3]
res0 <- job(ntask = ntask1, param = param1)
stash the results
saveRDS(res0, file = resfile)

Figure 3: Contents of ‘runjob.R’

The next item in the directory structure is
‘simulation.R’ (Figure 4), which contains R code to be
run on the client machine using source(). The call to
xgrid() submits the simulation to the grid for cal-
culation, which includes passing param and ntask
to job() within ‘job.R’. Results from all jobs are re-
turned as one data frame, res. The call to with()
summarizes all results in a table and prints them to
the console.

require(xgrid)
run the simulation
res <- xgrid(Rcmd = "runjob.R", param = 30,

numsim = 10^6, ntask = 5*10^4)
analyze the results
with(res, table(leftreject,rightreject))

Figure 4: Contents of ‘simulation.R’

Here we specify a total of 106 simulation itera-
tions, to be split into twenty jobs of 5× 104 simula-
tions each. Note that the number of jobs is calculated
as the total number of simulation iterations (numsim)
divided by the number of tasks per job (ntask). Each
simulation iteration has a sample size of param.

The final item in the directory structure is ‘output’.
Initially empty, results returned from the grid are
saved here (this directory is automatically created if
it does not already exist).

Figure 5 displays the file structure within the di-
rectory used to access the Xgrid.

Jobs are submitted to the grid by running
‘simulation.R’. In this particular simulation, twenty
jobs are submitted. As jobs are completed, the results
are saved in the ‘output’ folder then removed from the
grid.

Figures 6 and 7 display management tools avail-
able using the Xgrid Admin interface.

In addition to returning a data frame (106 rows
and 3 columns) with the collated results, the xgrid()
function saves this object as a file (by default as res
in the file ‘RESULTS.rds’).

Figure 5: File structure needed on the client to access
the Xgrid (the ‘rlibs’ folder contains any add-on pack-
ages required by the remote agent)

Figure 6: Monitoring overall grid status using the
Xgrid Admin application

Figure 7: Job management using Xgrid Admin

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 49

Class

Criteria Acronym 2 3 4 5 6+

Bayesian Information Criterion BIC 49% 44% 7% 0% 0%
Akaike Information Criterion AIC 0% 0% 53% 31% 16%
Consistent Akaike Information Criterion cAIC 73% 25% 2% 0% 0%
Sample Size Adjusted Bayesian Information Criterion aBIC 0% 5% 87% 6% 2%

Table 2: Percentage of times (out of 100 simulations) that a particular number of classes was selected as the
best model (where the true data derive from 4 distinct and equiprobable classes, simulation sample size 300),
reprinted from Swanson et al. (2011). Note that a perfect criterion would have “100%” under class 4.

In terms of our motivating example, when the un-
derlying data are normally distributed, we would ex-
pect to reject the null hypothesis 2.5% of the time on
the left and 2.5% on the right. The simulation yielded
rejection rates of 6.5% and 0.7% for left and right, re-
spectively. This confirms Hesterberg’s argument re-
garding lack of robustness for both the overall α-level
as well as the individual tails.

Regarding computation time, this simulation
took 48.2 seconds (standard deviation of 0.7 seconds)
when run on a heterogeneous mixture of twenty
iMacs and Mac Pros. When run locally on a single
quad-core Intel Xeon Mac Pro computer, this simula-
tion took 592 seconds (standard deviation of 0.4 sec-
onds).

Example 2: Fitting latent class models us-
ing add-on packages

Our second example is more realistic, as it involves
simulations that would ordinarily take days to com-
plete (as opposed to seconds for the one-sample t-
test). It involves study of the properties of latent
class models, which are used to determine better
schemes for classification of eating disorders (Keel
et al., 2004). The development of an empirically-
created eating disorder classification system is of
public health interest as it may help identify indi-
viduals who would benefit from diagnosis and treat-
ment.

As described by Collins and Lanza (2009), latent
class analysis (LCA) is used to identify subgroups in
a population. There are several criteria used to eval-
uate the fit of a given model, including the Akaike
Information Criterion (AIC), the Bayesian Informa-
tion Criterion (BIC), the Consistent Akaike Informa-
tion Criterion (cAIC), and the Sample Size Adjusted
Bayesian Information Criterion (aBIC). These crite-
ria are useful, but further guidance is needed for re-
searchers to choose between them, as well as bet-
ter understand how their accuracy is affected by
methodological factors encountered in eating disor-
der classification research, such as unbalanced class
size, sample size, missing data, and under- or over-
specification of the model. Swanson et al. (2011) un-
dertook a comprehensive review of these model cri-

teria, including a full simulation study to generate
hypothetical data sets, and investigated how each
criterion behaved in a variety of statistical environ-
ments. For this example, we replicate some of their
simulations using an Apple Xgrid to speed up com-
putation time.

Following the approach of Swanson et al., we
generated “true models” where we specified an arbi-
trary four-class structure (with balanced number of
observations in each class). This structure was com-
posed of 10 binary indicators in a simulated data set
of size 300. The model was fitted using the poLCA()
function of the poLCA (polytomous latent class anal-
ysis) package (Linzer and Lewis, 2011). Separate la-
tent class models were fitted specifying the number
of classes, ranging from two to six. For each simula-
tion, we determined the lowest values of BIC, AIC,
cAIC and aBIC and recorded the class structure asso-
ciated with that value.

Swanson and colleagues found that for this set of
parameter values, the AIC and aBIC picked the cor-
rect number of classes more than half the time (see
Table 2).

This example illustrates the computational bur-
den of undertaking simulation studies to assess the
performance of modern statistical methods, as sev-
eral minutes are needed to undertake each of the sin-
gle iterations of the simulation (which may explain
why Swanson and colleagues only ran 100 simula-
tions for each of their scenarios).

A complication of this example is that fitting LCA
models in R requires the use of add-on packages. For
instance, we use poLCA and its supporting pack-
ages with an Apple Xgrid to conduct our simulation.
When a simulation requires add-on packages, they
must be preloaded within the job and shipped over
to the Xgrid. The specific steps of utilizing add-on
packages are provided in Appendix B.

Simulation results

To better understand the potential performance
gains when running simulations on the grid, we as-
sessed the relative performance of a variety of grids
with different characteristics and differing numbers
of tasks per job (since there is some overhead to the

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://cran.r-project.org/package=poLCA

50 CONTRIBUTED RESEARCH ARTICLES

Grid description ntask numjobs mean sd

Mac Pro (1 processor) 1,000 1 43.98 0.27
Mac Pro (8 processors) 20 50 9.97 0.04
Mac Pro (8 processors) 10 100 9.65 0.05
Mac Pro (8 processors) 4 250 9.84 0.59
grid of 11 machines (66 processors) 1 1,000 1.02 0.003
grid of 11 machines (77 processors) 1 1,000 0.91 0.003
grid of 11 machines (88 processors) 20 50 1.28 0.01
grid of 11 machines (88 processors) 10 100 1.20 0.04
grid of 11 machines (88 processors) 8 125 1.04 0.03
grid of 11 machines (88 processors) 4 250 0.87 0.01
grid of 11 machines (88 processors) 1 1,000 0.87 0.004

Table 3: Mean and standard deviation of elapsed timing results (in hours) to run 1,000 simulations (each with
three repetitions) using poLCA(), by grid and number of tasks per job. Note that the Mac Pro processors were
rated at 3 GHz while the grid CPUs were rated at 2.8 GHz.

Apple Xgrid system). One grid was a single quad-
core Intel Xeon Mac Pro computer (two quad-core
processors, for total of 8 processors, each rated at 3
GHz, total 24 GHz). The other was a grid of eleven
rack-mounted quad-core Intel servers (a total of 88
processors, each rated at 2.8 GHz, total 246.4 GHz).
For comparison, we also ran the job directly within
R on the Mac Pro computer (equivalent to ‘ntask =
1000,numjobs = 1’), as well as on the 88 processor
grid but restricting the number of active jobs to 66
or 77 using the throttle option within xgrid(). For
each setup, we varied the number of tasks (ntask)
while maintaining 1,000 simulations for each sce-
nario (ntask * numjobs = 1000).

For simulations with a relatively small number of
tasks per job and a large number of jobs, the time to
submit them to the grid controller can be measured
in minutes; this overhead may be nontrivial. Also, for
simulations on a quiescent grid where the number of
jobs is not evenly divisible by the number of avail-
able processors, some part of the grid may be idle
near the end of the simulation and the elapsed time
longer than necessary.

Each simulation was repeated three times and the
mean and standard deviation of total elapsed time
(in hours) was recorded. Table 3 displays the results.

As expected, there was considerable speedup by
using the grid. When moving from a single proces-
sor to 8, we were able to speed up our simulation by
34 hours – a 78% decrease in elapsed time [(43.98-
9.84)/43.98]. We saw an even larger decrease of 98%
when moving to 88 (somewhat slower) processors.
There were only modest differences in the elapsed
time comparing different configurations of the num-
ber of tasks per job and number of jobs, indicating
that the overhead of the system imposes a relatively
small cost. Once the job granularity is sufficiently
fine, performance change is minimal.

Summary

We have described an implementation of a “grid
stuffer” that can be used to access an Apple Xgrid
from within R. Xgrid is an attractive platform for
scientific computing because it can be easily set up,
and it handles tedious housekeeping and collation of
results from large simulations with relatively mini-
mal effort. Core technologies in Mac OS X and eas-
ily available extensions simplify the process of cre-
ating a grid. An Xgrid may be configured with little
knowledge of advanced networking technologies or
disruption of networking activities.

Another attractive feature of this environment
is that the Xgrid degrades gracefully. If an individ-
ual agent fails, then the controller will automatically
resubmit the job to another agent. Once all of the
submitted jobs are queued up on a controller, the
xgrid() function can handle temporary controller
failures (if the controller restarts then all pending
and running jobs will be restarted automatically).
If the client crashes, the entire simulation must be
restarted. It may be feasible to keep track of this state
to allow more fault tolerance in a future release.

A limitation of the Apple Xgrid system is that
it is proprietary, which may limit its use. A second
limitation is that it requires some effort on the part
of the user to structure their program in a manner
that can be divided into chunks then reassembled.
Because of the relatively thin communication con-
nections between the client and controller, the user
is restricted to passing configuration via command
line arguments in R, which must be parsed by the
agent. Results are then passed back via the filesys-
tem. In addition to the need for particular files to be
created that can be run on the client as well as on the
controller, use of the Apple Xgrid system may also
require separate installation of additional packages
needed for the simulation (particularly if the user
does not have administrative access or control of the
individual agents).

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 51

However, as demonstrated by our simulation
studies, the Apple Xgrid system is particularly well-
suited for embarrassingly parallel problems (e.g.
simulation studies with multiple independent runs).
It can be set up on a heterogeneous set of machines
(such as a computer classroom) and configured to
run when these agents are idle. For such a setup, the
overall process load tends to balance if the simula-
tion is broken up into sufficiently fine grained jobs,
as faster agents will take on more than their share of
jobs.

The Xgrid software is available as an additional
download for Apple users as part of Mac OS X
Server, and it is straightforward to set up a grid us-
ing existing computers (instructions are provided in
Appendix C). In our tests, it took approximately 30
minutes to set up an Apple Xgrid on a simple net-
work consisting of three computers.

Our implementation provides for three distinct
authentication schemes (Kerberos, clear text pass-
word, or none). While the Xgrid system provides
full support for authentication using Kerberos, this
requires more configuration and is beyond the
scope of this paper. The system documentation
(Apple Inc., 2009) provides a comprehensive re-
view of administration using this mechanism. If
the ‘auth = "Password"’ option is used, then the
XGRID_CONTROLLER_PASSWORD environment variable
must be set by the user to specify the password. As
with any shared networking resource, care should be
taken when less secure approaches are used to ac-
cess the controller and agents. Firewalling the Xgrid
controller and agents from outside networks may be
warranted.

There are a number of areas of potential improve-
ment for this interface. It may be feasible to create a
single XML file to allow all of the simulations to be
included as multiple tasks within a single job. This
has the potential to decrease input/output load and
simplify monitoring.

As described previously, the use of parallel com-
puting to speed up scientific computation using R by
use of multiple cores, tightly connected clusters, and
other approaches remains an active area of research.
Other approaches exist, though address different is-
sues. For example, the GridR package does not sup-
port access through the xgrid command and requires
access to individual agents. The runjags package
provides an alternative interface that is particularly
well suited for Bayesian estimation using Gibbs sam-
pling.

Our setup focuses on a simple (but common)
problem: embarrassingly parallel computations that
can be chopped into multiple tasks or jobs. The abil-
ity to dramatically speed up such simulations within
R by running them on a designated grid (or less for-
mally on a set of idle machines) may be an attractive
option in many settings with Apple computers.

Glossary

Agent A member of a grid that performs tasks dis-
tributed to it by the controller (also known as a
node). An agent can be its own controller.

Apple Remote Desktop (ARD) An application that
allows a user to monitor or control networked
computers remotely.

Bonjour networking Apple’s automatic network
service discovery and configuration tool. Built
on a variety of commonly used networking
protocols, Bonjour allows Mac computers to
easily communicate with each other and with
a large number of compatible devices, with lit-
tle to no user configuration required.

Client A computer that submits jobs to the con-
troller for grid processing.

Controller A computer (running OS X Server or
XgridLite) that accepts jobs from clients and
distributes them to agents. A controller can also
be an agent within the grid.

Embarassingly parallel A computation that can be
divided into a series of independent tasks
where little or no communication is required.

Grid More general than an Apple Xgrid, a group
of machines (agents), managed by a con-
troller, which accept and perform computa-
tional tasks.

Grid stuffer An application that submit jobs and re-
trieves their results through the xgrid com-
mand. The xgrid() function within the xgrid
package implements a grid stuffer in R.

Job A group of one or more tasks submitted by a
client to the controller.

Mac OS X Server A Unix server operating system
from Apple, that provides advanced features
for operating an Xgrid controller (for those
without Mac OS X Server, the XgridLite panel
provides similar functionality for grid comput-
ing).

plist file Short for “property list file”. On Mac OS
computers, this is an XML file that stores user-
or system-defined settings for an application or
extension. For example, the “Preferences” pane
in an application is linked to a plist file such
that when Preferences are changed, their val-
ues are recorded in the plist file, to be read by
other parts of the application when running.

Preference pane Any of the sections under the Mac
OS X System Preferences, each controlling a
different aspect of the operating system (desk-
top background, energy saving preferences,
etc.) or of user-installed programs. XgridLite is
a preference pane, since it is simply a GUI for

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

52 CONTRIBUTED RESEARCH ARTICLES

core system tools (such as the xgridctl com-
mand).

Processor core Independent processors in the same
CPU. Most modern computers have multi-core
CPUs, usually with 2 or 4 cores. Multi-core sys-
tems can execute more tasks simultaneously (in
our case, multiple R runs at the same time).
Multi-core systems are often able to manage
tasks more efficiently, since less time is spent
waiting for a core to be ready to process data.

Task Sub-components of jobs. A job may contain
many tasks, each of which can be performed
individually, or may depend on the results of
other tasks or jobs.

Xgrid Software and distributed computing proto-
col developed by Apple that allows networked
computers to contribute to distributed compu-
tations.

XgridLite Preference pane authored by Ed
Baskerville. A free GUI to access Xgrid func-
tionality that is built into all Mac OS X comput-
ers. Also facilitates configuration of controllers
(similar functionality is provided by Mac OS X
Server).

Appendix A: Accessing the Apple
Xgrid using R

This section details the steps needed to access an ex-
isting Xgrid using R. All commands are executed on
the client.

Install the package from CRAN

The first step is to install the package from CRAN on
the client computer (needs to be done only once)

install.packages("xgrid")

Determine hostname and access informa-
tion for the Apple Xgrid

The next step is to determine the access procedures
for your particular grid. These include the host-
name (specified as the grid option) and authoriza-
tion scheme (specified as the auth option).

Create directory and file structure

An overview of the required directory structure is
provided in Figure 5.

The ‘input’ folder contains two files, ‘job.R’ and
‘runjob.R’. The file ‘job.R’ contains the definition for
the function job(). This function expects two argu-
ments: ntask, which specifies the number of tasks

per job, and param, used to define any parameter of
interest. Note that job() must have ntask and param
as arguments, but can be modified to take more. This
function returns a data frame, where each row is
the result of one task. The file ‘runjob.R’ (running on
the agent) receives three arguments when called by
xgrid() (running on the client): ntask, param, and
resfile (see description of ‘simulation.R’ below). The
arguments ntask and param are passed to job(), and
the data frame returned by job() is saved to the
folder ‘output’, with filename specified by resfile.

The folder ‘output’ will contain the results from
the simulations. If created manually, it should be
empty. If not created manually, the function xgrid()
will create it.

The script ‘simulation.R’ accesses the controller by
calling xgrid() and allows the user to override any
default arguments.

Call xgrid() within ‘simulation.R’

After loading the xgrid package and calling the
xgrid() function as described in ‘simulation.R’, results
from all numsim simulations are collated and returned
as the object res. This object is also saved as the file
‘RESULTS.rds’, at the root of the directory structure.
This can be analyzed as needed.

Appendix B: Using additional
packages with the Apple Xgrid

One of the strengths of R is the large number of add-
on packages that extend the system. If the user of the
grid has administrative privileges on the individual
machines then any needed packages can be installed
in the usual manner.

However, if no administrative access is available,
it is possible to utilize such packages within this
setup by manually installing them in the ‘input/rlibs’
directory and loading them within a given job.

This appendix details how to make a package
available to a job running on a given agent.

1. Install the appropriate distribution file from
CRAN into the directory ‘input/rlibs’. This
can be done by using the lib argument
of install.packages(). For instance, in Ex-
ample 2 we can install poLCA by us-
ing the call install.packages("poLCA",lib =
"~/.../input/rlibs"), where ‘~/.../’ empha-
sizes use of the absolute path to the ‘rlibs’ di-
rectory.

2. Access the add-on package within a job run-
ning on an agent. This is done by using
the lib.loc option within the standard in-
vocation of library(). For instance, in Ex-
ample 2 this can be done by using the call
library(poLCA,lib.loc="./rlibs").

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 53

It should be noted that the package will need to
be shipped over to the agent for each job, which may
be less efficient than installing the package once per
agent in the usual manner (but the latter option may
not be available unless the grid user has administra-
tive access to the individual agents).

Appendix C: Xgrid setup

In this section we discuss the steps required to set up
a new Xgrid using XgridLite under Mac OS X 10.6
or 10.7. We presume some background in system ad-
ministration and note that installation of a grid will
likely require the assistance of technical staff.

Depending on the nature of the network and
machines involved, different Xgrid-related tools can
be used, including Mac OS X Server and XgridLite.
Mac OS X Server has several advantages, but for the
purposes of this paper, we restrict our attention to
XgridLite.

Anatomy of an Apple Xgrid

It is important to understand the flow of informa-
tion through an Apple Xgrid and the relationship be-
tween the different computers involved. The center-
point of an Apple Xgrid is the controller (Figure 1).
When clients submit jobs to the grid, the controller
distributes them to agents, which make themselves
available to the controller on the local network (using
Apple’s Bonjour network discovery). That is, rather
than the controller keeping a master list of which
agents are part of the grid, agents detect the pres-
ence of a controller on the network and, depending
on their configuration, make themselves available for
job processing.

This loosely coupled grid structure means that
if an agent previously involved in computation is
unavailable, the controller simply passes jobs to
other agents. This functionality is known as graceful
degradation. Once an agent has completed its com-
putation, the results are made available to the con-
troller, where the client can retrieve them. As a result,
the client never communicates directly with agents,
only with the controller.

Downloading XgridLite

XgridLite (http://edbaskerville.com/software/
xgridlite) is free and open-source software, re-
leased under the GNU GPL (general public license),
and installed as a Mac OS X preference pane. Once it
is installed, it is found in the “Other” section (at the
bottom) of the System Preferences (Apple menu →
System Preferences).

Downloading server tools

Although not necessary to install and operate an Ap-
ple Xgrid, the free Apple software suite called Mac
OS X Server Tools is extremely useful. In particular,
the Xgrid Admin application (see Figure 6) allows for
the monitoring of any number of Apple Xgrids, in-
cluding statistics on the grid such as the number of
agents and total processing power, as well as a list
of jobs which can be paused, stopped, restarted, and
deleted. Most “grid stuffers” (our system included)
are designed to clean up after themselves, so the job
management functions in Xgrid Admin are primarily
useful for monitoring the status of jobs.

Setting up a controller

Figure 8 displays the process of setting up a grid con-
troller within XgridLite. To start the Xgrid controller
service, simply click the “Start” button. Authentica-
tion settings are configured with the “Set Client Pass-
word...” and “Set Agent Password...” buttons. From
the XgridLite panel, you can also reset the controller
or turn it off.

Figure 8: Setting up a controller

Unlike many other client-server relationships, the
Xgrid controller authenticates to the client, rather
than the other way around. That is, the password en-
tered in the XgridLite “Set Agent Password...” field
is provided to agents, not required of them. Individual
agents must be configured to require that particular
password (or none at all) in order to join the Xgrid.

Setting up agents

To set up an agent to join the Xgrid, open the Shar-
ing preferences pane (“Internet & Wireless” section
in OS 10.6) in System Preferences (see Figures 9 and
10). Select the “Xgrid Sharing” item in the list on the
left. Click the “Configure...” button. From here, you
can choose whether the agent should join the first
available Xgrid, or a specific one. The latter of these

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://edbaskerville.com/software/xgridlite
http://edbaskerville.com/software/xgridlite

54 CONTRIBUTED RESEARCH ARTICLES

options is usually best – the drop-down menu of con-
trollers will auto-populate with all that are currently
running.

Figure 9: Sharing setup to configure an agent for
Xgrid

Figure 10: Specifying the controller for an agent

If there are multiple controllers on a network, you
may want to choose one specifically so that the agent
does not default to a different one. You may also
choose whether or not the agent should accept tasks
when idle. Then click “Done” and choose the desired
authentication method (most likely “Password” or
[less advisable] “None”) in the main window. If ap-
plicable, enter the password that will be required of
the controller. Then, select the checkbox next to the
“Xgrid Sharing” item on the left. The agent needs to
be restarted to complete the process.

Note that a controller can also be an agent within
its grid. However, it is important to consider that if
the controller is also an agent, this has the potential
to slow a simulation.

Automation

For those with more experience in system adminis-
tration and access to Apple Remote Desktop (ARD)
or secure shell (SSH) on the agent machines (or work
with an administrator who does), the process of set-
ting up agents can be automated. R can be installed
remotely (allowing you to be sure that it is installed
in the same location on each machine), the file that
contains Xgrid agent settings can be pushed to all
agents and, finally, the agent service can be acti-
vated. We will not discuss the ARD remote package
installation process in detail here, but a full expla-
nation can be found in the Apple Remote Desktop
Administrator Guide at http://images.apple.com/
remotedesktop/pdf/ARD_Admin_Guide_v3.3.pdf.

The settings for the Xgrid agent ser-
vice are stored in the plist file located at
‘/Library/Preferences/com.apple.xgrid.agent.plist’. These
settings include authentication options, controller
binding, and the number of physical processor cores
the agent should report to the controller (see the note
below for a discussion of this value, which is signif-
icant). The simplest way to automate the creation of
an Apple Xgrid is to configure the agent service on a
specific computer with the desired settings and then
push the above plist file to the same relative loca-
tion on all agents. Keep the processor core settings
in mind; you may need to push different versions
of the file to different agents in a heterogeneous
grid (see Note 3 below). Once all agents have the
proper plist file, run the commands ‘xgridctl agent
enable’ and ‘xgridctl agent on’ on the agents.

Notes

1. Mac OS X Server provides several additional
options for setting up an Xgrid controller.
These include Kerberos authentication and cus-
tomized Xgrid cache files location. Depending
on your network setup, these features may bol-
ster security, but we will not explore them fur-
ther here.

2. R must be installed in the same location on
each agent. If it is installed locally by an end-
user, it should default to the proper location,
but it is worth verifying this before running
tasks, otherwise they may fail. As mentioned
previously, installing R remotely using ARD is
an easy way to ensure an identical instantiation
on each agent.

3. The reported number of processor cores (the
ProcessorCount attribute) is significant be-
cause the controller considers it the maximum
number of tasks the agent can execute simulta-
neously. On Mac OS X 10.6, agents by default
report the number of cores (not processors) that
they have (see discussion at http://lists.

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://images.apple.com/remotedesktop/pdf/ARD_Admin_Guide_v3.3.pdf
http://images.apple.com/remotedesktop/pdf/ARD_Admin_Guide_v3.3.pdf
http://lists.apple.com/archives/Xgrid-users/2009/Oct/msg00001.html

CONTRIBUTED RESEARCH ARTICLES 55

apple.com/archives/Xgrid-users/2009/Oct/
msg00001.html). The ProcessorCount attribute
can be modified depending on the nature of the
grid. Since R uses only 1 processor per core, this
may leave many processors idle if the default
behavior is not modified.

4. Because Xgrid jobs are executed as the user
“nobody” on grid agents, they are given lower
priority if the CPU is not idle.

Acknowledgements

Thanks to Tony Caldanaro and Randall Pruim for
technical assistance, as well as Molly Johnson, two
anonymous reviewers and the associate editor for
comments and useful suggestions on an earlier draft.
This material is based in part upon work sup-
ported by the National Institute of Mental Health
(5R01MH087786-02) and the US National Science
Foundation (DUE-0920350, DMS-0721661, and DMS-
0602110).

Bibliography

Apple Inc. Mac OS X Server: Xgrid Administration
and High Performance Computing (Version 10.6 Snow
Leopard). Apple Inc., 2009.

L. M. Collins and S. T. Lanza. Latent Class and Latent
Transition Analysis: With Applications in the Social,
Behavioral, and Health Sciences. Wiley, 2009.

M. J. Denwood. runjags: Run Bayesian MCMC
Models in the BUGS syntax from Within R,
2010. URL http://cran.r-project.org/web/
packages/runjags/. R package version 0.9.9-1.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Parallel Vir-
tual Machine: A Users’ Guide and Tutorial for Net-
worked Parallel Computing. MIT Press, 1994. URL
http://www.csm.ornl.gov/pvm/.

T. Hesterberg. It’s time to retire the n ≥ 30 rule.
Proceedings of the Joint Statistical Meetings, 2008.
URL http://home.comcast.net/~timhesterberg/
articles/.

N. Horton and S. Anoke. xgrid: Access Apple Xgrid
using R, 2012. URL http://CRAN.R-project.org/
package=xgrid. R package version 0.2-5.

P. K. Keel, M. Fichter, N. Quadflieg, C. M. Bulik,
M. G. Baxter, L. Thornton, K. A. Halmi, A. S.
Kaplan, M. Strober, D. B. Woodside, S. J. Crow,
J. E. Mitchell, A. Rotondo, M. Mauri, G. Cassano,
J. Treasure, D. Goldman, W. H. Berrettini, and
W. H. Kaye. Application of a latent class analysis
to empirically define eating disorder phenotypes.
Archives of General Psychiatry, 61(2):192–200, Febru-
ary 2004.

N. M. Li and A. J. Rossini. rpvm: Cluster statistical
computing in R. R News, 1(3):4–7, 2001.

D. A. Linzer and J. B. Lewis. poLCA: An R package
for polytomous variable latent class analysis. Jour-
nal of Statistical Software, 42(10):1–29, 2011. URL
http://www.jstatsoft.org/v42/i10/.

A. J. Rossini, L. Tierney, and N. Li. Simple parallel
statistical computing in R. Journal of Computational
and Graphical Statistics, 16(2):399–420, 2007.

S. S. Sawiloswky and R. C. Blair. A more realistic
look at the robustness and Type II error properties
of the t test to departures from population normal-
ity. Psychological Bulletin, 111(2):352–360, 1992.

S. A. Swanson, K. Lindenberg, S. Bauer, and R. D.
Crosby. A Monte Carlo investigation of factors in-
fluencing latent class analysis: An application to
eating disorder research. Journal of Abnormal Psy-
chology, 121(1):225–231, 2011.

S. Urbanek. multicore: Parallel processing of R
code on machines with multiple cores or CPUs,
2011. URL http://CRAN.R-project.org/package=
multicore. R package version 0.1-7.

D. Wegener, T. Sengstag, S. Sfakianakis, and A. A.
S. Rüping. GridR: An R-based grid-enabled tool
for data analysis in ACGT Clinico-Genomic Trials.
Proceedings of the 3rd International Conference on e-
Science and Grid Computing (eScience 2007), 2007.

B. Wilkinson and M. Allen. Parallel Programming:
Techniques and Applications Using Networked Work-
stations and Parallel Computers. Prentice Hall, 1999.

H. Yu. Rmpi: Parallel statistical computing in R. R
News, 2(2):10–14, 2002.

Sarah Anoke
Department of Mathematics and Statistics, Smith College
Clark Science Center, 44 College Lane
Northampton, MA 01063-0001 USA
sanoke527@gmail.com

Yuting Zhao
Department of Mathematics and Statistics, Smith College
Clark Science Center, 44 College Lane
Northampton, MA 01063-0001 USA
yuzhao@smith.edu

Rafael Jaeger
Brown University
Providence, RI 02912 USA
rafael_jaeger@brown.edu

Nicholas J. Horton
Department of Mathematics and Statistics, Smith College
Clark Science Center, 44 College Lane
Northampton, MA 01063-0001 USA
nhorton@smith.edu

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://lists.apple.com/archives/Xgrid-users/2009/Oct/msg00001.html
http://lists.apple.com/archives/Xgrid-users/2009/Oct/msg00001.html
http://lists.apple.com/archives/Xgrid-users/2009/Oct/msg00001.html
http://cran.r-project.org/web/packages/runjags/
http://cran.r-project.org/web/packages/runjags/
http://www.csm.ornl.gov/pvm/
http://home.comcast.net/~timhesterberg/articles/
http://home.comcast.net/~timhesterberg/articles/
http://CRAN.R-project.org/package=xgrid
http://CRAN.R-project.org/package=xgrid
http://www.jstatsoft.org/v42/i10/
http://CRAN.R-project.org/package=multicore
http://CRAN.R-project.org/package=multicore
mailto:sanoke527@gmail.com
mailto:yuzhao@smith.edu
mailto:rafael_jaeger@brown.edu
mailto:nhorton@smith.edu

