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Nonparametric Goodness-of-Fit Tests for
Discrete Null Distributions
by Taylor B. Arnold and John W. Emerson

Abstract Methodology extending nonparamet-
ric goodness-of-fit tests to discrete null distribu-
tions has existed for several decades. However,
modern statistical software has generally failed
to provide this methodology to users. We offer
a revision of R’s ks.test() function and a new
cvm.test() function that fill this need in the R
language for two of the most popular nonpara-
metric goodness-of-fit tests. This paper describes
these contributions and provides examples of
their usage. Particular attention is given to vari-
ous numerical issues that arise in their implemen-
tation.

Introduction

Goodness-of-fit tests are used to assess whether data
are consistent with a hypothesized null distribution.
The χ2 test is the best-known parametric goodness-
of-fit test, while the most popular nonparametric
tests are the classic test proposed by Kolmogorov
and Smirnov followed closely by several variants on
Cramér-von Mises tests.

In their most basic forms, these nonparametric
goodness-of-fit tests are intended for continuous hy-
pothesized distributions, but they have also been
adapted for discrete distributions. Unfortunately,
most modern statistical software packages and pro-
gramming environments have failed to incorporate
these discrete versions. As a result, researchers would
typically rely upon the χ2 test or a nonparametric
test designed for a continuous null distribution. For
smaller sample sizes, in particular, both of these
choices can produce misleading inferences.

This paper presents a revision of R’s ks.test()
function and a new cvm.test() function to fill this
void for researchers and practitioners in the R environ-
ment. This work was motivated by the need for such
goodness-of-fit testing in a study of Olympic figure
skating scoring (Emerson and Arnold, 2011). We first
present overviews of the theory and general imple-
mentation of the discrete Kolmogorov-Smirnov and
Cramér-von Mises tests. We discuss the particular im-
plementation of the tests in R and provide examples.
We conclude with a short discussion, including the
state of existing continuous and two-sample Cramér-
von Mises testing in R.

Kolmogorov-Smirnov test

Overview

The most popular nonparametric goodness-of-fit test
is the Kolmogorov-Smirnov test. Given the cumula-
tive distribution function F0(x) of the hypothesized
distribution and the empirical distribution function
Fdata(x) of the observed data, the test statistic is given
by

D = sup
x
|F0(x)− Fdata(x)| (1)

When F0 is continuous, the distribution of D does not
depend on the hypothesized distribution, making this
a computationally attractive method. Slakter (1965)
offers a standard presentation of the test and its perfor-
mance relative to other algorithms. The test statistic is
easily adapted for one-sided tests. For these, the abso-
lute value in (1) is discarded and the tests are based on
either the supremum of the remaining difference (the
‘greater’ testing alternative) or by replacing the supre-
mum with a negative infimum (the ‘lesser’ hypothesis
alternative). Tabulated p-values have been available
for these tests since 1933 (Kolmogorov, 1933).

The extension of the Kolmogorov-Smirnov test
to non-continuous null distributions is not straight-
forward. The formula of the test statistic D remains
unchanged, but its distribution is much more diffi-
cult to obtain; unlike the continuous case, it depends
on the null model. Use of the tables associated with
continuous hypothesized distributions results in con-
servative p-values when the null distribution is dis-
continuous (see Slakter (1965), Goodman (1954), and
Massey (1951)). In the early 1970’s, Conover (1972)
developed the method implemented here for comput-
ing exact one-sided p-values in the case of discrete
null distributions. The method developed in Gleser
(1985) is used to provide exact p-values for two-sided
tests.

Implementation

The implementation of the discrete Kolmogorov-
Smirnov test involves two steps. First, the particular
test statistic is calculated (corresponding to the de-
sired one-sided or two-sided test). Then, the p-value
for that particular test statistic may be computed.

The form of the test statistic is the same as in the
continuous case; it would seem that no additional
work would be required for the implementation, but
this is not the case. Consider two non-decreasing func-
tions f and g, where the function f is a step function
with jumps on the set {x1, . . . xN} and g is continu-
ous (the classical Kolmogorov-Smirnov situation). In
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order to determine the supremum of the difference
between these two functions, notice that

sup
x
| f (x)− g(x)|

= max
i

[
max

(
|g(xi)− f (xi)| ,

lim
x→xi
|g(x)− f (xi−1)|

)]
(2)

= max
i

[
max

(
|g(xi)− f (xi)| ,

|g(xi)− f (xi−1)|
)]

(3)

Computing the maximum over these 2N values (with
f equal to Fdata(x) and g equal to F0(x) as defined
above) is clearly the most efficient way to compute
the Kolmogorov-Smirnov test statistic for a contin-
uous null distribution. When the function g is not
continuous, however, equality (3) does not hold in
general because we cannot replace limx→xi g(x) with
the value g(xi).

If it is known that g is a step function, it follows
that for some small ε,

sup
x
| f (x)− g(x)| =

max
i

(|g(xi)− f (xi)| , |g(xi − ε)− f (xi−1)|) (4)

where the discontinuities in g are more than some dis-
tance ε apart. This, however, requires knowledge that
g is a step function as well as of the nature of its sup-
port (specifically, the break-points). As a result, we
implement the Kolmogorov-Smirnov test statistic for
discrete null distributions by requiring the complete
specification of the null distribution.

Having obtained the test statistic, the p-value must
then be calculated. When an exact p-value is required
for smaller sample sizes, the methodology in Conover
(1972) is used in for one-sided tests. For two-sided
tests, the methods presented in Gleser (1985) lead to
exact two-sided p-values. This requires the calcula-
tion of rectangular probabilities for uniform order
statistics as discussed by Niederhausen (1981). Full
details of the calculations are contained in source code
of our revised function ks.test() and in the papers
of Conover and Gleser.

For larger sample sizes (or when requested for
smaller sample sizes), the classical Kolmogorov-
Smirnov test is used and is known to produce conser-
vative p-values for discrete distributions; the revised
ks.test() supports estimation of p-values via simu-
lation if desired.

Cramér-von Mises tests

Overview

While the Kolmogorov-Smirnov test may be the most
popular of the nonparametric goodness-of-fit tests,
Cramér-von Mises tests have been shown to be more
powerful against a large class of alternatives hypothe-
ses. The original test was developed by Harald
Cramér and Richard von Mises (Cramér, 1928; von
Mises, 1928) and further adapted by Anderson and
Darling (1952), and Watson (1961). The original test
statistic, W2, Anderson’s A2, and Watson’s U2 are:

W2 = n ·
∫ ∞

−∞
[Fdata(x)− F0(x)]2 dF0(x) (5)

A2 = n ·
∫ ∞

−∞

[Fdata(x)− F0(x)]2

F0(x)− F0(x)2 dF0(x) (6)

U2 = n ·
∫ ∞

−∞

[
Fdata(x)− F0(x)−W2

]2
dF0(x) (7)

As with the original Kolmogorov-Smirnov test statis-
tic, these all have test statistic null distributions which
are independent of the hypothesized continuous mod-
els. The W2 statistic was the original test statistic. The
A2 statistic was developed by Anderson in the pro-
cess of generalizing the test for the two-sample case.
Watson’s U2 statistic was developed for distributions
which are cyclic (with an ordering to the support but
no natural starting point); it is invariant to cyclic re-
ordering of the support. For example, a distribution
on the months of the year could be considered cyclic.

It has been shown that these tests can be more
powerful than Kolmogorov-Smirnov tests to certain
deviations from the hypothesized distribution. They
all involve integration over the whole range of data,
rather than use of a supremum, so they are best-suited
for situations where the true alternative distribution
deviates a little over the whole support rather than
having large deviations over a small section of the
support. Stephens (1974) offers a comprehensive anal-
ysis of the relative powers of these tests.

Generalizations of the Cramér-von Mises tests to
discrete distributions were developed in Choulakian
et al. (1994). As with the Kolmogorov-Smirnov test,
the forms of the test statistics are unchanged, and
the null distributions of the test statistics are again
hypothesis-dependent. Choulakian et al. (1994) does
not offer finite-sample results, but rather shows that
the asymptotic distributions of the test statistics un-
der the null hypothesis each involve consideration of
a weighted sum of independent chi-squared variables
(with the weights depending on the particular null
distribution).

Implementation

Calculation of the three test statistics is done using
the matrix algebra given by Choulakian et al. (1994).
The only notable difficulty in the implementation of
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the discrete form of the tests involves calculating the
percentiles of the weighted sum of chi-squares,

Q =
p

∑
i=1

λiχ
2
i,1d f (8)

where p is the number of elements in the support of
the hypothesized distribution. Imhof (1961) provides
a method for obtaining the distribution of Q, easily
adapted for our case because the chi-squared vari-
ables have only one degree of freedom. The exact
formula given for the distribution function of Q is
given by

P{Q ≥ x} = 1
2
+

1
π

∫ ∞

0

sin [θ(u, x)]
uρ(u)

du (9)

for continuous functions θ(·, x) and ρ(·) depending
on the weights λi.

There is no analytic solution to the integral in (9),
so the integration is accomplished numerically. This
seems fine in most situations we considered, but nu-
merical issues appear in the regime of large test statis-
tics x (or, equivalently, small p-values). The function
θ(·, x) is linear in x; as the test statistic grows the cor-
responding periodicity of the integrand decreases and
the approximation becomes unstable. As an example
of this numerical instability, the red plotted in Figure
1 shows the non-monotonicity of the numerical eval-
uation of equation (9) for a null distribution that is
uniform on the set {1,2,3}.
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Figure 1: Plot of calculated p-values for given test
statistics using numerical integration (red) compared
to the conservative chi-squared bound (dashed blue)
and the Markov inequality bound (dashed green).
The null distribution is uniform on the set {1,2,3} in
this example. The sharp variations in the calculated
p-values are a result of numerical instabilities, and
the true p-values are bounded by the dashed curves.

We resolve this problem by using a combination of
two conservative approximations to avoid the numeri-

cal instability. First, consider the following inequality:

P

(
p

∑
i=1

λiχ
2
1 ≥ x

)
≤ P

(
λmax

p

∑
i=1

χ2
1 ≥ x

)
(10)

= P

(
χ2

p ≥
x

p λmax

)
(11)

The values for the weighted sum can be bounded
using a simple transformation and a chi-squared dis-
tribution of a higher degree of freedom. Second, con-
sider the Markov inequality:

P

(
p

∑
i=1

λiχ
2
1 ≥ x

)
≤

E

[
exp

(
t

p

∑
i=1

λiZ2
i

)]
exp(−tx) (12)

=
exp(−tx)√

∏
p
i=1(1− 2tλi)

(13)

where the bound can be minimized over t ∈
(0,1/2λmax). The upper bounds for the p-value given
by (11) and (13) are both calculated and the smaller
is used in cases where the numerical instability of (9)
may be a concern.

The original formulation, numerical integration of
(9), is preferable for most p-values, while the upper
bound described above is used for smaller p-values
(smaller than 0.001, based on our observations of the
numerical instability of the original formulation). Fig-
ure 1 shows the bounds with the blue and green
dashed lines; values in red exceeding the bounds
are a result of the numerical instability. Although
it would be preferable to determine the use of the
bound based on values of the test statistic rather than
the p-value, the range of “extreme” values of the test
statistic varies with the hypothesized distribution.

Kolmogorov-Smirnov and Cramér-
von Mises tests in R

Functions ks.test() and cvm.test() are provided
for convenience in package dgof, available on
CRAN. Function ks.test() offers a revision of R’s
Kolmogorov-Smirnov function ks.test() from rec-
ommended package stats; cvm.test() is a new func-
tion for Cramér-von Mises tests.

The revised ks.test() function supports one-
sample tests for discrete null distributions by allowing
the second argument, y, to be an empirical cumula-
tive distribution function (an R function with class
"ecdf") or an object of class "stepfun" specifying a
discrete distribution. As in the original version of
ks.test(), the presence of ties in the data (the first
argument, x) generates a warning unless y describes a
discrete distribution. If the sample size is less than or
equal to 30, or when exact=TRUE, exact p-values are
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provided (a warning is issued when the sample size
is greater than 30 due to possible numerical instabili-
ties). When exact = FALSE (or when exact is unspec-
ified and the sample size is greater than 30) the classi-
cal Kolmogorov-Smirnov null distribution of the test
statistic is used and resulting p-values are known to
be conservative though imprecise (see Conover (1972)
for details). In such cases, simulated p-values may
be desired, produced by the simulate.p.value=TRUE
option.

The function cvm.test() is similar in design to
ks.test(). Its first two arguments specify the data
and null distribution; the only extra option, type,
specifies the variant of the Cramér-von Mises test:

x a numerical vector of data values.

y an ecdf or step-function (stepfun) for specifying
the null model

type the variant of the Cramér-von Mises test; W2 is
the default and most common method, U2 is for
cyclical data, and A2 is the Anderson-Darling
alternative.

As with ks.test(), cvm.test() returns an object of
class "htest".

Examples

Consider a toy example with observed data of length
2 (specifically, the values 0 and 1) and a hypothesized
null distribution that places equal probability on the
values 0 and 1. With the current ks.test() function in
R (which, admittedly, doesn’t claim to handle discrete
distributions), the reported p-value, 0.5, is clearly in-
correct:

> stats::ks.test(c(0, 1), ecdf(c(0, 1)))

One-sample Kolmogorov-Smirnov test

data: c(0, 1)
D = 0.5, p-value = 0.5
alternative hypothesis: two-sided

Instead, the value of D given in equation (1) should
be 0 and the associated p-value should be 1. Our re-
vision of ks.test() fixes this problem when the user
provides a discrete distribution:

> library(dgof)
> dgof::ks.test(c(0, 1), ecdf(c(0, 1)))

One-sample Kolmogorov-Smirnov test

data: c(0, 1)
D = 0, p-value = 1
alternative hypothesis: two-sided

Next, we simulate a sample of size 25 from the dis-
crete uniform distribution on the integers {1,2, . . . ,10}

and show usage of the new ks.test() implementa-
tion. The first is the default two-sided test, where the
exact p-value is obtained using the methods of Gleser
(1985).

> set.seed(1)
> x <- sample(1:10, 25, replace = TRUE)
> x

[1] 3 4 6 10 3 9 10 7 7 1 3 2 7
[14] 4 8 5 8 10 4 8 10 3 7 2 3

> dgof::ks.test(x, ecdf(1:10))

One-sample Kolmogorov-Smirnov test

data: x
D = 0.08, p-value = 0.9354
alternative hypothesis: two-sided

Next, we conduct the default one-sided test, where
Conover’s method provides the exact p-value (up to
the numerical precision of the implementation):

> dgof::ks.test(x, ecdf(1:10),
+ alternative = "g")

One-sample Kolmogorov-Smirnov test

data: x
D^+ = 0.04, p-value = 0.7731
alternative hypothesis:
the CDF of x lies above the null hypothesis

In contrast, the option exact=FALSE results in the p-
value obtained by applying the classical Kolmogorov-
Smirnov test, resulting in a conservative p-value:

> dgof::ks.test(x, ecdf(1:10),
+ alternative = "g", exact = FALSE)

One-sample Kolmogorov-Smirnov test

data: x
D^+ = 0.04, p-value = 0.9231
alternative hypothesis:
the CDF of x lies above the null hypothesis

The p-value may also be estimated via a Monte Carlo
simulation:

> dgof::ks.test(x, ecdf(1:10),
+ alternative = "g",
+ simulate.p.value = TRUE, B = 10000)

One-sample Kolmogorov-Smirnov test

data: x
D^+ = 0.04, p-value = 0.7717
alternative hypothesis:
the CDF of x lies above the null hypothesis

A different toy example shows the dangers of
using R’s existing ks.test() function with discrete
data:

> dgof::ks.test(rep(1, 3), ecdf(1:3))
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One-sample Kolmogorov-Smirnov test

data: rep(1, 3)
D = 0.6667, p-value = 0.07407
alternative hypothesis: two-sided

If, instead, either exact=FALSE is used with
the new ks.test() function, or if the original
stats::ks.test() is used, the reported p-value is
0.1389 even though the test statistic is the same.

We demonstrate the Cramér-von Mises tests with
the same simulated data.

> cvm.test(x, ecdf(1:10))

Cramer-von Mises - W2

data: x
W2 = 0.057, p-value = 0.8114
alternative hypothesis: Two.sided

> cvm.test(x, ecdf(1:10), type = "A2")

Cramer-von Mises - A2

data: x
A2 = 0.3969, p-value = 0.75
alternative hypothesis: Two.sided

We conclude with a toy cyclical example showing
that the test is invariant to cyclic reordering of the
support.

> set.seed(1)
> y <- sample(1:4, 20, replace = TRUE)
> cvm.test(y, ecdf(1:4), type = 'U2')

Cramer-von Mises - U2

data: y
U2 = 0.0094, p-value = 0.945
alternative hypothesis: Two.sided

> z <- y%%4 + 1
> cvm.test(z, ecdf(1:4), type = 'U2')

Cramer-von Mises - U2

data: z
U2 = 0.0094, p-value = 0.945
alternative hypothesis: Two.sided

In contrast, the Kolmogorov-Smirnov or the standard
Cramér-von Mises tests produce different results after
such a reordering. For example, the default Cramér-
von Mises test yields p-values of 0.8237 and 0.9577
with the original and transformed data y and z, re-
spectively.

Discussion

This paper presents the implementation of several
nonparametric goodness-of-fit tests for discrete null
distributions. In some cases the p-values are known to

be exact. In others, conservativeness in special cases
with small p-values has been established. Although
we provide for Monte Carlo simulated p-values with
the new ks.test(), no simulations may be neces-
sary necessary for these methods; they were gener-
ally developed during an era when extensive simula-
tions may have been prohibitively expensive or time-
consuming. However, this does raise the possibility
that alternative tests relying upon modern computa-
tional abilities could provide even greater power in
certain situations, a possible avenue for future work.

In the continuous setting, both of the Kolmogorov-
Smirnov and the Cramér-von Mises tests have two-
sample analogues. When data are observed from two
processes or sampled from two populations, the hy-
pothesis tested is whether they came from the same
(unspecified) distribution. With the discrete case,
however, the null distribution of the test statistic de-
pends on the underlying probability model, as dis-
cussed by Walsh (1963). Such an extension would
require the specification of a null distribution, which
generally goes unstated in two-sample goodness-of-
fit tests. We note that Dufour and Farhat (2001) ex-
plored two-sample goodness-of-fit tests for discrete
distributions using a permutation test approach.

Further generalizations of goodness-of-fit tests for
discrete distributions are described in the extended
study of de Wet and Venter (1994). There are exist-
ing R packages for certain type of Cramér-von Mises
goodness-of-fit tests for continuous distributions.
Functions implemented in package nortest (Gross,
2006) focus on the composite hypothesis of normality,
while package ADGofTest (Bellosta, 2009) provides
the Anderson-Darling variant of the test for general
continuous distributions. Packages CvM2SL1Test
(Xiao and Cui, 2009a) and CvM2SL2Test (Xiao and
Cui, 2009b) provide two-sample Cramér-von Mises
tests with continuous distributions. Package cramer
(Franz, 2006) offers a multivariate Cramér test for the
two-sample problem. Finally, we note that the dis-
crete goodness-of-fit tests discussed in this paper do
not allow the estimation of parameters of the hypoth-
esized null distributions (see Lockhart et al. (2007) for
example).
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