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Probabilistic Weather Forecasting in R
by Chris Fraley, Adrian Raftery, Tilmann Gneiting,
McLean Sloughter and Veronica Berrocal

Abstract This article describes two R packages
for probabilistic weather forecasting, ensem-
bleBMA, which offers ensemble postprocessing
via Bayesian model averaging (BMA), and Prob-
ForecastGOP, which implements the geostatis-
tical output perturbation (GOP) method. BMA
forecasting models use mixture distributions, in
which each component corresponds to an en-
semble member, and the form of the component
distribution depends on the weather parameter
(temperature, quantitative precipitation or wind
speed). The model parameters are estimated
from training data. The GOP technique uses geo-
statistical methods to produce probabilistic fore-
casts of entire weather fields for temperature or
pressure, based on a single numerical forecast on
a spatial grid. Both packages include functions
for evaluating predictive performance, in addi-
tion to model fitting and forecasting.

Introduction

Over the past two decades, weather forecasting has
experienced a paradigm shift towards probabilistic
forecasts, which take the form of probability distri-
butions over future weather quantities and events.
Probabilistic forecasts allow for optimal decision
making for many purposes, including air traffic con-
trol, ship routing, agriculture, electricity generation
and weather-risk finance.

Up to the early 1990s, most weather forecast-
ing was deterministic, meaning that only one “best”
forecast was produced by a numerical model. The
recent advent of ensemble prediction systems marks
a radical change. An ensemble forecast consists of
multiple numerical forecasts, each computed in a dif-
ferent way. Statistical postprocessing is then used to
convert the ensemble into calibrated and sharp prob-
abilistic forecasts (Gneiting and Raftery, 2005).

The ensembleBMA package

The ensembleBMA package (Fraley et al., 2010) of-
fers statistical postprocessing of forecast ensembles
via Bayesian model averaging (BMA). It provides
functions for model fitting and forecasting with en-
semble data that may include missing and/or ex-
changeable members. The modeling functions es-
timate BMA parameters from training data via the
EM algorithm. Currently available options are nor-
mal mixture models (appropriate for temperature or

pressure), mixtures of gamma distributions (appro-
priate for wind speed), and Bernoulli-gamma mix-
tures with a point mass at zero (appropriate for quan-
titative precipitation). Functions for verification that
assess predictive performance are also available.

The BMA approach to the postprocessing of en-
semble forecasts was introduced by Raftery et al.
(2005) and has been developed in Berrocal et al.
(2007), Sloughter et al. (2007), Wilson et al. (2007),
Fraley et al. (2010) and Sloughter et al. (2010). Detail
on verification procedures can be found in Gneiting
and Raftery (2007) and Gneiting et al. (2007).

"ensembleData" objects

Ensemble forecasting data for weather typically in-
cludes some or all of the following information:

• ensemble member forecasts

• initial date

• valid date

• forecast hour (prediction horizon)

• location (latitude, longitude, elevation)

• station and network identification

The initial date is the day and time at which ini-
tial conditions are provided to the numerical weather
prediction model, to run forward the partial differen-
tial equations that produce the members of the fore-
cast ensemble. The forecast hour is the prediction
horizon or time between initial and valid dates. The
ensemble member forecasts then are valid for the
hour and day that correspond to the forecast hour
ahead of the initial date. In all the examples and il-
lustrations in this article, the prediction horizon is 48
hours.

For use with the ensembleBMA package, data
must be organized into an "ensembleData" object
that minimally includes the ensemble member fore-
casts. For model fitting and verification, the cor-
responding weather observations are also needed.
Several of the model fitting functions can produce
forecasting models over a sequence of dates, pro-
vided that the "ensembleData" are for a single pre-
diction horizon. Attributes such as station and net-
work identification, and latitude and longitude, may
be useful for plotting and/or analysis but are not cur-
rently used in any of the modeling functions. The
"ensembleData" object facilitates preservation of the
data as a unit for use in processing by the package
functions.

Here we illustrate the creation of an
"ensembleData" object called srftData that corre-
sponds to the srft data set of surface temperature
(Berrocal et al., 2007):
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data(srft)
members <- c("CMCG", "ETA", "GASP", "GFS",

"JMA", "NGPS", "TCWB", "UKMO")
srftData <-

ensembleData(forecasts = srft[,members],
dates = srft$date,
observations = srft$obs,
latitude = srft$lat,
longitude = srft$lon,
forecastHour = 48)

The dates specification in an "ensembleData" object
refers to the valid dates for the forecasts.

Specifying exchangeable members. Forecast en-
sembles may contain members that can be consid-
ered exchangeable (arising from the same generating
mechanism, such as random perturbations of a given
set of initial conditions) and for which the BMA pa-
rameters, such as weights and bias correction co-
efficients, should be the same. In ensembleBMA,
exchangeability is specified by supplying a vector
that represents the grouping of the ensemble mem-
bers. The non-exchangeable groups consist of single-
ton members, while exchangeable members belong
to the same group. See Fraley et al. (2010) for a de-
tailed discussion.

Specifying dates. Functions that rely on the chron
package (James and Hornik, 2010) are provided for
converting to and from Julian dates. These functions
check for proper format (‘YYYYMMDD’ or ‘YYYYMMDDHH’).

BMA forecasting

BMA generates full predictive probability density
functions (PDFs) for future weather quantities. Ex-
amples of BMA predictive PDFs for temperature and
precipitation are shown in Figure 1.

Surface temperature example. As an example, we
fit a BMA normal mixture model for forecasts of
surface temperature valid January 31, 2004, using
the srft training data. The "ensembleData" object
srftData created in the previous section is used to
fit the predictive model, with a rolling training pe-
riod of 25 days, excluding the two most recent days
because of the 48 hour prediction horizon.

One of several options is to use the function
ensembleBMA with the valid date(s) of interest as in-
put to obtain the associated BMA fit(s):

srftFit <-
ensembleBMA(srftData, dates = "2004013100",

model = "normal", trainingDays = 25)

When no dates are specified, a model fit is produced
for each date for which there are sufficient training
data for the desired rolling training period.

The BMA predictive PDFs can be plotted as fol-
lows, with Figure 1 showing an example:

plot(srftFit, srftData, dates = "2004013100")

This steps through each location on the given dates,
plotting the corresponding BMA PDFs.

Alternatively, the modeling process for a single
date can be separated into two steps: first extracting
the training data, and then fitting the model directly
using the fitBMA function. See Fraley et al. (2007) for
an example. A limitation of this approach is that date
information is not automatically retained.

Forecasting is often done on grids that cover an
area of interest, rather than at station locations. The
dataset srftGrid provides ensemble forecasts of sur-
face temperature initialized on January 29, 2004 and
valid for January 31, 2004 at grid locations in the
same region as that of the srft stations.

Quantiles of the BMA predictive PDFs at the
grid locations can be obtained with the function
quantileForecast:

srftGridForc <- quantileForecast(srftFit,
srftGridData, quantiles = c( .1, .5, .9))

Here srftGridData is an "ensembleData" object cre-
ated from srftGrid, and srftFit provides a fore-
casting model for the corresponding date.1 The fore-
cast probability of temperatures below freezing at the
grid locations can be computed with the cdf func-
tion, which evaluates the BMA cumulative distribu-
tion function:

probFreeze <- cdf(srftFit, srftGridData,
date = "2004013100", value = 273.15)

In the srft and srftGrid datasets, temperature is
recorded in degrees Kelvin (K), so freezing occurs at
273.15 K.

These results can be displayed as image plots us-
ing the plotProbcast function, as shown in Figure
2, in which darker shades represent higher probabil-
ities. The plots are made by binning values onto a
plotting grid, which is the default in plotProbcast.
Loading the fields (Furrer et al., 2010) and maps
(Brownrigg and Minka, 2011) packages enables dis-
play of the country and state outlines, as well as a
legend.

Precipitation example. The prcpFit dataset con-
sists of the fitted BMA parameters for 48 hour ahead
forecasts of daily precipitation accumulation (in hun-
dredths of an inch) over the U.S. Pacific Northwest
from December 12, 2002 through March 31, 2005,
as described by Sloughter et al. (2007). The fitted
models are Bernoulli-gamma mixtures with a point

1The package implements the original BMA method of Raftery et al. (2005) and Sloughter et al. (2007), in which there is a single, con-
stant bias correction term over the whole domain. Model biases are likely to differ by location, and there are newer methods that account
for this (Gel, 2007; Mass et al., 2008; Kleiber et al., in press).
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Figure 1: BMA predictive distributions for temperature (in degrees Kelvin) valid January 31, 2004 (left) and for precip-
itation (in hundredths of an inch) valid January 15, 2003 (right), at Port Angeles, Washington at 4PM local time, based
on the eight-member University of Washington Mesoscale Ensemble (Grimit and Mass, 2002; Eckel and Mass, 2005). The
thick black curve is the BMA PDF, while the colored curves are the weighted PDFs of the constituent ensemble members.
The thin vertical black line is the median of the BMA PDF (occurs at or near the mode in the temperature plot), and the
dashed vertical lines represent the 10th and 90th percentiles. The orange vertical line is at the verifying observation. In the
precipitation plot (right), the thick vertical black line at zero shows the point mass probability of no precipitation (47%).
The densities for positive precipitation amounts have been rescaled, so that the maximum of the thick black BMA PDF
agrees with the probability of precipitation (53%).
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Figure 2: Image plots of the BMA median forecast for surface temperature and BMA probability of freezing over the
Pacific Northwest, valid January 31, 2004.
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mass at zero that apply to the cube root transforma-
tion of the ensemble forecasts and observed data. A
rolling training period of 30 days is used. The dataset
used to obtain prcpFit is not included in the pack-
age on account of its size. However, the correspond-
ing "ensembleData" object can be constructed in the
same way as illustrated for the surface temperature
data, and the modeling process also is analogous, ex-
cept that the "gamma0" model for quantitative precip-
itation is used in lieu of the "normal" model.

The prcpGrid dataset contains gridded ensemble
forecasts of daily precipitation accumulation in the
same region as that of prcpFit, initialized January
13, 2003 and valid January 15, 2003. The BMA me-
dian and upper bound (90th percentile) forecasts can
be obtained and plotted as follows:

data(prcpFit)

prcpGridForc <- quantileForecast(
prcpFit, prcpGridData, date = "20030115",
q = c(0.5, 0.9))

Here prcpGridData is an "ensembleData" object cre-
ated from the prcpGrid dataset. The 90th percentile
plot is shown in Figure 3. The probability of precip-
itation and the probability of precipitation above .25
inches can be obtained as follows:

probPrecip <- 1 - cdf(prcpFit, prcpGridData,
date = "20030115", values = c(0, 25))

The plot for the BMA forecast probability of pre-
cipitation accumulation exceeding .25 inches is also
shown in Figure 3.

Verification

The ensembleBMA functions for verification can
be used whenever observed weather conditions are
available. Included are functions to compute veri-
fication rank and probability integral transform his-
tograms, the mean absolute error, continuous ranked
probability score, and Brier score.

Mean absolute error, continuous ranked probabil-
ity score, and Brier score. In the previous section,
we obtained a gridded BMA forecast of surface tem-
perature valid January 31, 2004 from the srft data
set. To obtain forecasts at station locations, we ap-
ply the function quantileForecast to the model fit
srftFit:

srftForc <- quantileForecast(srftFit,
srftData, quantiles = c( .1, .5, .9))

The BMA quantile forecasts can be plotted together
with the observed weather conditions using the func-
tion plotProbcast as shown in Figure 4. Here the R
core function loess was used to interpolate from the

station locations to a grid for surface plotting. It is
also possible to request image or perspective plots,
or contour plots.

The mean absolute error (MAE) and mean contin-
uous ranked probability score (CRPS; e.g., Gneiting
and Raftery, 2007) can be computed with the func-
tions CRPS and MAE:

CRPS(srftFit, srftData)
# ensemble BMA
# 1.945544 1.490496

MAE(srftFit, srftData)
# ensemble BMA
# 2.164045 2.042603

The function MAE computes the mean absolute dif-
ference between the ensemble or BMA median fore-
cast2 and the observation. The BMA CRPS is ob-
tained via Monte Carlo simulation and thus may
vary slightly in replications. Here we compute these
measures from forecasts valid on a single date; more
typically, the CRPS and MAE would be computed
from a range of dates and the corresponding predic-
tive models.

Brier scores (see e.g., Jolliffe and Stephenson,
2003; Gneiting and Raftery, 2007) for probability
forecasts of the binary event of exceeding an arbi-
trary precipitation threshold can be computed with
the function brierScore.

Assessing calibration. Calibration refers to the sta-
tistical consistency between the predictive distribu-
tions and the observations (Gneiting et al., 2007). The
verification rank histogram is used to assess calibra-
tion for an ensemble forecast, while the probability
integral transform (PIT) histogram assesses calibra-
tion for predictive PDFs, such as the BMA forecast
distributions.

The verification rank histogram plots the rank of
each observation relative to the combined set of the
ensemble members and the observation. Thus, it
equals one plus the number of ensemble members
that are smaller than the observation. The histogram
allows for the visual assessment of the calibration of
the ensemble forecast (Hamill, 2001). If the observa-
tion and the ensemble members are exchangeable, all
ranks are equally likely, and so deviations from uni-
formity suggest departures from calibration. We il-
lustrate this with the srft dataset, starting at January
30, 2004:

use <- ensembleValidDates(srftData) >=
"2004013000"

srftVerifRank <- verifRank(
ensembleForecasts(srftData[use,]),
ensembleVerifObs(srftData[use,]))

2Raftery et al. (2005) employ the BMA predictive mean rather than the predictive median.
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Figure 3: Image plots of the BMA upper bound (90th percentile) forecast of precipitation accumulation (in hundredths of
an inch), and the BMA probability of precipitation exceeding .25 inches over the Pacific Northwest, valid January 15, 2003.
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Figure 4: Contour plots of the BMA median forecast of surface temperature and verifying observations at station locations
in the Pacific Northwest, valid January 31, 2004 (srft dataset). The plots use loess fits to the forecasts and observations at
the station locations, which are interpolated to a plotting grid. The dots represent the 715 observation sites.
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Figure 5: Verification rank histogram for ensemble forecasts, and PIT histogram for BMA forecast PDFs for surface tem-
perature over the Pacific Northwest in the srft dataset valid from January 30, 2004 to February 28, 2004. More uniform
histograms correspond to better calibration.

k <- ensembleSize(srftData)

hist(srftVerifRank, breaks = 0:(k+1),
prob = TRUE, xaxt = "n", xlab = "",
main = "Verification Rank Histogram")

axis(1, at = seq(.5, to = k+.5, by = 1),
labels = 1:(k+1))

abline(h=1/(ensembleSize(srftData)+1), lty=2)

The resulting rank histogram composites ranks spa-
tially and is shown in Figure 5. The U shape indicates
a lack of calibration, in that the ensemble forecast is
underdispersed.

The PIT is the value that the predictive cumula-
tive distribution function attains at the observation,
and is a continuous analog of the verification rank.
The function pit computes it. The PIT histogram al-
lows for the visual assessment of calibration and is
interpreted in the same way as the verification rank
histogram. We illustrate this on BMA forecasts of
surface temperature obtained for the entire srft data
set using a 25 day training period (forecasts begin on
January 30, 2004 and end on February 28, 2004):

srftFitALL <- ensembleBMA(srftData,
trainingDays = 25)

srftPIT <- pit(srftFitALL, srftData)

hist(srftPIT, breaks = (0:(k+1))/(k+1),
xlab="", xaxt="n", prob = TRUE,
main = "Probability Integral Transform")

axis(1, at = seq(0, to = 1, by = .2),
labels = (0:5)/5)

abline(h = 1, lty = 2)

The resulting PIT histogram is shown in Figure
5. It shows signs of negative bias, which is not sur-
prising because it is based on only about a month of
verifying data. We generally recommend computing
the PIT histogram for longer periods, ideally at least
a year, to avoid its being dominated by short-term
and seasonal effects.

The ProbForecastGOP package

The ProbForecastGOP package (Berrocal et al., 2010)
generates probabilistic forecasts of entire weather
fields using the geostatistical output perturbation
(GOP) method of Gel et al. (2004). The package con-
tains functions for the GOP method, a wrapper func-
tion named ProbForecastGOP, and a plotting utility
named plotfields. More detailed information can
be found in the PDF document installed in the pack-
age directory at ‘ProbForecastGOP/docs/vignette.pdf’ or
in the help files.

The GOP method uses geostatistical methods
to produce probabilistic forecasts of entire weather
fields for temperature and pressure, based on a sin-
gle numerical weather forecast on a spatial grid. The
method involves three steps:

• an initial step in which linear regression is
used for bias correction, and the empirical var-
iogram of the forecast errors is computed;

• an estimation step in which the weighted least
squares method is used to fit a parametric
model to the empirical variogram; and

• a forecasting step in which a statistical en-
semble of weather field forecasts is generated,
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by simulating realizations of the error field
from the fitted geostatistical model, and adding
them to the bias-corrected numerical forecast
field.

Empirical variogram

In the first step of the GOP method, the empiri-
cal variogram of the forecast errors is found. Var-
iograms are used in spatial statistics to character-
ize variability in spatial data. The empirical vari-
ogram plots one-half the mean squared difference be-
tween paired observations against the distance sepa-
rating the corresponding sites. Distances are usually
binned into intervals, whose midpoints are used to
represent classes.

In ProbForecastGOP, four functions compute
empirical variograms. Two of them, avg.variog and
avg.variog.dir, composite forecast errors over tem-
poral replications, while the other two, Emp.variog
and EmpDir.variog, average forecast errors tem-
porally, and only then compute variograms. Al-
ternatively, one can use the wrapper function
ProbForecastGOP with argument out = "VARIOG".

Parameter estimation

The second step in the GOP method consists of
fitting a parametric model to the empirical var-
iogram of the forecast errors. This is done by
the Variog.fit function using the weighted least
squares approach. Alternatively, the wrapper func-
tion ProbForecastGOP with entry out set equal to
"FIT" can be employed. Figure 6 illustrates the re-
sult for forecasts of surface temperature over the
Pacific Northwest in January through June 2000.
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Figure 6: Empirical variogram of temperature fore-
cast errors and fitted exponential variogram model.

The parametric models implemented in
Variog.fit are the exponential, spherical, Gaussian,
generalized Cauchy and Whittle-Matérn, with fur-
ther detail available in the help files. The function
linesmodel computes these parametric models.

Generating ensemble members

The final step in the GOP method involves generat-
ing multiple realizations of the forecast weather field.
Each realization provides a member of a statistical
ensemble of weather field forecasts, and is obtained
by simulating a sample path of the fitted error field,
and adding it to the bias-adjusted numerical forecast
field.

This is achieved by the function Field.sim, or by
the wrapper function ProbForecastGOP with the en-
try out set equal to "SIM". Both options depend on
the GaussRF function in the RandomFields package
that simulates Gaussian random fields (Schlather,
2011).

The output of the functions is both numerical
and graphical, in that they return members of the
forecast field ensemble, quantile forecasts at individ-
ual locations, and plots of the ensemble members
and quantile forecasts. The plots are created using
the image.plot, US and world functions in the fields
package (Furrer et al., 2010). As an illustration, Fig-
ure 7 shows a member of a forecast field ensemble of
surface temperature over the Pacific Northwest valid
January 12, 2002.
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Figure 7: A member of a 48-hour ahead forecast field
ensemble of surface temperature (in degrees Celsius)
over the Pacific Northwest valid January 12, 2002 at
4PM local time.
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Summary

We have described two packages, ensembleBMA
and ProbForecastGOP, for probabilistic weather
forecasting. Both packages provide functionality to
fit forecasting models to training data.

In ensembleBMA, parametric mixture models, in
which the components correspond to the members
of an ensemble, are fit to a training set of ensemble
forcasts, in a form that depends on the weather pa-
rameter. These models are then used to postprocess
ensemble forecasts at station or grid locations.

In ProbForecastGOP, a parametric model is fit to
the empirical variogram of the forecast errors from a
single member, and forecasts are obtained by simu-
lating realizations of the fitted error field and adding
them to the bias-adjusted numerical forecast field.
The resulting probabilistic forecast is for an entire
weather field, and shows physically realistic spatial
features.

Supplementing model fitting and forecasting,
both packages provide functionality for verification,
allowing the quality of the forecasts produced to be
assessed.
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