
CONTRIBUTED RESEARCH ARTICLES 5

testthat: Get Started with Testing
by Hadley Wickham

Abstract Software testing is important, but
many of us don’t do it because it is frustrating
and boring. testthat is a new testing framework
for R that is easy learn and use, and integrates
with your existing workflow. This paper shows
how, with illustrations from existing packages.

Introduction

Testing should be something that you do all the time,
but it’s normally painful and boring. testthat (Wick-
ham, 2011) tries to make testing as painless as possi-
ble, so you do it as often as possible. To make that
happen, testthat:

• Provides functions that make it easy to describe
what you expect a function to do, including
catching errors, warnings and messages.

• Easily integrates in your existing workflow,
whether it’s informal testing on the com-
mand line, building test suites, or using ‘R CMD
check’.

• Can re-run tests automatically as you change
your code or tests.

• Displays test progress visually, showing a pass,
fail or error for every expectation. If you’re us-
ing the terminal, it’ll even colour the output.

testthat draws inspiration from the xUnit family
of testing packages, as well from many of the innova-
tive Ruby testing libraries like rspec1, testy2, bacon3

and cucumber4. I have used what I think works for
R, and abandoned what doesn’t, creating a testing
environment that is philosophically centred in R.

Why test?

I wrote testthat because I discovered I was spending
too much time recreating bugs that I had previously
fixed. While I was writing the original code or fixing
the bug, I’d perform many interactive tests to make
sure the code worked, but I never had a system for
retaining these tests and running them, again and
again. I think this is a common development prac-
tice of R programmers: it’s not that we don’t test our
code, it’s that we don’t store our tests so they can be
re-run automatically.

In part, this is because existing R testing pack-
ages, such as RUnit (Burger et al., 2009) and svUnit
(Grosjean, 2009), require a lot of up-front work to get
started. One of the motivations of testthat is to make
the initial effort as small as possible, so you can start
off slowly and gradually ramp up the formality and
rigour of your tests.

It will always require a little more work to
turn your casual interactive tests into reproducible
scripts: you can no longer visually inspect the out-
put, so instead you have to write code that does the
inspection for you. However, this is an investment in
the future of your code that will pay off in:

• Decreased frustration. Whenever I’m working
to a strict deadline I always seem to discover a
bug in old code. Having to stop what I’m do-
ing to fix the bug is a real pain. This happens
less when I do more testing, and I can easily see
which parts of my code I can be confident in by
looking at how well they are tested.

• Better code structure. Code that’s easy to test
is usually better designed. I have found writ-
ing tests makes me extract out the complicated
parts of my code into separate functions that
work in isolation. These functions are easier
to test, have less duplication, are easier to un-
derstand and are easier to re-combine in new
ways.

• Less struggle to pick up development after a
break. If you always finish a session of cod-
ing by creating a failing test (e.g. for the feature
you want to implement next) it’s easy to pick
up where you left off: your tests let you know
what to do next.

• Increased confidence when making changes. If
you know that all major functionality has a test
associated with it, you can confidently make
big changes without worrying about acciden-
tally breaking something. For me, this is par-
ticularly useful when I think of a simpler way
to accomplish a task - often my simpler solu-
tion is only simpler because I’ve forgotten an
important use case!

Test structure

testthat has a hierarchical structure made up of ex-
pectations, tests and contexts.

1http://rspec.info/
2http://github.com/ahoward/testy
3http://github.com/chneukirchen/bacon
4http://wiki.github.com/aslakhellesoy/cucumber/

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://cran.r-project.org/package=testthat
http://rspec.info/
http://github.com/ahoward/testy
http://github.com/chneukirchen/bacon
http://wiki.github.com/aslakhellesoy/cucumber/
http://cran.r-project.org/package=RUnit
http://cran.r-project.org/package=svUnit
http://rspec.info/
http://github.com/ahoward/testy
http://github.com/chneukirchen/bacon
http://wiki.github.com/aslakhellesoy/cucumber/

6 CONTRIBUTED RESEARCH ARTICLES

• An expectation describes what the result of a
computation should be. Does it have the right
value and right class? Does it produce error
messages when you expect it to? There are 11
types of built-in expectations.

• A test groups together multiple expectations to
test one function, or tightly related functional-
ity across multiple functions. A test is created
with the test_that function.

• A context groups together multiple tests that
test related functionality.

These are described in detail below. Expectations
give you the tools to convert your visual, interactive
experiments into reproducible scripts; tests and con-
texts are just ways of organising your expectations
so that when something goes wrong you can easily
track down the source of the problem.

Expectations

An expectation is the finest level of testing; it makes
a binary assertion about whether or not a value
is as you expect. An expectation is easy to read,
since it is nearly a sentence already: expect_that(a,
equals(b)) reads as “I expect that a will equal b”. If
the expectation isn’t true, testthat will raise an error.

There are 11 built-in expectations:

• equals() uses all.equal() to check for equal-
ity with numerical tolerance:

Passes
expect_that(10, equals(10))
Also passes
expect_that(10, equals(10 + 1e-7))
Fails
expect_that(10, equals(10 + 1e-6))
Definitely fails!
expect_that(10, equals(11))

• is_identical_to() uses identical() to check
for exact equality:

Passes
expect_that(10, is_identical_to(10))
Fails
expect_that(10, is_identical_to(10 + 1e-10))

• is_equivalent_to() is a more relaxed version
of equals() that ignores attributes:

Fails
expect_that(c("one" = 1, "two" = 2),
equals(1:2))

Passes
expect_that(c("one" = 1, "two" = 2),
is_equivalent_to(1:2))

• is_a() checks that an object inherit()s from a
specified class:

model <- lm(mpg ~ wt, data = mtcars)
Passes
expect_that(model, is_a("lm"))
Fails
expect_that(model, is_a("glm"))

• matches() matches a character vector against
a regular expression. The optional all argu-
ment controls where all elements or just one
element need to match. This code is powered
by str_detect() from the stringr (Wickham,
2010) package:

string <- "Testing is fun!"
Passes
expect_that(string, matches("Testing"))
Fails, match is case-sensitive
expect_that(string, matches("testing"))
Passes, match can be a regular expression
expect_that(string, matches("t.+ting"))

• prints_text() matches the printed output
from an expression against a regular expres-
sion:

a <- list(1:10, letters)
Passes
expect_that(str(a), prints_text("List of 2"))
Passes
expect_that(str(a),
prints_text(fixed("int [1:10]"))

• shows_message() checks that an expression
shows a message:

Passes
expect_that(library(mgcv),
shows_message("This is mgcv"))

• gives_warning() expects that you get a warn-
ing:

Passes
expect_that(log(-1), gives_warning())
expect_that(log(-1),
gives_warning("NaNs produced"))

Fails
expect_that(log(0), gives_warning())

• throws_error() verifies that the expression
throws an error. You can also supply a regular
expression which is applied to the text of the
error:

Fails
expect_that(1 / 2, throws_error())
Passes
expect_that(1 / "a", throws_error())
But better to be explicit
expect_that(1 / "a",
throws_error("non-numeric argument"))

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://cran.r-project.org/package=stringr

CONTRIBUTED RESEARCH ARTICLES 7

Full Short cut

expect_that(x, is_true()) expect_true(x)
expect_that(x, is_false()) expect_false(x)
expect_that(x, is_a(y)) expect_is(x, y)
expect_that(x, equals(y)) expect_equal(x, y)
expect_that(x, is_equivalent_to(y)) expect_equivalent(x, y)
expect_that(x, is_identical_to(y)) expect_identical(x, y)
expect_that(x, matches(y)) expect_matches(x, y)
expect_that(x, prints_text(y)) expect_output(x, y)
expect_that(x, shows_message(y)) expect_message(x, y)
expect_that(x, gives_warning(y)) expect_warning(x, y)
expect_that(x, throws_error(y)) expect_error(x, y)

Table 1: Expectation shortcuts

• is_true() is a useful catchall if none of the
other expectations do what you want - it checks
that an expression is true. is_false() is the
complement of is_true().

If you don’t like the readable, but verbose,
expect_that style, you can use one of the shortcut
functions described in Table 1.

You can also write your own expectations. An
expectation should return a function that compares
its input to the expected value and reports the result
using expectation(). expectation() has two argu-
ments: a boolean indicating the result of the test, and
the message to display if the expectation fails. Your
expectation function will be called by expect_that
with a single argument: the actual value. The fol-
lowing code shows the simple is_true expectation.
Most of the other expectations are equally simple,
and if you want to write your own, I’d recommend
reading the source code of testthat to see other exam-
ples.

is_true <- function() {
function(x) {
expectation(
identical(x, TRUE),
"isn't true"

)
}

}

Running a sequence of expectations is useful be-
cause it ensures that your code behaves as expected.
You could even use an expectation within a func-
tion to check that the inputs are what you expect.
However, they’re not so useful when something goes
wrong: all you know is that something is not as ex-
pected, you know nothing about where the problem
is. Tests, described next, organise expectations into
coherent blocks that describe the overall goal of that
set of expectations.

Tests

Each test should test a single item of functionality
and have an informative name. The idea is that when
a test fails, you should know exactly where to look
for the problem in your code. You create a new
test with test_that, with parameters name and code
block. The test name should complete the sentence
“Test that . . . ” and the code block should be a collec-
tion of expectations. When there’s a failure, it’s the
test name that will help you figure out what’s gone
wrong.

Figure 1 shows one test of the floor_date func-
tion from lubridate (Wickham and Grolemund,
2010). There are 7 expectations that check the re-
sults of rounding a date down to the nearest second,
minute, hour, etc. Note how we’ve defined a couple
of helper functions to make the test more concise so
you can easily see what changes in each expectation.

Each test is run in its own environment so it
is self-contained. The exceptions are actions which
have effects outside the local environment. These in-
clude things that affect:

• The filesystem: creating and deleting files,
changing the working directory, etc.

• The search path: package loading & detaching,
attach.

• Global options, like options() and par().

When you use these actions in tests, you’ll need to
clean up after yourself. Many other testing packages
have set-up and teardown methods that are run au-
tomatically before and after each test. These are not
so important with testthat because you can create
objects outside of the tests and rely on R’s copy-on-
modify semantics to keep them unchanged between
test runs. To clean up other actions you can use reg-
ular R functions.

You can run a set of tests just by source()ing a
file, but as you write more and more tests, you’ll
probably want a little more infrastructure. The first

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://cran.r-project.org/package=lubridate

8 CONTRIBUTED RESEARCH ARTICLES

test_that("floor_date works for different units", {
base <- as.POSIXct("2009-08-03 12:01:59.23", tz = "UTC")

is_time <- function(x) equals(as.POSIXct(x, tz = "UTC"))
floor_base <- function(unit) floor_date(base, unit)

expect_that(floor_base("second"), is_time("2009-08-03 12:01:59"))
expect_that(floor_base("minute"), is_time("2009-08-03 12:01:00"))
expect_that(floor_base("hour"), is_time("2009-08-03 12:00:00"))
expect_that(floor_base("day"), is_time("2009-08-03 00:00:00"))
expect_that(floor_base("week"), is_time("2009-08-02 00:00:00"))
expect_that(floor_base("month"), is_time("2009-08-01 00:00:00"))
expect_that(floor_base("year"), is_time("2009-01-01 00:00:00"))

})

Figure 1: A test case from the lubridate package.

part of that infrastructure is contexts, described be-
low, which give a convenient way to label each file,
helping to locate failures when you have many tests.

Contexts

Contexts group tests together into blocks that test re-
lated functionality and are established with the code:
context("My context"). Normally there is one con-
text per file, but you can have more if you want, or
you can use the same context in multiple files.

Figure 2 shows the context that tests the operation
of the str_length function in stringr. The tests are
very simple, but cover two situations where nchar()
in base R gives surprising results.

Workflow

So far we’ve talked about running tests by
source()ing in R files. This is useful to double-check
that everything works, but it gives you little infor-
mation about what went wrong. This section shows
how to take your testing to the next level by setting
up a more formal workflow. There are three basic
techniques to use:

• Run all tests in a file or directory test_file()
or test_dir().

• Automatically run tests whenever something
changes with autotest.

• Have R CMD check run your tests.

Testing files and directories

You can run all tests in a file with test_file(path).
Figure 3 shows the difference between test_file
and source for the tests in Figure 2, as well as those
same tests for nchar. You can see the advantage of
test_file over source: instead of seeing the first
failure, you see the performance of all tests.

Each expectation is displayed as either a green
dot (indicating success) or a red number (indicating
failure). That number indexes into a list of further
details, printed after all tests have been run. What
you can’t see is that this display is dynamic: a new
dot gets printed each time a test passes and it’s rather
satisfying to watch.

test_dir will run all of the test files in a directory,
assuming that test files start with test (so it’s possi-
ble to intermix regular code and tests in the same di-
rectory). This is handy if you’re developing a small
set of scripts rather than a complete package. The fol-
lowing shows the output from the stringr tests. You
can see there are 12 contexts with between 2 and 25
expectations each. As you’d hope in a released pack-
age, all the tests pass.

> test_dir("inst/tests/")
String and pattern checks :
Detecting patterns :
Duplicating strings :
Extract patterns : ..
Joining strings :
String length :
Locations :
Matching groups :
Test padding :
Splitting strings :
Extracting substrings :
Trimming strings :

If you want a more minimal report, suitable for
display on a dashboard, you can use a different re-
porter. testthat comes with three reporters: stop,
minimal and summary. The stop reporter is the de-
fault and stop()s whenever a failure is encountered;
the summary report is the default for test_file and
test_dir. The minimal reporter prints ‘.’ for suc-
cess, ‘E’ for an error and ‘F’ for a failure. The follow-
ing output shows (some of) the output from running
the stringr test suite with the minimal reporter.

> test_dir("inst/tests/", "minimal")
...

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 9

context("String length")

test_that("str_length is number of characters", {
expect_that(str_length("a"), equals(1))
expect_that(str_length("ab"), equals(2))
expect_that(str_length("abc"), equals(3))

})

test_that("str_length of missing is missing", {
expect_that(str_length(NA), equals(NA_integer_))
expect_that(str_length(c(NA, 1)), equals(c(NA, 1)))
expect_that(str_length("NA"), equals(2))

})

test_that("str_length of factor is length of level", {
expect_that(str_length(factor("a")), equals(1))
expect_that(str_length(factor("ab")), equals(2))
expect_that(str_length(factor("abc")), equals(3))

})

Figure 2: A complete context from the stringr package that tests the str_length function for computing string
length.

> source("test-str_length.r")
> test_file("test-str_length.r")
.........

> source("test-nchar.r")
Error: Test failure in 'nchar of missing is missing'
* nchar(NA) not equal to NA_integer_
'is.NA' value mismatch: 0 in current 1 in target
* nchar(c(NA, 1)) not equal to c(NA, 1)
'is.NA' value mismatch: 0 in current 1 in target
> test_file("test-nchar.r")
...12..34

1. Failure: nchar of missing is missing ---------------------------------
nchar(NA) not equal to NA_integer_
'is.NA' value mismatch: 0 in current 1 in target

2. Failure: nchar of missing is missing ---------------------------------
nchar(c(NA, 1)) not equal to c(NA, 1)
'is.NA' value mismatch: 0 in current 1 in target

3. Failure: nchar of factor is length of level ---------------------------------
nchar(factor("ab")) not equal to 2
Mean relative difference: 0.5

4. Failure: nchar of factor is length of level ---------------------------------
nchar(factor("abc")) not equal to 3
Mean relative difference: 0.6666667

Figure 3: Results from running the str_length context, as well as results from running a modified version that
uses nchar. nchar gives the length of NA as 2, and converts factors to integers before calculating length. These
tests ensures that str_length doesn’t make the same mistakes.

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

10 CONTRIBUTED RESEARCH ARTICLES

Autotest

Tests are most useful when run frequently, and
autotest takes that idea to the limit by re-running
your tests whenever your code or tests change.
autotest() has two arguments, code_path and
test_path, which point to a directory of source code
and tests respectively.

Once run, autotest() will continuously scan
both directories for changes. If a test file is modi-
fied, it will test that file; if a code file is modified, it
will reload that file and rerun all tests. To quit, you’ll
need to press Ctrl + Break on windows, Escape in
the Mac GUI, or Ctrl + C if running from the com-
mand line.

This promotes a workflow where the only way
you test your code is through tests. Instead of
modify-save-source-check you just modify and save,
then watch the automated test output for problems.

R CMD check

If you are developing a package, you can have your
tests automatically run by ‘R CMD check’. I recom-
mend storing your tests in inst/tests/ (so users
also have access to them), then including one file
in tests/ that runs all of the package tests. The
test_package(package_name) function makes this
easy. It:

• Expects your tests to be in the inst/tests/ di-
rectory.

• Evaluates your tests in the package namespace
(so you can test non exported functions).

• Throws an error at the end if there are any test
failures. This means you’ll see the full report of
test failures and ‘R CMD check’ won’t pass un-
less all tests pass.

This setup has the additional advantage that
users can make sure your package works correctly
in their run-time environment.

Future work

There are two additional features I’d like to incorpo-
rate in future versions:

• Code coverage. It’s very useful to be able to
tell exactly what parts of your code have been
tested. I’m not yet sure how to achieve this in
R, but it might be possible with a combination
of RProf and codetools (Tierney, 2009).

• Graphical display for auto_test. I find that
the more visually appealing I make testing, the
more fun it becomes. Coloured dots are pretty
primitive, so I’d also like to provide a GUI wid-
get that displays test output.

Bibliography

M. Burger, K. Juenemann, and T. Koenig. RUnit:
R Unit test framework, 2009. URL http://CRAN.
R-project.org/package=RUnit. R package ver-
sion 0.4.22.

P. Grosjean. SciViews-R: A GUI API for R. URL http:
//www.sciviews.org/SciViews-R. UMH, Mons,
Belgium, 2009.

L. Tierney. codetools: Code Analysis Tools for R,
2009. URL http://CRAN.R-project.org/package=
codetools. R package version 0.2-2.

H. Wickham. stringr: Make it easier to work with
strings., 2010. URL http://CRAN.R-project.org/
package=stringr. R package version 0.4.

H. Wickham. testthat: Testthat code. Tools to make test-
ing fun :), 2011. URL http://CRAN.R-project.org/
package=testthat. R package version 0.5.

H. Wickham and G. Grolemund. lubridate: Make
dealing with dates a little easier, 2010. URL http:
//www.jstatsoft.org/v40/i03/. R package ver-
sion 0.1.

Hadley Wickham
Department of Statistics
Rice University
6100 Main St MS#138
Houston TX 77005-1827
USA
hadley@rice.edu

The R Journal Vol. 3/1, June 2011 ISSN 2073-4859

http://CRAN.R-project.org/package=RUnit
http://CRAN.R-project.org/package=RUnit
http://www.sciviews.org/SciViews-R
http://www.sciviews.org/SciViews-R
http://CRAN.R-project.org/package=codetools
http://CRAN.R-project.org/package=codetools
http://CRAN.R-project.org/package=stringr
http://CRAN.R-project.org/package=stringr
http://CRAN.R-project.org/package=testthat
http://CRAN.R-project.org/package=testthat
http://www.jstatsoft.org/v40/i03/
http://www.jstatsoft.org/v40/i03/
mailto:hadley@rice.edu

