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Ckmeans.1d.dp: Optimal k-means
Clustering in One Dimension by Dynamic
Programming
by Haizhou Wang and Mingzhou Song

Abstract
The heuristic k-means algorithm, widely used
for cluster analysis, does not guarantee optimal-
ity. We developed a dynamic programming al-
gorithm for optimal one-dimensional clustering.
The algorithm is implemented as an R package
called Ckmeans.1d.dp. We demonstrate its ad-
vantage in optimality and runtime over the stan-
dard iterative k-means algorithm.

Introduction

Cluster analysis offers a useful way to organize and
represent complex data sets. It is used routinely for
data analysis in fields such as bioinformatics. The
k-means problem is to partition data into k groups
such that the sum of squared Euclidean distances to
each group mean is minimized. However, the prob-
lem is NP-hard in a general Euclidean space, even
when the number of clusters k is 2 (Aloise et al., 2009;
Dasgupta and Freund, 2009), or when the dimension-
ality is 2 (Mahajan et al., 2009). The standard itera-
tive k-means algorithm (Lloyd, 1982) is a widely used
heuristic solution. The algorithm iteratively calculates
the within-cluster sum of squared distances, modifies
group membership of each point to reduce the within-
cluster sum of squared distances, and computes new
cluster centers until local convergence is achieved.
The time complexity of this standard k-means algo-
rithm is O(qknp), where q is the number of iterations,
k is the number of clusters, n is the sample size, and p
is the dimensionality (Manning et al., 2008).

However, the disadvantages of various heuristic
k-means algorithms in repeatability, optimality, and
runtime may limit their usage in medical and scien-
tific applications. For example, when patients are
clustered according to diagnostic measurements on
expression of marker genes, it can be critical that a
patient consistently falls into a same diagnostic group
to receive appropriate treatment, regardless of how
many times the clustering is applied. In this case,
both cluster repeatability and optimality are impor-
tant. The result of heuristic k-means clustering, heav-
ily dependent on the initial cluster centers, is neither
always optimal nor repeatable. Often one restarts the
procedure a number of times to mitigate the problem.
However, when k is big, the number of restarts for
k-means to approach an optimal solution can be pro-
hibitively high and may lead to a substantial increase

in runtime. As clustering is often a preprocessing step
in data analysis or modeling, such inadequacy can
pose a nuisance for further steps.

In response to this challenge, our objective is to de-
velop a practical and convenient clustering algorithm
in R to guarantee optimality in a one-dimensional
(1-D) space. The motivation originated from discrete
system modeling such as Boolean networks (Kauff-
man, 1969, 1993) and generalized logical networks
(Song et al., 2009), where continuous values must
be converted to discrete ones before modeling. Our
algorithm follows a comparable dynamic program-
ming strategy used in a 1-D quantization problem to
preserve probability distributions (Song et al., 2010),
the segmented least squares problem and the knap-
sack problem (Kleinberg and Tardos, 2006). The ob-
jective function in the k-means problem is the sum
of squares of within-cluster distances. We present an
exact dynamic programming solution with a runtime
of O(n2k) to the 1-D k-means problem.

We implemented the algorithm in the R pack-
age Ckmeans.1d.dp (Song and Wang, 2011) and eval-
uated its performance by simulation studies. We
demonstrate how the standard k-means algorithm
may return unstable clustering results, while our
method guarantees optimality. Our method is im-
plemented in C++ to take advantage of the practical
speedup of a compiled program. This C++ implemen-
tation is further wrapped in an R package so that it
can be conveniently called in R.

Optimal 1-D clustering by dynamic
programming

We first define the k-means problem. Let x1, . . . , xn be
an input array of n numbers sorted in non-descending
order. The problem of 1-D k-means clustering is de-
fined as assigning elements of the input 1-D array
into k clusters so that the sum of squares of within-
cluster distances from each element to its correspond-
ing cluster mean is minimized. We refer to this sum
as within-cluster sum of squares, or withinss for short.

We introduce a dynamic programming algorithm
to guarantee optimality of clustering in 1-D. We de-
fine a sub-problem as finding the minimum withinss of
clustering x1, . . . , xi into m clusters. We record the cor-
responding minimum withinss in entry D[i,m] of an
n + 1 by k + 1 matrix D. Thus D[n,k] is the minimum
withinss value to the original problem. Let j be the in-
dex of the smallest number in cluster m in an optimal
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solution to D[i,m]. It is evident that D[j− 1,m− 1]
must be the optimal withinss for the first j− 1 points
in m− 1 clusters, for otherwise one would have a bet-
ter solution to D[i,m]. This establishes the optimal
substructure for dynamic programming and leads to
the recurrence equation

D[i,m] = min
m≤j≤i

{
D[j− 1,m− 1] + d(xj, . . . , xi)

}
,

1≤ i ≤ n,1≤ m ≤ k

where d(xj, . . . , xi) is the sum of squared distances
from xj, . . . , xi to their mean. The matrix is initialized
as D[i,m] = 0, when m = 0 or i = 0.

Using the above recurrence, we can obtain D[n,k],
the minimum withinss achievable by a clustering of
the given data. In the meanwhile, D[n,m] gives
the minimum withinss if all n numbers are clustered
into m groups. By definition each entry requires
O(n2) time to compute using the given recurrence
if d(xj, . . . , xi) is computed in linear time, resulting in
O(n3k) total runtime. However, d(xj, . . . , xi) can be
computed in constant time in the recurrence. This
is possible because d(xj, . . . , xi) can be computed pro-
gressively based on d(xj+1, ..., xi) in constant time. Us-
ing a general index from 1 to i, we iteratively compute

d(x1, . . . , xi) = d(x1, . . . , xi−1) +
i− 1

i
(xi − µi−1)

2

µi =
xi + (i− 1)µi−1

i

where µi is the mean of the first i elements. This iter-
ative computation of d(xj, . . . , xi) reduces the overall
runtime of the dynamic programming algorithm to
O(n2k).

To find a clustering of data with the minimum
withinss of D[n,k], we define an auxiliary n by k ma-
trix B to record the index of the smallest number in
cluster m:

B[i,m] = argmin
m≤j≤i

{
D[j− 1,m− 1] + d(xj, . . . , xi)

}
,

1≤ i ≤ n,1≤ m ≤ k

Then we backtrack from B[n,k] to obtain the starting
and ending indices for all clusters and generate an op-
timal solution to the k-means problem. The backtrack
is done in O(k) time.

The space complexity of the dynamic program-
ming is O(nk) because we use an (n + 1) × (k + 1)
matrix D to record minimum withinss and an n× k
matrix B for backtracking.

Implementation

We implemented this dynamic programming algo-
rithm and created an R package Ckmeans.1d.dp. To
take advantage of the runtime speed up by a compiled
language over R, an interpreted language, we de-
veloped the dynamic programming solution in C++.

We compiled the C++ code to a binary dynamic li-
brary, which can be called within R through function
Ckmeans.1d.dp() provided in the package.

Performance evaluation and com-
parison with the standard k-means

Simulated data sets

We simulated data sets containing clusters using 1-D
Gaussian mixture models. In a Gaussian mixture
model, the number of components is the true number
of clusters. The mean of each Gaussian component
is randomly sampled from the uniform distribution
from −1 to 1 and the standard deviation of a compo-
nent is uniformly distributed from 0 to 0.2.

Optimality

We first compared the optimality of Ckmeans.1d.dp()
and the standard k-means method on 1-D data. We
used the Hartigan and Wong (1979) implementation
of k-means, as provided by the kmeans() function in R.
The core of the kmeans() function is also implemented
in C/C++. As Ckmeans.1d.dp() guarantees optimal-
ity of clustering, we define the relative difference from
the kmeans() clustering result to the optimal value
produced by Ckmeans.1d.dp() as

withinss(k-means)− withinss(Ckmeans.1d.dp)
withinss(Ckmeans.1d.dp)

which measures deviation of the k-means result from
the optimal value.

The data sets were randomly generated from
Gaussian mixture models with 2 to 50 components.
We ran Ckmeans.1d.dp() and kmeans() on input data
given the correct number of clusters k. The relative
difference in withinss from the kmeans() to the opti-
mal value produced by Ckmeans.1d.dp() is shown as
a function of k in Figure 1.

Although one hopes to get better clusters by
restarting k-means several times, the simulation sug-
gests that it still cannot guarantee optimality when
there are many clusters in the data. This clearly
demonstrates the advantage of Ckmeans.1d.dp() in
optimality.

Runtime

We then compared the empirical runtime of
Ckmeans.1d.dp() with the standard k-means method
on 1-D data. Using 1-D Gaussian mixture models, we
generated five input arrays of size 100, 1,000, 10,000,
100,000, and 1,000,000, respectively. The Gaussian
mixture models had 2 to 50 components.

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 31

10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Accuracy of standard k−means algorithm relative
to optimal solution

Number of clusters k

R
el

at
iv

e 
di

ffe
re

nc
e

Figure 1: The accuracy of kmeans() becomes worse as the
number of clusters increases. Accuracy is indicated by the
relative difference in withinss from kmeans() to the optimal
value returned by Ckmeans.1d.dp(). The input data sets of
size 10,000 were sampled from Gaussian mixture models
of 2 to 50 components. kmeans() was set to restart 20 times
for each data set.

We ran both programs on each input array ten
times to obtain average empirical runtimes in three
different settings. All simulations were run on a desk-
top computer with an Intel Core i7 860 processor and
8GB memory, running OpenSUSE 11.3 and R 2.11.1.

In the first setting (Figure 2), runtime is obtained
as a function of input data size from 100 to 1,000,000
for both Ckmeans.1d.dp() and kmeans() without con-
straints on optimality. The number of components in
the Gaussian mixture models is fixed to 2.

According to Figure 2, as the input size increases,
the runtime of Ckmeans.1d.dp() increases faster than
the runtime of kmeans(). However, the result re-
turned by kmeans() may not be optimal (the restart
of kmeans() was set to 1). Without any constraints on
optimality, kmeans() demonstrates an advantage in
runtime over Ckmeans.1d.dp() of runtime quadratic
in n.

In the second setting (Figure 3), runtime is
obtained as a function of number of clusters for
Ckmeans.1d.dp() and kmeans() without constraints
on optimality. All input data sets are of the same size
10,000 and were generated from Gaussian mixture
models with 2 to 25 components.

In Figure 3, the runtime of Ckmeans.1d.dp() in-
creases linearly with the number of clusters k, as does
the runtime of kmeans(). kmeans(), without any con-
straints on optimality, still shows an advantage in
absolute runtime over Ckmeans.1d.dp().
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Figure 2: Runtime as a function of input size for
Ckmeans.1d.dp() and kmeans(). kmeans() shows an advan-
tage in runtime without any constraints on optimality. The
number of clusters is 2 and there is no restart for k-means.
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Figure 3: Comparison of runtime as a function of number
of clusters between Ckmeans.1d.dp() and kmeans(). The in-
put data are mixed Gaussian of fixed size 10,000 but with an
increasing number of components, representing the clusters
in data. Although the k-means algorithm took less runtime,
it was run with no restart and thus may not be optimal.

In the third setting (Figure 4), we plot the run-
time of Ckmeans.1d.dp() and kmeans() as a func-
tion of the number of clusters, obtained from
exactly the same input data in the second set-
ting, but with a constraint on the optimality of
k-means such that its withinss has a relative dif-
ference less than 10−6 from the optimal value.
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Figure 4: Runtime as a function of number of clusters with
restart of kmeans() to guarantee a relative difference less
than 10−6 to the optimal value. The sample size is always
10,000. The number next to each blue square is the number
of restarts needed for kmeans(). The runtime of kmeans()
appears to grow exponentially and that of Ckmeans.1d.dp()
always grows linearly with the number of clusters.

Since Ckmeans.1d.dp() returns an optimal result
in only one run, its runtime is the same as setting 2.
On the other hand, kmeans() was restarted a num-
ber of times in order to approach an optimal solution
within the given tolerance. The number of restarts
increases substantially to produce a nearly optimal so-
lution as the number of clusters k increases. As shown
in Figure 4, the runtime of Ckmeans.1d.dp() increases
linearly with k, but the runtime of kmeans() appears
to increase exponentially with k. The runtime of
kmeans() almost always far exceeds Ckmeans.1d.dp()
when k is above 15. This suggests an advantage of
Ckmeans.1d.dp() over kmeans() in both runtime and
optimality when k is big.

The R source code for the simulation studies is
available from http://www.cs.nmsu.edu/~joemsong/
R-Journal/Ckmeans-Simulation.zip.

Introduction to the R package Ck-
means.1d.dp

The Ckmeans.1d.dp package implements the dy-
namic programming algorithm for 1-D clustering
that we described above. In the package, the
Ckmeans.1d.dp() function performs the clustering on
a 1-D input vector using a given number of clusters.

The following example illustrates how to use the
package. Figure 5 visualizes the input data and the
cluster result obtained by Ckmeans.1d.dp() in this
example.

# a one-dimensional example
# with a two-component Gaussian mixture model
x <- rnorm(50, mean = 1, sd = 0.3)
x <- append(x, rnorm(50, sd = 0.3) )
result <- Ckmeans.1d.dp(x, 2)
plot(x, col = result$cluster)
abline(h = result$centers, col = 1:2, pch = 8,

cex = 2)
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Figure 5: Two clusters obtained from applying function
Ckmeans.1d.dp() on input x sampled from a Gaussian mix-
ture model with two components. The horizontal axis is
the index number of each point in x. The two clusters are
indicated using red and black circles. The two horizontal
lines represent the centers of each cluster.

Summary

The main purpose of our work is to develop an ex-
act solution to 1-D clustering in a practical amount of
time, as an alternative to heuristic k-means algorithms.
We thus developed the Ckmeans.1d.dp package us-
ing dynamic programming to guarantee clustering
optimality in O(n2k) time. The algorithm is imple-
mented in C++ with an interface to the R language.
It is provided as a package to R and has been tested
under recent operating system versions of Windows,
Linux and MacOS. By simulation studies, we demon-
strated its advantage over the standard k-means algo-
rithm when optimality is required.

There are two limitations of our Ckmeans.1d.dp
method. It only applies to 1-D data and its quadratic
runtime in the sample size may not be acceptable in
all applications.

However, where applicable, the impact of our
method is its optimality and repeatability. As our
simulation studies show, when the number of clusters
is big, our method not only guarantees optimality but
also has a fast runtime. In this situation, our method
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is preferred. We applied our Ckmeans.1d.dp to quan-
tize biological data in the DREAM Challenges (Prill
et al., 2010) for qualitative dynamic modeling using
generalized logical networks (Song et al., 2009).

It is of great interest if the 1-D dynamic program-
ming strategy can be extended to multiple dimen-
sional spaces so that clustering can be done in poly-
nomial time to k. However, this seems to us to remain
open indefinitely.
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