
22 CONTRIBUTED RESEARCH ARTICLES

Watch Your Spelling!
by Kurt Hornik and Duncan Murdoch

Abstract We discuss the facilities in base R
for spell checking via Aspell, Hunspell or Ispell,
which are useful in particular for conveniently
checking the spelling of natural language texts
in package Rd files and vignettes. Spell checking
performance is illustrated using the Rd files in
package stats. This example clearly indicates the
need for a domain-specific statistical dictionary.
We analyze the results of spell checking all Rd
files in all CRAN packages and show how these
can be employed for building such a dictionary.

R and its add-on packages contain large amounts of
natural language text (in particular, in the documen-
tation in package Rd files and vignettes). This text is
useful for reading by humans and as a testbed for a va-
riety of natural language processing (NLP) tasks, but
it is not always spelled correctly. This is not entirely
unsurprising, given that available spell checkers are
not aware of the special Rd file and vignette formats,
and thus rather inconvenient to use. (In particular,
we are unaware of ways to take advantage of the ESS
(Rossini et al., 2004) facilities to teach Emacs to check
the spelling of vignettes by only analyzing the LATEX
chunks in suitable TEX modes.)

In addition to providing facilities to make spell
checking for Rd files and vignettes more convenient,
it is also desirable to have programmatic (R-level) ac-
cess to the possibly mis-spelled words (and suggested
corrections). This will allow their inclusion into auto-
matically generated reports (e.g., by R CMD check),
or aggregation for subsequent analyses. Spell check-
ers typically know how to extract words from text
employing language-dependent algorithms for han-
dling morphology, and compare the extracted words
against a known list of correctly spelled ones, the so-
called dictionary. However, NLP resources for statis-
tics and related knowledge domains are rather scarce,
and we are unaware of suitable dictionaries for these.
The result is that domain-specific terms in texts from
these domains are typically reported as possibly mis-
spelled. It thus seems attractive to create additional
dictionaries based on determining the most frequent
possibly mis-spelled terms in corpora such as the Rd
files and vignettes in the packages in the R reposito-
ries.

In this paper, we discuss the spell check function-
ality provided by aspell() and related utilities made
available in the R standard package utils. After a
quick introduction to spell checking, we indicate how
aspell() can be used for checking individual files
and packages, and how this can be integrated into
typical work flows. We then compare the agreement
of the spell check results obtained by two different

programs (Aspell and Hunspell) and their respective
dictionaries. Finally, we investigate the possibility
of using the CRAN package Rd files for creating a
statistics dictionary.

Spell checking

The first spell checkers were widely available on
mainframe computers in the late 1970s (e.g., http:
//en.wikipedia.org/wiki/Spell_checker). They ac-
tually were “verifiers” instead of “correctors”, re-
porting words not found in the dictionary but not
making useful suggestions for replacements (e.g., as
close matches in the Levenshtein distance to terms
from the dictionary). In the 1980s, checkers became
available on personal computers, and were integrated
into popular word-processing packages like Word-
Star. Recently, applications such as web browsers and
email clients have added spell check support for user-
written content. Extending coverage from English
to beyond western European languages has required
software to deal with character encoding issues and
increased sophistication in the morphology routines,
particularly with regard to heavily-agglutinative lan-
guages like Hungarian and Finnish, and resulted in
several generations of open-source checkers. Limi-
tations of the basic unigram (single-word) approach
have led to the development of context-sensitive spell
checkers, currently available in commercial software
such as e.g. Microsoft Office 2007. Another approach
to spell checking is using adaptive domain-specific
models for mis-spellings (e.g., based on the frequency
of word n-grams), as employed for example in web
search engines (“Did you mean . . . ?”).

The first spell checker on Unix-alikes was spell
(originally written in 1971 in PDP-10 Assembly lan-
guage and later ported to C), which read an input
file and wrote possibly mis-spelled words to out-
put (one word per line). A variety of enhancements
led to (International) Ispell (http://lasr.cs.ucla.
edu/geoff/ispell.html), which added interactivity
(hence “i”-spell), suggestion of replacements, and sup-
port for a large number of European languages (hence
“international”). It pioneered the idea of a program-
ming interface, originally intended for use by Emacs,
and awareness of special input file formats (originally,
TEX or nroff/troff).

GNU Aspell, usually called just Aspell (http://
aspell.net), was mainly developed by Kevin Atkin-
son and designed to eventually replace Ispell. Aspell
can either be used as a library (in fact, the Omegahat
package Aspell (Temple Lang, 2005) provides a fine-
grained R interface to this) or as a standalone program.
Compared to Ispell, Aspell can also easily check docu-
ments in UTF-8 without having to use a special dictio-
nary, and supports using multiple dictionaries. It also

The R Journal Vol. 3/2, 2010-09-17 ISSN 2073-4859

http://en.wikipedia.org/wiki/Spell_checker
http://en.wikipedia.org/wiki/Spell_checker
http://lasr.cs.ucla.edu/geoff/ispell.html
http://lasr.cs.ucla.edu/geoff/ispell.html
http://aspell.net
http://aspell.net

CONTRIBUTED RESEARCH ARTICLES 23

tries to do a better job suggesting corrections (Ispell
only suggests words with a Levenshtein distance of
1), and provides powerful and customizable TEX filter-
ing. Aspell is the standard spell checker for the GNU
software system, with packages available for all com-
mon Linux distributions. E.g., for Debian/Ubuntu
flavors, aspell contains the programs, aspell-en the
English language dictionaries (with American, British
and Canadian spellings), and libaspell-dev provides
the files needed to build applications that link against
the Aspell libraries.

See http://aspell.net for information on ob-
taining Aspell, and available dictionaries. A
native Windows build of an old release of As-
pell is available on http://aspell.net/win32/. A
current build is included in the Cygwin sys-
tem at http://cygwin.com1, and a native build
is available at http://www.ndl.kiev.ua/content/
patch-aspell-0605-win32-compilation.

Hunspell (http://hunspell.sourceforge.net/)
is a spell checker and morphological analyzer de-
signed for languages with rich morphology and com-
plex word compounding or character encoding, orig-
inally designed for the Hungarian language. It is in
turn based on Myspell, which was started by Kevin
Hendricks to integrate various open source spelling
checkers into the OpenOffice.org build, and facili-
tated by Kevin Atkinson. Unlike Myspell, Hunspell
can use Unicode UTF-8-encoded dictionaries. Hun-
spell is the spell checker of OpenOffice.org, Mozilla
Firefox 3 & Thunderbird and Google Chrome, and
it is also used by proprietary software like MacOS X.
Its TEX support is similar to Ispell, but nowhere near
that of Aspell. Again, Hunspell is conveniently pack-
aged for all common Linux distributions (with De-
bian/Ubuntu packages hunspell for the standalone
program, dictionaries including hunspell-en-us and
hunspell-en-ca, and libhunspell-dev for the applica-
tion library interface). For Windows, the most recent
available build appears to be version 1.2.8 on http:
//sourceforge.net/projects/hunspell/files/.

Aspell and Hunspell both support the so-called
Ispell pipe interface, which reads a given input file
and then, for each input line, writes a single line to the
standard output for each word checked for spelling on
the line, with different line formats for words found
in the dictionary, and words not found, either with or
without suggestions. Through this interface, applica-
tions can easily gain spell-checking capabilities (with
Emacs the longest-serving “client”).

Spell checking with R

The basic function for spell checking provided by the
utils package is aspell(), with synopsis

aspell(files, filter, control = list(),
encoding = "unknown", program = NULL)

Argument files is a character vector with the names
of the files to be checked (in fact, in R 2.12.0 or later
alternatively a list of R objects representing connec-
tions or having suitable srcrefs), control is a list or
character vector of control options (command line
arguments) to be passed to the spell check program,
and program optionally specifies the name of the pro-
gram to be employed. By default, the system path
is searched for aspell, hunspell and ispell (in that
order), and the first one found is used. Encodings
which can not be inferred from the files can be spec-
ified via encoding. Finally, one can use argument
filter to specify a filter for processing the files be-
fore spell checking, either as a user-defined function,
or a character string specifying a built-in filter, or a
list with the name of a built-in filter and additional
arguments to be passed to it. The built-in filters cur-
rently available are "Rd" and "Sweave", correspond-
ing to functions RdTextFilter and SweaveTeXFilter
in package tools, with self-explanatory names: the
former blanks out all non-text in an Rd file, dropping
elements such as \email and \url or as specified by
the user via argument drop; the latter blanks out code
chunks and Noweb markup in an Sweave input file.

aspell() returns a data frame inheriting from
"aspell" with the information about possibly mis-
spelled words, which has useful print() and
summary() methods. For example, consider ‘lm.Rd’
in package stats which provides the documenta-
tion for fitting linear models. Assuming that src
is set to the URL for the source of that file, i.e.
"http://svn.R-project.org/R/trunk/src/library/
stats/man/lm.Rd", and f is set to "lm.Rd", we can
obtain a copy and check it as follows:

> download.file(src, f)
> a <- aspell(f, "Rd")
> a

accessor
lm.Rd:128:25

ANOVA
lm.Rd:177:7

datasets
lm.Rd:199:37

differenced
lm.Rd:168:57

formulae
lm.Rd:103:27

Ihaka
lm.Rd:214:68

logicals
lm.Rd:55:26

priori
lm.Rd:66:56

1The Cygwin build requires Unix-style text file inputs, and Cygwin-style file paths, so is not fully compatible with aspell() in R.

The R Journal Vol. 3/2, 2010-09-17 ISSN 2073-4859

http://aspell.net
http://aspell.net/win32/
http://cygwin.com
http://www.ndl.kiev.ua/content/patch-aspell-0605-win32-compilation
http://www.ndl.kiev.ua/content/patch-aspell-0605-win32-compilation
http://hunspell.sourceforge.net/
http://sourceforge.net/projects/hunspell/files/
http://sourceforge.net/projects/hunspell/files/

24 CONTRIBUTED RESEARCH ARTICLES

regressor
lm.Rd:169:3

(results will be quite different if one forgets to use
the Rd filter). The output is self-explanatory: for
each possibly mis-spelled word, we get the word and
the occurrences in the form file:linenum:colnum .
Clearly, terms such as ‘ANOVA’ and ‘regressor’ are
missing from the dictionary; if one was not sure
about ‘datasets’, one could try visiting http://en.
wiktionary.org/wiki/datasets.

If one is only interested in the possibly mis-spelled
words themselves, one can use

> summary(a)
Possibly mis-spelled words:
[1] "accessor" "ANOVA" "datasets"
[4] "differenced" "formulae" "Ihaka"
[7] "logicals" "priori" "regressor"

(or directly access the Original variable); to see
the suggested corrections, one can print with
verbose = TRUE:

> print(subset(a,
+ Original %in%
+ c("ANOVA", "regressor")),
+ verbose = TRUE)

Word: ANOVA (lm.Rd:177:7)
Suggestions: AN OVA AN-OVA NOVA ANICA ANIA

NOVAE ANA AVA INVAR NOV OVA UNIV ANITA
ANNORA AVIVA ABOVE ENVOY ANNA NEVA ALVA
ANYA AZOV ANON ENVY JANEVA ANODE ARNO
IVA ANVIL NAIVE OLVA ANAL AVON AV IONA
NV NAVY OONA AN AVOW INFO NAVE ANNOY
ANN ANY ARV AVE EVA INA NEV ONO UNA
ANCHOVY ANA'S

Word: regressor (lm.Rd:169:3)
Suggestions: regress or regress-or regress

regressive regressed regresses
aggressor regressing egress regrets
Negress redress repress recross regrows
egress's Negress's

Note that the first suggestion is ‘regress or’.
The print method also has an indent argument

controlling the indentation of the locations of possibly
mis-spelled words. The default is 2; Emacs users may
find it useful to use an indentation of 0 and visit out-
put (directly when running R from inside ESS, or redi-
recting output to a file using sink()) in grep-mode.

The above spell check results were obtained using
Aspell with an American English dictionary. One can
also use several dictionaries:

> a2 <- aspell(f, "Rd",
+ control =
+ c("--master=en_US",
+ "--add-extra-dicts=en_GB"))
> summary(a2)

Possibly mis-spelled words:
[1] "accessor" "ANOVA" "datasets"
[4] "differenced" "Ihaka" "logicals"
[7] "priori" "regressor"

> setdiff(a$Original, a2$Original)

[1] "formulae"

This shows that Aspell no longer considers ‘for-
mulae’ mis-spelled when the “British” dictionary
is added, and also exemplifies how to use the
control argument: using Hunspell, the correspond-
ing choice of dictionaries could be achieved using
control = "-d en_US,en_GB". (Note that the dictio-
naries differ, as we shall see below). This works for
“system” dictionaries; one can also specify “personal”
dictionaries (using the common command line option
‘-p’).

We already pointed out that Aspell excels in its TEX
filtering capabilities, which is obviously rather use-
ful for spell-checking R package vignettes in Sweave
format. Similar to Ispell and Hunspell, it provides
a TEX mode (activated by the common command
line option ‘-t’) which knows to blank out TEX com-
mands. In addition to the others, it allows to selec-
tively blank out options and parameters of these com-
mands. This works via specifications of the form
‘name signature’ where the first gives the name of the
command and the second is a string containing ‘p’ or
‘o’ indicating to blank out parameters or options, or
‘P’ or ‘O’ indicating to keep them for checking. E.g.,
‘foo Pop’ specifies to check the first parameter and
then skip the next option and the second parameter
(even if the option is not present), i.eḟollowing the pat-
tern \foo{checked}[unchecked]{unchecked}, and is
passed to Aspell as

--add-tex-command="foo Pop"

Aspell’s TEX filter is already aware of a number of
common (LATEX) commands (but not, e.g., of \citep
used for parenthetical citations using natbib). How-
ever, this filter is based on C++ code internal to the
Aspell data structures, and hence not reusable for
other spell checkers: we are currently exploring the
possibility to provide similar functionality using R.

Package utils also provides three additional utili-
ties (exported in R 2.12.0 or later):
aspell_package_Rd_files(),
aspell_package_vignettes(), and
aspell_write_personal_dictionary_file().
The first two, obviously for spell checking the Rd files
and (Sweave) vignettes in a package, are not only
useful for automatically computing all relevant files
and choosing the appropriate filter (and, in the case
of vignettes, adding a few commands like \Sexpr and
\citep to the blank out list), but also because they
support a package default mechanism described be-
low. To see a simple example, we use Aspell to check
the spelling of all Rd files in package stats:

The R Journal Vol. 3/2, 2010-09-17 ISSN 2073-4859

http://en.wiktionary.org/wiki/datasets
http://en.wiktionary.org/wiki/datasets

CONTRIBUTED RESEARCH ARTICLES 25

> require("tools")
> drop <- c("\\author", "\\source", "\\references")
> ca <- c("--master=en_US",
+ "--add-extra-dicts=en_GB")
> asa <- aspell_package_Rd_files("stats",
+ drop = drop, program = "aspell",
+ control = ca)

This currently (2011-05-11) finds 1114 possibly mis-
spelled words which should hopefully all be false
positives (as we regularly use aspell() to check the
spelling in R’s Rd files). The most frequent occur-
rences are

> head(sort(table(asa$Original), decreasing = TRUE))

quantile dendrogram AIC univariate
57 44 42 42

quantiles ARIMA
30 23

which should clearly be in every statistician’s dictio-
nary!

Package defaults for spell checking (as well as
a personal dictionary file) can be specified in a
‘defaults.R’ file in the ‘.aspell’ subdirectory of the top-
level package source directory, and are provided via
assignments to suitably named lists, as e.g.

vignettes <-
list(control = "--add-tex-command=mycmd op")

for vignettes and assigning to Rd_files for Rd files
defaults. For the latter, one can also give a drop de-
fault specifying additional Rd sections to be blanked
out, e.g.,

Rd_files <- list(drop = c("\\author",
"\\source",
"\\references"))

The default lists can also contain a personal element
for specifying a package-specific personal dictionary.
A possible work flow for package maintainers is the
following: one runs the spell checkers and corrects all
true positives, leaving the false positives. Obviously,
these should be recorded so that they are not reported
the next time when texts are modified and check-
ing is performed again. To do this one re-runs the
check utility (e.g., aspell_package_vignettes() and
saves its results into a personal dictionary file using
aspell_write_personal_dictionary_file(). This
file is then moved to the ‘.aspell’ subdirectory (named,
e.g., ‘vignettes.pws’) and then activated via the defaults
file using, e.g.,

vignettes <-
list(control = "--add-tex-command=mycmd op",

personal = "vignettes.pws")

Following a new round of checking and correcting,
the procedure is repeated (with the personal dictio-
nary file temporarily removed before re-running the
utility and re-creating the dictionary file; currently,

there is no user-level facility for reading/merging per-
sonal dictionaries).

A different work flow is to keep the previous spell
check results and compare the current one to the most
recent previous one. In fact, one of us (KH) uses this
approach to automatically generate “check diffs” for
the R Rd files, vignettes and Texinfo manuals and
correct the true positives found.

A spell check utility R itself does not (yet) provide
is one for checking a list of given words, which is
easily accomplished as follows:

> aspell_words <- function(x, control = list()) {
+ con <- textConnection(x)
+ on.exit(close(con))
+ aspell(list(con), control = control)
+ }

Of course, this reports useless locations, but is useful
for programmatic dictionary lookup:

> print(aspell_words("flavour"), verbose = TRUE)

Word: flavour (<unknown>:1:1)
Suggestions: flavor flavors favor flour

flair flours floury Flor flavor's Fleur
floor flyover flour's

(again using Aspell with an American English dictio-
nary).

Spell checking performance

Should one use Aspell or Hunspell (assuming con-
venient access to both)? Due to its more powerful
morphological algorithms, Hunspell is slower. For vi-
gnettes, Aspell performance is clearly superior, given
its superior TEX capabilities. For Rd files, we compare
the results we obtain for package stats. Similar to the
above, we use Hunspell on these Rd files:

> ch <- "-d en_US,en_GB"
> ash <- aspell(files, filter,
+ program = "hunspell", control = ch)

(In fact, this currently triggers a segfault on at least De-
bian GNU/Linux squeeze on file ‘lowess.Rd’ once the
en_GB dictionary is in place: so we really check this
file using en_US only, and remove two GB spellings.)
We then extract the words and terms (unique words)
reported as potentially mis-spelled:

> asaw <- asa$Original; asat <- unique(asaw)
> ashw <- ash$Original; asht <- unique(ashw)
> allt <- unique(c(asat, asht))

This gives 1114 and 355 words and terms for Aspell,
and 789 and 296 for Hunspell, respectively. Cross-
tabulation yields

> tab <- table(Aspell = allt %in% asat,
+ Hunspell = allt %in% asht)
> tab

The R Journal Vol. 3/2, 2010-09-17 ISSN 2073-4859

26 CONTRIBUTED RESEARCH ARTICLES

Hunspell
Aspell FALSE TRUE
FALSE 0 27
TRUE 86 269

and the amount of agreement can be measured via the
Jaccard dissimilarity coefficient, which we compute
“by hand” via

> sum(tab[row(tab) != col(tab)]) / sum(tab)

[1] 0.2958115

which is actually quite large. To gain more insight, we
inspect the most frequent terms found only by Aspell

> head(sort(table(asaw[! asaw %in% asht]),
+ decreasing = TRUE), 4L)

quantile univariate quantiles th
57 42 30 18

and similarly for Hunspell:

> head(sort(table(ashw[! ashw %in% asat]),
+ decreasing = TRUE), 4L)

's Mallows' hessian BIC
21 6 5 4

indicating that Aspell currently does not know quan-
tiles, and some differences in the morphological han-
dling (the apostrophe s terms reported by Hunspell
are all instances of possessive forms of words typeset
using markup blanked out by the filtering). It might
appear that Hunspell has a larger and hence “better”
dictionary: but in general, increasing dictionary size
will also increase the true negative rate. To inspect
commonalities, we use

> head(sort(table(asaw[asaw %in%
+ intersect(asat, asht)]),
+ decreasing = TRUE),
+ 12L)

dendrogram AIC ARIMA ARMA
44 42 23 22

Wilcoxon Tukey's GLM Nls
16 15 12 10

periodogram MLE GLMs IWLS
10 9 8 8

re-iterating the fact that a statistics dictionary is
needed.

We can also use the above to assess the “raw” per-
formance of the spell checkers, by counting the num-
ber of terms and words in the stats Rd file corpus. Us-
ing the text mining infrastructure provided by pack-
age tm (Feinerer et al., 2008), this can be achieved as
follows:

> require("tm")
> texts <-
+ lapply(files, RdTextFilter, drop = drop)

> dtm <- DocumentTermMatrix(
+ Corpus(VectorSource(texts)),
+ control = list(removePunctuation = TRUE,
+ removeNumbers = TRUE,
+ minWordLength = 2L))

(the control argument is chosen to match the behav-
ior of the spell checkers). This gives

> dtm

A document-term matrix (304 documents, 3533 terms)

Non-/sparse entries: 31398/1042634
Sparsity : 97%
Maximal term length: 24

> sum(dtm)

[1] 69910

with 3533 terms and 69910 words, so that Aspell
would give “raw” false positive rates of 10.05 and 1.59
percent for terms and words, respectively (assuming
that the regular spell checking of the Rd files in the R
sources has truly eliminated all mis-spellings).

Towards a dictionary for statistics

Finally, we show how the spell check results can
be employed for building a domain-specific dictio-
nary (supplementing the default ones). Similar to the
above, we run Aspell on all Rd files in CRAN and
base R packages (Rd files are typically written in a
rather terse and somewhat technical style, but should
nevertheless be a good proxy for current terminol-
ogy in computational statistics). With results in ac,
we build a corpus obtained by splitting the words
according to the Rd file in which they were found,
and compute its document-term matrix:

> terms <- ac$Original
> files <- ac$File
> dtm_f <- DocumentTermMatrix(
+ Corpus(VectorSource(split(terms, files))),
+ control =
+ list(tolower = FALSE,
+ minWordLength = 2L))

(Again, minWordLength = 2L corresponds to the As-
pell default to ignore single-character words only.)
This finds 50658 possibly mis-spelled terms in 43287
Rd files, for a total number of 332551 words. As is
quite typical in corpus linguistics, the term frequency
distribution is heavily left-tailed

> require("slam")
> tf <- col_sums(dtm_f)
> summary(tf)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 2.000 6.565 4.000 3666.000

and can conveniently be visualized by plotting the
cumulative frequencies for the terms sorted in de-
creasing order (see Figure 1):

The R Journal Vol. 3/2, 2010-09-17 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 27

> tf <- sort(tf, decreasing = TRUE)
> par(las=1)
> plot(seq_along(tf),
+ cumsum(tf) / sum(tf),
+ type = "l",
+ xlab = "Number of most frequent terms",
+ ylab = "Proportion of words",
+ panel.first = abline(v=1000, col="gray"))

0 10000 20000 30000 40000 50000

0.0

0.2

0.4

0.6

0.8

1.0

Number of most frequent terms

P
ro

po
rt

io
n

of
 w

or
ds

Figure 1: The number of possibly mis-spelled words
(cumulative term frequency) in the Rd files in the
CRAN and R base packages versus the number of
terms (unique words), with terms sorted in decreas-
ing frequency. The vertical line indicates 1000 terms.

We see that the 1000 most frequent terms already
cover about half of the words. The corpus also reason-
ably satisfies Heap’s Law (e.g., http://en.wikipedia.
org/wiki/Heaps%27_law or Manning et al. (2008)), an
empirical law indicating that the vocabulary size V
(the number of different terms employed) grows poly-
nomially with text size T (the number of words), as
shown in Figure 2:

4 6 8 10 12

4

6

8

10

log(T)

lo
g(

V
)

Figure 2: An illustration of Heap’s Law for the corpus
of possibly mis-spelled words in the Rd files in the
CRAN and R base packages, taking the individual
files as documents.

> Heaps_plot(dtm_f)

(Intercept) x
0.2057821 0.8371087

(the regression coefficients are for the model log(V) =
α + β log(T)).

To develop a dictionary, the term frequencies may
need further normalization to weight their “impor-
tance”. In fact, to adjust for possible authoring and
package size effects, it seems preferable to aggregate
the frequencies according to package. We then apply
a simple, so-called binary weighting scheme which
counts occurrences only once, so that the correspond-
ing aggregate term frequencies become the numbers
of packages the terms occurred in. Other weighting
schemes are possible (e.g., normalizing by the total
number of words checked in the respective package).
This results in term frequencies tf with the following
characteristics:

> summary(tf)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 1.000 2.038 1.000 682.000

> quantile(tf, c(seq(0.9, 1.0, by = 0.01)))

90% 91% 92% 93% 94% 95% 96% 97% 98% 99%
3 3 3 4 4 5 6 7 10 17

100%
682

Again, the frequency distribution has a very heavy
left tail. We apply a simple selection logic, and drop
terms occurring in less than 0.5% of the packages
(currently, about 12.5), leaving 764 terms for possible
inclusion into the dictionary. (This also eliminates the
terms from the few CRAN packages with non-English
Rd files.) For further processing, it is highly advis-
able to take advantage of available lexical resources.
One could programmatically employ the APIs of web
search engines: but note that the spell correction fa-
cilities these provide are not domain specific. Using
WordNet (Fellbaum, 1998), the most prominent lexical
database for the English language, does not help too
much: it only has entries for about 10% of our terms.

We use the already mentioned Wiktionary (http:
//www.wiktionary.org/), a multilingual, web-based
project to create a free content dictionary which
is run by the Wikimedia Foundation (like its sis-
ter project Wikipedia) and which has successfully
been used for semantic web tasks (e.g., Zesch
et al., 2008). Wiktionary provides a simple API at
http://en.wiktionary.org/w/api.php for English
language queries. One can look up given terms by
queries using parameters action=query, format=xml,
prop=revision, rvprop=content and titles as a list
of the given terms collapsed by a vertical bar (actu-
ally, a maximum of 50 terms can be looked up in one
query). When doing so via R, one can conveniently
use the XML package (Temple Lang, 2010) to parse

The R Journal Vol. 3/2, 2010-09-17 ISSN 2073-4859

http://en.wikipedia.org/wiki/Heaps%27_law
http://en.wikipedia.org/wiki/Heaps%27_law
http://www.wiktionary.org/
http://www.wiktionary.org/
http://en.wiktionary.org/w/api.php

28 CONTRIBUTED RESEARCH ARTICLES

the result. For our terms, the lookup returns informa-
tion for 416 terms. However, these can not be accepted
unconditionally into the dictionary: in addition to
some terms being flagged as mis-spelled or archaic,
some terms have possible meanings that were almost
certainly not intended (e.g., “wether” as a castrated
buck goat or ram). In addition, 2-character terms
need special attention (e.g., ISO language codes most
likely not intended). Therefore, we extract suitable
terms by serially working through suitable subsets
of the Wiktionary results (e.g., terms categorized as
statistical or mathematical (unfortunately, only a very
few), acronyms or initialisms, and plural forms) and
inspecting these for possible inclusion. After these
structured eliminations, the remaining terms with
query results as well as the ones Wiktionary does
not know about (the majority of which actually are
mis-spellings) are handled. Quite a few of our terms
are surnames, and for now we only include the most
frequent ones.

> p <- readLines("en-stats.pws")

We finally obtain a dictionary with 443
terms, which we save into ‘en-stats.pws’ using
aspell_write_personal_dictionary_file(). We in-
tend to make this easily available from within R at
some point in the future.

A few false positives remain systematically: As-
pell’s word extraction turns ‘1st’ and ‘2nd’ into ‘st’
and ‘nd’ (and so forth), which clearly are not terms
to be included in the dictionary. Similarly, ‘a-priori’
is split with ‘priori’ reported as mis-spelled (actually,
Aspell has some support for accepting “run-together
words”). These and other cases could be handled
by enhancing the filtering routines before calling the
spell checkers.

We re-run the checks on stats using this dictionary:

> asap <-
+ aspell(files, filter, program = "aspell",
+ control = c(ca, "-p ./en-stats.pws"))

(the strange ‘./’ is needed to ensure that Aspell does
not look for the personal dictionary in its system
paths). This reduces the number of possibly mis-
spelled words found to 411, and the “estimated” false
positive rates for terms and words to 5.97 and 0.59
percent, respectively.

Many of the remaining false positives could also
be eliminated by using the appropriate Rd markup
(such as \acronym or \code). With R 2.12.0 or later,
one can also use markup in titles. In fact, R 2.12.0 also
adds \newcommand tags to the Rd format to allow user-
defined macros: using, e.g., \newcommand{\I}{#1}
one could wrap content to be ignored for spell check-
ing into \I{}, as currently all user-defined macros are
blanked out by the Rd filtering. Similar considera-
tions apply to vignettes when using Aspell’s superior
filtering capabilities.

Using a custom dictionary has significantly re-
duced the false positive rate, demonstrating the

usefulness of the approach. Clearly, more work will
be needed: modern statistics needs better lexical re-
sources, and a dictionary based on the most frequent
spell check false alarms can only be a start. We hope
that this article will foster community interest in con-
tributing to the development of such resources, and
that refined domain specific dictionaries can be made
available and used for improved text analysis with R
in the near future.

Bibliography

Ingo Feinerer, Kurt Hornik, and David Meyer. Text
mining infrastructure in R. Journal of Statistical Soft-
ware, 25(5):1–54, 2 2008. ISSN 1548-7660. URL
http://www.jstatsoft.org/v25/i05.

Christiane Fellbaum, editor. WordNet: An Electronic
Lexical Database. MIT Press, Cambridge, MA, 1998.
ISBN 978-0-262-06197-1.

Christopher D. Manning, Prabhakar Raghavan,
and Hinrich Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press,
2008. URL http://nlp.stanford.edu/IR-book/
information-retrieval-book.html.

Anthony J. Rossini, Richard M. Heiberger, Rod-
ney Sparapani, Martin Mächler, and Kurt Hornik.
Emacs speaks statistics: A multi-platform, multi-
package development environment for statistical
analysis. Journal of Computational and Graphical
Statistics, 13(1):247–261, 2004.

Duncan Temple Lang. Interface to aspell library, 2005.
URL http://www.omegahat.org/Aspell. R pack-
age version 0.2-0.

Duncan Temple Lang. XML: Tools for parsing and gen-
erating XML within R and S-Plus., 2010. URL http:
//CRAN.R-project.org/package=XML. R package
version 3.1-1.

Torsten Zesch, Christof Müller, and Iryna Gurevych.
Using wiktionary for computing semantic related-
ness. In AAAI’08: Proceedings of the 23rd national
conference on Artificial intelligence, pages 861–866.
AAAI Press, 2008. ISBN 978-1-57735-368-3.

Kurt Hornik
Department of Finance, Accounting and Statistics
Wirtschaftsuniversität Wien
Augasse 2–6, 1090 Wien
Austria
Kurt.Hornik@R-project.org

Duncan Murdoch
Department of Statistical and Actuarial Sciences
University of Western Ontario
London, Ontario, Canada
murdoch@stats.uwo.ca

The R Journal Vol. 3/2, 2010-09-17 ISSN 2073-4859

http://www.jstatsoft.org/v25/i05
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://www.omegahat.org/Aspell
http://CRAN.R-project.org/package=XML
http://CRAN.R-project.org/package=XML
mailto:Kurt.Hornik@R-project.org
mailto:murdoch@stats.uwo.ca

