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MARSS: Multivariate Autoregressive
State-space Models for Analyzing
Time-series Data
by Elizabeth E. Holmes, Eric J. Ward, Kellie Wills

Abstract MARSS is a package for fitting mul-
tivariate autoregressive state-space models to
time-series data. The MARSS package imple-
ments state-space models in a maximum like-
lihood framework. The core functionality of
MARSS is based on likelihood maximization us-
ing the Kalman filter/smoother, combined with
an EM algorithm. To make comparisons with
other packages available, parameter estimation
is also permitted via direct search routines avail-
able in ’optim’. The MARSS package allows
data to contain missing values and allows a wide
variety of model structures and constraints to
be specified (such as fixed or shared parame-
ters). In addition to model-fitting, the package
provides bootstrap routines for simulating data
and generating confidence intervals, and multi-
ple options for calculating model selection crite-
ria (such as AIC).

The MARSS package (Holmes et al., 2012) is an
R package for fitting linear multivariate autoregres-
sive state-space (MARSS) models with Gaussian er-
rors to time-series data. This class of model is ex-
tremely important in the study of linear stochas-
tic dynamical systems, and these models are used
in many different fields, including economics, engi-
neering, genetics, physics and ecology. The model
class has different names in different fields; some
common names are dynamic linear models (DLMs)
and vector autoregressive (VAR) state-space mod-
els. There are a number of existing R packages for
fitting this class of models, including sspir (Deth-
lefsen et al., 2009) for univariate data and dlm
(Petris, 2010), dse (Gilbert, 2009), KFAS (Helske,
2011) and FKF (Luethi et al., 2012) for multivari-
ate data. Additional packages are available on
other platforms, such as SsfPack (Durbin and Koop-
man, 2001), EViews (www.eviews.com) and Brodgar
(www.brodgar.com). Except for Brodgar and sspir,
these packages provide maximization of the like-
lihood surface (for maximum-likelihood parameter
estimation) via quasi-Newton or Nelder-Mead type
algorithms. The MARSS package was developed
to provide an alternative maximization algorithm,
based instead on an Expectation-Maximization (EM)
algorithm and to provide a standardized model-
specification framework for fitting different model
structures.

The MARSS package was originally developed
for researchers analyzing data in the natural and
environmental sciences, because many of the prob-
lems often encountered in these fields are not com-
monly encountered in disciplines like engineering
or finance. Two typical problems are high fractions
of irregularly spaced missing observations and ob-
servation error variance that cannot be estimated or
known a priori (Schnute, 1994). Packages developed
for other fields did not always allow estimation of
the parameters of interest to ecologists because these
parameters are always fixed in the package authors’
field or application. The MARSS package was de-
veloped to address these issues and its three main
differences are summarized as follows.

First, maximum-likelihood optimization in most
packages for fitting state-space models relies on
quasi-Newton or Nelder-Mead direct search rou-
tines, such as provided in optim (for dlm) or nlm
(for dse). Multidimensional state-space problems
often have complex, non-linear likelihood surfaces.
For certain types of multivariate state-space mod-
els, an alternative maximization algorithm exists;
though generally slower for most models, the EM-
algorithm (Metaxoglou and Smith, 2007; Shumway
and Stoffer, 1982), is considerably more robust than
direct search routines (this is particularly evident
with large amounts of missing observations). To
date, no R package for the analysis of multivariate
state-space models has implemented the EM algo-
rithm for maximum-likelihood parameter estimation
(sspir implements it for univariate models). In addi-
tion, the MARSS package implements an EM algo-
rithm for constrained parameter estimation (Holmes,
2010) to allow fixed and shared values within param-
eter matrices. To our knowledge, this constrained
EM algorithm is not implemented in any package,
although the Brodgar package implements a limited
version for dynamic factor analysis.

Second, model specification in the MARSS pack-
age has a one-to-one relationship to a MARSS model
as written in matrix form on paper. Any model that
can be written in MARSS form can be fitted with-
out extra code by the user. In contrast, other pack-
ages require users to write unique functions in ma-
trix form (a non-trivial task for many non-expert R
users). For example, while dlm includes linear and
polynomial univariate models, multivariate regres-
sion is not readily accessible without these custom
functions; in MARSS, all models written in matrix
form are fitted using the same model specification.
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The MARSS package also allows degenerate multi-
variate models to be fitted, which means that some
or all observation or process variances can be set to
0. This allows users to include deterministic features
in their models and to rewrite models with longer
lags or moving averaged errors as a MARSS model.

Third, the MARSS package provides algorithms
for computing model selection criteria that are spe-
cific for state-space models. Model selection crite-
ria are used to quantify the data support for differ-
ent model and parameter structures by balancing the
ability of the model to fit the data against the flex-
ibility of the model. The criteria computed in the
MARSS package are based on Akaike’s Information
Criterion (AIC). Models with the lowest AIC are in-
terpreted as receiving more data support. While AIC
and its small sample corrected version AICc are eas-
ily calculated for fixed effects models (these are stan-
dard output for lm and glm, for instance), these cri-
teria are biased for hierarchical or state-space au-
toregressive models. The MARSS package provides
an unbiased AIC criterion via innovations bootstrap-
ping (Cavanaugh and Shumway, 1997; Stoffer and
Wall, 1991) and parametric bootstrapping (Holmes,
2010). The package also provides functions for ap-
proximate and bootstrap confidence intervals, and
bias correction for estimated parameters.

The package comes with an extensive user guide
that introduces users to the package and walks the
user through a number of case studies involving eco-
logical data. The selection of case studies includes
estimating trends with univariate and multivariate
data, making inferences concerning spatial structure
with multi-location data, estimating inter-species in-
teraction strengths using multi-species data, using
dynamic factor analysis to reduce the dimension of a
multivariate dataset, and detecting structural breaks
in data sets. Though these examples have an eco-
logical focus, the analysis of multivariate time series
models is cross-disciplinary work and researchers in
other fields will likely benefit from these examples.

The MARSS model

The MARSS model includes a process model and
an observation model. The process component of
a MARSS model is a multivariate first-order autore-
gressive (MAR-1) process. The multivariate process
model takes the form

xt = Bxt−1 + u + wt; wt ∼ MVN(0,Q) (1)

The x is an m × 1 vector of state values, equally
spaced in time, and B, u and Q are the state pro-
cess parameters. The m×m matrix B allows interac-
tion between state processes; the diagonal elements
of B can also be interpreted as coefficients of auto-
regression in the state vectors through time. The vec-
tor u describes the mean trend or mean level (de-

pending on the B structure), and the correlation of
the process deviations is determined by the struc-
ture of the matrix Q. In version 2.x of the MARSS
package, the B and Q parameters are time-invariant;
however, in version 3.x, all parameters can be time-
varying and also the u can be moved into the x term
to specify models with an auto-regressive trend pro-
cess (called a stochastic level model).

Written out for two state processes, the MARSS
process model would be:[

x1
x2

]
t
=

[
b11 b12
b21 b22

][
x1
x2

]
t−1

+

[
u1
u2

]
+

[
w1
w2

]
t
,[

w1
w2

]
t
∼ MVN

(
0,
[

q11 q12
q21 q22

])
Some of the parameter elements will generally be
fixed to ensure identifiability. Within the MAR-1
form, MAR-p or autoregressive models with lag-p
and models with exogenous factors (covariates) can
be included by properly defining the B, x and Q ele-
ments. See for example Tsay (2010) where the formu-
lation of various time-series models as MAR-1 mod-
els is covered.

The initial state vector is specified at t = 0 or t = 1
as

x0 ∼ MVN(π,Λ) or x1 ∼ MVN(π,Λ) (2)

where π is the mean of the initial state distribution
or a constant. Λ specifies the variance of the initial
states or is specified as 0 if the initial state is treated
as fixed (but possibly unknown).

The multivariate observation component in a
MARSS model is expressed as

yt = Zxt + a + vt; vt ∼ MVN(0,R) (3)

where yt is an n× 1 vector of observations at time t,
Z is an n × m matrix, a is an n × 1 matrix, and the
correlation structure of observation errors is speci-
fied with the matrix R. Including Z and a is not
required for every model, but these parameters are
used when some state processes are observed mul-
tiple times (perhaps with different scalings) or when
observations are linear combinations of the state pro-
cesses (such as in dynamic factor analysis). Note that
time steps in the model are equidistant, but there is
no requirement that there be an observation at ev-
ery time step; y may have missing values scattered
thoughout it.

Written out for three observation processes and
two state processes, the MARSS observation model
would bey1

y2
y3


t
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[x1
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]
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Again, some of the parameter elements will gener-
ally be fixed to ensure identifiability.

The MARSS process and observation models are
flexible and many multivariate time-series models
can be rewritten in MARSS form. See textbooks
on time series analysis where reformulating AR-p,
ARMA-p as a MARSS model is covered (such as
Tsay, 2010; Harvey, 1989).

Package overview

The package is designed to fit MARSS models with
fixed and shared elements within the parameter ma-
trices. The following shows such a model using a
mean-reverting random walk model with three ob-
servation time series as an example:[

x1
x2

]
t
=

[
b 0
0 b

][
x1
x2

]
t−1

+

[
0
0

]
+

[
w1
w2

]
t

(4a)

[
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]
t
∼ MVN

(
0,
[
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q12 q22

])
(4b)

[
x1
x2

]
0
∼ MVN

([
0
0

]
,
[

1 0
0 1

])
(4c)
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]
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0
0
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(4d)

v1
v2
v3


t

∼ MVN

0,

r1 0 0
0 r2 0
0 0 r2

 (4e)

Notice that many parameter elements are fixed,
while others are shared (have the same symbol).

Model specification

Model specification has a one-to-one relationship to
the model written on paper in matrix form (Equa-
tion 4). The user passes in a list which includes an
element for each parameter in the model: B, U, Q, Z,
A, R, x0, V0. The list element specifies the form of the
corresponding parameter in the model.

The most general way to specify a parameter
form is to use a list matrix. The list matrix allows
one to combine fixed and estimated elements in one’s
parameter specification. For example, to specify the
parameters in Equation 4, one would write the fol-
lowing list matrices:

> B1 = matrix(list("b", 0, 0, "b"), 2, 2)
> U1 = matrix(0, 2, 1)
> Q1 = matrix(c("q11", "q12", "q12", "q22"), 2, 2)
> Z1 = matrix(c(1, 0, 1, 0, 1, 0), 3, 2)
> A1 = matrix(list("a1", 0, 0), 3, 1)
> R1 = matrix(list("r1", 0, 0, 0, "r2", 0,
+ 0, 0, "r2"), 3, 3)
> pi1 = matrix(0, 2, 1)
> V1 = diag(1, 2)

> model.list = list(B = B1, U = U1, Q = Q1, Z = Z1,
+ A = A1, R = R1, x0 = pi1, V0 = V1)

When printed at the R command line, each parame-
ter matrix looks exactly like the parameters as writ-
ten out in Equation 4. Numeric values are fixed and
character values are names of elements to be esti-
mated. Elements with the same character name are
constrained to be equal (no sharing across parameter
matrices, only within).

List matrices allow the most flexible model struc-
tures, but MARSS also has text shortcuts for many
common model structures. The structure of the
variance-covariance matrices in the model are spec-
ified via the Q, R, and V0 components, respectively.
Common structures are errors independent with one
variance on the diagonal (specified with "diagonal
and equal") or all variances different ("diagonal
and unequal"); errors correlated with the same cor-
relation parameter ("equalvarcov") or correlated
with each process having unique correlation param-
eters ("unconstrained"), or all zero ("zero"). Com-
mon structures for the matrix B are an identity
matrix ("identity"); a diagonal matrix with one
value on the diagonal ("diagonal and equal") or
all different values on the diagonal ("diagonal and
unequal"), or all values different ("unconstrained").
Common structures for the u and a parameters
are all equal ("equal"); all unequal ("unequal" or
"unconstrained"), or all zero ("zero").

The Z matrix is idiosyncratic and there are fewer
shortcuts for its specification. One common form for
Z is a design matrix, composed of 0s and 1s, in which
each row sum equals 1. This is used when each y in y
is associated with one x in x (one x may be associated
with multiple y’s). In this case, Z can be specified us-
ing a factor of length n. The factor specifies to which
x each of the n y’s correspond. For example, the Z in
Equation 4 could be specified factor(c(1,2,1)) or
factor(c("a","b","a")).

Model fitting with the MARSS function

The main package function is MARSS. This function
fits a MARSS model (Equations 1 and 3) to a matrix of
data and returns the maximum-likelihood estimates
for the B, u, Q, Z, a, R, π, and Λ parameters or
more specifically, the free elements in those param-
eters since many elements will be fixed for a given
model form. The basic MARSS call takes the form:

> MARSS(data, model = model.list)

where model.list has the form shown in the R code
above. The data must be passed in as an n× T ma-
trix, that is time goes across columns. A vector is not
a matrix, nor is a data frame. A matrix of 3 inputs
(n = 3) measured for 6 time steps might look like

y =

 1 2 NA NA 3.2 8
2 5 3 NA 5.1 5
1 NA 2 2.2 NA 7


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where NA denotes a missing value. Note that the
time steps are equidistant, but there may not be data
at each time step, thus the observations are not con-
strained to be equidistant.

The only required argument to MARSS is a ma-
trix of data. The model argument is an optional ar-
gument, although typically included, which speci-
fies the form of the MARSS model to be fitted (if
left off, a default form is used). Other MARSS ar-
guments include initial parameter values (inits), a
non-default value for missing values (miss.value),
whether or not the model should be fitted (fit),
whether or not output should be verbose (silent),
and the method for maximum-likelihood estima-
tion (method). The default method is the EM al-
gorithm (‘method = "kem"’), but the quasi-Newton
method BFGS is also allowed (‘method = "BFGS"’).
Changes to the default fitting algorithm are specified
with control; for example, control$minit is used to
change the minimum number of iterations used in
the maximization algorithm. Use ?MARSS to see all
the control options.

Each call to the MARSS function returns an ob-
ject of class "marssMLE", an estimation object. The
marssMLE object is a list with the following elements:
the estimated parameter values (par), Kalman fil-
ter and smoother output (kf), convergence diagnos-
tics (convergence, numIter, errors, logLik), basic
model selection metrics (AIC, AICc), and a model ob-
ject model which contains both the MARSS model
specification and the data. Further list elements, such
as bootstrap AIC or confidence intervals, are added
with functions that take a marssMLE object as input.

Model selection and confidence intervals

One of the most commonly used model selec-
tion tools in the maximum-likelihood framework is
Akaike’s Information Criterion (AIC) or the small
sample variant (AICc). Both versions are returned
with the call to MARSS. A state-space specific model
selection metric, AICb (Cavanaugh and Shumway,
1997; Stoffer and Wall, 1991), can be added to a
marssMLE object using the function MARSSaic.

The function MARSSparamCIs is used to add con-
fidence intervals and bias estimates to a marssMLE
object. Confidence intervals may be computed by
resampling the Kalman innovations if all data are
present (innovations bootstrapping) or implement-
ing a parametric bootstrap if some data are miss-
ing (parametric bootstraping). All bootstrapping
in the MARSS package is done with the lower-
level function MARSSboot. Because bootstrapping can
be time-consuming, MARSSparamCIs also allows ap-
proximate confidence intervals to be calculated with
a numerically estimated Hessian matrix. If boot-
strapping is used to generate confidence intervals,
MARSSparamCIs will also return a bootstrap estimate
of parameter bias.

Estimated state trajectories

In addition to outputting the maximum-likelihood
estimates of the model parameters, the MARSS call
will also output the maximum-likelihood estimates
of the state trajectories (the x in the MARSS model)
conditioned on the entire dataset. These states
represent output from the Kalman smoother us-
ing the maximum-likelihood parameter values. The
estimated states are in the states element in the
marssMLE object output from a MARSS call. The stan-
dard errors of the state estimates are in element
states.se of the marssMLE object. For example, if a
MARSS model with one state (m = 1) was fitted to
data and the output placed in fit, the state estimates
and ± 2 standard errors could be plotted with the
following code:

> plot(fit$states, type = "l", lwd = 2)
> lines(fit$states - 2*fit$states.se)
> lines(fit$states + 2*fit$states.se)

Example applications

To demonstrate the MARSS package functionality,
we show a series of short examples based on a few of
the case studies in the MARSS User Guide. The user
guide includes much more extensive analysis and in-
cludes many other case studies. All the case studies
are based on analysis of ecological data, as this was
the original motivation for the package.

Trend estimation

A commonly used model in ecology describing
the dynamics of a population experiencing density-
dependent growth is the Gompertz model (Red-
dingius and den Boer, 1989; Dennis and Taper, 1994).
The population dynamics are stochastic and driven
by the combined effects of environmental variation
and random demographic variation.

The log-population sizes from this model can be
described by an AR-1 process:

xt = bxt−1 + u + wt; wt ∼ Normal(0, σ2) (5)

In the absence of density dependence (b = 1), the ex-
ponential growth rate or rate of decline of the pop-
ulation is controlled by the parameter u; when the
population experiences density-dependence (|b| <
1), the population will converge to an equilibrium
u/(1− b). The initial states are given by

x0 ∼ Normal(π,λ) (6)

The observation process is described by

yt = xt + vt; vt ∼ Normal(0, η2) (7)

where y is a vector of observed log-population sizes.
The bias parameter, a, has been set equal to 0.
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This model with b set to 1 is a standard model
used for species of concern (Dennis et al., 1991) when
the population is well below carrying capacity and
the goal is to estimate the underlying trend (u) for
use in population viability analysis (Holmes, 2001;
Holmes et al., 2007; Humbert et al., 2009). To illus-
trate a simple trend analysis, we use the graywhales
dataset included in the MARSS package. This data
set consists of 24 abundance estimates of eastern
North Pacific gray whales (Gerber et al., 1999). This
population was depleted by commercial whaling
prior to 1900 and has steadily increased since the first
abundance estimates were made in the 1950s (Gerber
et al., 1999). The dataset consists of 24 annual obser-
vations over 39 years, 1952–1997; years without an
estimate are denoted as NA. The time step between
observations is one year and the goal is to estimate
the annual rate of increase (or decrease).

After log-transforming the data, maximum-
likelihood parameter estimates can be calculated us-
ing MARSS:

> data(graywhales)
> years = graywhales[,1]
> loggraywhales = log(graywhales[,2])
> kem = MARSS(loggraywhales)

The MARSS wrapper returns an object of class
"marssMLE", which contains the parameter estimates
(kem$par), state estimates (kem$states) and their
standard errors (kem$states.se). The state estimates
can be plotted with ± 2 standard errors, along with
the original data (Figure 1).
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Figure 1: Maximum-likelihood estimates of east-
ern North Pacific gray whales (solid line) population
size, with data (points) and 2 standard errors (dashed
lines). Additional examples of trend estimation may
be found in MARSS User Guide.

Identification of spatial population struc-
ture using model selection

In population surveys, censuses are often taken at
multiple sites and those sites may or may not be con-
nected through dispersal. Adjacent sites with high
exchange rates of individuals will synchronize sub-
populations (making them behave as a single sub-
population), while sites with low mixing rates will
behave more independently as discrete subpopula-
tions. We can use MARSS models and model selec-
tion to test hypotheses concerning the spatial struc-
ture of a population (Hinrichsen, 2009; Hinrichsen
and Holmes, 2009; Ward et al., 2010).

For the multi-site application, x is a vector of
abundance in each of m subpopulations and y is a
vector of n observed time series associated with n
sites. The number of underlying processes, m, is con-
trolled by the user and not estimated. In the multi-
site scenario, Z, controls the assignment of survey
sites to subpopulations. For instance, if the popula-
tion is modeled as having four independent subpop-
ulations and the first two were surveyed at one site
each and the third was surveyed at two sites, then Z
is a 4× 3 matrix with (1, 0, 0, 0) in the first column,
(0, 1, 0, 0) in the second and (0, 0, 1, 1) in the third.
In the model argument for the MARSS function, we
could specify this as ‘Z = as.factor(c(1,2,3,3))’.
The Q matrix controls the temporal correlation in the
process errors for each subpopulation; these errors
could be correlated or uncorrelated. The R matrix
controls the correlation structure of observation er-
rors between the n survey sites.

The dataset harborSeal in the MARSS package
contains survey data for harbor seals on the west
coast of the United States. We can test the hypoth-
esis that the four survey sites in Puget Sound (Wash-
ington state) are better described by one panmictic
population measured at four sites versus four inde-
pendent subpopulations.

> dat = t(log(harborSeal[,4:7]))
> harbor1 = MARSS(dat,
+ model = list(Z = factor(rep(1, 4))))
> harbor2 = MARSS(dat,
+ model = list(Z = factor(1:4)))

The default model settings of ‘Q = "diagonal and
unequal"’, ‘R = "diagonal and equal"’, and ‘B =
"identity"’ are used for this example. The AICc
value for the one subpopulation surveyed at four
sites is considerably smaller than the four subpopu-
lations model. This suggests that these four sites are
within one subpopulation (which is what one would
expect given their proximity and lack of geographic
barriers).

> harbor1$AICc

[1] -280.0486
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> harbor2$AICc

[1] -254.8166

We can add a bootstrapped AIC using the func-
tion MARSSaic.

> harbor1 = MARSSaic(harbor1,
+ output = c("AICbp"))

We can add a confidence intervals to the estimated
parameters using the function MARSSparamCIs.

> harbor1 = MARSSparamCIs(harbor1)

The MARSS default is to compute approximate confi-
dence intervals using a numerically estimated Hes-
sian matrix. Two full model selection exercises can
be found in the MARSS User Guide.

Analysis of animal movement data

Another application of state-space modeling is iden-
tification of true movement paths of tagged animals
from noisy satellite data. Using the MARSS package
to analyze movement data assumes that the obser-
vations are equally spaced in time, or that enough
NAs are included to make the observations spaced ac-
cordingly. The MARSS package includes the satel-
lite tracks from eight tagged sea turtles, which can
be used to demonstrate estimation of location from
noisy data.

Estimated track
Observed locations

Figure 2: Estimated movement track for one turtle
(“Big Mama”) using a two-dimensional state-space
model. The MARSS User Guide shows how to pro-
duce this figure from the satellite data provided with
the package.

The data consist of daily longitude and latitude
for each turtle. The true location is the underlying

state x, which is two-dimensional (latitude and lon-
gitude) and we have one observation time series for
each state process. To model movement as a random
walk with drift in two dimensions, we set B equal
to an identity matrix and constrain u to be unequal
to allow for non-isotrophic movement. We constrain
the process and observation variance-covariance ma-
trices (Q, R) to be diagonal to specify that the errors
in latitude and longitude are independent. Figure 2
shows the estimated locations for the turtle named
“Big Mama”.

Estimation of species interactions from
multi-species data

Ecologists are often interested in inferring species in-
teractions from multi-species datasets. For example,
Ives et al. (2003) analyzed four time series of preda-
tor (zooplankton) and prey (phytoplankton) abun-
dance estimates collected weekly from a freshwater
lake over seven years. The goal of their analysis was
to estimate the per-capita effects of each species on
every other species (predation, competition), as well
as the per-capita effect of each species on itself (den-
sity dependence). These types of interactions can be
modeled with a multivariate Gompertz model:

xt = Bxt−1 + u + wt; wt ∼ MVN(0,Q) (8)

The B matrix is the interaction matrix and is the main
parameter to be estimated. Here we show an exam-
ple of estimating B using one of the Ives et al. (2003)
datasets. This is only for illustration; in a real analy-
sis, it is critical to take into account the important en-
vironmental covariates, otherwise correlation driven
by a covariate will affect the B estimates. We show
how to incorporate covariates in the MARSS User
Guide.

The first step is to log-transform and de-mean the
data:

> plank.dat = t(log(ivesDataByWeek[,c("Large Phyto",
+ "Small Phyto","Daphnia","Non-daphnia")]))
> d.plank.dat = (plank.dat - apply(plank.dat, 1,
+ mean, na.rm = TRUE))

Second, we specify the MARSS model structure. We
assume that the process variances of the two phyto-
plankton species are the same and that the process
variances for the two zooplankton are the same. But
we assume that the abundance of each species is an
independent process. Because the data have been de-
meaned, the parameter u is set to zero. Following
Ives et al. (2003), we set the observation error to 0.04
for phytoplankton and to 0.16 for zooplankton. The
model is specified as follows

> Z = factor(rownames(d.plank.dat))
> U = "zero"
> A = "zero"
> B = "unconstrained"
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> Q = matrix(list(0), 4, 4)
> diag(Q) = c("Phyto", "Phyto", "Zoo", "Zoo")
> R = diag(c(0.04, 0.04, 0.16, 0.16))
> plank.model = list(Z = Z, U = U, Q = Q,
+ R = R, B = B, A = A, tinitx=1)

We do not specify x0 or V0 since we assume the
default behavior which is that the initial states are
treated as estimated parameters with 0 variance.

We can fit this model using MARSS:

> kem.plank = MARSS(d.plank.dat,
+ model = plank.model)

> B.est = matrix(kem.plank$par$B, 4, 4)
> rownames(B.est) = colnames(B.est) =
+ c("LP", "SP", "D", "ND")
> print(B.est, digits = 2)

LP SP D ND
LP 0.549 -0.23 0.096 0.085
SP -0.058 0.52 0.059 0.014
D 0.045 0.27 0.619 0.455
ND -0.097 0.44 -0.152 0.909

where "LP" and "SP" represent large and small phy-
toplankton, respectively, and "D" and "ND" represent
the two zooplankton species, “Daphinia” and “Non-
Daphnia”, respectively.

Elements on the diagonal of B indicate the
strength of density dependence. Values near 1 in-
dicate no density dependence; values near 0 indi-
cate strong density dependence. Elements on the off-
diagonal of B represent the effect of species j on the
per-capita growth rate of species i. For example, the
second time series (small phytoplankton) appears to
have relatively strong positive effects on both zoo-
plankton time series. This is somewhat expected, as
more food availability might lead to higher predator
densities. The predators appear to have relatively lit-
tle effect on their prey; again, this is not surprising
as phytoplankton densities are often strongly driven
by environmental covariates (temperature and pH)
rather than predator densities. Our estimates of B are
different from those presented by Ives et al. (2003); in
the MARSS User Guide we illustrate how to recover
the estimates in Ives et al. (2003) by fixing elements
to zero and including covariates.

Dynamic factor analysis

In the previous examples, each observed time se-
ries was representative of a single underlying state
process, though multiple time series may be obser-
vations of the same state process. This is not a re-
quirement for a MARSS model, however. Dynamic
factor analysis (DFA) also uses MARSS models but
treats each observed time series as a linear combina-
tion of multiple state processes. DFA has been ap-
plied in a number of fields (e.g. Harvey, 1989) and
can be thought of as a principal components analysis
for time-series data (Zuur et al., 2003a,b). In a DFA,

the objective is to estimate the number of underly-
ing state processes, m, and the Z matrix now rep-
resents how these state processes are linearly com-
bined to explain the larger set of n observed time se-
ries. Model selection is used to select the size of m
and the objective is to find the most parsimonious
number of underlying trends (size of m) plus their
weightings (Z matrix) that explain the larger dataset.

To illustrate, we show results from a DFA analysis
for six time series of plankton from Lake Washington
(Hampton et al., 2006). Using model selection with
models using m = 1 to m = 6, we find that the best
(lowest AIC) model has four underlying trends, re-
duced from the original six. When m = 4, the DFA
observation process then has the following form:


y1,t
y2,t
y3,t
y4,t
y5,t
y6,t

 =


γ11 0 0 0
γ21 γ22 0 0
γ31 γ32 γ33 0
γ41 γ42 γ43 γ44
γ51 γ52 γ53 γ54
γ61 γ62 γ63 γ64

xt +


a1
a2
a3
a4
a5
a6

+


v1,t
v2,t
v3,t
v4,t
v5,t
v6,t


Figure 3 shows the fitted data with the four state tra-
jectories superimposed.

The benefit of reducing the data with DFA is that
we can reduce a larger dataset into a smaller set of
underlying trends and we can use factor analysis to
identify whether some time series fall into clusters
represented by similar trend weightings. A more de-
tailed description of dynamic factor analysis, includ-
ing the use of factor rotation to intrepret the Z matrix,
is presented in the MARSS User Guide.
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Figure 3: Results of a dynamic factor analysis ap-
plied to the Lake Washington plankton data. Colors
represent estimated state trajectories and black lines
represent the fitted values for each species.
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Summary

We hope this package will provide scientists in a va-
riety of disciplines some useful tools for the analy-
sis of noisy univariate and multivariate time-series
data, and tools to evaluate data support for different
model structures for time-series observations. Future
development will include Bayesian estimation and
constructing non-linear time-series models.
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