64

CONTRIBUTED RESEARCH ARTICLES

Analyzing an Electronic Limit Order Book

by David Kane, Andrew Liu, and Khanh Nguyen

Abstract The orderbook package provides fa-
cilities for exploring and visualizing the data
associated with an order book: the electronic
collection of the outstanding limit orders for a
financial instrument. This article provides an
overview of the orderbook package and exam-
ples of its use.

Introduction

The orderbook package provides facilities for ex-
ploring and visualizing the data associated with an
order book: the electronic collection of the outstand-
ing limit orders for a financial instrument, e.g. a
stock. A limit order is an order to buy or sell a given
quantity of stock at a specified limit price or better.
The size is the number of shares to be bought or sold.
An order remains in the order book until fully exe-
cuted, i.e. until its size is zero as a result of trades.
Partial executions occur as a result of trades for less
than the entire size of the order.

Consider a simple order book containing five
limit orders: sell 150 shares of IBM at $11.11, sell
150 shares of IBM at $11.08, buy 100 shares of IBM
at $11.05, buy 200 shares of IBM at $11.05, and buy
200 shares of IBM at $11.01.

Price Ask Size
$11.11 150
$11.08 100
300 $11.05
200 $11.01
Bid Size Price

Orders on the bid (ask) side represent orders to buy
(sell). The price levels are $11.11, $11.08, $11.05, and
$11.01. The best bid at $11.05 (highest bid price) and
the best ask at $11.08 (lowest ask price) make up the
inside market. The spread ($0.03) is the difference
between the best bid and best ask. The midpoint
($11.065) is the average of the best bid and best ask.
There are four types of messages that traders
can submit to an order book: add, cancel, can-
cel/replace, and market order. A trader can add a
limit order in to the order book. She can also can-
cel an order and remove it from the order book. If
a trader wants to reduce the size of her order, she
can issue a cancel/replace, which cancels the order,
then immediately replaces it with another order at
the same price, but with a lower size. Every limit
order is assigned a unique ID so that cancel and

The R Journal Vol. 3/1, June 2011

cancel/replace orders can identify the correspond-
ing limit order. A market order is an order to im-
mediately buy or sell a quantity of stock at the best
available prices. A trade occurs when a market or-
der “hits” a limit order on the other side of the inside
market.

All orders have timestamps indicating the time at
which they were accepted into the order book. The
timestamp determines the time priority of an order.
Earlier orders are executed before later orders. For
example, suppose that the order to buy 100 shares
at $11.05 was submitted before the order to buy 200
shares at $11.05. Now suppose a market order sell-
ing 200 shares is submitted to the order book. The
limit order for 100 shares will be executed because it
is at the front of the queue at the best bid. Then, 100
shares of the order with 200 total shares will be exe-
cuted, since it was second in the queue. 100 shares
of the 200 share order remain in the order book at
$11.05.

A market order for more shares than the size at
the inside market will execute at worse price levels
until it is complete. For example, if a market order to
buy 200 shares is submitted to the order book, the or-
der at $11.08 will be fully executed. Since there are no
more shares available at that price level, 100 shares at
the $11.11 price level will be transacted to complete
the market order. An order to sell 50 shares at $11.11
will remain in the order book. Executing these two
market orders (a sell of 200 shares and a buy of 200
shares) on our hypothetical order book results in a
new state for the order book.

Price Ask Size
$11.11 50
100 $11.05
200 $11.01
Bid Size Price

Note that cancel/replace orders can lower the
size of an order, but not increase it. Cancel/replace
orders maintain the time priority of the original or-
der, so if size increases were allowed, traders with
orders at the highest time priority for a price level
could perpetually increase the size of their order, pre-
venting others from being able to transact stock us-
ing limit orders at that price level. See Johnson (2010)
for more details on the order book.

Example
NVIDIA is a graphics processing unit and chipset de-

veloper with ticker symbol NVDA. Consider the or-
der book for NVDA at a leading electronic exchange

ISSN 2073-4859

http://cran.r-project.org/package=orderbook

CONTRIBUTED RESEARCH ARTICLES

65

on June 8, 2010. We create the orderbook object by
specifying the location of our data file.

> library (orderbook)

> filename <- system.file("extdata",

+ "sample.txt",

+ package = "orderbook")
> ob <- orderbook (file = filename)

> ob <- read.orders(ob, 10000)

> ob

An object of class orderbook (default)

Current orderbook time: 09:35:02
Message Index: 10,000
Bid Orders: 631

Ask Orders: 1,856
Total Orders: 2,487

We read in the first 10,000 messages then show the
object. The current time is 9:35:02 AM. This is the
time of the last message read. The message index in-
dicates which row in the data file the object has read
through. The display also shows that there are 631
bids and 1,856 asks outstanding, for a total of 2,487
orders. This indicates that many earlier orders have
been removed through either cancels or trades.

> summary (ob)

Current time is 09:35:02

Ask price levels: 540
Bid price levels: 179
Total price levels: 719

Ask orders: 1,856
Bid orders: 631
Total orders: 2,487
Spread: 0.02
Mid point: 11.37

Inside market

Best Bid: 11.36
Size: 2,700
Best Ask: 11.38
Size: 400

Using summary the total order information from
show is repeated. Additionally, we see that there are
540 ask and 179 bid price levels, for a total of 719.
This indicates that many orders have been submitted
at the same price level. The spread is $0.02, and the
midpoint is $11.37. The inside market is composed
of 2,700 shares offered at the best bid of $11.36 and
400 shares offered at the best ask of $11.38.

The R Journal Vol. 3/1, June 2011

> display (ob)

Current time is 09:35:02

Price Ask Size
11.42 900
11.41 1,400
11.40 1,205
11.39 1,600
11.38 400
2,700 11.36
1,100 11.35
1,100 11.34
1,600 11.33
700 11.32
Bid Size Price

display shows the inside market, along with the
four next best bid and ask price levels and the size at
each price level.

> plot (ob)

Order Book - 09:35:02
BID ASK

r 12.60

r 12.40

r 12.20

r 12.00

r 1180

r 11.60

r 1138

Price

11.36
11.20

11.00 —

10.80 —

10.60 —

10.40 —

10.20

T T T T T T
S S & & S WY
S LSS) &
N O O N O O O O
& & ® £ S S S S S
Size (Shares)

plot is a graphical representation of display.
Price levels are on the y-axis, and size is on the x-axis.
The maximum and minimum price levels displayed
by default are 10% above and below the midpoint.
Note the large number of shares at $11.01. It is help-
ful to know the number of orders which make up the
large size at that price level. Using the " [" method
we can view the order information at particular price
levels.

ISSN 2073-4859

66

CONTRIBUTED RESEARCH ARTICLES

> ob["11.01"]

price size type time id
1 11.01 109 BID 34220988 4403084
2 11.01 50000 BID 34220988 4403085
3 11.01 100 BID 34220988 4403086

There is an order for 50,000 shares at the $11.01
price level that accounts for almost all of the size. We
can view a plot of the number of orders rather than
the number of shares at each price level by specifying
type = o’ when using plot. In the previous plot
the maximum and minimum price levels were 10%
off from the midpoint, but for this plot we specify a
range of only 3.3%.

Note the large number of orders at $11.00. The
" [" method returns a data. frame, SO we can use nrow
to return the number of orders at $11.00.

> nrow(ob["11.00"])

[1] 56
There are 56 orders at that price level, which con-

firms what we see in the plot.

> plot (ob, bounds = 0.033, type = 'o'")

Order Book — 09:35:02
BID ASK

L2

- 11.70

r 11.60

r 11.50

&itu)g;gw 4<L‘A<L"°<Lm“ T

r 11.38

Price

11.36 -

11.30

11.20

11.10

i jwﬁﬁ‘fw% Ta?‘ﬁL‘fTTTTW

11.00 —

T T T T T T T T T T
60 50 40 30 20 10 O 10 20 30 40 50 60

Number of Orders

The type argument on plot allows for an “sd”
option which shows supply and demand curves
for the order book. The demand (supply) curve is
downsloping (upsloping). This is because more peo-
ple want to buy (sell) a stock when the price de-
creases (increases). The ask (bid) prices are normal-
ized by the absolute value of the difference between
the highest (lowest) plotted ask (bid) price level and
the the midpoint. Following Cao et al. (2009), the
sizes are normalized by the sum of the sizes across
all plotted price levels for each side.

The R Journal Vol. 3/1, June 2011

> plot (ob, bounds = 0.01, type = "sd")

Supply and Demand

150

100

50 4

Price (%)

-50

-100

-150 T T T T T
100 120

o
IN)
=]
N
o
@
=]
®
=]

Size (%)
09:35:02

orderbook has methods for creating new
orderbook objects at specified clock times of interest.
read.time returns an orderbook object that has read
all messages before the specified time. For example,
this returns the orderbook object at 9:30:00.

> ob <- read.time(ob, "9:30:00"

read.orders is used to move forwards or back-
wards in the order book by a specified number of
messages. In this case, an orderbook object at 50 mes-
sages before the current message is returned.

> ob <- read.orders(ob, n = -50)
> ob

An object of class orderbook (default)

Current orderbook time: 09:28:41
Message Index: 292

Bid Orders: 72

Ask Orders: 81

Total Orders: 153

Data

Data files should contain all messages for one stock
on a single trading day. Most brokers and exchanges
have their own format for transmitting raw message
data to customers, so it would be unfeasible for us
to write scripts to automatically process all data for-
mats. Consequently, raw data for an orderbook ob-
ject must be in the following form:

type,time, id,price, size, type, status
A,34226539,5920814,25.95,100,ASK, TRUE
A,34226788,5933949,25.91,100,BID,FALSE
R,34226900,5933949,50
C,34226904,5920814
T,34226904,755377,25.95,100, TRUE

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

67

where A, R, T, and C mean Add, Replace, Trade,
and Cancel, respectively. The second column is the
timestamp of the message in milliseconds after mid-
night, and the third column is the order ID. For a Re-
place the next column is the new size, while for Add
and Trade a column for price comes before the size
column. Add messages also have the type of order
(BID/ASK) in the sixth column. The optional sev-
enth (sixth) column is TRUE if the order (trade) be-
longs to the user, and FALSE otherwise. This allows
the user to create plots that show the time priority of
his own orders. If the column is omitted, the first line
of the data file should be type, time, id, price,
size, type and notinclude status.

In this example a user order to sell 100 shares at
$25.95 is added to the order book, followed by an or-
der to buy 100 shares at $25.91. The size of the order
at $25.91 is then replaced to 50 shares. Finally, the or-
der at $25.95 is cancelled, and a trade for 100 shares
at $25.95 occurs.

Analyzing trades

A user can create plots that show the time priority of
his own orders if a status column is present in the
data file.

> filename <- system.file("extdata",

+ "tradersample.txt",

+ package = "orderbook")
> ob <- orderbook (file = filename)

> ob <- read.time(ob, "9:30:05")
> ob <- next.trade (ob)
> ob

An object of class orderbook (trader)

Current orderbook time: 09:30:05
Message Index: 6,062
Bid Orders: 164

Ask Orders: 252
Total Orders: 416

Note that this orderbook object is of type trader.
The next.trade function sets the state of the order
book to when the trade after the current time oc-
curs. There is also a previous.trade function with
the same functionality moving backwards

> view.trade (ob, tradenum = 584)

trade 584
row 6063
time 09:30:05
id 636783
price 25.94
size 1000
status FALSE

> mid.point (ob)

price
25.935

The R Journal Vol. 3/1, June 2011

Since the trade price is higher than the midpoint
price, we know that the trade occurred as a result of
an ask order getting hit. Note that trade data is stored
into the order book only after it has read through the
corresponding trade message.

> midpoint.return(ob, tradenum = 584, time = 10)

midpoint.return

10 second 0.065

The midpoint return is the difference in cents be-
tween the execution price and the midpoint price af-
ter a specified period of time. For example, the above
calculates the ten second midpoint return for the first
trade. Since it was a sell order, the midpoint return
will be positive if the stock price decreases, and neg-
ative if the stock price increases.

> ob <- read.time(ob, "9:30:15")
> plot (ob, type = "t", bounds = 0.02)

Order Book —— 08:30:15
BID ASK

:|:|:| 25.89

25.88

Price

25.87 I

25.86

T T T T
S ® ® S N S S ® ®
S $ $ §§ s §§ §§ §
© B3 Q © S S

Size (Shares)

This plot shows two pennies above and below the
best bid and best ask. We see that the midpoint has
dropped to 25.875, confirming the midpoint return
above. This graph shows two pennies above and be-
low the best bid and ask. Orders at these price levels
are shown in time priority, with the earliest submit-
ted order being closest to the middle y-axis. Note the
red order-this is an order marked TRUE by the user,
indicating that it belonged to him.

Simulation

Simulating and modelling the intraday decisions of
traders is a topic of active research in behavioral fi-
nance and economics. orderbook supports adding,
replacing, and cancelling orders. Add orders require
the price, size, and type (ASK/BID) of the limit or-
der. Time and ID are optional, and will default to the

ISSN 2073-4859

68

CONTRIBUTED RESEARCH ARTICLES

maximum time + 1 and the maximum ID + 1. Re-
place messages require the new size and ID. Cancel
orders only require ID. In addition, market orders
can be issued to the order book. Market orders re-
quire size and side (BUY/SELL).

ob <- add.order(ob, 11.20, 300, "ASK")
ob <- remove.order (ob, 1231883)

ob <- replace.order (ob, 1231883, 150)
ob <- market.order (ob, 200, "BUY")

vV V V V

Using these tools, the user can write functions to
simulate the an order book. In the following exam-
ple, we consulted Gilles (2006). We simulate 1,000
messages. The messages are chosen based on the fol-
lowing probabilities: 50% for a cancel message, 20%
for a market order, and 30% for a limit order. In the
event of a cancel message the order cancelled is ran-
domly chosen. Market order have a 50-50 chance for
a buy or sell order. The size of the market order al-
ways corresponds to the size of the individual order
at the best ask or bid with the highest time priority.
Limit orders have a 50-50 chance to be an ask or bid.
There is a 35% chance for the price of a limit order
to be within the spread. If the price is outside of the
spread, a price is chosen using a power law distri-
bution. Finally, the size follows a log-normal distri-
bution. A plot of this example simulation is shown
below.

> ob <- simulate (ob)
> plot (ob)

Order Book — 09:35:09
BID ASK

- 28.00

T

L 27.50
S
3 I 27.00

~ 26.50

b—o
[—o
2
~ 26.00
25.70 1 r 25.74
o—
o9
of
Pa—
——

Price

T T T T 7T
O O & O & & & & & &
O O O O & & & & O
L S I S S S

Size (Shares)

The R Journal Vol. 3/1, June 2011

Gilles (2006) used simulations to test the impact
of liquidity on price level stabilization. He concluded
that most price changes are the result of uninformed
traders (who supply liquidity), rather than informed
traders (who demand liquidity).

Conclusion

The orderbook package is part of a collection of
packages (see Campbell et al. (2007) and Kane and
Enos (2006)) for working with financial market data.
R provides all the necessary tools for managing insti-
tutional sized portfolios.

David Kane

Kane Capital Management
Cambridge, MA

USA

dave@kanecap.com

Andrew Liu

Williams College
Williamstown, MA

USA
Andrew.T.Liu@williams.edu

Khanh Nguyen

University Of Massachusetts at Boston
Boston, MA

USA

knguyen@cs.umb.edu

Bibliography

K. Campbell, J. Enos, D. Gerlanc, and D. Kane. Back-
tests. R News, 7(1):36—41, April 2007.

C. Cao, O. Hansch, and X. Wang. The information
content of an open limit-order book. The Journal of
Futures Markets, 29(1):16-41, 2009.

D. Gilles. Asynchronous Simulations of a Limit Order
Book. PhD thesis, University of Manchester, 2006.

B. Johnson. Algorithmic Trading & DMA: An intro-
duction to direct access trading strategies. 4Myeloma
Press, London, 2010.

D. Kane and J. Enos. Analysing equity portfolios in
R. R News, 6(2):13-19, May 2006.

ISSN 2073-4859

mailto:dave@kanecap.com
mailto:Andrew.T.Liu@williams.edu
mailto:knguyen@cs.umb.edu

