
30 CONTRIBUTED RESEARCH ARTICLES

Foreign Library Interface
by Daniel Adler

Abstract We present an improved Foreign
Function Interface (FFI) for R to call arbitary na-
tive functions without the need for C wrapper
code. Further we discuss a dynamic linkage
framework for binding standard C libraries to
R across platforms using a universal type infor-
mation format. The package rdyncall comprises
the framework and an initial repository of cross-
platform bindings for standard libraries such as
(legacy and modern) OpenGL, the family of SDL
libraries and Expat. The package enables system-
level programming using the R language; sam-
ple applications are given in the article. We out-
line the underlying automation tool-chain that
extracts cross-platform bindings from C headers,
making the repository extendable and open for
library developers.

Introduction

We present an improved Foreign Function Interface
(FFI) for R that significantly reduces the amount of
C wrapper code needed to interface with C. We also
introduce a dynamic linkage that binds the C inter-
face of a pre-compiled library (as a whole) to an inter-
preted programming environment such as R - hence
the name Foreign Library Interface. Table 1 gives a
list of the C libraries currently supported across ma-
jor R platforms. For each library supported, ab-
stract interface specifications are declared in a com-
pact platform-neutral text-based format stored in so-
called DynPort file on a local repository.

R was choosen as the first language to implement
a proof-of-concept implementation for this approach.
This article describes the rdyncall package which im-
plements a toolkit of low-level facilities that can be
used as an alternative FFI to interface with C. It also
facilitates direct and convenient access to common C
libraries from R without compilation.

The project was motivated by the fact that high-
quality software solutions implemented in portable
C are often not available in interpreter-based lan-
guages such as R. The pool of freely available C li-
braries is quite large and represents an invaluable
resource for software development. For example,
OpenGL (OpenGL Architecture Review Board et al.,
2005) is the most portable and standard interface to
accelerated graphics hardware for developing real-
time graphics software. The combination of OpenGL
with the Simple DirectMedia Layer (SDL) (Lantinga,
2009) core and extension libraries offers a founda-
tion framework for developing interactive multime-

dia applications that can run on a multitude of plat-
forms.

Foreign function interfaces

FFIs provide the backbone of a language to inter-
face with foreign code. Depending on the design of
this service, it can largely unburden developers from
writing additional wrapper code. In this section, we
compare the built-in R FFI with that provided by
rdyncall. We use a simple example that sketches the
different work flow paths for making an R binding to
a function from a foreign C library.

FFI of base R

Suppose that we wish to invoke the C function sqrt
of the Standard C Math library. The function is de-
clared as follows in C:

double sqrt(double x);

The .C function from the base R FFI offers a call
gate to C code with very strict conversion rules, and
strong limitations regarding argument- and return-
types: R arguments are passed as C pointers and C
return types are not supported, so only C void func-
tions, which are procedures, can be called. Given
these limitations, we are not able to invoke the for-
eign sqrt function directly; intermediate wrapper
code written in C is needed:

#include <math.h>
void R_C_sqrt(double * ptr_to_x)
{
double x = ptr_to_x[0], ans;
ans = sqrt(x);
ptr_to_x[0] = ans;

}

We assume that the wrapper code is deployed as
a shared library in a package named testsqrt which
links to the Standard C Math library1. Then we load
the testsqrt package and call the C wrapper function
directly via .C.

> library(testsqrt)
> .C("R_C_sqrt", 144, PACKAGE="testsqrt")
[[1]]
[1] 12

To make sqrt available as a public function, an
additional R wrapper layer is needed to carry out
type-safety checks:

1We omit here the details such as registering C functions which is described in detail in the R Manual ’Writing R Extensions’ (R Devel-
opment Core Team, 2010).

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://cran.r-project.org/package=rdyncall

CONTRIBUTED RESEARCH ARTICLES 31

Lib/DynPort Description Functions Constants Struct/Union

GL OpenGL 336 3254 -
GLU OpenGL Utility 59 155 -
R R library 238 700 27
SDL Audio/Video/UI abstraction 201 416 34
SDL_image Pixel format loaders 35 3 -
SDL_mixer Music format loaders and playing 71 27 -
SDL_net Network programming 34 5 3
SDL_ttf Font format loaders 38 7 -
cuda GPU programming 387 665 84
expat XML parsing framework 65 70 -
glew GL extensions 1857 - -
gl3 OpenGL 3 (strict) 317 838 1
ode Rigid Physics Engine 547 109 11
opencl GPU programming 79 263 10
stdio Standard I/O 75 3 -

Table 1: Overview of available DynPorts for portable C Libraries

sqrtViaC <- function(x)
{
x <- as.numeric(x) # type(x) should be C double.
make sure length > 0:
length(x) <- max(1, length(x))
.C("R_C_sqrt", x, PACKAGE="example")[[1]]

}

We can conclude that – in realistic settings – the
built-in FFI of R almost always needs support by a
wrapper layer written in C. The "foreign" in the FFI
of base is in fact relegated to the C wrapper layer.

FFI of rdyncall

rdyncall provides an alternative FFI for R that is ac-
cessible via the function .dyncall. In contrast to the
base R FFI, which uses a C wrapper layer, the sqrt
function is invoked dynamically and directly by the
interpreter at run-time. Whereas the Standard C Math
library was loaded implicitly via the testsqrt package,
it now has to be loaded explicitly.

R offers functions to deal with shared libraries
at run-time, but the location has to be specified as
an absolute file path, which is platform-specific. A
platform-portable solution is discussed in a follow-
ing section on Portable loading of shared library. For
now, we assume that the example is done on Mac OS
X where the Standard C Math library has the file path
‘/usr/lib/libm.dylib’:

> libm <- dyn.load("/usr/lib/libm.dylib")
> sqrtAddr <- libm$sqrt$address

We first need to load the R package rdyncall:

> library(rdyncall)

Finally, we invoke the foreign C function sqrt di-
rectly via .dyncall:

> .dyncall(sqrtAddr, "d)d", 144)
[1] 12

The last call pinpoints the core solution for a di-
rect invocation of foreign code within R: The first
argument specifies the address of the foreign code,
given as an external pointer. The second argument
is a call signature that specifies the argument- and re-
turn types of the target C function. This string "d)d"
specifies that the foreign function expects a double
scalar argument and returns a double scalar value
in accordance with the C declaration of sqrt. Argu-
ments following the call signature are passed to the
foreign function in the form specified by the call sig-
nature. In the example we pass 144 as a C double ar-
gument type as first argument and receive a C double
value converted to an R numeric.

Call signatures

The introduction of a type descriptor for foreign
functions is a key component that makes the FFI flex-
ible and type-safe. The format of the call signature
has the following pattern:

argument-types ')' return-type

The signature can be derived from the C function
declaration: Argument types are specified first, in the
direct left-to-right order of the corresponding C func-
tion prototyp declaration, and are terminated by the
symbol ')' followed by a single return type signa-
ture.

Almost all fundamental C types are supported
and there is no restriction2 regarding the number of
arguments supported to issue a call. Table 2 gives an

2The maximum number of arguments is limited by the amount of memory required for prebuffering a single call. It is currently fixed
to 4 kilobyte (approx. 512-1024 arguments).

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

32 CONTRIBUTED RESEARCH ARTICLES

Type Sign. Type Sign.

void v bool B
char c unsigned char C
short s unsigned short S
int i unsigned int I
long j unsigned long J
long long l unsigned long long L
float f double d
void* p struct name * *<name>
type* *... const char* Z

Table 2: C/C++ Types and Signatures

C function declaration Call signature

void rsort_with_index(double*,int*,int n) *d*ii)v
SDL_Surface * SDL_SetVideoMode(int,int,int,Uint32_t) iiiI)*<SDL_Surface>
void glClear(GLfloat,GLfloat,GLfloat,GLfloat) ffff)v

Table 3: Examples of C functions and corresponding call signatures

overview of supported C types and the correspond-
ing text encoding; Table 3 provides some examples
of C functions and call signatures.

A public R function that encapsulates the details
of the sqrt call is simply defined by

> sqrtViaDynCall <- function(...)
+ .dyncall(sqrtAddr, "d)d", ...)

No further guard code is needed here because
.dyncall has built-in type checks that are speci-
fied by the signature. In contrast to the R wrap-
per code using .C, no explicit cast of the arguments
via as.numeric is required, because automatic coer-
cion rules for fundamental types are implemented as
specified by the call signature. For example, using
the integer literal 144L instead of double works here
as well.

> sqrtViaDyncall(144L)
[1] 12

If any incompatibility is detected, such as a
wrong number of arguments, empty atomic vectors
or incompatible type mappings, the invocation is
aborted and an error is reported without risking an
application crash.

Pointer type arguments, expressed via 'p', are
handled differently. The type signature 'p' indicates
that the argument is an address. When passing R
atomic vectors, the C argument value is the address
of the first element of the vector. External pointers
and the NULL object can also be passed as values for
pointer type arguments. Automatic coercion is de-
liberately not implemented for pointer types. This is
to support C functions that write into memory refer-
enced by out pointer types.

Typed pointers, specified by the prefix '*' fol-
lowed by the signature of the base type, offer a mea-
sure of type-safety for pointer types; if an R vector
is passed and the R atomic type does not match the
base type, the call will be rejected. Typed pointers
to C struct and union types are also supported; they
are briefly described in the section Handling of C Types
in R.

In contrast to the R FFI, where the argument con-
version is dictated solely by the R argument type at
call-time in a one-way fashion, the introduction of
an additional specification with a call signature gives
several advantages.

• Almost all possible C functions can be invoked
by a single interface; no additional C wrapper
is required.

• The built-in type-safety checks enhance stabil-
ity and significantly reduce the need for asser-
tion code.

• The same call signature works across plat-
forms, given that the C function type remains
constant.

• Given that our FFI is implemented in multiple
languages (e.g. Python, Ruby, Perl, Lua), call
signatures represent a universal type descrip-
tion for C libraries.

Package overview

Besides dynamic calling of foreign code, the pack-
age provides essential facilities for interoperability
between the R and C programming languages. An

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 33

Figure 1: Package Overview

overview of components that make up the package
is given in Figure 1.

We already described the .dyncall FFI. It is fol-
lowed by a brief description of portable loading of
shared libraries using dynfind, installation of wrap-
pers via dynbind, handling of foreign data types
via new.struct and wrapping of R functions as C
callbacks via new.callback. Finally the high-level
dynport interface for accessing whole C libraries is
briefly discussed. The technical details at low-level
of some components are described briefly in the sec-
tion Architecture.

Portable loading of shared libraries

The portable loading of shared libraries across plat-
forms is not trivial because the file path is differ-
ent across operating systems. Referring back to the
previous example, to load a particular library in a
portable fashion, one would have to check the plat-
form to locate the C library.3

Although there is variation among the operating
systems, library file paths and search patterns have
common structures. For example, among all the dif-
ferent locations, prefixes and suffixes, there is a part
within a full library filename that can be taken as a
short library name or label.

The function dynfind takes a list of short li-
brary names to locate a library using common search
heuristics. For example, to load the Standard C Math
library, depending on the operating system the li-
brary is either the Microsoft Visual C Run-Time DLL
labeled ‘msvcrt’ on Windows or the Standard C Math
shared library labeled ‘m’ or ‘c’ on other operating
systems.

> mLib <- dynfind(c("msvcrt","m","c"))

dynfind also supports more exotic schemes, such
as Mac OS X Framework folders. Depending on the

library, it is sometimes enough to have a single short
filename - e.g. "expat" for the Expat library.

Wrapping C libraries

Functional R interfaces to foreign code can be de-
fined with small R wrapper functions, which effec-
tively delegate to .dyncall. Each function interface
is parameterized by a target address and a matching
call signature.

f <- function(...) .dyncall(target,signature,...)

Since an Application Programming Interface (API)
often consist of hundreds of functions (see Table 1),
dynbind can create and install a batch of function
wrappers for a library with a single call by using a li-
brary signature that consists of concatenated function
names and signatures separated by semicolons.

For example, to install wrappers to the C func-
tions sqrt, sin and cos from the math library, one
could use

> dynbind(c("msvcrt","m","c"),
+ "sqrt(d)d;sin(d)d);cos(d)d;")

The function call has the side-effect that three R
wrapper functions are created and stored in an envi-
ronment that defaults to the global environment. Let
us review the sin wrapper (on the 64-bit Version of
R running on Mac OS X 10.6):

> sin
function (...)
.dyncall.cdecl(<pointer: 0x7fff81fd13f0>,
"d)d)", ...)

The wrapper directly uses the address of the sin
symbol from the Standard C Math library. In addi-
tion, the wrapper uses .dyncall.cdecl, which is a
concrete selector of a particular calling convention,
as outlined below.

3Possible C math library names are ‘libm.so’ and ‘MSVCRT.DLL’ in locations such as ‘/lib’, ‘/usr/lib’, ‘/lib64’, ‘/usr/lib64’,
‘C:\WINDOWS\SYSTEM32’ etc..

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

34 CONTRIBUTED RESEARCH ARTICLES

Calling conventions

Calling conventions specify how arguments and re-
turn values are passed across sub-routines and func-
tions at machine-level. This information is vital for
interfacing with the binary interface of C libraries.
The package has support for multiple calling con-
ventions. Calling conventions are controlled by
.dyncall via the named argument callmode to spec-
ify a non-default calling convention. Most supported
operating systems and platforms only have support
for a single "default" calling convention at run-time.
An exception to this is the Microsoft Windows plat-
form on the Intel i386 processor architecture: While
the default C calling convention on i386 (excluding
Plan9) is "default", system shared libraries from
Microsoft such as ‘KERNEL32.DLL’, ‘USER32.DLL’ as
well as the OpenGL library ‘OPENGL32.DLL’ use the
"stdcall" calling convention. Only on this platform
does the callmode argument have an effect. All other
platforms currently ignore this argument.

Handling of C types in R

C APIs often make use of high-level C struct and
union types for exchanging information. Thus, to
make interoperability work at that level the handling
of C data types is addressed by the package.

To illustrate this concept we consider the follow-
ing example: A user-interface library has a function
to set the 2D coordinates and dimension of a graph-
ical output window. The coordinates are specified
using a C struct Rect data type and the C function
receives a pointer to that object:

void setWindowRect(struct Rect *pRect);

The structure type is defined as follows:

struct Rect {
short x, y;
unsigned short w, h;

};

Before we can issue a call, we have to allocate an
object of that size and initialize the fields with val-
ues encoded in C types that are not part of the sup-
ported set of R data types. The framework provides
R helper functions and objects to deal with C data
types. Type information objects can be created with
a description of the C structure type. First, we create
a type information object in R for the struct Rect C
data type with the function parseStructInfos using
a structure type signature.

> parseStructInfos("Rect{ssSS}x y w h;")

After registration, an R object named Rect is in-
stalled that contains C type information that corre-
sponds to struct Rect. The format of a structure type
signature has the following pattern:

Struct-name '{' Field-types '}' Field-names ';'

Field-types use the same type signature encod-
ing as that of call signatures for argument and return
types (Table 2). Field-names consist of a list of white-
space separated names, that label each field compo-
nent left to right.

An instance of a C type can be allocated via
new.struct:

> r <- new.struct(Rect)

Finally, the extraction ('$', '[') and
replacement('$<-', '[<-') operators can be used
to access structure fields symbolically. During value
transfer between R and C, automatic conversion of
values with respect to the underlying C field type
takes place.

> r$x <- -10 ; r$y <- -20 ; r$w <- 40 ; r$h <- 30

In this example, R numeric values are converted
on the fly to signed and unsigned short integers
(usually 16-bit values). On printing r a detailed pic-
ture of the data object is given:

> r
struct Rect {
x: -10
y: -20
w: 40
h: 30

}

At low-level, one can see that r is stored as an R
raw vector object:

> r[]
[1] f6 ff ec ff 28 00 1e 00
attr(,"struct")
[1] "Rect"

To follow the example, we issue a foreign func-
tion call to setRect via .dyncall and pass in the r
object, assuming the library is loaded and the sym-
bol is resolved and stored in an external pointer ob-
ject named setWindowRectAddr:

> .dyncall(setWindowRectAddr, "*<Rect>)v", r)

We make use of a typed pointer expression
'*<Rect>' instead of the untyped pointer signature
'p', which would also work but does not prevent
users from passing other objects that do not refer-
ence a struct Rect data object. Typed pointer ex-
pressions increase type-safety and use the pattern
'*<Type-Name>'. The invocation will be rejected if
the argument passed in is not of C type Rect. As
r is tagged with an attribute struct that refers to
Rect, the call will be issued. Typed pointers can also
occur as return types that permit the manipulation
of returned objects in the same symbolic manner as
above.

C union types are supported as well but use the
parseUnionInfos function instead for registration,
and a slightly different signature format:

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 35

Union-name '|' Field-types '}' Field-names ';'

The underlying low-level C type read and write
operations and conversions from R data types are
performed by the functions .pack and .unpack.
These can be used for various low-level operations
as well, such as dereferencing of pointer to pointers.

R objects such as external pointers and atomic
raw, integer and numeric vectors can be used as C
struct/union types via the attribute struct. To cast a
type in the style of C, one can use as.struct.

Wrapping R functions as C callbacks

Some C libraries, such as user-interface toolkits and
I/O processing frameworks, use callbacks as part of
their interface to enable registration and activation
of user-supplied event handlers. A callback is a user-
defined function that has a library-defined function
type. Callbacks are usually registered via a registra-
tion function offered by the library interface and are
activated later from within a library run-time con-
text.

rdyncall has support for wrapping ordinary
R functions as C callbacks via the function
new.callback. Callback wrappers are defined by a
callback signature and the user-supplied R function to
be wrapped. Callback signatures look very similar to
call signatures and should match the functional type
of the underlying C callback. new.callback returns
an external pointer that can be used as a low-level
function pointer for the registration as a C callback.
See Section Parsing XML using Expat below for appli-
cations of new.callback.

Foreign library interface

At the highest level, rdyncall provides the front-end
function dynport to dynamically set up an interface
to a C Application Programming Interface. This in-
cludes loading of the corresponding shared C library
and resolving of symbols. During the binding pro-
cess, a new R name space (Tierney, 2003) will be
populated with thin R wrapper objects that repre-
sent abstractions to C counterparts such as functions,
pointers-to-functions, type-information objects for C
struct and union types and symbolic constant equiv-
alents of C enums and macro definitions. The mech-
anism works across platforms; as long as the corre-
sponding shared libraries of a DynPort have been in-
stalled in a system standard location on the host.

An initial repository of DynPorts is available in
the package that provides bindings for several pop-
ular C APIs; see Table 1 for available bindings.

Sample applications

We give examples that demonstrate the direct usage
of C APIs from within R through the rdyncall pack-

age. The R interface to C libraries looks very simi-
lar to the actual C API. For details on the usage of a
particular C library, the programming manuals and
documentation of the libraries should be consulted.

Before loading R bindings via dynport, the shared
library should have been installed onto the system.
Currently this is to be done manually and the instal-
lation method depends on the target operating sys-
tem. While OpenGL and Expat is often pre-installed
on typical desktop-systems, SDL usually has to be in-
stalled explicitly which is described in the package;
see ?'rdyncall-demos' for details.

OpenGL programming in R

Figure 2: demo(SDL)

In the first example, we make use of the Simple Di-
rectMedia Layer library (SDL) (Pendleton, 2003) and
the Open Graphics Library (OpenGL) (OpenGL Archi-
tecture Review Board et al., 2005) to implement a
portable multimedia application skeleton in R.

We first need to load bindings to SDL and
OpenGL via dynport:

> dynport(SDL)
> dynport(GL)

Now we initialize the SDL library, e.g. we initial-
ize the video subsystem, and open a 640x480 win-
dow surface in 32-bit color depths with support for
OpenGL rendering:

> SDL_Init(SDL_INIT_VIDEO)
> surface <- SDL_SetVideoMode(640,480,32,SDL_OPENGL)

Next, we implement the application loop which
updates the display repeatedly and processes the
event queue until a quit request is issued by the user
via the window close button.

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

36 CONTRIBUTED RESEARCH ARTICLES

> mainloop <- function()
{
ev <- new.struct(SDL_Event)
quit <- FALSE
while(!quit) {
draw()
while(SDL_PollEvent(ev)) {
if (ev$type == SDL_QUIT) {
quit <- TRUE

}
}

}
}

SDL event processing is implemented by collect-
ing events that occur in a queue. Typical SDL appli-
cations poll the event queue once per update frame
by calling SDL_PollEvent with a pointer to a user-
allocated buffer of C type union SDL_Event. Event
records have a common type identifier which is set to
SDL_QUIT when a quit event has occurred, e.g. when
users press a close button on a window.

Next we implement our draw function making
use of the OpenGL API. We clear the background
with a blue color and draw a light-green rectangle.

> draw <- function()
{
glClearColor(0,0,1,0)
glClear(GL_COLOR_BUFFER_BIT)
glColor3f(0.5,1,0.5)
glRectf(-0.5,-0.5,0.5,0.5)
SDL_GL_SwapBuffers()

}

Now we can run the application mainloop.

> mainloop()

To stop the application, we press the close button
of the window. A similar example is also available
via demo(SDL). Here the draw function displays a ro-
tating 3D cube displayed in Figure 2.

Figure 3: demo(randomfield)

demo(randomfield) gives a slightly more scien-
tific application of OpenGL and R: Random fields of
512x512 size are generated via blending of 5000 tex-
ture mapped 2D gaussian kernels. The counter in the
window title bar gives the number of matrices gen-
erated per second (see Figure 3). When clicking on
the animation window, the current frame and matrix
is passed to R and plotted. While several dozens of
matrices are computed and drawn per second using
OpenGL, it takes several seconds to plot a single ma-
trix in R using image().

Parsing XML using Expat

In the second example, we use the Expat XML Parser
library (Clark, 2007; Kim, 2001) to implement a
stream-oriented XML parser suitable for very large
documents. In Expat, custom XML parsers are im-
plemented by defining functions that are registered
as callbacks to be invoked on events that occur dur-
ing parsing, such as the start and end of XML tags. In
our second example, we create a simple parser skele-
ton that prints the start and end tag names.

First we load R bindings for Expat via dynport.

> dynport(expat)

Next we create an abstract parser object via the
C function XML_ParserCreate that receives one argu-
ment of type C string to specify a desired character
encoding that overrides the document encoding dec-
laration. We want to pass a null pointer (NULL) here.
In the .dyncall FFI C null pointer values for pointer
types are expressed via the R NULL value:

> p <- XML_ParserCreate(NULL)

The C interface for registering start- and end-tag
event handler callbacks is given below:

/* Language C, from file expat.h: */
typedef void (*XML_StartElementHandler)
(void *userData, const XML_Char *name,
const XML_Char **atts);

typedef void (*XML_EndElementHandler)
(void *userData, const XML_Char *name);

void XML_SetElementHandler(XML_Parser parser,
XML_StartElementHandler start,
XML_EndElementHandler end);

We implement the callbacks as R functions that
print the event and tag name. They are wrapped as C
callback pointers via new.callback using a matching
callback signature. The second argument name of type
C string in both callbacks, XML_StartElementHandler
and XML_EndElementHandler, is of primary interest
in this example; this argument passes over the XML
tag name. C strings are handled in a special way by
the .dyncall FFI because they have to be copied as R
character objects. The special type signature 'Z' is
used to denote a C string type. The other arguments
are simply denoted as untyped pointers using 'p':

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 37

> start <- new.callback("pZp)v",
function(ignored1,tag,ignored2)
cat("Start tag:", tag, "\n")

)
> end <- new.callback("pZ)v",
function(ignored,tag)
cat("Stop tag:", tag, "\n")

)
> XML_SetElementHandler(p, start, end)

To test the parser we create a sample document
stored in a character object named text and pass it
to the parse function XML_Parse:

> text <- "<hello> <world> </world> </hello>"
> XML_Parse(p, text, nchar(text), 1)

The resulting output is

Start tag: hello
Start tag: world
End tag: world
End tag: hello

Expat supports processing of very large XML
documents in a chunk-based manner by calling
XML_Parse several times, where the last argument is
used as indicator for the final chunk of the document.

Architecture

The core implementation of the FFI, callback wrap-
ping and loading of code is based on small C libraries
of the DynCall project (Adler and Philipp, 2011).

The implementation of the FFI is based on the
dyncall C library, which provides an abstraction for
making arbitrary machine-level calls offering a uni-
versal C interface for scripting language interpreters.
It has support for almost all fundamental C argu-
ment/return types4 and multiple calling conven-
tions, and is open for extension to other platforms
and binary standards. Generic call implementations
for the following processor architectures are sup-
ported: Intel i386 32-bit, AMD 64-bit, PowerPC 32-
bit, ARM (including Thumb extension), MIPS 32/64-
bit and SPARC 32/64-bit including support for sev-
eral platform-, processor- and compiler-specific call-
ing conventions.

The dyncallback C library implements generic
callback handling. Callback handlers receive calls
from C and they forward the call, including con-
version of arguments, to a function of a scripting-
language interpreter. A subset of architectures from
the above is currently supported here: i386, AMD64
and ARM, and partial support for PowerPC 32-bit on
Mac OS X/Darwin.

Besides the processor architecture, the libraries
support various operating systems such as Linux,
Mac OS X, Windows, the BSD family, Solaris, Haiku,

Minix and Plan9. Support for embedded platforms
such as Playstation Portable, Nintendo DS and iOS
is available as well. FFI implementations for other
languages such as Python (van Rossum and Drake,
Jr., 2005), Lua (Ierusalimschy et al., 1996) and Ruby
(Flanagan and Matsumoto, 2008) are available from
the DynCall project source repository.

The source tree supports various build tools such
as gcc, msvc, SunPro, pcc, llvm and supports sev-
eral make tools (BSD,C,GNU,N,Sun). A common
abstraction layer for assembler dialects helps to de-
velop cross-operating system call kernel. Due to the
generic implementation and simple design, the li-
braries are quite small (the dyncall library for Mac
OS X/AMD64 is 24 kb).

To test stability of the libraries, a suite of test-
ing frameworks is available, including test-case gen-
erators with support for structured or random case
studies and for testing extreme scenarios with large
number of arguments. Prior to each release, the li-
braries and tests are built for a large set of architec-
tures on DynOS (Philipp, 2011); a batch-build sys-
tem using CPU emulators such as QEmu (Bellard,
2005) and GXEmul (Gavare, 2010), and various op-
erating system images to test the release candidates
and to create pre-built binary releases of the library.

Creation of DynPort files

The creation of DynPort files from C header files is
briefly described next. A tool chain, comprising of
freely available components, is applied once on a
build machine as depicted in Figure 4.

Figure 4: Tool-chain to create DynPort files from C
headers

At first a main source file references the C header
files of the library that should be made accessable via

4Passing of long double, struct and union argument/return C value types are currently work in progress.

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

38 CONTRIBUTED RESEARCH ARTICLES

dynport. In a preprocessing phase the GNU C Macro
Processor is used to process all #include statements
using standard system search paths to create a con-
catenated All-In-One source file. GCC-XML (King,
2004), a modified version of the GNU C compiler,
transforms C header declarations to XML. The XML
is further transformed to the final type signature for-
mat using xslproc (Veillard and Reese, 2009), a XSLT
(Clark, 2001) processor, and a custom XSL stylesheet
that has been implemented for the actual transforma-
tion from GCC-XML to the type signature text for-
mat.

C Macro #define statements are handled sepa-
rately by a custom C Preprocessor implemented in
C++ using the boost wave library (Kaiser, 2011). An
optional filter stage is used to include only elements
with a certain pattern, such as a common prefix usu-
ally found in many libraries, e.g. ’SDL_’. In a last
step, the various fragments are assembled into a sin-
gle text-file that represents the DynPort file.

Limitations

During the creation of DynPort files, we encountered
some cases (mainly for the SDL library) where we
had to comment out some symbolic assignments (de-
rived from C macro definitions) manually. These
could not be converted as-is into valid R assignments
because they consist of complex C expressions such
as bit-shift operations. One could solve this problem
by integrating a C interpreter within the tool-chain
that deduces the appropriate type and value infor-
mation from the replacement part of each C macro
definitions; definitions with incomplete type could
be rejected and constant values could be stored in a
language-neutral encoding.

In order to use a single DynPort for a given C
library across multiple platforms, its interface must
be constant across platforms. DynPort does not sup-
port the conditional statements of the C preproces-
sor. Thus interfaces that use different types for argu-
ments or structure fields depending on the architec-
ture cannot be supported in a universal manner. For
example, the Objective-C Run-Time C library of Mac
OS X uses a different number of fields within certain
struct data types depending on whether the archi-
tecture is i386 or alternative AMD64 in which case
padding fields are inserted in the middle of the struc-
ture. We are aware of this problem although we have
not encountered a conflict with the given palette of
C libraries available via DynPorts to R. A possible
work around for such cases would be to offer sep-
arate DynPorts for different architectures.

dyncall and dyncallback currently lack support
for handling long double, struct and union ar-
gument and return value types and architecture-
specific vector types. Work is in progress to over-
come this limitation. The middleware BridJ (Chafik,

2011) for the Java VM and C/C++ libraries, which
uses dyncall, provides support for passing struct
value types for a number of i386 and AMD64 plat-
forms.

R character strings have a maximum size that can
limit the number of library functions per dynbind
function call. An improved DynPort file format and
parser are being developed and are already available
for luadyncall.

This version of DynPort does not capture the full
range of the C type system. For example array
and bit-field types are not supported; the pointer-to-
function type in an argument list can only be spec-
ified using the void pointer '*v' or 'p' instead of
this (more informative) explicit type. An extended
version of DynPort, that overcomes these inconve-
niences and that improves type safety, is being de-
veloped.

Certain restrictions apply when rdyncall is used
to work with C libraries. These arise from limitations
in R. For example the handling of C float point-
ers/arrays and char pointer-to-pointer types are not
implemented in R. The functions .unpack and .pack
are powerful helper functions designed to over-
come these and some other restrictions. Additional
helper functions are included, such as floatraw and
floatraw2numeric that translate numeric R vectors
to C float arrays and vice versa.

The portable loading of shared libraries via
dynfind might require fine-tuning the list of short
names when using less common R platforms such as
BSDs and Solaris.

Related work

Several dynamic languages offer a flexible FFI, e.g.
ctypes (Heller, 2011) for Python, alien (Mascaren-
has, 2009) for Lua, Rffi (Temple Lang, 2011) for R,
CFFI (Bielman, 2010) for Common LISP and the FFI
module for Perl (Moore et al., 2008) and Ruby (Meiss-
ner, 2011). These all facilitate similar services such as
foreign function calls and handling of foreign data.
With the exception of Rffi, these also support wrap-
ping of scripting functions as C callbacks. In most
cases, the type information is specified in the gram-
mar of the dynamic language. An exception to this
is the Perl FFI that uses text-based type signatures
similar to rdyncall.

ctypeslib (Kloss, 2008) is an extension to ctypes
that comes closest to the idea of DynPorts in which
Python ctypes statements are automatically gener-
ated from C library header files, also using GCC-
XML. In contrast, the DynPort framework con-
tributes a compact text-based type information format
that is also used as the main user-interface for var-
ious tasks in rdyncall. This software design is ap-
plicable across languages and thus type information
can be shared across platforms and languages at the

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://cran.r-project.org/package=Rffi

CONTRIBUTED RESEARCH ARTICLES 39

same time.
Specific alternatives to dyncall include libffi

(Green, 2011) and ffcall (Haible, 2004). These are
mature FFI libraries that use a data-driven C inter-
face and have support for many platforms. Although
not as popular as the first two, the C/Invoke library
(Weisser, 2007) also offers a similar service with bind-
ings to Lua, Java and Kite. The dyncall library of-
fers a functional C interface (inspired by the OpenGL
API). It includes a comprehensive test suite and de-
tailed documentation of calling conventions on a va-
riety of platforms and compilers. As the framework
was developed "de novo" we were free to introduce
our own strategy to support open as well as com-
mercial and embedded platforms. For example, the
i386 Assembly (except for Plan9) is implemented in a
common abstract syntax that translates to GNU and
Microsoft Assembler. This makes sense here, because
i386-based operating systems use a common C call-
ing convention which we address using a single As-
sembly source. A by-product of this feature is that
dyncall enables the user to call operating system for-
eign code on some architectures.

In contrast to the dynamic zero-compilation ap-
proach of ctypeslib and rdyncall, the majority of lan-
guage bindings to libraries use a compiled approach
in which code (handwritten or auto-generated) is
compiled for each platform. SWIG (Beazley, 2003) is
a development tool for the automatic generation of
language bindings. The user specifies the interface
for a particular library in a C-like language and then
chooses among the several supported languages (in-
cluding R) to generate C sources that implement the
binding for that particular library/language combi-
nation. RGtk2 (Lawrence and Temple Lang, 2011)
offers R bindings for the GTK+ GUI framework con-
sisting of R and C code. These are produced by a cus-
tom code generator to offer carefully conceived map-
pings to the object-oriented GObject framework.
The generated code includes features such as owner-
ship management of returned objects using human
annotations. While custom bindings offer the abil-
ity to take into account the features of a particu-
lar library and framework to offer very user-friendly
mapping schemes, rdyncall aims to offer convenient
access to C libraries in general but it requires users
to know the details of the particular interface of a C
library and the R run-time environment.

Summary and Outlook

This paper introduces the rdyncall package5 that
contributes an improved Foreign Function Interface
for R. The FFI facilitates direct invocation of for-
eign functions without the need to compile wrappers
in C. The FFI offers a dynamic cross-platform link-
age framework to wrap and access whole C inter-

faces of native libraries from R. Instead of compil-
ing bindings for every library/language combination,
R bindings of a library are created dynamically at
run-time in a data-driven manner via DynPort files,
a cross-platform universal type information format.
C libraries are made accessible in R as though they
were extension packages and the R interface looks
very similar to that of C. This enables system-level
programming in R and brings a new wave of pos-
sibilities to R developers such as direct access to
OpenGL across platforms as illustrated in the exam-
ple. An initial repository of DynPorts for standard
cross-platform portable C libraries comes with the
package. Work is in progress for implementation of
callback support on architectures already supported
by the dyncall C library. The handling of foreign data
types, which is currently implemented in R and C, is
planned to be reimplemented as a C library and part
of the DynCall project.

The DynPort facility in rdyncall consitutes an ini-
tial step in building up an infrastructure between
scripting languages and C libraries. Analogous to
the way in which R users enjoy quick access to the
large pool of R software managed by CRAN, we en-
vision an archive network in which C library de-
velopers can distribute their work across languages,
users could then get quick access to the pool of C
libraries from within scripting languages via auto-
matic installation of precompiled components and
using universal type information for cross-platform
and cross-language dynamic bindings.

Bibliography

D. Adler and T. Philipp. DynCall project. URL
http://dyncall.org, November 2011. C library
version 0.7.

D. M. Beazley. Automated scientific software script-
ing with SWIG. Future Gener. Comput. Syst., 19:
599–609, July 2003. ISSN 0167-739X. doi: 10.1016/
S0167-739X(02)00171-1. URL http://portal.acm.
org/citation.cfm?id=860016.860018.

F. Bellard. QEMU, a fast and portable dynamic
translator. In USENIX Annual Technical Confer-
ence, FREENIX Track, pages 41–46. USENIX, 2005.
URL http://www.usenix.org/events/usenix05/
tech/freenix/bellard.html.

J. Bielman. CFFI - common foreign function in-
terface. URL http://common-lisp.net/project/
cffi/, August 2010. CL library version 0.10.6.

O. Chafik. BridJ - Let Java & Scala call C, C++,
Objective-C, C#... URL http://code.google.com/
p/bridj/, Jun 2011. Java package version 0.5.

5Version 0.7.4 on CRAN as of this writing.

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://dyncall.org
http://portal.acm.org/citation.cfm?id=860016.860018
http://portal.acm.org/citation.cfm?id=860016.860018
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://www.usenix.org/events/usenix05/tech/freenix/bellard.html
http://common-lisp.net/project/cffi/
http://common-lisp.net/project/cffi/
http://code.google.com/p/bridj/
http://code.google.com/p/bridj/

40 CONTRIBUTED RESEARCH ARTICLES

J. Clark. XSL transformations (XSLT) version 1.1.
W3C working draft, W3C, Aug. 2001. URL http:
//www.w3.org/TR/2001/WD-xslt11-20010824/.

J. Clark. The Expat XML parser. URL http://expat.
sourceforge.net/, June 2007. C library version
2.0.1.

D. Flanagan and Y. Matsumoto. The Ruby Program-
ming Language. O’Reilly, Cambridge, 2008.

A. Gavare. GXEmul: a framework for full-system
computer architecture emulation. URL http://
gxemul.sourceforge.net/, February 2010. Pro-
gram version 0.6.0.

A. Green. libffi - a portable foreign function interface
library. URL http://sourceware.org/libffi/,
August 2011. C library version 3.0.10.

B. Haible. ffcall - foreign function call libraries. URL
http://www.gnu.org/s/libffcall/, June 2004. C
library version 1.10.

T. Heller. ctypes - A foreign function library
for Python. URL http://starship.python.net/
crew/theller/ctypes/, October 2011.

R. Ierusalimschy, L. H. de Figueiredo, and W. C.
Filho. Lua – an extensible extension language. Soft-
ware – Practice and Experience, 26(6):635–652, June
1996.

H. Kaiser. Wave V2.0 - Boost C++ Libraries.
URL http://www.boost.org/doc/libs/release/
libs/wave/index.html, July 2011. Boost C++ Li-
brary Version 1.45, Wave C++ Library Version
2.1.0.

E. E. Kim. A triumph of simplicity: James Clark on
markup languages and XML. Dr. Dobb’s Journal
of Software Tools, 26(7):56, 58–60, July 2001. ISSN
1044-789X. URL http://www.ddj.com/.

B. King. GCC-XML. URL http://www.gccxml.org,
February 2004. Program version 0.6.0.

G. K. Kloss. Automatic C library wrapping – ctypes
from the trenches. The Python Papers, 3(3), 2008.
ISSN 1834-3147.

S. Lantinga. libSDL: Simple DirectMedia layer. URL
http://www.libsdl.org/, October 2009. C library
version 1.2.14.

M. Lawrence and D. Temple Lang. RGtk2: A graph-
ical user interface toolkit for R. Journal of Statis-
tical Software, 2011. ISSN 15487660. URL http:
//www.jstatsoft.org/v37/i08/paper.

F. Mascarenhas. Alien - pure Lua extensions. URL
http://alien.luaforge.net/, October 2009. Lua
module version 0.5.1.

W. Meissner. Ruby-FFI. URL https://github.com/
ffi/ffi/wiki, October 2011. Ruby package ver-
sion 1.0.10.

P. Moore, G. Yahas, and A. Vorobey. FFI - Perl foreign
function interface. URL http://search.cpan.org/
~gaal/FFI/FFI.pm, September 2008. Perl module
version 1.04.

OpenGL Architecture Review Board, D. Shreiner,
M. Woo, J. Neider, and T. Davis. OpenGL(R)
Programming Guide: The Official Guide to Learning
OpenGL(R), Version 2. Addison Wesley, 2005.

B. Pendleton. Game programming with the Simple
DirectMedia Layer (SDL). Linux Journal, 110:42, 44,
46, 48, June 2003. ISSN 1075-3583.

T. Philipp. DynOS Project. URL http://dyncall.
org/dynos, May 2011.

R Development Core Team. Writing R Extesions.
R Foundation for Statistical Computing, Vienna,
Austria, 2010. URL http://www.R-project.org.
ISBN 3-900051-11-9.

D. Temple Lang. Rffi for run-time invocation of
arbitrary compiled routines from R. URL http:
//www.omegahat.org/Rffi/, January 2011. R pack-
age version 0.3-0.

L. Tierney. A simple implementation of name spaces
for R. URL http://www.stat.uiowa.edu/~luke/
R/namespaces/morenames.pdf, May 2003.

G. van Rossum and F. L. Drake, Jr. Python Lan-
guage Reference Manual. Network Theory Ltd.,
2005. ISBN 0-9541617-8-5. URL http://www.
network-theory.co.uk/python/language/.

D. Veillard and B. Reese. The XSLT C library
for GNOME. URL http://xmlsoft.org/XSLT/,
September 2009. C library version 1.1.26.

W. Weisser. C/Invoke - version 1.0 - easily call C from
any language. URL http://cinvoke.teegra.net/
index.html, January 2007. C library version 1.0.

Daniel Adler
Georg-August Universität
Institute for Statistics and Economics
Platz der Göttinger Sieben 5
37079 Göttingen, Germany
dadler@uni-goettingen.de

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://www.w3.org/TR/2001/WD-xslt11-20010824/
http://www.w3.org/TR/2001/WD-xslt11-20010824/
http://expat.sourceforge.net/
http://expat.sourceforge.net/
http://gxemul.sourceforge.net/
http://gxemul.sourceforge.net/
http://sourceware.org/libffi/
http://www.gnu.org/s/libffcall/
http://starship.python.net/crew/theller/ctypes/
http://starship.python.net/crew/theller/ctypes/
http://www.boost.org/doc/libs/release/libs/wave/index.html
http://www.boost.org/doc/libs/release/libs/wave/index.html
http://www.ddj.com/
http://www.gccxml.org
http://www.libsdl.org/
http://www.jstatsoft.org/v37/i08/paper
http://www.jstatsoft.org/v37/i08/paper
http://alien.luaforge.net/
https://github.com/ffi/ffi/wiki
https://github.com/ffi/ffi/wiki
http://search.cpan.org/~gaal/FFI/FFI.pm
http://search.cpan.org/~gaal/FFI/FFI.pm
http://dyncall.org/dynos
http://dyncall.org/dynos
http://www.R-project.org
http://www.omegahat.org/Rffi/
http://www.omegahat.org/Rffi/
http://www.stat.uiowa.edu/~luke/R/namespaces/morenames.pdf
http://www.stat.uiowa.edu/~luke/R/namespaces/morenames.pdf
http://www.network-theory.co.uk/python/language/
http://www.network-theory.co.uk/python/language/
http://xmlsoft.org/XSLT/
http://cinvoke.teegra.net/index.html
http://cinvoke.teegra.net/index.html
mailto:dadler@uni-goettingen.de

