
CONTRIBUTED RESEARCH ARTICLES 5

What’s in a Name?
The Importance of Naming grid Grobs
When Drawing Plots in R

by Paul Murrell

Abstract Any shape that is drawn using the
grid graphics package can have a name associ-
ated with it. If a name is provided, it is possi-
ble to access, query, and modify the shape after
it has been drawn. These facilities allow for very
detailed customisations of plots and also for very
general transformations of plots that are drawn
by packages based on grid.

Introduction

When a scene is drawn using the grid graphics pack-
age in R, a record is kept of each shape that was used
to draw the scene. This record is called a display list
and it consists of a list of R objects, one for each shape
in the scene. For example, the following code draws
several simple shapes: some text, a circle, and a rect-
angle (see Figure 1).

> library(grid)

> grid.text(c("text", "circle", "rect"),
+ x=1:3/4, gp=gpar(cex=c(3, 1, 1)))
> grid.circle(r=.25)
> grid.rect(x=3/4, width=.2, height=.5)

text circle rect

Figure 1: Some simple shapes drawn with grid.

The following code uses the grid.ls() function
to show the contents of the display list for this scene.
There is an object, called a grob (short for “graphical
object”), for each shape that we drew. The output be-
low shows what sort of shape each grob represents
and it shows a name for each grob (within square
brackets). In the example above, we did not specify
any names, so grid made some up.

> grid.ls(fullNames=TRUE)

text[GRID.text.5]
circle[GRID.circle.6]
rect[GRID.rect.7]

It is also possible to explicitly name each shape
that we draw. The following code does this by spec-
ifying the name argument in each function call (the

resulting scene is the same as in Figure 1) and call
grid.ls() again to show that the grobs on the dis-
play list now have the names that we specified.

> grid.text(c("text", "circle", "rect"),
+ x=1:3/4, gp=gpar(cex=c(3, 1, 1)),
+ name="leftText")
> grid.circle(r=.25, name="middleCircle")
> grid.rect(x=3/4, width=.2, height=.5,
+ name="rightRect")

> grid.ls(fullNames=TRUE)

text[leftText]
circle[middleCircle]
rect[rightRect]

The grid package also provides functions that al-
low us to access and modify the grobs on the display
list. For example, the following code modifies the cir-
cle in the middle of Figure 1 so that its background
becomes grey (see Figure 2). We select the grob to
modify by specifying its name as the first argument.
The second argument describes a new value for the
gp component of the circle (in this case we are modi-
fying the fill graphical parameter).

> grid.edit("middleCircle", gp=gpar(fill="grey"))

text circle rect

Figure 2: The simple shapes from Figure 1 with the
middle circle modified so that its background is grey.

The purpose of this article is to discuss why it is
useful to provide explicit names for the grobs on the
grid display list. We will see that several positive
consequences arise from being able to identify and
modify the grobs on the display list.

Too many arguments

This section discusses how naming the individual
shapes within a plot can help to avoid the problem
of having a huge number of arguments or parame-
ters in a high-level plotting function.

The plot in Figure 3 shows a forest plot , a type
of plot that is commonly used to display the results
of a meta-analysis. This plot was produced using the
forest() function from the metafor package (Viecht-
bauer, 2010).

This sort of plot provides a good example of how
statistical plots can be composed of a very large num-
ber of simple shapes. The plot in Figure 3 consists of

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

6 CONTRIBUTED RESEARCH ARTICLES

RE Model

0.05 0.25 1.00 4.00

Relative Risk (log scale)

Comstock et al, 1976

Comstock & Webster, 1969

Comstock et al, 1974

Rosenthal et al, 1961

Coetzee & Berjak, 1968

TPT Madras, 1980

Vandiviere et al, 1973

Stein & Aronson, 1953

Frimodt−Moller et al, 1973

Hart & Sutherland, 1977

Rosenthal et al, 1960

Ferguson & Simes, 1949

Aronson, 1948

27

5

186

17

29

505

8

180

33

62

3

6

4

16886

2493

50448

1699

7470

87886

2537

1361

5036

13536

228

300

119

29

3

141

65

45

499

10

372

47

248

11

29

11

17825

2338

27197

1600

7232

87892

619

1079

5761

12619

209

274

128

0.98 [0.58 , 1.66]

1.56 [0.37 , 6.53]

0.71 [0.57 , 0.89]

0.25 [0.15 , 0.43]

0.63 [0.39 , 1.00]

1.01 [0.89 , 1.14]

0.20 [0.08 , 0.50]

0.46 [0.39 , 0.54]

0.80 [0.52 , 1.25]

0.24 [0.18 , 0.31]

0.26 [0.07 , 0.92]

0.20 [0.09 , 0.49]

0.41 [0.13 , 1.26]

0.49 [0.34 , 0.70]

TB+ TB− TB+ TB−

Vaccinated Control

Author(s) and Year Relative Risk [95% CI]

Figure 3: A forest plot produced by the forest() function from the metafor package.

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 7

many different pieces of text, rectangles, lines, and
polygons.

High-level functions like forest() are extremely
useful because, from a single function call, we can
produce many individual shapes and arrange them
in a meaningful fashion to produce an overall plot.
However, a problem often arises when we want to
customise individual shapes within the plot.

For example, a post to the R-help mailing list in
August 2011 asked for a way to change the colour
of the squares in a forest plot because none of
the (thirty-three) existing arguments to forest() al-
lowed this sort of control. The reply from Wolfgang
Viechtbauer (author of metafor) states the problem
succinctly:

“The thing is, there are so many different
elements to a forest plot (squares, lines,
polygons, text, axes, axis labels, etc.), if I
would add arguments to set the color of
each element, things would really get out
of hand ...

... what if somebody wants to have a dif-
ferent color for *one* of the squares and a
different color for the other squares?”

The reality is that it is impossible to provide
enough arguments in a high-level plotting function
to allow for all possible modifications to the low-
level shapes that make up the plot. Fortunately,
an alternative is possible through the simple mech-
anism of providing names for all of the low-level
shapes.

In order to demonstrate this idea, consider the
lattice plot (Sarkar, 2008) that is produced by the fol-
lowing code and shown in Figure 4.

> library(lattice)

> xyplot(mpg ~ disp, mtcars)

This plot is simpler than the forest plot in Figure
3, but it still contains numerous individual shapes.
Anyone familiar with the lattice package will also
know that it can produce plots of much greater com-
plexity; in general, the lattice package faces a very
difficult problem if it wants to provide an argument
in its high-level functions to control every single
shape within any of its plots.

However, the lattice package also provides
names for everything that it draws. The following
code shows the contents of the grid display list after
drawing the plot in Figure 4.

> grid.ls(fullNames=TRUE)

rect[plot_01.background]
text[plot_01.xlab]
text[plot_01.ylab]
segments[plot_01.ticks.top.panel.1.1]

segments[plot_01.ticks.left.panel.1.1]
text[plot_01.ticklabels.left.panel.1.1]
segments[plot_01.ticks.bottom.panel.1.1]
text[plot_01.ticklabels.bottom.panel.1.1]
segments[plot_01.ticks.right.panel.1.1]
points[plot_01.xyplot.points.panel.1.1]
rect[plot_01.border.panel.1.1]

disp

m
pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 4: A simple lattice scatterplot.

Displacement

m
pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 5: The lattice plot from Figure 4 with the x-
axis modified using low-level grid functions.

Because everything is named, it is possible to ac-
cess any component of the plot using the low-level
grid functions. For example, the following code
modifies the x-axis label of the plot (see Figure 5).
We specify the component of the scene that we want
to modify by giving its name as the first argument
to grid.edit(). The other arguments describe the

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

8 CONTRIBUTED RESEARCH ARTICLES

changes that we want to make (a new label and a
new gp setting to change the fontface).

> grid.edit("plot_01.xlab",
+ label="Displacement",
+ gp=gpar(fontface="bold.italic"))

That particular modification of a lattice plot
could easily be achieved using arguments to the
high-level xyplot() function, but the direct access to
low-level shapes allows for a much wider range of
modifications. For example, figure 6 shows a more
complex multipanel lattice barchart.

B
ar

le
y

Y
ie

ld
 (

bu
sh

el
s/

ac
re

)

0
40
80

120

Sva
ns

ot
a

No.
46

2

M
an

ch
ur

ia

No.
47

5

Ve
lve

t

Pea
tla

nd

Glab
ro

n

No.
45

7

W
isc

on
sin

 N
o.

38
Tr

eb
i

Grand Rapids
0
40
80
120

Duluth
0

40
80

120
University Farm

0
40
80
120

Morris
0

40
80

120
Crookston

0
40
80
120

Waseca

Figure 6: A complex multipanel lattice barchart.

This is generated by the following code

> barchart(yield ~ variety | site, data = barley,
+ groups = year, layout = c(1,6),
+ stack = TRUE,
+ ylab = "Barley Yield (bushels/acre)",
+ scales = list(x = list(rot = 45)))

There are too many individual shapes in this plot to
show the full display list here, but all of the shapes
have names and the following code makes use of
those names to perform a more sophisticated plot
modification: highlighting the sixth set of bars in
each panel of the barchart (see Figure 7).

> grid.edit("barchart.pos.6.rect",
+ grep=TRUE, global=TRUE,
+ gp=gpar(lwd=3))

B
ar

le
y

Y
ie

ld
 (

bu
sh

el
s/

ac
re

)

0
40
80

120

Sva
ns

ot
a

No.
46

2

M
an

ch
ur

ia

No.
47

5

Ve
lve

t

Pea
tla

nd

Glab
ro

n

No.
45

7

W
isc

on
sin

 N
o.

38
Tr

eb
i

Grand Rapids
0
40
80
120

Duluth
0

40
80

120
University Farm

0
40
80
120

Morris
0

40
80

120
Crookston

0
40
80
120

Waseca

Figure 7: The barchart from Figure 6 with the sixth
set of bars in each panel highlighted.

The first argument to grid.edit() this time is
not the name of a specific grob. This time we have
given a name pattern. This is indicated by the use of
the grep argument; grep=TRUE means that the change
will be made to a component that matches the name
pattern (that was given as the first argument). The
global argument is also set to TRUE, which means
that this change will be made to not just the first com-
ponent that matches the name pattern, but to all com-
ponents that match. The gp argument specifies the
change that we want to make (make the lines nice
and thick).

It would not be reasonable to expect the high-
level barchart() function to provide an argument
that allows for this sort of customisation, but, be-
cause lattice has named everything that it draws,
barchart() does not need to cater for every possible
customisation. Low-level access to individual shapes
can be used instead bceause individual shapes can be
identified by name.

Post-processing graphics

This section discusses how naming the individual
shapes within a plot allows not just minor customi-
sations, but general transformations to be applied to
a plot.

The R graphics system has always encouraged
the philosophy that a high-level plotting function is
only a starting point. Low-level functions have al-
ways been provided so that a plot can be customised
by adding some new drawing to the plot.

The previous section demonstrated that, if every
shape within a plot has a label, it is also possible
to customise a plot by modifying the existing shapes

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 9

within a plot.

However, we can go even further than just mod-
ifying the existing parameters of a shape. In theory,
we can think of the existing shapes within a picture
as a basis for more general post-processing of the im-
age.

As an example, one thing that we can do is to
query the existing components of a plot to determine
the position or size of an existing component. This
means that we can position or size new drawing in
relation to the existing plot. The following code uses
this idea to add a rectangle around the x-axis label of
the plot in Figure 4 (see Figure 8). The grobWidth()
function is used to calculate the width of the rectan-
gle from the width of the x-axis label. The first argu-
ment to grobWidth() is the name of the x-axis label
grob. The downViewport() function is used to make
sure that we draw the rectangle in the right area on
the page.1

> xyplot(mpg ~ disp, mtcars)

> rectWidth <- grobWidth("plot_01.xlab")

> downViewport("plot_01.xlab.vp")
> grid.rect(width=rectWidth + unit(2, "mm"),
+ height=unit(1, "lines"),
+ gp=gpar(lwd=2),
+ name="xlabRect")

The display list now contains an new rectangle
grob, as shown below.

> grid.ls(fullNames=TRUE)

rect[plot_01.background]
text[plot_01.xlab]
text[plot_01.ylab]
segments[plot_01.ticks.top.panel.1.1]
segments[plot_01.ticks.left.panel.1.1]
text[plot_01.ticklabels.left.panel.1.1]
segments[plot_01.ticks.bottom.panel.1.1]
text[plot_01.ticklabels.bottom.panel.1.1]
segments[plot_01.ticks.right.panel.1.1]
points[plot_01.xyplot.points.panel.1.1]
rect[plot_01.border.panel.1.1]
rect[xlabRect]

disp

m
pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 8: The lattice plot from Figure 4 with a rectan-
gle added around the x-axis label.

Importantly, the new grob depends on the size of
the existing x-axis label grob within the scene. For
example, if we edit the x-axis label again, as below,
the rectangle will grow to accommodate the new la-
bel (see Figure 9).

> grid.edit("plot_01.xlab",
+ label="Displacement",
+ gp=gpar(fontface="bold.italic"))

Displacement

m
pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 9: The lattice plot from Figure 4 with a rectan-
gle added around the modified x-axis label.

A more extreme example of post-processing is
demonstrated in the code below. In this case, we
again query the existing x-axis label to determine its

1This downViewport() works because the grid viewports that lattice creates to draw its plots all have names too!

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

10 CONTRIBUTED RESEARCH ARTICLES

width, but this time, rather than adding a rectangle,
we replace the label with a rectangle (in effect, we
“redact” the x-axis label; see Figure 10).

> xyplot(mpg ~ disp, mtcars)

> xaxisLabel <- grid.get("plot_01.xlab")
> grid.set("plot_01.xlab",
+ rectGrob(width=grobWidth(xaxisLabel) +
+ unit(2, "mm"),
+ height=unit(1, "lines"),
+ gp=gpar(fill="black"),
+ name="plot_01.xlab"))

m
pg

10

15

20

25

30

35

100 200 300 400

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Figure 10: The lattice plot from Figure 4 with the x-
axis label redacted (replaced with a black rectangle).

The display list now consists of the same num-
ber of grobs as in the original plot, but now the grob
named "plot_01.xlab" is a rectangle instead of text
(see the second line of the output below).

> grid.ls(fullNames=TRUE)

rect[plot_01.background]
rect[plot_01.xlab]
text[plot_01.ylab]
segments[plot_01.ticks.top.panel.1.1]
segments[plot_01.ticks.left.panel.1.1]
text[plot_01.ticklabels.left.panel.1.1]
segments[plot_01.ticks.bottom.panel.1.1]
text[plot_01.ticklabels.bottom.panel.1.1]
segments[plot_01.ticks.right.panel.1.1]
points[plot_01.xyplot.points.panel.1.1]
rect[plot_01.border.panel.1.1]

The artificial examples shown in this section so
far have been deliberately simple in an attempt to
make the basic concepts clear, but the ideas can be
applied on a much larger scale and to greater effect.
For example, the gridSVG package (Murrell, 2011)
uses these techniques to transform static R plots into

dynamic and interactive plots for use in web pages.
It has functions that modify existing grobs on the
grid display list to add extra information, like hyper-
links and animation, and it has functions that trans-
form each grob on the grid display list to SVG code.
The following code shows a simple demonstration
where the original lattice plot is converted to an SVG
document with a hyperlink on the x-axis label. Fig-
ure 11 shows the SVG document in a web browser.

> xyplot(mpg ~ disp, mtcars)

> library(gridSVG)

> url <-
+ "http://www.mortality.org/INdb/2008/02/12/8/document.pdf"

> grid.hyperlink("plot_01.xlab", href=url)
> gridToSVG("xyplot.svg")

Figure 11: The lattice plot from Figure 4 transformed
into an SVG document with a hyperlink on the x-axis
label.

The significant part of that code is the first argu-
ment in the call to the grid.hyperlink() function,
which demonstrates the ability to specify a plot com-
ponent by name.

More sophisticated embellishments are also pos-
sible with gridSVG because the names of plot com-
ponents are exported to SVG code as id attributes of
the corresponding SVG elements. This facilitates the
development of javascript code to allow user interac-
tion with the SVG plot and allows for the possibility
of CSS styling of the SVG plot.

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 11

Naming schemes

The basic message of this article is straightforward:
name everything that you draw with grid. However,
deciding what names to use—deciding on a naming
scheme—is not necessarily so easy.

The approach taken in the lattice package is to
attempt to reflect the structure of the plot in the nam-
ing scheme. For example, everything that is drawn
within a panel region has the word "panel" in its
name, along with a suffix of the form i.j to identify
the panel row and column.

The decision may be made a lot easier if a plot
is drawn from gTrees rather than simple grobs, be-
cause the gTrees reflect the plot structure already and
names for individual components can be chosen to
reflect just the “local” role of each plot component.
The naming scheme in the ggplot2 package (Wick-
ham, 2009) is an example of this approach.

In addition to the code developer deciding on a
naming scheme, the code user also faces the problem
of how to “discover” the names of the components
of a plot.

From the developer side, there is a responsi-
bility to document the naming scheme (for exam-
ple, the lattice naming scheme is described on the
packages’s R-Forge web site2). It may also be pos-
sible to provide a function interface to assist in
constructing the names of grobs (for example, the
trellis.grobname() function in lattice).

From the user side, there are tools that help to dis-
play the names of grobs in the current scene. This
article has demonstrated the grid.ls() function, but
there is also a showGrob() function, and the gridDe-
bug package (Murrell and Ly., 2011) provides some
more tools.

Caveats

The examples used for demonstrations in this arti-
cle are deliberately simplified to make explanations
clearer. This section addresses two complications
that have not been raised previously.

One issue is that, while each call to a grid draw-
ing function produces exactly one grob, a single call
to a drawing function may produce more than one
shape in the scene. In the very first example in this
article (Figure 1), the call to grid.circle() creates
one circle grob and draws one circle.

> grid.circle(r=.25, name="middleCircle")

The call to grid.text() also creates only one text
grob, but it draws three pieces of text.

> grid.text(c("text", "circle", "rect"),
+ x=1:3/4, gp=gpar(cex=c(3, 1, 1)),
+ name="leftText")

Modifying this text grob is slightly more complex
because there are three locations and three sets of
graphical parameter settings for this single grob. For
example, if we modify the text grob and supply a sin-
gle cex setting, that is applied to all pieces of text (see
Figure 12).

> grid.edit("leftText", gp=gpar(cex=2))

text circle rect

Figure 12: The simple shapes from Figure 1 with the
text grob modified using a single cex value.

If we want to control the cex for each piece of text
separately, we must provide three new settings (see
Figure 13).

> grid.edit("leftText", gp=gpar(cex=c(1, 2, 3)))

text circle rect
Figure 13: The simple shapes from Figure 1 with the
text grob modified using three distinct cex values.

Another topic that has not been mentioned is grid
viewports. This is because, although grid viewports
can also be named, they cannot be edited in the same
way as grobs (the names are only used for navigation
between viewports). Furthermore, grid does not al-
low the vp slot on a grob to be modified and the name
slot on grobs is also out of bounds. These limitations
are imposed because the consequences of allowing
modifications are either nonsensical or too complex
to currently be handled by grid.

Discussion

In summary, if we specify an explicit name for every
shape that we draw using grid, we allow low-level
access to every grob within a scene. This allows us
to make very detailed customisations to the scene,
without the need for long lists of arguments in high-
level plotting functions, and it allows us to query and
transform the scene in a wide variety of ways.

An alternative way to provide access to individ-
ual shapes within a plot is to allow the user to simply
select shapes on screen via a mouse. How does this
compare to a naming scheme?

2http://lattice.r-forge.r-project.org/documentation.php

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://lattice.r-forge.r-project.org/documentation.php

12 CONTRIBUTED RESEARCH ARTICLES

Selection using a mouse works well for some
sorts of modifications (see, for example, the play-
with package; Andrews, 2010), but providing access
to individual shapes by name is more efficient, more
general, and more powerful. For example, if we
write code to make modifications, referencing grobs
by name, we have a record of what we have done, we
can easily automate large numbers of modifications,
we can share our modification techniques, and we
can express more complex modifications (like “high-
light every sixth bar”).

Another alternative way to provide detailed con-
trol over a scene is simply to modify the original R
code that drew the scene. Why go to the bother of
naming grobs when we can just modify the original
R code?

If we have written the original code, then mod-
ifying the original code may be the right approach.
However, if we draw a plot using someone else’s
code (for example, if we call a lattice function), we do
not have easy access to the code that did the draw-
ing. Even though it is possible to see the code that
did the drawing, understanding it and then modi-
fying it may require a considerable effort, especially
when that code is of the size and complexity of the
code in the lattice package.

A parallel may be drawn between this idea of
naming every shape within a scene and the general
idea of markup . In a sense, what we are aiming to do
is to provide a useful label for each meaningful com-
ponent of a scene. Given tools that can select parts
of the scene based on the labels, the scene becomes a
“source” that can be transformed in many different
ways. When we draw a scene in this way, it is not
just an end point that satisfies our own goals. It also
creates a resource that others can make use of to pro-
duce new resources. When we write code to draw a
scene, we are not only concerned with producing an
image on screen or ink on a page; we also allow for
other possible uses of the scene in ways that we may
not have anticipated.

Acknowledgements

Thanks to Wolfgang Viechtbauer for useful com-
ments on an early draft of this article and to the
anonymous referees for numerous useful sugges-
tions for improvements.

Bibliography

F. Andrews. playwith: A GUI for interactive plots using
GTK+, 2010. URL http://CRAN.R-project.org/
package=playwith. R package version 0.9-53. [p12]

P. Murrell. gridSVG: Export grid graphics as SVG,
2011. URL http://CRAN.R-project.org/package=
gridSVG. R package version 0.7-0. [p10]

P. Murrell and V. Ly. gridDebug: Debugging Grid
Graphics, 2011. URL http://r-forge.r-project.
org/projects/griddebug/. R package version 0.2.
[p11]

D. Sarkar. Lattice: Multivariate Data Visualization with
R. Springer, New York, 2008. URL http://lmdvr.
r-forge.r-project.org. ISBN 978-0-387-75968-5.
[p7]

W. Viechtbauer. Conducting meta-analyses in R with
the metafor package. Journal of Statistical Software,
36(3):1–48, 2010. URL http://www.jstatsoft.
org/v36/i03/. [p5]

H. Wickham. ggplot2: elegant graphics for data analysis.
Springer New York, 2009. ISBN 978-0-387-98140-6.
URL http://had.co.nz/ggplot2/book. [p11]

Paul Murrell
Department of Statistics
The University of Auckland
New Zealand
paul@stat.auckland.ac.nz

The R Journal Vol. 4/2, December 2012 ISSN 2073-4859

http://CRAN.R-project.org/package=playwith
http://CRAN.R-project.org/package=playwith
http://CRAN.R-project.org/package=gridSVG
http://CRAN.R-project.org/package=gridSVG
http://r-forge.r-project.org/projects/griddebug/
http://r-forge.r-project.org/projects/griddebug/
http://lmdvr.r-forge.r-project.org
http://lmdvr.r-forge.r-project.org
http://www.jstatsoft.org/v36/i03/
http://www.jstatsoft.org/v36/i03/
http://had.co.nz/ggplot2/book
mailto:paul@stat.auckland.ac.nz

