
38 CONTRIBUTED RESEARCH ARTICLES

stringr: modern, consistent string
processing
by Hadley Wickham

Abstract String processing is not glamorous, but
it is frequently used in data cleaning and prepa-
ration. The existing string functions in R are
powerful, but not friendly. To remedy this, the
stringr package provides string functions that
are simpler and more consistent, and also fixes
some functionality that R is missing compared
to other programming languages.

Introduction

Strings are not glamorous, high-profile components
of R, but they do play a big role in many data clean-
ing and preparations tasks. R provides a solid set of
string operations, but because they have grown or-
ganically over time, they can be inconsistent and a
little hard to learn. Additionally, they lag behind the
string operations in other programming languages,
so that some things that are easy to do in languages
like Ruby or Python are rather hard to do in R.
The stringr package aims to remedy these problems
by providing a clean, modern interface to common
string operations.

More concretely, stringr:

• Processes factors and characters in the same
way.

• Gives functions consistent names and argu-
ments.

• Simplifies string operations by eliminating op-
tions that you don’t need 95% of the time (the
other 5% of the time you can use the base func-
tions).

• Produces outputs than can easily be used as in-
puts. This includes ensuring that missing in-
puts result in missing outputs, and zero length
inputs result in zero length outputs.

• Completes R’s string handling functions with
useful functions from other programming lan-
guages.

To meet these goals, stringr provides two basic
families of functions:

• basic string operations, and

• pattern matching functions which use regular
expressions to detect, locate, match, replace,
extract, and split strings.

These are described in more detail in the follow-
ing sections.

Basic string operations

There are three string functions that are closely re-
lated to their base R equivalents, but with a few en-
hancements:

• str_c is equivalent to paste, but it uses the
empty string (“”) as the default separator and
silently removes zero length arguments.

• str_length is equivalent to nchar, but it pre-
serves NA’s (rather than giving them length
2) and converts factors to characters (not inte-
gers).

• str_sub is equivalent to substr but it returns a
zero length vector if any of its inputs are zero
length, and otherwise expands each argument
to match the longest. It also accepts negative
positions, which are calculated from the left of
the last character. The end position defaults to
-1, which corresponds to the last character.

• str_str<- is equivalent to substr<-, but like
str_sub it understands negative indices, and
replacement strings not do need to be the same
length as the string they are replacing.

Three functions add new functionality:

• str_dup to duplicate the characters within a
string.

• str_trim to remove leading and trailing
whitespace.

• str_pad to pad a string with extra whitespace
on the left, right, or both sides.

Pattern matching

stringr provides pattern matching functions to de-
tect, locate, extract, match, replace, and split strings:

• str_detect detects the presence or absence of
a pattern and returns a logical vector. Based on
grepl.

• str_locate locates the first position of a
pattern and returns a numeric matrix with
columns start and end. str_locate_all locates
all matches, returning a list of numeric matri-
ces. Based on regexpr and gregexpr.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://cran.r-project.org/package=stringr

CONTRIBUTED RESEARCH ARTICLES 39

• str_extract extracts text corresponding to
the first match, returning a character vector.
str_extract_all extracts all matches and re-
turns a list of character vectors.

• str_match extracts capture groups formed by
() from the first match. It returns a char-
acter matrix with one column for the com-
plete match and one column for each group.
str_match_all extracts capture groups from all
matches and returns a list of character matrices.

• str_replace replaces the first matched
pattern and returns a character vector.
str_replace_all replaces all matches. Based
on sub and gsub.

• str_split_fixed splits the string into a fixed
number of pieces based on a pattern and re-
turns a character matrix. str_split splits a
string into a variable number of pieces and re-
turns a list of character vectors.

Figure 1 shows how the simple (single match) form
of each of these functions work.

Arguments

Each pattern matching function has the same first
two arguments, a character vector of strings to pro-
cess and a single pattern (regular expression) to
match. The replace functions have an additional ar-
gument specifying the replacement string, and the
split functions have an argument to specify the num-
ber of pieces.

Unlike base string functions, stringr only offers
limited control over the type of matching. The
fixed() and ignore.case() functions modify the
pattern to use fixed matching or to ignore case, but
if you want to use perl-style regular expressions or
to match on bytes instead of characters, you’re out
of luck and you’ll have to use the base string func-
tions. This is a deliberate choice made to simplify
these functions. For example, while grepl has six ar-
guments, str_detect only has two.

Regular expressions

To be able to use these functions effectively, you’ll
need a good knowledge of regular expressions
(Friedl, 1997), which this paper is not going to teach
you. Some useful tools to get you started:

• A good reference sheet1

• A tool that allows you to interactively test2

what a regular expression will match

• A tool to build a regular expression3 from an
input string

When writing regular expressions, I strongly rec-
ommend generating a list of positive (pattern should
match) and negative (pattern shouldn’t match) test
cases to ensure that you are matching the correct
components.

Functions that return lists

Many of the functions return a list of vectors or ma-
trices. To work with each element of the list there
are two strategies: iterate through a common set of
indices, or use mapply to iterate through the vectors
simultaneously. The first approach is usually easier
to understand and is illustrated in Figure 2.

Conclusion

stringr provides an opinionated interface to strings
in R. It makes string processing simpler by remov-
ing uncommon options, and by vigorously enforcing
consistency across functions. I have also added new
functions that I have found useful from Ruby, and
over time, I hope users will suggest useful functions
from other programming languages. I will continue
to build on the included test suite to ensure that the
package behaves as expected and remains bug free.

Bibliography

J. E. Friedl. Mastering Regular Expressions. O’Reilly,
1997. URL http://oreilly.com/catalog/
9781565922570.

Hadley Wickham
Department of Statistics
Rice University
6100 Main St MS#138
Houston TX 77005-1827
USA
hadley@rice.edu

1http://www.regular-expressions.info/reference.html
2http://gskinner.com/RegExr/
3http://www.txt2re.com

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://www.regular-expressions.info/reference.html
http://gskinner.com/RegExr/
http://www.txt2re.com
http://oreilly.com/catalog/9781565922570
http://oreilly.com/catalog/9781565922570
mailto:hadley@rice.edu
http://www.regular-expressions.info/reference.html
http://gskinner.com/RegExr/
http://www.txt2re.com

40 CONTRIBUTED RESEARCH ARTICLES

library(stringr)
strings <- c(" 219 733 8965", "329-293-8753 ", "banana", "595 794 7569",
"387 287 6718", "apple", "233.398.9187 ", "482 952 3315", "239 923 8115",
"842 566 4692", "Work: 579-499-7527", "$1000", "Home: 543.355.3679")

phone <- "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

Which strings contain phone numbers?
str_detect(strings, phone)
strings[str_detect(strings, phone)]

Where in the string is the phone number located?
loc <- str_locate(strings, phone)
loc
Extract just the phone numbers
str_sub(strings, loc[, "start"], loc[, "end"])
Or more conveniently:
str_extract(strings, phone)

Pull out the three components of the match
str_match(strings, phone)

Anonymise the data
str_replace(strings, phone, "XXX-XXX-XXXX")

Figure 1: Simple string matching functions for processing a character vector containing phone numbers
(among other things).

library(stringr)
col2hex <- function(col) {
rgb <- col2rgb(col)
rgb(rgb["red",], rgb["green",], rgb["blue",], max = 255)

}

Goal replace colour names in a string with their hex equivalent
strings <- c("Roses are red, violets are blue", "My favourite colour is green")

colours <- str_c("\\b", colors(), "\\b", collapse="|")
This gets us the colours, but we have no way of replacing them
str_extract_all(strings, colours)

Instead, let's work with locations
locs <- str_locate_all(strings, colours)
sapply(seq_along(strings), function(i) {

string <- strings[i]
loc <- locs[[i]]

Convert colours to hex and replace
hex <- col2hex(str_sub(string, loc[, "start"], loc[, "end"]))
str_sub(string, loc[, "start"], loc[, "end"]) <- hex
string

})

Figure 2: A more complex situation involving iteration through a string and processing matches with a func-
tion.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

