
60 PROGRAMMER’S NICHE

Portable C++ for R Packages
by Martyn Plummer

Abstract Package checking errors are more com-
mon on Solaris than Linux. In many cases, these
errors are due to non-portable C++ code. This ar-
ticle reviews some commonly recurring problems
in C++ code found in R packages and suggests
solutions.

CRAN packages are tested regularly on both Linux
and Solaris. The results of these tests can be found
at http://cran.r-project.org/web/checks/check_
summary.html. Currently, 24 packages generate er-
rors on Linux while 125 packages generate errors
on Solaris.1 A major contribution to the higher fre-
quency of errors on Solaris is lack of portability of
C++ code. The CRAN Solaris checks use the Oracle
Solaris Studio 12.2 compiler, which has a much more
stringent interpretation of the C++ standard than the
GCC 4.6.1 compiler used for the checks on on Linux,
and will therefore reject code that compiles correctly
with GCC.

It seems plausible that most R package develop-
ers work with GCC and are therefore not aware of
portability issues in their C++ code until these are
shown by the CRAN checks on Solaris. In fact, many
of the testing errors are due to a few commonly re-
curring problems in C++. The aims of this article are
to describe these problems, to help package authors
diagnose them from the Solaris error message, and to
suggest good practice for avoiding them.

The scope of the article is limited to basic use of
C++. It does not cover the use of the Rcpp package
(Eddelbuettel and Francois, 2011) and the Scythe sta-
tistical library (Pemstein et al., 2011), which are used
to support C++ code in some R packages, nor issues
involved in writing your own templates.

Before describing the portability issues in detail, it
is important to consider two general principles that
underlie most portability problems.

Firstly, C++ is not a superset of C. The current C
standard is ISO/IEC 9899:1999, usually referred to as
C99 after its year of publication. Most C++ compil-
ers support the ISO/IEC 14882:1998 (C++98 ), which
predates it.2 Thus, the two languages have diverged,
and there are features in C99 that are not available in
C++98.

The g++ compiler allows C99 features in C++ code.
These features will not be accepted by other compilers
that adhere more closely to the C++98 standard. If
your code uses C99 features, then it is not portable.

The C++ standard is evolving. In August 2011,
the ISO approved a new C++ standard which was
published in September 2011 and is known as C++11 .

This should remove much of the divergence between
the two languages. However, it may take some time
for the new C++11 standard to be widely imple-
mented in C++ compilers and libraries. Therefore
this article was written with C++98 in mind.

The second general issue is that g++ has a per-
missive interpretation of the C++ standard, and will
typically interpret ambiguous code for you. Other
compilers require stricter conformance to the stan-
dard and will need hints for interpreting ambiguous
code. Unlike the first issue, this is unlikely to change
with the evolving C++ standard.

The following sections each describe a specific is-
sue that leads to C++ portability problems. By far
the most common error message produced on Solaris
is ‘The function foo must have a prototype’. In the
following, this is referred to as a missing prototype
error . Problems and solutions are illustrated using
C++ code snippets. In order to keep the examples
short, ellipses are used in place of code that is not
strictly necessary to illustrate the problem.

C99 functions

Table 1 shows some C functions that were introduced
with the C99 standard and are not supported by
C++98. These functions are accepted by g++ and will
therefore pass R package checks using this compiler,
but will fail on Solaris with a missing prototype error.

C99 Function R replacement

expm1(x) expm1(x)
log1p(x) log1p(x)
trunc(x) ftrunc(x)
round(x) fprec(x, 0)
lgamma(x) lgammafn(x)

Table 1: Some expressions using C99 functions and
their portable replacements using functions declared
in the ‘<Rmath.h>’

R packages have access to C functions exposed by
the R API, which provides a simple workaround for
these functions. All of the expressions in the left hand
column of Table 1 can be replaced by portable expres-
sions on the right hand side if the header ‘<Rmath.h>’
is included.

A less frequently used C99 function is the cube
root function cbrt. The expression cbrt(x) can be re-
placed by std::pow(x, (1./3.)) using the pow func-
tion defined in the header ‘<cmath>’.

1Patched version of R 2.14.0, on 10 December 2011, x86 platform.
2Although a technical corrigendum of the C++ standard was published in 2003, it provided no new features.

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

http://cran.r-project.org/web/checks/check_summary.html
http://cran.r-project.org/web/checks/check_summary.html
http://cran.r-project.org/package=Rcpp


PROGRAMMER’S NICHE 61

C99 macros for special values

The C99 standard also introduced the constants NAN
and INFINITY as well as the macros isfinite, isinf,
isnan and fpclassify to test for them. None of these
are part of the C++98 standard. Attempts to use the
macros on Solaris will result in a missing prototype er-
ror, and the constants will result in the error message
“NAN/INFINITY not defined”.

As with the C99 functions above, the R API pro-
vides some facilities to replace this missing function-
ality. The R macros R_FINITE and ISNAN and the R
function R_IsNan are described in the R manual “Writ-
ing R Extensions” and are accessed by including the
header file ‘<R.h>’. They are not exactly equivalent to
the C99 macros because they are adapted to deal with
R’s missing value NA_REAL.

If you need access to a non-finite value then
‘<R_ext/Arith.h>’ provides R_PosInf, R_NegInf and
R_NaReal (more commonly used as NA_REAL).

Variable-length arrays

A variable-length array is created when the size of
the array is determined at runtime, not compile time.
A simple example is

void fun(int n) {
double A[n];
...

}

Variable length arrays are not part of the C++98 stan-
dard. On Solaris, they produce the error message
“An integer constant expression is required within the
array subscript operator”.

Variable-length arrays can be replaced by an in-
stantiation of the vector template from the Standard
Template Library (STL). Elements of an STL vector
are accessed using square bracket notation just like
arrays, so it suffices to replace the definition of the
array with

std::vector<double> A(n);

The STL vector template includes a destructor that
will free the memory when A goes out of scope.

A function that accepts a pointer to the beginning
of an array can be modified to accept a reference to
an STL vector. For example, this

void fun(double *A, unsigned int length) { ... }

may be replaced with

void fun(std::vector<double> &A) {
unsigned int length = A.size();
...

}

Note that an STL vector can be queried to determine
its size. Hence the size does not need to be passed as
an additional argument.

External library functions that expect a pointer to
a C array, such as BLAS or LAPACK routines, may
also be used with STL vectors. The C++ standard
guarantees that the elements of a vector are stored
contiguously. The address of the first element (e.g.
&a[0]) is thus a pointer to the start of an underlying
C array that can be passed to external functions. For
example:

int n = 20;
std::vector<double> a(n);
... // fill in a
double nrm2 = cblas_dnrm2(n, &a[0], 1);

Note however that boolean vectors are an exception
to this rule. They may be packed to save memory, so
it is not safe to assume a one-to-one correspondence
between the underlying storage of a boolean vector
and a boolean array.

Function overloading

The C++ standard library provides overloaded ver-
sions of most mathematical functions, with versions
that accept (and return) a float, double or long
double.

If an integer constant is passed to these functions,
then g++ will decide for you which of the overloaded
functions to use. For example, this expression is ac-
cepted by g++.

#include <cmath>
using std::sqrt;

double z = sqrt(2);

The Oracle Solaris Studio compiler will produce
the error message ’Overloading ambiguity between
std::sqrt(double) and std::sqrt(float)’. It re-
quires a hint about which version to use. This hint
can be supplied by ensuring that the constant is inter-
preted as a double

double z = sqrt(2.);

In this case ‘2.’ is a double constant, rather than an
integer, because it includes a decimal point. To use a
float or long double, add the qualifying suffix F or
L respectively.

The same error message arises when an integer
variable is passed to an overloaded function inside an
expression that does not evaluate to a floating point
number.

#include <cmath>
using std::sqrt;

bool fun(int n, int m) {
return n > m * sqrt(m);

}

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859



62 PROGRAMMER’S NICHE

In this example, the compiler does not know if m
should be considered a float, double or long double
inside the sqrt function because the return type is
bool. The hint can be supplied using a cast:

return n > m * sqrt(static_cast<double>(m));

Namespaces for C functions

As noted above, C99 functions are not part of the
C++98 standard. C functions from the previous C90
standard are allowed in C++98 code, but their use
is complicated by the issue of namespaces. This is a
common cause of missing prototype errors on Solaris.

The C++ standard library offers two distinct sets
of header files for C90 functions. One set is called
‘<cname>’ and the other is called ‘<name.h>’ where
“name” is the base name of the header (e.g. ‘math’,
‘stdio’, . . . ). It should be noted that the ‘<name.h>’
headers in the C++ standard library are not the same
files as their namesakes provided by the C standard
library.

Both sets of header files in the C++ standard li-
brary provide the same declarations and definitions,
but differ according to whether they provide them
in the standard namespace or the global namespace.
The namespace determines the function calling con-
vention that must be used:

• Functions in the standard namespace need to
be referred to by prefixing std:: to the func-
tion name. Alternatively, in source files (but
not header files) the directive using std::foo;
may be used at the beginning of the file to in-
struct the compiler that foo always refers to a
function in the standard namespace.

• Functions in the global namespace can be re-
ferred to without any prefix, except when the
function is overloaded in another namespace.
In this case the scope resolution prefix ‘::’ must
be used. For example:

using std::vector;

namespace mypkg {
//Declare overloaded sqrt
vector<double> sqrt(vector<double> const &);
//Use sqrt in global namespace
double y = ::sqrt(2.0);

}

Although the C++98 standard specifies which
namespaces the headers ‘<cname>’ and ‘<name.h>’
should use, it has not been widely followed. In
fact, the C++11 standard has been modified to con-
form to the current behaviour of C++ compilers
(JTC1/SC22/WG21 - The C++ Standards Committee,
2011, Appendix D.5), namely:

• Header ‘<cname>’ provides declarations and
definitions in the namespace std. It may or may
not provide them in the global namespace.

• Header ‘<name.h>’ provides declarations and
definitions in the global namespace. It may or
may not provide them in the namespace std.

The permissiveness of this standard makes it difficult
to test code for portability. If you use the ‘<cname>’
headers, then g++ puts functions in both the standard
and global namespaces, so you may freely mix the
two calling conventions. However, the Oracle Solaris
Studio compiler will reject C function calls that are
not resolved to the standard namespace.

The key to portability of C functions in C++ code is
to use one set of C headers consistently and check the
code on a platform that does not use both namespaces
at the same time. This rules out g++ for testing code
with the ‘<cname>’ headers. Conversely, the GNU
C++ standard library header ‘<name.h>’ does not put
functions in the std namespace, so g++ may be used
to test code using ‘<name.h>’ headers. This is far from
an ideal solution. These headers were meant to sim-
plify porting of C code to C++ and are not supposed
to be used for new C++ code. However, the fact that
the C++11 standard still includes these deprecated
headers suggests a tacit acceptance that their use is
still widespread.

Some g++ shortcuts

The g++ compiler provides two further shortcuts for
the programmer which may occasionally throw up
missing prototype errors on Solaris.

Headers in the GNU C++ standard library may be
implicitly included in other headers. For example, in
version 4.5.1, the ‘<fstream>’ and ‘<stdexcept>’ head-
ers both include the ‘<string>’ header. If your source
file includes either of these two headers, then you
may may use strings without an #include <string>;
statement, relying on this implicit inclusion. Other
implementations of the C++ standard library may not
do this implicit inclusion.

When faced with a missing prototype error on So-
laris, it is worth checking a suitable reference (such
as http://www.cplusplus.com) to find out which
header declares the function according to the C++
standard, and then ensure that this header is explic-
itly included in your code.

A second shortcut provided by g++ is argument-
dependent name lookup (also known as Koenig
lookup), which may allow you to omit scope reso-
lution of functions in the standard namespace. For
example,

#include <algorithm>
#include <vector>
using std::vector;

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

http://www.cplusplus.com


PROGRAMMER’S NICHE 63

void fun (vector<double> &y)
{

sort(y.begin(), y.end());
}

Since the arguments to the sort algorithm are in the
std namespace, gcc looks in the same namespace for
a definition of sort. This code therefore compiles cor-
rectly with gcc. Compilers that do not support Koenig
lookup require the sort function to be resolved as
std::sort.

Conclusions

The best way to check for portability of C++ code
is simply to test it with as many compilers on as
many platforms as possible. On Linux, various
third-party commercial compilers are available at
zero cost. The Intel C++ Composer XE compiler is
free for non-commercial software development (Note
that you must comply with Intel’s definition of non-
commercial); the PathScale EkoPath 4 compiler re-
cently became open source; the Oracle Solaris Studio
compilers may be downloaded for free from the Ora-
cle web site (subject to license terms). The use of these
alternative compilers should help to detect problems
not detected by GCC, although it may not uncover
all portability issues since they also rely on the GNU
implementation of the C++ standard library. It is also
possible to set up alternate testing platforms inside
a virtual machine, although the details of this are be-
yond the scope of this article.

Recognizing that most R package authors do not
have the time to set up their own testing platforms,
this article should help them to interpret the feedback
from the CRAN tests on Solaris, which provide a rig-
orous test of conformity to the current C++ standard.
Much of the advice in this article also applies to a C++
front-end or an external library to which an R package
may be linked.

An important limitation of this article is the as-
sumption that package authors are free to modify
the source code. In fact, many R packages are wrap-
pers around code written by a third party. Of course,
all CRAN packages published under an open source
license may be modified according to the licence con-
ditions. However, some of the solutions proposed
here, such as using functions from the R API, may not
be suitable for third-party code as they require main-
taining a patched copy. Nevertheless, it may still be
useful to send feedback to the upstream maintainer.

Acknowledgement

I would like to thank Douglas Bates and an anony-
mous referee for their helpful comments.

Bibliography

D. Eddelbuettel and R. Francois. Rcpp: Seamless
R and C++ integration. Journal of Statistical Soft-
ware, 40(8):1–18, 4 2011. ISSN 1548-7660. URL
http://www.jstatsoft.org/v40/i08.

JTC1/SC22/WG21 - The C++ Standards Committee.
Working draft, standard for programming language
C++. Technical report, ISO/IEC, February 2011.
URL http://www.open-std.org/JTC1/SC22/WG21.

D. Pemstein, K. M. Quinn, and A. D. Martin. The
scythe statistical library: An open source C++ li-
brary for statistical computation. Journal of Statis-
tical Software, 42(12):1–26, 6 2011. ISSN 1548-7660.
URL http://www.jstatsoft.org/v42/i12.

Martyn Plummer
International Agency for Research on Cancer
150 Cours Albert Thomas 69372 Lyon Cedex 08
France
plummerM@iarc.fr

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

http://www.jstatsoft.org/v40/i08
http://www.open-std.org/JTC1/SC22/WG21
http://www.jstatsoft.org/v42/i12
mailto:plummerM@iarc.fr

