
20 CONTRIBUTED RESEARCH ARTICLES

openair – Data Analysis Tools for the Air
Quality Community
by Karl Ropkins and David C. Carslaw

Abstract The openair package contains data
analysis tools for the air quality community.
This paper provides an overview of data im-
porters, main functions, and selected utilities
and workhorse functions within the package
and the function output class, as of package ver-
sion 0.4-14. It is intended as an explanation of
the rationale for the package and a technical de-
scription for those wishing to work more inter-
actively with the main functions or develop ad-
ditional functions to support ‘higher level’ use of
openair and R.

Large volumes of air quality data are routinely col-
lected for regulatory purposes, but few of those in
local authorities and government bodies tasked with
this responsibility have the time, expertise or funds
to comprehensively analyse this potential resource
(Chow and Watson, 2008). Furthermore, few of these
institutions can routinely access the more powerful
statistical methods typically required to make the
most effective use of such data without a suite of of-
ten expensive and niche-application proprietary soft-
ware products. This in turn places large cost and
time burdens on both these institutions and others
(e.g. academic or commercial) wishing to contribute
to this work. In addition, such collaborative work-
ing practices can also become highly restricted and
polarised if data analysis undertaken by one partner
cannot be validated or replicated by another because
they lack access to the same licensed products.

Being freely distributed under general licence,
R has the obvious potential to act as a common
platform for those routinely collecting and archiv-
ing data and the wider air quality community. This
potential has already been proven in several other
research areas, and commonly cited examples in-
clude the Bioconductor project (Gentleman et al,
2004) and the Epitools collaboration (http://www.
medepi.com/epitools). However, what is perhaps
most inspiring is the degree of transparency that has
been demonstrated by the recent public analysis of
climate change data in R and associated open debate
(http://chartsgraphs.wordpress.com/category/
r-climate-data-analysis-tool/). Anyone affected
by a policy decision, could potentially have unlim-
ited access to scrutinise both the tools and data used
to shape that decision.

The openair rationale

With this potential in mind, the openair project was
funded by UK NERC (award NE/G001081/1) specif-
ically to develop data analysis tools for the wider air
quality community in R as part of the NERC Knowl-
edge Exchange programme (http://www.nerc.ac.
uk/using/introduction/).

One potential issue was identified during the
very earliest stages of the project that is perhaps
worth emphasising for the existing R users.

Most R users already have several years of either
formal or self-taught experience in statistical, math-
ematical or computational working practices before
they first encounter R. They probably first discovered
R because they were already researching a specific
technique that they identified as beneficial to their
research and saw a reference to a package or script
in an expert journal or were recommended R by a
colleague. Their first reaction on discovering R, and
in particular the packages, was probably one of ex-
citement. Since then they have most likely gone on
to use numerous packages, selecting an appropriate
combination for each new application they under-
took.

Many in the air quality community, especially
those associated with data collection and archiving,
are likely to be coming to both openair (Carslaw and
Ropkins, 2010) and R with little or no previous expe-
rience of statistical programming. Like other R users,
they recognise the importance of highly evolved sta-
tistical methods in making the most effective use of
their data; but, for them, the step-change to working
with R is significantly larger.

As a result many of the decisions made when
developing and documenting the openair package
were shaped by this issue.

Data structures and importers

Most of the main functions in openair operate on
a single data frame. Although it is likely that in
future this will be replaced with an object class to
allow data unit handling, the data frame was ini-
tially adopted for two reasons. Firstly, air quality
data is currently collected and archived in numer-
ous formats and keeping the import requirements
for openair simple minimised the frustrations associ-
ated with data importation. Secondly, restricting the
user to working in a single data format greatly sim-
plifies data management and working practices for
those less familiar with programming environments.

Typically, the data frame should have named

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://cran.r-project.org/package=openair
http://www.medepi.com/epitools
http://www.medepi.com/epitools
http://chartsgraphs.wordpress.com/category/r-climate-data-analysis-tool/
http://chartsgraphs.wordpress.com/category/r-climate-data-analysis-tool/
http://www.nerc.ac.uk/using/introduction/
http://www.nerc.ac.uk/using/introduction/
http://cran.r-project.org/package=openair


CONTRIBUTED RESEARCH ARTICLES 21

fields, three of which are specifically reserved,
namely: date, a field of ‘POSIXt’ class time stamps,
and ws and wd, numeric fields for wind speed and
wind direction data. There are no restrictions on the
number of other fields and the names used outside
the standard conventions of R. This means that the
‘work up’ to make a new file openair-compatible is
minimal: Read in data; reformat and rename date;
and rename wind speed and wind direction as ws
and wd, if present.

That said, many users new to programming
still found class structures, in particularly ‘POSIXt’,
daunting. Therefore, a series of importer functions
were developed to simplify this process.

The first to be developed was import, a general
purpose function intended to handle comma and tab
delimited file types. It defaults to a file browser (via
file.choose), and is intended to be used in the com-
mon form, e.g.:

newdata <- import()
newdata <- import(file.type = "txt") #etc

(Here, as elsewhere in openair, argument options
have been selected pragmatically for users with lim-
ited knowledge of file structures or programming
conventions. Note that the file.type option is the
file extension "txt" that many users are familiar
with, rather than either the delim from read.delim
or the "\t" separator.)

A wide range of monitoring, data logging and
archiving systems are used by the air quality com-
munity and many of these employ unique file lay-
outs, including e.g. multi-column date and stamps,
isolated or multi-row headers, or additional informa-
tion of different dimensions to the main data set. So,
import includes a number of arguments, described
in detail in ?import, that can be used to fine-tune its
operation for novel file layouts.

Dedicated importers have since been written for
some of the file formats and data sources most com-
monly used by the air quality community in the UK.
These operate in the common form:

newdata <- import[Name]()

And include:

• importADMS, a general importer for ‘.bgd’,
‘.met’, ‘.mop’ and ‘.pst’ file formats used by
the Atmospheric Dispersion Modelling Sys-
tem (McHugh et al, 1997) developed by CERC
(http://www.cerc.co.uk/index.php). ADMS
is widely used in various forms to model both
current and future air quality scenarios (http:
//www.cerc.co.uk/environmental-software/
ADMS-model.html).

• importAURN and importAURNCsv, importers for
hourly data from the UK (Automatic Urban
and Rural Network) Air Quality Data Archive

(http://www.airquality.co.uk/data_and_
statistics.php). importAURN provides a di-
rect link to the archive and downloads data di-
rectly from the online archive. importAURNCsv
allows ‘.csv’ files previously downloaded from
the archive to be read into openair.

• importKCL, an importer for direct online ac-
cess to data from the King’s College London
databases (http://www.londonair.org.uk/).

Here, we gratefully acknowledge the very sig-
nificant help and support of AEAT, King Col-
lege London’s Environmental Research Group (ERG)
and CERC in the development of these importers.
AEAT and ERG operate the AURN and LondonAir
archives, respectively, and both specifically set up
dedicated services to allow the direct download of
‘.RData’ files from their archives. CERC provided ex-
tensive access to multiple generations of ADMS file
structures and ran an extensive programme of com-
patibility testing to ensure the widest possible body
of ADMS data was accessible to openair users.

Example data

The openair package includes one example dataset,
mydata. This is data frame of hourly measurements
of air pollutant concentrations, wind speed and wind
direction collected at the Marylebone (London) air
quality monitoring supersite between 1st January
1998 and 23rd June 2005 (source: London Air Quality
Archive; http://www.londonair.org.uk).

The same dataset is available to download as
a ‘.csv’ file from the openair website (http://www.
openair-project.org/CSV/OpenAir_example_data_
long.csv). This file can be directly loaded into ope-
nair using the import function. As a result, many
users, especially those new to R, have found it a very
useful template when loading their own data.

Manuals

Two manuals are available for use with openair.
The standard R manual is available alongside the
package at its ‘CRAN’ repository site. An extended
manual, intended to provide new users less famil-
iar with either R or openair with a gentler intro-
duction, is available on the openair website: http:
//www.openair-project.org.

Main functions

Most of the main functions within openair share
a highly similar structure and, wherever possible,
common arguments. Many in the air quality commu-
nity are very familiar with ‘GUI’ interfaces and data

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://www.cerc.co.uk/index.php
http://www.cerc.co.uk/environmental-software/ADMS-model.html
http://www.cerc.co.uk/environmental-software/ADMS-model.html
http://www.cerc.co.uk/environmental-software/ADMS-model.html
http://www.airquality.co.uk/data_and_statistics.php
http://www.airquality.co.uk/data_and_statistics.php
http://www.londonair.org.uk/
http://www.londonair.org.uk
http://www.openair-project.org/CSV/OpenAir_example_data_long.csv
http://www.openair-project.org/CSV/OpenAir_example_data_long.csv
http://www.openair-project.org/CSV/OpenAir_example_data_long.csv
http://www.openair-project.org
http://www.openair-project.org


22 CONTRIBUTED RESEARCH ARTICLES

analysis procedures that are very much predefined
by the software developers. R allows users the op-
portunity to really explore their data. However, a
command line framework can sometimes feel frus-
tratingly slow and awkward to users more used to
a ‘click and go’ style of working. Standardising the
argument structure of the main functions both en-
courages a more interactive approach to data anal-
ysis and minimises the amount of typing required of
users more used to working with a mouse than key-
board.

Common openair function arguments include:
pollutant, which identities the data frame field or
fields to select data from; statistic, which, where
data are grouped, e.g. share common coordinates
on a plot, identifies the summary statistic to apply
if only a single value is required; and, avg.time,
which, where data series are to be averaged on
longer time periods, identifies the required time res-
olution. However, perhaps the most important of
these common arguments is type, a simplified form
of the conditioning term cond widely used elsewhere
in R.

Rapid data conditioning is only one of a large
number of benefits that R provides, but it is probably
the one that has most resonance with air quality data
handlers. Most can instantly appreciate its potential
power as a data visualisation tool and its flexibility
when used in a programming environment like R.
However, many new users can struggle with the fine
control of cond, particularly with regards to the ap-
plication of format.POSIX* to time stamps. The type
argument therefore uses an openair workhorse func-
tion called cutData, which is discussed further be-
low, to provide a robust means of conditioning data
using options such as "hour", "weekday", "month"
and "year")

These features are perhaps best illustrated with
an example.

The openair function trendLevel is basically
a wrapper for the lattice (Sarkar, 2009) function
levelplot that incorporates a number of built-in
conditioning and data handling options based on
these common arguments. So, many users will be
very familiar with the basic implementation.

The function generates a levelplot of pollutant
∼ x * y | type where x, y and type are all
cut/factorised by cutData and in each x/y/type
case pollutant data is summarised using the option
statistic.

When applied to the openair example dataset
mydata in its default form, trendLevel uses x
= "month" (month of year), y = "hour" (time of
day) and type = "year" to provide information on
trends, seasonal effects and diurnal variations in
mean NOx concentrations in a single output (Fig-
ure 1).

However, x, y, type and statistic can all be
user-defined.

month 
ho

ur
 

00
02
04
06
08
10
12
14
16
18
20
22

1998 

Ja
n

F
eb

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug

S
ep

O
ct

N
ov

D
ec

1999 2000 

2001 2002 

00
02
04
06
08
10
12
14
16
18
20
22

2003 

00
02
04
06
08
10
12
14
16
18
20
22

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

2004 2005 

mean 

NOX

100

150

200

250

300

350

400

Figure 1: openair plot trendLevel(mydata, "nox").
Note: The seasonal and diurnal trends, high in win-
ter months, and daytime hours, most notably early
morning and evening, are very typical of man-made
sources such as traffic and the general, by-panel, de-
crease in mean concentrations reflects the effect of in-
cremental air quality management regulations intro-
duced during the last decade.

The function arguments x, y and type can be set
to a wide range of time/date options or to any of the
fields within the supplied data frame, with numer-
ics being cut into quantiles, characters converted to
factors, and factors used as is.

Similarly statistic can also be either a pre-
coded option, e.g. "mean", "max", etc, or be a user de-
fined function. This ‘tiered approach’ provides both
simple, robust access for new users and a very flexi-
ble structure for more experienced R users. To illus-
trate this point, the default trendLevel plot (Figure
1) can be generated using three equivalent calls:

# predefined
trendLevel(mydata, statistic = "mean")

# using base::mean
trendLevel(mydata, statistic = mean)

# using local function
my.mean <- function(x){

x <- na.omit(x)
sum(x) / length(x)}

trendLevel(mydata, pollutant = "nox",
statistic = my.mean)

The type argument can accept one or two options,
depending on function, and in the latter case strip la-
belling is handled using the latticeExtra (Sarkar and
Andrews, 2011) function useOuterStrips.

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://cran.r-project.org/package=lattice
http://cran.r-project.org/package=latticeExtra


CONTRIBUTED RESEARCH ARTICLES 23

Figure 2: openair plots generated using scatterPlot(mydata, "nox", "no2", ...) and method =
"scatter" (default; left), "hexbin" (middle) and "density" (right).

The other main functions include:

• summaryPlot, a function which generates a rug
plot and histogram view of one or more data
frame fields, as well as calculating several key
statistics that can be used to characterise the
quality and capture efficiency of data collecting
in extended monitoring programmes. The plot
provides a useful screening prior to the main
data analysis.

• timePlot and scatterPlot, time-series and tra-
ditional scatter plot functions. These were orig-
inally introduced to provide such plots in a for-
mat consistent with other openair outputs, but
have evolved through user-feedback to include
additional hard-coded options that may be of
more general use. Perhaps, the most obvious
of these being the "hexbin" (hexagonal binning
using the hexbin package (Carr et al, 2011))
and "density" (2D kernel density estimates us-
ing .smoothScatterCalcDensity in grDevices)
methods for handling over-plotting (Figure 2).

• Trend analysis is an important component of
air quality management, both in terms of his-
torical context and abatement strategy eval-
uation. openair includes three trend analy-
sis functions: MannKendall, smoothTrend and
LinearRelation. MannKendall uses methods
based on Hirsch et al (1982) and Helsel and
Hirsch (2002) to evaluate monotonic trends.
Sen-Theil slope and uncertainty are estimated
using code based on that published on-line
by Rand Wilxox (http://www-rcf.usc.edu/
~rwilcox/) and the basic method has been
extended to block bootstrap simulation to
account for auto-correlation (Kunsch, 1989).
smoothTrend fits a generalized additive model
(GAM) to monthly averaged data to provide
a non-parametric description of trends using
methods and functions in the package mgcv
(Wood, 2004, 2006). Both functions incorpo-
rate an option to deseasonalise data prior

to analysis using the stl function in stats
(Cleveland et al, 1990). The other function,
linearRelation, uses a rolling window linear
regression method to visualise the degree of
change in the relations between two species
over larger timescales.

• windRose generates a traditional ‘wind rose’
style plot of wind speed and direction. The
associated wrapper function pollutionRose al-
lows the user to substitute wind speed with an-
other data frame field, most commonly a pollu-
tant concentration time-series, to produce ‘pol-
lution roses’ similar to those used by Henry et
al (2009).

• polarFreq, polarPlot and polarAnnulus are a
family of functions that extend polar visual-
isations. In its default form polarFreq pro-
vides an alternative to wind speed/direction
description to windRose, but pollutant and
statistic arguments can also be included
in the call to produce a wide range of
other polar data summaries. polarPlot uses
mgcv::gam to fit a surface to data in the form
polarFreg(...,statistic = "mean") to pro-
vide a useful visualisation tool for pollutant
source characterisation. This point is illus-
trated by Figure 3 which shows three related
plots. Figure 3 left is a basic polar presen-
tation of mean NOx concentrations produced
using polarFreq(mydata,"nox",statistic =
"mean"). Figure 3 middle is a comparable
polarPlot, which although strictly less quan-
titatively accurate, greatly simplifies the identi-
fications of the main features, namely a broad
high concentration feature to the Southwest
with a maxima at lower wind speeds (indi-
cating a local source) and a lower concentra-
tion but more resolved high wind speed feature
to the East (indicating a more distant source).
Then, finally Figure 3 right presents a similar
polarPlot of SO2, which demonstrates that the
local source (most likely near-by traffic) is rel-

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://cran.r-project.org/package=hexbin
http://cran.r-project.org/package=grDevices
http://www-rcf.usc.edu/~rwilcox/
http://www-rcf.usc.edu/~rwilcox/
http://cran.r-project.org/package=mgcv
http://cran.r-project.org/package=stats


24 CONTRIBUTED RESEARCH ARTICLES

0

5

10

15

20

25

30

35

W

S

N

E

mean 

NOX

0

20

40

60

80

100

120

140
160
180
200
220
240
260

5 

10 

15 (m/s)

20 

25 

30 

35 

W

S

N

E

NOX

50

100

150

200

250

5 

10 

15 (m/s)

20 

25 

30 

35 

W

S

N

E

SO2

1

2

3

4

5

6

7

8

Figure 3: openair plots generated using (left) polarFreq(mydata, "nox", statistic = "mean"); (middle)
polarPlot(mydata, "nox"); and, (right) polarPlot(mydata, "so2").

atively NOx rich while the more distant East-
erly feature (most likely power station emis-
sions) is relatively SO2 rich. This theme is dis-
cussed in further detail in Carslaw et al (2006).
The polarAnnulus function provides an alter-
native polar visualisation based on wind di-
rection and time frequency (e.g. hour of day,
day of year, etc.) to explore similar diagnos-
tics to those discussed above with regard to
trendLevel.

• Likewise, timeVariation generates a range
of hour-of-the-day and day-of-the-week and
month-of-the-year plots that can provide use-
ful insights regarding the time frequency of one
or more pollutants.

• calendarPlot presents daily data in a conven-
tional calendar-style layout. This is a highly
effective format for the presentation of infor-
mation, especially when working with non-
experts.

• Air quality standards are typically defined in
terms of upper limits that concentrations of a
particular pollutant may not exceed or may
only exceed a number of times in any year.
kernelExceed uses a kernel density function
(.smoothScatterCalcDensity in grDevices) to
map the distribution of such exceedances rela-
tive to two other parameters. The function was
developed for use with daily mean (European)
limit value for PM10 (airborne particulate mat-
ter up to 10 micrometers in size) of 50 µg/m3

not to be exceeded on more than 35 days, and
in its default form plots PM10 exceedances rel-
ative to wind speed and direction.

• openair also includes a number of special-
ist functions. The calcFno2 function pro-
vides an estimate of primary NO2 emissions
ratios, a question of particular concern for
the air quality community at the moment.
Associated theory is provided in Carslaw

and Beevers (2005), and further details of
the function’s use are given in the extended
version of the openair manual (http://www.
openair-project.org). Functions modStats
and conditionalQuantile were developed for
model evaluation.

Utilities and workhorse functions

The openair package includes a number of utilities
and workhorse functions that can be directly ac-
cessed by users and therefore used more generally.
These include:

• cutData, a workhorse function for data condi-
tioning, intended for use with the type option
in main openair functions. It accepts a data
frame and returns the conditioned form:

head(olddata)

date ws wd nox
1 1998-01-01 00:00:00 0.60 280 285
2 1998-01-01 01:00:00 2.16 230 NA
3 1998-01-01 02:00:00 2.76 190 NA
4 1998-01-01 03:00:00 2.16 170 493
5 1998-01-01 04:00:00 2.40 180 468
6 1998-01-01 05:00:00 3.00 190 264

newdata <- cutData(olddata,
type = "hour")

head(newdata)

date ws wd nox hour
1 1998-01-01 00:00:00 0.60 280 285 00
2 1998-01-01 01:00:00 2.16 230 NA 01
3 1998-01-01 02:00:00 2.76 190 NA 02
4 1998-01-01 03:00:00 2.16 170 493 03
5 1998-01-01 04:00:00 2.40 180 468 04
6 1998-01-01 05:00:00 3.00 190 264 05

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://cran.r-project.org/package=grDevices
http://www.openair-project.org
http://www.openair-project.org


CONTRIBUTED RESEARCH ARTICLES 25

Here type can be the name of one of the fields
in the data frame or one of a number of pre-
defined terms. Data frame fields are han-
dled pragmatically, e.g. factors are returned
unmodified, characters are converted to fac-
tors, numerics are subset by stats::quantile.
By default numerics are converted into four
quantile bands but this can be modified us-
ing the additional option n.levels. Pre-
defined terms include "hour" (hour-of-day),
"daylight" (daylight or nighttime), "weekday"
(day-of-week), "weekend" (weekday or week-
end), "month" (month-of-year), "monthyear"
(month and year), "season" (season-of-year),
"gmtbst" (GMT or BST) and "wd" (wind direc-
tion sector).

With the exception of "daylight", "season",
"gmtbst" and "wd" these are wrappers for
conventional format.POSIXt operations com-
monly required by openair users.

"daylight" conditions the data relative to
estimated sunrise and sunset to give either
daylight or nighttime. The cut is actually
made by a specialist function, cutDaylight,
but more conveniently accessed via cutData or
the main functions. The ‘daylight’ estimation,
which is valid for dates between 1901 and 2099,
is made using the measurement date, time,
location and astronomical algorithms to esti-
mate the relative positions of the Sun and the
measurement location on the Earth’s surface,
and is based on NOAA methods (http://www.
esrl.noaa.gov/gmd/grad/solcalc/). Date and
time are extracted from the date field but
can be modified using the additional op-
tion local.hour.offset, and location is de-
termined by latitude and longitude which
should be supplied as additional options.

"season" conditions the data by month-of-
year (as "month") and then regroups data into
the four seasons. By default, the operation
assumes the measurement was made in the
northern hemisphere, and winter = Decem-
ber, January and February, spring = March,
April and May, etc., but can be reset using
the additional option hemisphere (hemisphere
= "southern" which returns winter = June,
July and August, spring = September, Oc-
tober and November, etc.). Note: for con-
venience/traceability these are uniquely la-
belled, i.e. northern hemisphere: winter
(DJF), spring (MAM), summer (JJA), autumn
(SON); southern hemisphere: winter (JJA),
spring (SON), summer (DJF), autumn (MAM).

"gmtbst" (and the alternative form "bstgmt")
conditions the data according to daylight sav-
ing. The operation returns two cases: GMT
or BST for measurement date/times where

daylight saving was or was not enforced (or
more directly GMT and BST time stamps are
or are not equivalent), respectively, and re-
sets the date field to local time (BST). Man-
made sources, such as NOx emissions from
vehicles in urban areas where daylight sav-
ing is enforced will tend to associated with
local time. So, for example, higher ‘rush-
hour’ concentrations will tend to associated
with BST time stamps (and remain relatively
unaffected by the BST/GMT case). By con-
trast a variable such as wind speed or tem-
perature that is not as directly influenced by
daylight saving should show a clear BST/GMT
shift when expressed in local time. Therefore,
when used with an openair function such as
timeVariation, this type conditioning can help
determine whether variations in pollutant con-
centrations are driven by man-made emissions
or natural processes.

"wd" conditions the data by the conventional
eight wind sectors, N (0-22.5◦ and 337.5-360◦),
NE (22.5-67.5◦), E (67.5-112.5◦), SE (112.5-157.5◦),
S (157.5-202.5◦), SW (202.5-247.5◦), W (247.5-
292.5◦) and NW (292.5-337.5◦).

• selectByDate and splitByDate are functions
for conditioning and subsetting a data frame
using a range of format.POSIXt operations and
options similar to cutData. These are mainly
intended as a convenient alternative for newer
openair users.

• drawOpenKey generates a range of colour keys
used by other openair functions. It is a modifi-
cation of the lattice::draw.colorkey function
and here we gratefully acknowledge the help
and support of Deepayan Sarkar in providing
both draw.colorkey and significant advice on
its use and modification. More widely used
colour key operations can be accessed from
main openair functions using standard options,
e.g. key.position (= "right", "left", "top",
or "bottom"), and key.header and key.footer
(text to be added as headers and footers, re-
spectively, on the colour key). In addition, finer
control can be obtained using the option key
which should be a list. key is similar to key
in lattice::draw.colorkey but allows the ad-
ditional components: header (a character vec-
tor of text or list including header text and
formatting options for text to be added above
the colour key), footer (as header but for be-
low the colour key), auto.text (TRUE/FALSE
for using openair workhorse quickText), and
tweaks, fit, slot (a range of options to con-
trol the relative positions of header, footer and
the colour key) and plot.style (a list of op-
tions controlling the type of colour key pro-
duced). One simple example of the use of

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://www.esrl.noaa.gov/gmd/grad/solcalc/
http://www.esrl.noaa.gov/gmd/grad/solcalc/


26 CONTRIBUTED RESEARCH ARTICLES

drawOpenKey(key(plot.style)) is the paddle
scale in windRose - compare windRose(mydata)
and windRose(mydata,paddle = FALSE).

drawOpenKey can be used with other lattice out-
puts using methods previously described by
Deepayan Sarkar (Sarkar, 2008, 2009), e.g.:

## some silly data and colour scale
range <- 1:200; cols <- rainbow(200)

## my.key -- an openair plot key
my.key <- list(col = cols, at = range,

space = "right",
header = "my header",
footer = "my footer")

## pass to lattice::xyplot
xyplot(range ~ range,

cex = range/10, col = cols,
legend = list(right =

list(fun = drawOpenKey,
args = list(key = my.key)

)))

range

ra
ng

e

0

50

100

150

200

0 50 100 150 200

●
●●
●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●

my header 

my footer 

50

100

150

200

Figure 4: Trivial example of the use of
openColourKey with a lattice plot.

• openColours is a workhorse function that
produces a range of colour gradients for
other openair plots. The main option is
scheme and this can be either the name of a
pre-defined colour scheme, e.g. "increment",
"default", "brewer1", "heat", "jet", "hue",
"greyscale", or two or more terms that can be
coerced into valid colours and between which
a colour gradient can be extrapolated, e.g.
c("red","blue"). In most openair plot func-
tions openColours(scheme) can be accessed us-
ing the common option cols. Most of the
colour gradient operations are based on stan-
dard R and RColorBrewer (Neuwirth, 2011)
methods.

The "greyscale" scheme is a special case in-
tended for those producing figures for use in
black and white reports that also automatically
resets some other openair plot parameters (e.g.
strip backgrounds to white and other preset
text, point and line to black or a ‘best guess’
grey).

• quickText is a look-up style wrapper function
that applies routine text formatting to expres-
sions widely used in the air quality community,
e.g. the super- and sub-scripting of chemical
names and measurement units. The function
accepts a ‘character’ class object and returns
it as an ‘expression’ with any recognised text
reformatted according to common convention.
Labels in openair plots (xlab, ylab, main, etc)
are typically passed via quickText. This, for
examples, handles the automatic formatting of
the colour key and axes labels in Figures 1–3,
where the inputs were data frame field names,
"nox", "no2", etc (most convenient for com-
mand line entry) and the conventional chemi-
cal naming convention (International Union of
Pure and Applied Chemistry, IUPAC, nomen-
clature) were NOx, NO2, etc.

quickText can also be used as a label wrapper
with non-openair plots, e.g.:

my.lab <- "Particulates as pm10, ug/m3"
plot(pm10 ~ date, data = mydata[1:1000,],

ylab = quickText(my.lab))

(While many of us regard ‘expressions’ as triv-
ial, such label formatting can be particularly
confusing for those new both programming
languages and command line work, and func-
tions like quickText really help those users to
focus on the data rather than becoming frus-
trated with the periphery.)

●

●
●●●

●
●●●●●●
●
●
●●●
●
●●
●●

●●

●●
●●●●

●
●

●

●●
●

●
●

●●
●

●
●●●●●●●●
●
●

●

●●
●
●●
●●

●●
●●●●
●
●●

●
●
●

●
●

●
●●
●

●
●●●
●
●●●
●●

●
●
●●●●●
●
●●●●●
●

●

●

●

●
●

●

●

●

●
●●

●
●
●●

●

●●

●
●●
●●
●

●

●
●
●●

●
●●

●●
●
●

●

●●
●
●●

●
●
●●
●
●
●
●

●

●●●●●●●

●●

●●

●

●

●●
●
●●●
●

●

●

●

●

●●
●

●

●
●●

●●●●
●●
●
●
●●●●●

●

●
●
●●

●
●

●●

●

●
●●●●
●●●
●
●
●
●●
●
●

●●●

●
●
●●
●
●●●●●

●

●
●●●●●
●
●●

●
●

●
●●●●●●●●●
●
●
●
●
●●
●●●●
●●

●●●●
●
●●

●

●

●
●

●
●●
●
●●●
●
●●●●●
●
●
●
●
●●●
●●●●
●●
●

●
●●●●●

●
●
●●
●

●

●

●

●
●●
●●●
●●
●
●
●●
●

●

●
●
●●●

●

●

●●
●
●

●

●●

●
●
●
●

●●

●●●

●

●●●●●
●

●

●

●

●
●
●●
●●●●
●●
●
●

●

●

●

●●
●
●
●●

●

●●●●
●
●
●
●
●●●
●●●
●●
●●

●●●
●●
●●●
●●
●
●●
●●●●
●
●
●●
●

●
●●●●●
●●
●●●
●●

●
●
●●

●●●●●●●●●●●●
●●
●
●●
●
●●
●●
●
●●
●
●●●

●
●●
●

●●

●●

●
●

●

●●●

●●

●
●

●●
●●●●●
●

●
●●●●

●

●●
●
●●
●●
●

●
●

●

●
●

●
●●●●
●●●●●

●

●

●●●

●

●●●
●
●
●
●●
●●●●●●
●●

●
●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●
●●
●●●●
●
●●●
●
●●

●

●●●
●●●●●●
●●●●●●●●
●●●
●●●●
●

●●
●●
●●●●●●
●

●●●
●
●●
●

●
●
●●●●

●
●●
●
●●●●●

●
●

●●
●

●●
●
●

●
●

●●
●
●●
●
●●●
●
●
●
●
●
●

●●●●

●
●

●●

●
●●●●
●●●
●
●●
●●●
●●
●●●
●●
●
●
●●

●●
●
●●●●●●

●●

●●

●●●●●●
●●
●●
●●●●●
●●
●
●
●●

●

●●
●

●
●

●●
●

●

●

●●

●

●●
●●●
●

●●
●

●
●
●●●●●●
●

●

●●
●

●●
●
●●●
●

●●

●
●

●

●
●

●
●●
●●●

●

●
●●●●

●

●

●

●
●
●●

●

●
●●
●
●
●

●●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●●

●
●●
●●●
●●

●

●

●
●●●

●

●
●
●

●
●
●
●
●
●
●●●●

●

●

●●

●
●●
●
●
●●●●

●

●

●

●
●●●
●●

●
●●

●●●

●
●●
●
●●
●●●●
●

●
●
●
●●●●●●●
●●

●

●●
●●●

●●●●

●
●
●
●

●
●●●
●
●●●●●

●

●
●
●●●

●
●
●
●
●
●

●●●

●
●●
●
●●●
●
●

●

●

●●

●
●
●●●

Jan 04 Jan 14 Jan 24 Feb 03 Feb 13

20
40

60
80

10
0

date

P
ar

tic
ul

at
es

 a
s 

P
M

10
,  

µg
 m

−3
 

Figure 5: Trivial example of the use of quickText
outside openair.

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://cran.r-project.org/package=RColorBrewer


CONTRIBUTED RESEARCH ARTICLES 27

• timeAverage is a function for the aggrega-
tion of openair data frames using the ‘POSIXt’
field "date". By default it calculates the
day average using an operation analogous to
mean(...,na.rm = TRUE), but additional op-
tions also allow it to be used to calculate a
wide range of other statistics. The aggrega-
tion interval can be set using option avg.time,
e.g. "hour", "2 hour", etc (cut.POSIXt conven-
tions). The statistic can be selected from a
range of pre-defined terms, including "mean",
"max", "min", "median", "sum", "frequency"
(using length), "sd" and "percentile". If
statistic = "percentile", the default 95 (%)
may be modified using the additional option
percentile. The data capture threshold can be
set using data.thresh which defines the per-
centage of valid cases required in any given
(aggregation) period where the statistics are to
be calculated.

While for the most part timeAverage could be
considered merely a convenient wrapper for a
number of more complex ‘POSIXt’ aggregation
operations, one important point that should be
emphasised is that it handles the polar mea-
sure wind direction correctly. Assuming wind
direction and speed are supplied as the data
frame fields "wd" and "ws", respectively, these
are converted to wind vectors and the aver-
age wind direction is calculated using these.
If this were not done and wind direction av-
erages were calculated from "wd" alone then
measurements about North (e.g. 355–360◦ and
0–5◦) would average at about 180◦ not 0◦ or
360◦.

Output class

Many of the main functions in openair return an ob-
ject of "openair" class, e.g.:

#From:
[object] <- openair.function(...)

#object structure
[object] #list[S3 "openair"]

$call [function call]
$data [data.frame generated/used in plot]

[or list if multiple part]
$plot [plot from function]

[or list if multiple part]

#Example
ans <- windRose(mydata)
ans

openair object created by:
windRose(mydata = mydata)

this contains:
a single data frame:
$data [with no subset structure]
a single plot object:
$plot [with no subset structure]

Associated generic methods (head, names, plot,
print, results, summary) have a common structure:

#method structure for openair generics
[generic method].[class] #method.name

([object], [class-specific options],
[method-specific options]) #options

As would be expected, most .openair methods
work like associated .default methods, and object
and method-specific options are based on those of
the .default method. Typically, openair methods re-
turn outputs consistent with the associated .default
method unless either $data or $plot have multiple
parts in which cases outputs are returned as lists of
data frames or plots, respectively. The main class-
specific option is subset, which can be used to se-
lect specific sub-data or sub-plots if these are avail-
able. The local method results extracts the data
frames generated during the plotting process. Fig-
ure 6 shows some trivial examples of current usage.

Conclusions and future directions

As with many other R packages, the feedback pro-
cess associated with users and developers working
in an open-source environment means than openair
is subject to continual optimisation. As a result,
openair will undoubtedly continue to evolve further
through future versions. Obviously, the primary fo-
cus of openair will remain the development of tools
to help the air quality community make better use of
their data. However, as part of this work we recog-
nise that there is still work to be done.

One area that is likely to undergo signifi-
cant updates is the use of classes and methods.
The current ‘S3’ implementation of output class is
crude, and future options currently under consid-
eration include improvements to plot.openair and
print.openair, the addition of an update.openair
method (for reworking openair plots), the release of
the openairApply (a currently un-exported wrapper
function for apply-type operations with openair ob-
jects), and the migration of the object to ‘S4’.

In light of the progress made with the output
class, we are also considering the possibility of re-
placing the current simple data frame input with a
dedicated class structure, as this could provide ac-
cess to extended capabilities such as measurement
unit management.

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859



28 CONTRIBUTED RESEARCH ARTICLES

Fi
gu

re
6:

Tr
iv

ia
le

xa
m

pl
es

of
"o
pe
na
ir
"

ob
je

ct
ha

nd
lin

g,
w

it
h

th
e

ou
tp

ut
s

of
pl
ot
(a
ns
)

an
d
pl
ot
(a
ns
,
su
bs
et

=
"h
ou
r"
)

sh
ow

n
as

in
se

rt
s

ri
gh

t
to

p
an

d
ri

gh
t

bo
tt

om
,r

es
pe

ct
iv

el
y.

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 29

One other particularly exciting component of re-
cent work on openair is international compatibil-
ity. The initial focus of the openair package was
very much on the air quality community in the UK.
However, distribution of the package through CRAN
has meant that we now have an international user
group with members in Europe, the United States,
Canada, Australia and New Zealand. This is obvi-
ously great. However, it has also brought with it
several challenges, most notably in association with
local time stamp and language formats. Here, we
greatly acknowledge the help of numerous users and
colleagues who bug-tested and provided feedback as
part of our work to make openair less ‘UK-centric’.
We will continue to work on this aspect of openair.

We also greatly acknowledge those in our current
user group who were less familiar with program-
ming languages and command lines but who took
a real ‘leap of faith’ in adopting both R and openair.
We will continue to work to minimise the severity
of the learning curves associated with both the up-
take of openair and the subsequent move from using
openair in a standalone fashion to its much more ef-
ficient use as part of R.

Bibliography

D. Carr, N. Lewin-Koh and M. Maechler. hexbin:
Hexagonal Binning Routines. R package ver-
sion 1.26.0. URL http://CRAN.R-project.org/
package=hexbin.

D.C. Carslaw and S.D. Beevers. Estimations of road
vehicle primary NO2 exhaust emission fractions
using monitoring data in London. Atmospheric En-
vironment, 39(1):167–177, 2005.

D.C. Carslaw, S.D. Beevers, K. Ropkins and
M.C. Bell. Detecting and quantifying aircraft and
other on-airport contributions to ambient nitrogen
oxides in the vicinity of a large international air-
port. Atmospheric Environment, 40(28):5424–5434,
2006.

D.C. Carslaw and K. Ropkins. openair: Open-
source tools for the analysis of air pollution data.
R package version 0.4-14. URL http://www.
openair-project.org/.

J.C. Chow and J.G. Watson. New Directions: Beyond
compliance air quality measurements. Atmospheric
Environment, 42:5166–5168, 2008.

R.B. Cleveland, W.S. Cleveland, J.E. McRae and
I. Terpenning, I. STL: A Seasonal-Trend Decompo-
sition Procedure Based on Loess. Journal of Official
Statistics, 6:3–73, 1990.

R. Gentleman, V.J. Carey, D.M. Bates, B. Bolstad,
M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge,
J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Ia-
cus, R. Irizarry, F. Leisch, C. Li, M. Maechler,

A.J. Rossini, G. Sawitzki, C. Smith, G. Smyth,
L. Tierney, J.Y.H. Yang and J. Zhang. Bioconductor:
Open software development for computational bi-
ology and bioinformatics. Genome Biology, 5:R80,
2004. URL http://www.bioconductor.org/.

D. Helsel and R. Hirsch. R: Statistical methods in wa-
ter resources. US Geological Survey. URL http:
//pubs.usgs.gov/twri/twri4a3/.

R. Henry, G.A. Norris, R. Vedantham and J.R. Turner.
Source Region Identification Using Kernel
Smoothing. Environmental Science and Technology,
43(11):4090–4097, 2009.

R.M. Hirsch, J.R. Slack, and R.A. Smith. Techniques
of trend analysis for monthly water-quality data.
Water Resources Research, 18(1):107–121, 1982.

H.R. Kunsch. The jackknife and the bootstrap for
general stationary observations. Annals of Statis-
tics, 17(3):1217–1241, 1989.

C.A. McHugh, D.J. Carruthers and H.A. Edmunds.
ADMS and ADMS570 Urban. International Journal
of Environment and Pollution, 8(3–6):438–440, 1997.

E. Neuwirth. RColorBrewer: ColorBrewer palettes.
R package version 1.0-5. URL http://CRAN.
R-project.org/package=RColorBrewer/.

D. Sarkar. Lattice: Multivariate Data Visualization
with R. Springer. ISBN: 978-0-387-75968-5. URL
http://lmdvr.r-forge.r-project.org/.

D. Sarkar. lattice: Lattice Graphics. R package
version 0.18-5. URL http://r-forge.r-project.
org/projects/lattice/.

D. Sarkar and F. Andrews. latticeExtra: Extra Graph-
ical Utilities Based on Lattice. R package ver-
sion 0.6-18. URL http://CRAN.R-project.org/
package=latticeExtra.

S.N. Wood. Stable and efficient multiple smooth-
ing parameter estimation for generalized additive
models Journal of the American Statistical Associa-
tion, 99:673–686, 2004.

S.N. Wood. Generalized Additive Models: An Intro-
duction with R. Chapman and Hall/CRC, 2006.

Karl Ropkins
Institute for Transport Studies
University of Leeds, LS2 9JT, UK
k.ropkins@its.leeds.ac.uk

David C. Carslaw
King’s College London
Environmental Research Group
Franklin Wilkins Building, 150 Stamford Street
London SE1 9NH, UK
david.carslaw@kcl.ac.uk

The R Journal Vol. 4/1, June 2012 ISSN 2073-4859

http://CRAN.R-project.org/package=hexbin
http://CRAN.R-project.org/package=hexbin
http://www.openair-project.org/
http://www.openair-project.org/
http://www.bioconductor.org/
http://pubs.usgs.gov/twri/twri4a3/
http://pubs.usgs.gov/twri/twri4a3/
http://CRAN.R-project.org/package=RColorBrewer/
http://CRAN.R-project.org/package=RColorBrewer/
http://lmdvr.r-forge.r-project.org/
http://r-forge.r-project.org/projects/lattice/
http://r-forge.r-project.org/projects/lattice/
http://CRAN.R-project.org/package=latticeExtra
http://CRAN.R-project.org/package=latticeExtra
mailto:k.ropkins@its.leeds.ac.uk
mailto:david.carslaw@kcl.ac.uk

