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dclone: Data Cloning in R

by Péter Solymos

Abstract The dclone R package contains low
level functions for implementing maximum like-
lihood estimating procedures for complex mod-
els using data cloning and Bayesian Markov
Chain Monte Carlo methods with support for
JAGS, WinBUGS and OpenBUGS.

Introduction

Hierarchical models, including generalized linear
models with mixed random and fixed effects, are
increasingly popular. The rapid expansion of ap-
plications is largely due to the advancement of the
Markov Chain Monte Carlo (MCMC) algorithms and
related software (Gelman et al., 2003; Gilks et al.,
1996; Lunn et al., 2009). Data cloning is a statistical
computing method introduced by Lele et al. (2007). It
exploits the computational simplicity of the MCMC
algorithms used in the Bayesian statistical frame-
work, but it provides the maximum likelihood point
estimates and their standard errors for complex hi-
erarchical models. The use of the data cloning al-
gorithm is especially valuable for complex models,
where the number of unknowns increases with sam-
ple size (i.e. with latent variables), because inference
and prediction procedures are often hard to imple-
ment in such situations.

The dclone R package (S6lymos, 2010) provides
infrastructure for data cloning. Users who are fa-
miliar with Bayesian methodology can instantly use
the package for maximum likelihood inference and
prediction. Developers of R packages can build on
the low level functionality provided by the pack-
age to implement more specific higher level estima-
tion procedures for users who are not familiar with
Bayesian methodology. This paper demonstrates the
implementation of the data cloning algorithm, and
presents a case study on how to write high level func-
tions for specific modeling problems.

Theory of data cloning

Imagine a hypothetical situation where an experi-
ment is repeated by k different observers, and all k
experiments happen to result in exactly the same set
of observations, y*) = (y,y,...,y). The likelihood
function based on the combination of the data from
these k experiments is L(6,y*)) = [L (6,y)]". The lo-
cation of the maximum of L(6,y)) exactly equals
the location of the maximum of the function L (6,y),
and the Fisher information matrix based on this like-
lihood is k times the Fisher information matrix based
onL(6,y).
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One can use MCMC methods to calculate the pos-
terior distribution of the model parameters (¢) condi-
tional on the data. Under regularity conditions, if k
is large, the posterior distribution corresponding to
k clones of the observations is approximately normal
with mean @ and variance 1/k times the inverse of
the Fisher information matrix. When k is large, the
mean of this posterior distribution is the maximum
likelihood estimate and k times the posterior vari-
ance is the corresponding asymptotic variance of the
maximum likelihood estimate if the parameter space
is continuous. When some of the parameters are on
the boundaries of their feasible space (Stram and Lee,
1994), point estimates can be correct, but currently
the Fisher information cannot be estimated correctly
by using data cloning. This is an area for further re-
search, but such situations challenge other comput-
ing techniques as well.

Data cloning is a computational algorithm to
compute maximum likelihood estimates and the in-
verse of the Fisher information matrix, and is related
to simulated annealing (Brooks and Morgan, 1995).
By using data cloning, the statistical accuracy of the
estimator remains a function of the sample size and
not of the number of cloned copies. Data cloning
does not improve the statistical accuracy of the esti-
mator by artificially increasing the sample size. The
data cloning procedure avoids the analytical or nu-
merical evaluation of high dimensional integrals, nu-
merical optimization of the likelihood function, and
numerical computation of the curvature of the like-
lihood function. Interested readers should consult
Lele et al. (2007, 2010) for more details and mathe-
matical proofs for the data cloning algorithm.

The data cloning algorithm

Consider the following Poisson generalized linear
mixed model (GLMM) with a random intercept for
i.i.d. observations of Y; counts from i =1,2,...,n lo-
calities:

«; ~ normal (O, 02)

Ai =exp (txi + X;F[S)
Y; | A; ~ Poisson (A;)

The corresponding code for the simulation with g =
(1.8,-0.9),0=0.2,x;~U(0,1) is:

> library(dclone)

> set.seed(1234)

> n <- 50

> beta <- c¢(1.8, -0.9)

> sigma <- 0.2

> x <= runif(n, min = 0, max = 1)
> X <= model.matrix(~ x)
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> alpha <- rnorm(n, mean = 0, sd = sigma)
> lambda <- exp(alpha + drop(X %*% beta))
> Y <- rpois(n, lambda)

The first step in the data cloning algorithm is
to construct the full Bayesian model of the prob-
lem with proper prior distributions for unknown pa-
rameters. We use flat normal priors for fs and for
log (o). First we use the rjags (Plummer, 2010b) and
coda (Plummer et al., 2010) R packages and the JAGS
(Plummer, 2010a) software for model fitting. But the
dclone package also supports WinBUGS (Spiegelhal-
ter et al., 2003) and OpenBUGS (Spiegelhalter et al.,
2007) via the R packages R2ZWinBUGS (Sturtz et al.,
2005) and BRugs (Thomas et al., 2006), respectively.
The corresponding model in the BUGS language is:

> glmm.model <- function() {

+ for (i in 1:n) {

+ Y[i] ~ dpois(lambda[i])

+ lambda[i] <- exp(alpha[i] +
+ inprod(X[i,], betall,]))
+ alphafi] ~ dnorm(0, tau)

+ }

+ for (j in 1l:np) {

+ beta[l,j] ~ dnorm(0, 0.001)
+ }

+ log.sigma ~ dnorm(0, 0.001)

+ sigma <- exp(log.sigma)

+ tau <- 1 / pow(sigma, 2)

+}

Note that instead of writing the model into a file,
we store it as an R function (see JAGS and Win-
BUGS documentation for how to correctly specify
the model in the BUGS language). Although the
BUGS and R syntaxes seem similar, the BUGS model
function cannot be evaluated within R. Storing the
BUGS model as an R function is handy, because the
user does not have to manage different files when
modeling. Nevertheless, the model can be supplied
in a separate file by giving its name as character.

We also have to define the data as elements of a
named list along with the names of nodes that we
want to monitor (we can also set up initial values,
number of burn-in iterations, number of iterations
for the posterior sample, thinning values, etc.; see
dclone package documentation for details). Now we
can do the Bayesian inference by calling the jags. fit
function:

> dat <- list(Y =Y, X=X, n =n,

+ np = ncol (X))
> mod <- jags.fit (dat,
+ c("beta", "sigma"), glmm.model, n.iter = 1000)

The output mod is an "meme. list" object, which can
be explored by methods such as summary or plot pro-
vided by the coda package.

The dclone package provides the bugs. fit wrap-
per function for WinBUGS/OpenBUGS. The BUGS
model needs to be changed to run smoothly in Win-
BUGS/OpenBUGS:
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> glmm.model.bugs <- function() {

+ for (1 in 1l:n) {
+ Y[i] ~ dpois(lambda[i])
+ lambda[i] <- exp(alphali] +
+ inprod (X[i,], betall,]))
+ alpha[i] ~ dnorm(0, tau) %_% I(-5, 5)
+ }

+ for (j in l:np) {
+ beta[l, 3] ~ dnorm(0, 0.01) %_% I(-5, 5)
+ }

+ log.sigma ~ dnorm(0, 0.01) %_% I(-5, 5)

+ sigma <- exp(log.sigma)

+ tau <- 1 / pow(sigma, 2)

n

}

In the bugs. fit function, the settings besides the
data, params, model, and inits arguments follow
the settings in the bugs/openbugs functions in the
R2WinBUGS package. This leads to some differ-
ences between the arguments of the jags.fit and
the bugs.fit functions. For example bugs.fit uses
n.thininstead of thin, and n.burnin is equivalent to
n.adapt + n.update as compared to jags.fit. The
bugs. fit can return the results either in "mcmc. 1ist"
or "bugs" format. The reason for leaving different ar-
guments for jags.fit and bugs. fit is that the aim of
the dclone package is not to make the MCMC plat-
forms interchangeable, but to provide data cloning
facility for each. It is easy to adapt an existing BUGS
code for data cloning, but it sometimes can be tricky
to adapt a JAGS code to WinBUGS and vice versa,
because of differences between the two dialects (i.e.
truncation, censoring, autoregressive priors, etc., see
Plummer (2010b)).

Here are the results from the three MCMC plat-
forms:
> mod.wb <- bugs.fit(dat, c("beta", "sigma"),

+ glmm.model.bugs, DIC = FALSE, n.thin = 1)
> mod.ob <- bugs.fit(dat, c("beta", "sigma"),
+ glmm.model.bugs, program = "openbugs",

+  DIC = FALSE, n.thin = 1)

> sapply (list (JAGS = mod, WinBUGS = mod.wb,
+ OpenBUGS = mod.ob), coef)

JAGS WinBUGS OpenBUGS

betall] 1.893 1.910 1.9037
beta[2] -1.050 -1.074 -1.0375
sigma 0.161 0.130 0.0732

The idea in the next step of the data cloning al-
gorithm is that instead of using the likelihood for the
observed data, we use the likelihood corresponding
to k copies (clones) of the data. Actually cloning (re-
peating) the data k times is important if the model
includes unobserved (latent) variables: in this way
latent variables are cloned as well, thus contributing
to the likelihood. We can use the rep function to re-
peat the data vectors, but it is less convenient for e.g.
matrices or data frames. Thus, there is the dclone
generic function with methods for various R object
classes:

> dclone(1:5, 1)
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[11 12345

> dclone(1:5, 2)

[11 1234512345
attr(,"n.clones")

(11 2
attr(,"n.clones")attr (, "method")
[l] "rep"

> dclone (matrix(1:4, 2, 2), 2)

(11 [,2]
[1,1 1 3
[2,] 2 4
[3,1] 1 3
14,1 2 4
attr(,"n.clones")
(1] 2
attr(,"n.clones")attr(, "method")
[1] "rep"

> dclone (data.frame (a=1:2, b=3:4), 2)

I )]
Bw s W o

The number of clones can be extracted by the
nclones function; it returns NULL for k = 1 and k oth-
erwise.

The BUGS data specification might contain some
elements that we do not want to clone (e.g. "np", the
number of columns of the design matrix in this case).
Thus the dclone method has different behaviour for
lists, than for non list classes (including data frames).
We can define which elements should not be cloned,
or which should be multiplied by k instead of being
cloned k times.

> dat2 <- dclone(dat, n.clones = 2,
+ multiply = "n", unchanged = "np")
> nclones (dat2)

(11 2
attr (, "method")
Y X n np
"rep" "rep" "multi" NA

The "method" attribute of the cloned object stores
this information. There are three different ways of
cloning (besides NA standing for unchanged): "rep"
is for (longitudinal) repetitions, "multi" is for mul-
tiplication, and "dim" is repeating the data along an
extra dimension (see later).

Now we do the model fitting with k = 2. The
"meme. list" object inherits the information about
the cloning;:

> mod2 <- jags.fit (dat2,
+ c("beta", "sigma"), glmm.model, n.iter = 1000)
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Similarly, the bugs.fit function takes care of the
cloning information passed through the data argu-
ment:

> mod.wb2 <- bugs.fit(dat2, c("beta", "sigma"),
+ glmm.model.bugs, DIC = FALSE, n.thin = 1)
> mod.ob2 <- bugs.fit(dat2, c("beta", "sigma"),
+ glmm.model.bugs, program = "openbugs",

+ DIC = FALSE, n.thin = 1)

And here are the results based on k = 2 for the three
MCMC platforms:

> sapply (list (JAGS = mod2, WinBUGS = mod.wb2,
+ OpenBUGS = mod.ob2), coef)

JAGS WinBUGS OpenBUGS

beta[l] 1.918 1.905 1.896
beta[2] -1.114 -1.080 -1.078
sigma 0.207 0.187 0.243

For some models, indexing can be more complex,
and simple repetitions of the data ("rep" method)
are not appropriate. In case of non independent
data (time series or spatial autoregressive models),
cloning should be done over an extra dimension to
ensure that clones are independent. For this purpose,
one can use the dedim function:

> (obj <- dclone(dcdim(data.matrix(1:5)), 2))

clone.l clone.2

[1,1 1 1

[2,] 2 2

[3,] 3 3

[4,1 4 4

[5,] 5 5
attr(,"n.clones")

[11 2
attr(,"n.clones")attr (, "method")
[1] "dim"

attr(,"n.clones")attr(, "method")attr(,"drop")
[1] TRUE

If data cloning consists of repetitions of the data, our
BUGS model usually does not need modifications. If
we add an extra dimension to the data, the BUGS
model and the data specification must reflect the ex-
tra dimension, too.

To demonstrate this, we consider a model and
data set from Ponciano et al. (2009). They used the
single-species population growth data from labora-
tory experiments of Gause (1934) with Paramecium
aurelia. Gause initiated liquid cultures on day 0 at a
concentration of two individuals per 0.5 cm® of cul-
ture media. Then, on days 2-19, he took daily 0.5
cm? samples of the microbe cultures and counted the
number of cells in each sample. Ponciano et al. (2009)
fitted discrete time stochastic models of population
dynamics to describe Gause’s data taking into ac-
count both process noise and observation error. The
Beverton-Holt model incorporates a latent variable
component (N;, t =0,1,...,q) to describe an unob-
served time series of actual population abundance.
The latent variable component contains density de-
pendence (B) and stochastic process noise (¢2). The
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model incorporates a Poisson observation compo-
nent to account for variability caused by sampling:

ur =log(A) +1log(N;—1) —log(1+ BN;_1)
log(N;) ~ normal(,0?)
Y; | N} ~ Poisson(N;)

A is the finite rate of increase in population abun-
dance. The corresponding BUGS model is:

beverton.holt <- function() {

for (j in 1:k) {
for(i in 2: (n+1)) {
Y[(i-1),3] ~ dpois(exp(log.N[1i,]]))
log.N[i,j] ~ dnorm(mu(i,J], 1 / sigma”2)
muli, j] <= log(lambda) + log.N[(i-1),7]

- log(l + beta * exp(log.N[(i-1),7]))

>
+

+

+

+

+

+

+ }
+ log.N[1,3] ~ dnorm(mu0, 1 / sigma”2)

+ }

+ beta ~ dlnorm(-1, 1)

+ sigma ~ dlnorm(0, 1)

+ tmp ~ dlnorm(0, 1)

+ lambda <- tmp + 1

+ mu0 <- log(lambda) + log(2) - log(l + beta * 2)
n

}

Note that besides the indexing for the time series,
the model contains another dimension for the clones.
We define the data set by using the dcdim method for
cloning the observations. We include an element k =
1 that will be multiplied to indicate how many clones
(columns) are in the data, while n (number of obser-
vations) remains unchanged:

> paurelia <- c(17, 29, 39, 63, 185, 258, 267,
+ 392, 510, 570, 650, 560, 575, 650, 550,

+ 480, 520, 500)

> bhdat <- list(Y=dcdim(data.matrix (paurelia)),
+ n=length (paurelia), k=1)

> dcbhdat <- dclone(bhdat, n.clones = 5,

+ multiply = "k", unchanged = "n")

Vv

bhmod <- jags.fit (dcbhdat,
c("lambda", "beta","sigma"), beverton.holt,
n.iter=1000)

+ o+

> coef (bhmod)

beta lambda  sigma
0.00218 2.18755 0.12777

Results compare well wiAth estimates in Ponciano
etal. (2009) (B = 0.00235, A = 2.274, & = 0.1274).

Iterative model fitting

We can use the dc.fit function to iteratively fit the
same model with various k values as described in
Lele et al. (2010). The function takes similar ar-
guments to dclone and jags.fit (or bugs.fit, if
flavour = "bugs" is used). Because the informa-
tion in the data overrides the priors by increasing the
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number of clones, we can improve MCMC conver-
gence by making the priors more informative during
the iterative fitting process. We achieve this by modi-
fying the BUGS model for the Poisson GLMM exam-
ple:
> glmm.model.up <- function() {
+ for (i in 1:n) {
Y[i] ~ dpois(lambdal[i])
lambda[i] <- exp(alpha[i] +
inprod(X[i,], betall,]))
alpha[i] ~ dnorm(0, 1/sigma”2)
}
for (j in l:np) {
beta[l,Jj] ~ dnorm(pr(j, 1], prlj,2])
}
log.sigma ~ dnorm(pr|[ (np+l),1], pr[(np+l),2])
sigma <- exp(log.sigma)
tau <- 1 / pow(sigma, 2)
}

We also define a function to update the priors. The
function returns values for flat prior specification in
the first iteration, and uses the updated posterior
means (via the coef method) and data cloning stan-
dard errors (via the dcsd method) in the rest, be-
cause priors that have large probability mass near the
maximum likelihood estimate require fewer clones
to achieve the desired accuracy.

+
+
+
+
+
+
+
+
+
+
+
+

> upfun <- function(x) {

+ if (missing(x)) {

+ np <- ncol (X)

+ return (cbind(rep (0, np+l),

+ rep(0.001, np+l)))

+ } else {

+ ncl <- nclones (x)

+ if (is.null(ncl))

+ ncl <- 1

+ par <- coef (x)

+ se <- dcsd(x)

+ log.sigma <- mcmcapply (x[,"sigma"],
+ par[length(par)] <- mean(log.sigma)
+ se[length(se)] <- sd(log.sigma) * sqrt(ncl)
+ return (cbind(par, se))

n
n

log)

}

Finally, we define prior specifications as part of the
data ("pr"), and provide the updating function in the
dc.fit call:

> updat <- list(Y =Y, X =X, n =n,

+ np = ncol (X), pr = upfun())

> k <= c¢(1, 5, 10, 20)

> dcmod <- dc.fit (updat, c("beta", "sigma"),

+ glmm.model.up, n.clones = k, n.iter = 1000,
+ multiply = "n", unchanged = "np",
+ update = "pr", updatefun = upfun)

> summary (dcmod)

Iterations = 1001:2000
Thinning interval =1

Number of chains = 3

Sample size per chain = 1000
Number of clones = 20
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1. Empirical mean and standard deviation for each
variable, plus standard error of the mean:

Mean SD DC SD Naive SE
beta[l] 1.894 0.0368 0.164 0.000671
beta[2] -1.082 0.0734 0.328 0.001341

sigma 0.278 0.0256 0.114 0.000467
Time-series SE R hat

beta[l] 0.00259 1.01

beta[2] 0.00546 1.01

sigma 0.00194 1.04

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta[l] 1.823 1.869 1.89 1.920 1.964
beta[2] -1.230 -1.133 -1.08 -1.029 -0.943
sigma 0.226 0.260 0.28 0.296 0.323

The summary contains data cloning standard errors
(DC sD) and R values for MCMC chain convergence
(Gelman and Rubin, 1992).

Diagnostics

We can see how the increase in the number of clones
affects our inferences on single nodes by using the
dctable function. This function retrieves the infor-
mation stored during the iterative fitting process (or
can be used to compare more than one fitted model).
Only the last MCMC object is returned by dc.fit,
but descriptive statistics of the posterior distribution
are stored in each step (Figure 1). The asymptotic
convergence can be visually evaluated by plotting
the posterior variances scaled by the variance for the
model at k = 1 (or the smallest k). If scaled vari-
ances are decreasing at a 1/k rate and have reached a
lower bound (say < 0.05), the data cloning algorithm
has converged. If scaled variances are not decreas-
ing at the proper rate, that might indicate identifia-
bility issues (Lele et al., 2010). On the log scale, this
graph should show an approximately linear decrease
of log(scaled variance) vs. log(k) for each parameter
(Figure 2).

> dct <- dctable (dcmod)
> plot (dct)

> plot (dct, type="log.var")

Lele et al. (2010) introduced diagnostic measures
for checking the convergence of the data cloning al-
gorithm which are based on the joint posterior dis-
tribution and not only on single parameters. These
include calculating the largest eigenvalue of the pos-
terior variance covariance matrix (lambdamax.diag),
or calculating the mean squared error and another
correlation-like fit statistic (r?) based on a 2 approx-
imation (chisq.diag with a plot method). The max-
imum eigenvalue reflects the degeneracy of the pos-

The R Journal Vol. 2/2, December 2010

terior distribution, while the two fit measures re-
flect the adequacy of the normal approximation. All
three statistics should converge to zero as k increases.
If this happens, different prior specifications are no
longer influencing the results (Lele et al., 2007, 2010).

These measures and multivariate R values for
MCMC chain convergence (Brooks and Gelman,
1997) are calculated during the iterations by dc.fit
as well, and can be retrieved by the function dcdiag:

> dcdiag(dcmod)

n.clones lambda.max ms.error r.squared r.hat

1 1 0.11538 0.1282 0.02103 1.66
2 5 0.02225 0.0229 0.00277 1.02
3 10 0.01145 0.0383 0.00612 1.01
4 20 0.00643 0.0241 0.00173 1.03

The data cloning algorithm requires that MCMC
chains are properly mixed and the posterior distribu-
tion is nearly degenerate multivariate normal. These
requirements have been satisfied in the case of the
Poisson GLMM model. R values show better mix-
ing properties of the MCMC chains with higher k
values, and in this example it is expected, because
we have used informative priors near the maximum
likelihood estimates for the cases k > 1.

The functions dctable and dcdiag can be used to
determine the number of clones required for a par-
ticular model and data set. Also, these diagnostic
functions can alert the modeller when the model con-
tains non-identifiable parameters. Lele et al. (2010)
gives several examples; here we consider the normal-
normal mixture:

p; ~ normal(vy, T%)

Y; | p; ~ normal (p;,0?)

where the parameters (7, 02 + 12) are known to be
identifiable, but (7,02, T2) are not.

We simulate random observations under this
model (y = 25,0 =0.2,7 = 0.5) and fit the corre-
sponding BUGS model:

gamma <- 2.5
sigma <- 0.2
tau <- 0.5
set.seed(2345)
mu <- rnorm(n, gamma, tau)
Y <- rnorm(n, mu, sigma)
nn.model <- function() {
for (i in 1l:n) {
Y[i] ~ dnorm(muli], precl)
mu[i] ~ dnorm(gamma, prec2)

}
gamma ~ dnorm(0, 0.001)
log.sigma ~ dnorm(0, 0.001)
sigma <- exp(log.sigma)
precl <- 1 / pow(sigma, 2)
log.tau ~ dnorm(0, 0.001)
tau <- exp(log.tau)
prec2 <- 1 / pow(tau, 2)

}

> nndat <- list(Y =Y, n = n)

+ + + + + + + + + + + + V. V V V V V V
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Figure 1: Summary statistics for the Poisson mixed model example. Means are converging towards the maxi-
mum likelihood estimates (points), standard errors (vertical lines) are getting shorter with increasing number
of clones (95 and 50% quantile ranges and median also depicted).
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Figure 2: Convergence diagnostics for data cloning based on the Poisson mixed model example. Log of Scaled
Variances should decrease linearly with log(k), the scaled variance value close to zero (< 0.05) indicates con-
vergence of the data cloning algorithm.

> nnmod <- dc.fit (nndat, c("gamma","sigma","tau"),
+ nn.model, n.clones=c(1,10,20,30,40,50),
+ n.iter=1000, multiply="n")

> dcdiag (nnmod)

n.clones lambda.max ms.error r.squared r.hat

1 1 0.0312 0.508 0.02985 1.18
2 10 0.0364 0.275 0.00355 2.06
3 20 1.2617 1.111 0.13714 50.15
4 30 0.1530 0.753 0.10267 12.91
5 40 1.7972 0.232 0.03770 92.87
6 50 1.8634 0.241 0.04003 15.72
> vars <- mcmcapply (nnmod[,c("sigma", "tau")],
+ array) "2

> sigma”2 + tau”2
[1] 0.29
> summary (rowSums (vars) )

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.21 0.23 2.87 3.00 6.04 6.84
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The high r.hat and the variable lambda.max and fit
statistic values that are not converging to zero indi-
cate possible problems with identifiability.

Inference and prediction

We can explore the results with methods defined for
"meme. 1ist" objects (many such methods are avail-
able in the coda package, e.g. summary, plot, etc.).
The dclone package adds a few more methods: coef
returns the mean of the posterior, dcsd the data
cloning standard errors. Any function returning a
scalar statistic can be passed via the mcmcapply func-
tion:

> coef (dcmod)

beta[l] betal2] sigma
1.894 -1.082 0.278
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> dcsd (dcmod)

beta[l] betal2]
0.164 0.328

sigma
0.114

> mcmcapply (decmod, sd) * sqgrt(nclones (dcmod))

beta[l] betal2]
0.164 0.328

sigma
0.114

The asymptotic multivariate normality can be
used to get Wald-type confidence intervals for the
estimates based on the inverse of the Fisher infor-
mation matrix. The vcov method returns the inverse
Fisher information matrix, the confint method cal-
culates confidence intervals assuming multivariate
normality for MCMC objects with k > 1:

> confint (dcmod)

2.5 % 97.5 %
beta[l] 1.5718 2.217
beta[2] -1.7253 -0.438
sigma 0.0534 0.502

> vcov (dcmod)

betal[l] betal2] sigma
beta[l] 0.02705 -0.04604 -0.00291
beta[2] -0.04604 0.10783 -0.00156

sigma -0.00291 -0.00156 0.01308

Confidence intervals can also be obtained via para-
metric bootstrap or based on profile likelihood (Pon-
ciano et al., 2009), but these are not currently avail-
able in the dclone package and often require substan-
tial user intervention.

These methods are handy when we make predic-
tions. We can use the maximum likelihood estimates
and the variance-covariance matrix defined as a mul-
tivariate normal node in the BUGS model. For the
Poisson mixed model example, the BUGS model for
prediction will look like:

> glmm.pred <- function() {

+ for (i in 1:n) {

+ Y[i] ~ dpois(lambda[i])
+ lambda[i] <- exp(mu[i])
+ mu[i] <- alphali] +

+ inprod (X[i,], betall,])
+ alpha[i] ~ dnorm(0, tau)
+ }

+ tmp[l: (np+l)] ~ dmnorm(param([], precl,])
+ beta[l,1l:np] <- tmp[l:np]

+ sigma <- tmp[ (np+l)]

+ tau <- 1 / pow(sigma, 2)

4

}

Now we add the estimates and the precision ma-
trix prec to the data (the make.symmetric function
prevents some problems related to matrix symmetry
and numerical precision), and define X for the pre-
dictions (now we simply use the observed values of
the covariates). Then do the modeling as usual by
sampling the node "lambda":
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> prec <- make.symmetric (solve (vcov (dcmod)))

> prdat <- list(X = X, n = nrow(X), np = ncol(X),
+ param = coef (dcmod), prec = prec)

> prmod <- jags.fit (prdat, "lambda", glmm.pred,

+ n.iter = 1000)

Writing high level functions

Suppose we want to provide a user friendly func-
tion to fit the Poisson mixed model with random in-
tercept. We are now modeling the observed abun-
dances (count based on point counts) of the Oven-
bird (Seiurus aurocapilla) as a function of ecological
site characteristics (upland /lowland, uplow) and per-
centage of total human disturbance around the sites
(thd in the ovenbird data set). Data were collected
from 182 sites in the Northern Boreal region of Al-
berta, Canada, between 2003 and 2008. Data were
collected by the Alberta Biodiversity Monitoring In-
stitute and are available at http://www.abmi.ca.

Our goal is to determine the effect of human dis-
turbance on Ovenbird abundance, by controlling for
site characteristics. But we know that other factors
not taken into account, e.g. the amount of deciduous
forest, might influence the abundance as well (Hob-
son and Bayne, 2002). So the random intercept will
account for this unexplained environmental variabil-
ity. The Poisson error component will account for
random deviations from expected abundances (A;)
and observed counts (Y;) represent a realization of
this quantity.

Here is the high level function for fitting the Pois-
son mixed model built on data cloning with a simple
print, summary and predict method:

> glmmPois <- function(formula,
+ data = parent.frame(), n.clones, ...) {
+ lhs <- formula[[2]]
Y <- eval (lhs, data)
formula[[2]] <- NULL
rhs <- model.frame (formula, data)
X <- model.matrix(attr(rhs, "terms"), rhs)
dat <- list(n = length(Y), Y =Y,
X = X, np = ncol (X))
dcdat <- dclone(dat, n.clones,
multiply = "n", unchanged = "np")
mod <- jags.fit (dcdat, c("beta", "sigma"),
glmm.model, ...)
coefs <- coef (mod)
names (coefs) <- c(colnames (X),
"sigma")
rval <- list (coefficients = coefs,
call = match.call(),
mcme = mod, y = Y, x = rhs,
model = X, formula = formula)
class(rval) <- "glmmPois"
rval
}
print.glmmPois <- function(x, ...) {
cat ("glmmPois model\n\n")
print (format (coef (x), digits = 4),

+ 4+ VvV + + 4+ 4+ + + + + + + + 4+ + + + + + + + +
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print.gap = 2, quote = FALSE)
cat ("\n")
invisible (x)
}
summary.glmmPois <- function(object, ...) {
x <- cbind("Estimate" = coef (object),
"Std. Error" = dcsd(object$mcme),
confint (object$mcme))
cat ("Call:", deparse(objectS$call,
width.cutoff = getOption("width")),
"\n", sep="\n")
cat ("glmmPois model\n\n")
printCoefmat (x, ...)
cat ("\n")
invisible (x)
}
predict.glmmPois <- function (object,
newdata = NULL, type = c("mu", "lambda", "Y"),
level = 0.95, ...){
prec <- solve (vcov (object$mecmc))
prec <- make.symmetric(prec)
param <- coef (object)
if (is.null (newdata)) {
X <= object$model

} else {
rhs <- model.frame (object$formula, newdata)
X <- model.matrix (attr(rhs, "terms"), rhs)

}
type <- match.arg(type)
prdat <- list(n = nrow(X), X = X,
np = ncol(X), param = param, prec = prec)
prval <- jags.fit(prdat, type, glmm.pred, ...)
a <- (1 - level)/2
a <-c(a, 1 - a)
rval <- list(fit = coef (prval),
ci.fit = quantile(prval, probs = a))
rval

+ 4+ + + + + + + + + + A+ + + + + + + + + + VA + + + + + A+ A+ A+ A+ VA A+ A+ +

}

Note that the functions glmm.model and glmm.pred
containing the BUGS code are used within these R
functions. This implementation works fine, but is
not adequate when building a contributed R pack-
age, because functions such as dnorm and inprod are
not valid R objects, etc. For R packages, the best way
is to represent the BUGS model as a character vector
with lines as elements, and put that inside the R func-
tion. The custommodel function of the dclone pack-
age can be used to create such character vectors and
pass them to other dclone functions via the model ar-
gument.

Now we fit the model for the ovenbird data set to
estimate the effect of human disturbance on Oven-
bird abundance. We fit the model using the function
glmmPois:

> data (ovenbird)

> obmod <- glmmPois(count ~ uplow + thd,

+ ovenbird, n.clones = 5, n.update = 1000,
+ n.iter = 1000)

Then print the object and inspect the summary,

> obmod

The R Journal Vol. 2/2, December 2010

glmmPois model

(Intercept) wuplowlowland thd

2.00312 -1.34242 -0.01647
sigma
1.19318

> summary (obmod)

Call:

glmmPois (formula = count ~ uplow + thd, data = ovenbird,

n.clones = 5, n.update = 1000, n.iter = 1000)

glmmPois model

Estimate Std. Error 2.5 % 97.5 %

(Intercept) 2.00312 0.13767 1.73328 2.27
uplowlowland -1.34242 0.21503 -1.76387 -0.92
thd -0.01647 0.00569 -0.02763 -0.01
sigma 1.19318 0.09523 1.00653 1.38

Finally predict abundances as a function of distur-
bance (0-100%) by controlling for site characteristics
(Figure 3):

> thd <- seq(0, 100, len = 101)

> ndata <- data.frame(uplow = rep("lowland",

+ length(thd)), thd = thd)

> levels (ndata$uplow) <- levels (ovenbird$uplow)
> obpred <- predict (obmod, ndata, "lambda")

80 —

40

lambda

| g8°
20 ggoooo

20 40 60 80 100

thd

Figure 3: Expected Ovenbird abundance (1ambda) as
the function of percentage human disturbance (thd)
based on the Poisson mixed model. Line represents
the mean, gray shading indicates 95% prediction in-
tervals. Points are observations.

Ovenbird abundance was significantly higher in up-
land sites, and human disturbance had a significant
negative effect on expected Ovenbird abundance.
Unexplained variation (02 =1.425 + 0.102 SE) was

ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

37

substantial, thus the choice of the Poisson mixed
model makes sense for this data set.

Summary

The data cloning algorithm is especially useful for
complex models for which other likelihood based
computational methods fail. The algorithm also can
numerically reveal potential identifiability issues re-
lated to hierarchical models. The dclone package
supports established MCMC software and provides
low level functions to help implementing high level
estimating procedures to get maximum likelihood
inferences and predictions for more specialized prob-
lems based on the data cloning algorithm.
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