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asympTest: A Simple R Package for
Classical Parametric Statistical Tests and
Confidence Intervals in Large Samples
by J.-F. Coeurjolly, R. Drouilhet, P. Lafaye de Micheaux
and J.-F. Robineau

Abstract: asympTest is an R package imple-
menting large sample tests and confidence in-
tervals. One and two sample mean and vari-
ance tests (differences and ratios) are considered.
The test statistics are all expressed in the same
form as the Student t-test, which facilitates their
presentation in the classroom. This contribution
also fills the gap of a robust (to non-normality)
alternative to the chi-square single variance test
for large samples, since no such procedure is im-
plemented in standard statistical software.

Introduction

It is sometimes desirable to compare two variances
rather than two averages. To cite a few examples
(Dean and Illowsky (2009)): college administrators
would like two college professors grading exams to
have the same variation in their grading; in order for
a lid to fit a container, the variation in the lid and the
container should be the same; a supermarket might
be interested in the variability of check-out times for
two checkers.

Now usually, a first course on statistical inference
presents mean tests in both Gaussian and asymptoti-
cal frameworks (Table 1), but variance tests are often
presented only in the Gaussian case (Table 2).

Population law Test statistic Law

Gaussian σ2

known
Yn − µre f

σ/
√

n
N (0,1)

σ2

unknown
Yn − µre f

Sn/
√

n
t(n− 1)

Unknown
(n > 30)

σ2

known
Yn − µre f

σ/
√

n

≈N (0,1)
asympt.

σ2

unknown
Yn − µre f

Sn/
√

n
≈N (0,1)
asympt.

Table 1: Testing H0 : µ = µre f for both the Gaussian
and large sample cases.

Test statistic Law
(n− 1)S2

n/σ2
re f χ2

(n−1)

S2
1/S2

2 F(n1−1,n2−1)

Table 2: Testing H0 : σ2 = σ2
re f or H0 : σ2

1 = σ2
2 for the

Gaussian case (σ2, σ2
1 , σ2

2 unknown; σ2
re f known).

An important point to be noticed is that stu-
dents are usually told that mean tests are robust to
non-normality for large samples as indicated by the
asymptotic N (0,1) distribution in the last two cells
of Table 1 (see e.g. Ozgur and Strasser (2004)). They
could think that this also occurs for variance tests. In-
deed, many practitioners use the classical chi-square
single variance test or Fisher’s two variances test,
even if the Gaussian assumption fails. This could
lead to heavy errors, even for large samples, as
shown in Figure 1. Miller (1997, p. 264) describes
this situation as "catastrophic".

To have a better idea of the type I error in the
classical single variance test, let us test for example
H0 : σ2 = 1 versus H1 : σ2 < 1, by simulating 10000
samples of size 1000 from an E(1) distribution (i.e.
under H0) and using α = 5%. We obtained a percent-
age of rejection of the null of 21.53%, thus showing
a type I error far greater than α. The percentage for
the asymptotic test (described later) is 9.05% which is
not too far from α. For a U ([0,5]), the classical single
variance test leads to a type I error far lesser than α
(0.44%). Our test still behaves correctly with a type
I error near α (5.39%). This is mainly due to the de-
parture of the kurtosis of the distribution from 3 (for
more theoretical details see e.g. Section 2.2 of Coeur-
jolly et al. (2009)).

Note that the problem of the robustness (to de-
partures from normality) of tests for comparing two
(or more) variances has been widely treated in the
literature, see e.g. Box (1953), Conover et al. (1981),
Tiku and Akkaya (2004), Pan (1999) and the refer-
ences therein. These authors built specific test statis-
tics. Note also that in the one sample (non Gaussian)
case, to the best of our knowledge, no statistical tool
is available to compare a population variance to a ref-
erence value.

Now, it is well-known, see e.g. Casella and Berger
(2001, p. 492), that a common method for construct-

ing a large sample test statistic may be based on an
estimator that has an asymptotic normal distribu-
tion. Suppose we wish to test a hypothesis about a
parameter θ, and θ̂n is some estimator of θ based on
a sample of size n. If we can prove some form of the
central limit theorem to show that, as n → +∞,

(θ̂ − θ)/σ̂θ̂
d→N (0,1) (1)

where σ̂θ̂ is the usual standard error, which is a con-

vergent (in probability) estimate of σθ̂ =
√

Var(θ̂n),
then one has the basis for an approximate test.
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Figure 1: P-value Plots (see Davidson and MacKinnon (1998)) under H0 of m = 10000 replications of test
statistics of the chi-square variance test (top) and Fisher’s ratio of variances test (bottom) in the large sample

Gaussian context. The parameters of the simulation are: n = n1 = n2 = 500, Y d= Y1
d= Y2 ∼ χ2(5) (resp. E(1),

resp. U [0,5]). The dotted lines are 45◦ lines.

This approach can be used to complete Table 2 for
the large sample case, shown in Table 3 for the single
variance test only:

Population law Test
statistic Law

Unknown (n large)
with finite 4th moment

S2
n − σ2

re f

σ̂S2
n

≈ N (0,1)
asympt.

Table 3: Testing H0 : σ2 = σ2
re f for the large sample

case. We let σ̂2
S2

n
= 1

n(n−1) ∑n
i=1((yi −Yn)2 − S2

n)2.

The case of a (large sample) test for a difference in
scale parameters (possibly weighted by a factor ρ) is
also of interest as suggested by the availability of re-
lated procedures in R (to compute Ansari-Bradley’s
and Mood’s tests for example). The standard error

involved in this test is σ̂θ̂ =
√

σ̂2
S2

n1
+ ρ2σ̂2

S2
n2

.

The point to be noted here is that this general ap-
proach has been extensively used in Coeurjolly et al.
(2009) where we end up with a unified approach
very similar to the classical t-test from a mathemat-
ical point of view. Proofs, which are not very com-
plicated, are provided in the report just cited. The
details are not fully expounded here but lead us to
propose a more complete, homogeneous teaching

framework, with no additional difficulty, to test var-
ious parameters such as the mean, the variance, and
the difference or ratio of means or variances (for
large samples). This approach also allows the direct
derivation of asymptotic confidence intervals. Note
that Bonnet (2006a) and Bonnet (2006b) use a sim-
ilar asymptotic approach, with a refinement based
on a variance stabilizing transformation, to obtain
asymptotic confidence intervals, solely for the single
variance and ratio of variances cases. Table 4 gives a
summary of the various parameters we can test and
the R functions we have implemented to compute
the standard error σ̂θ̂ of θ̂:

θ Dataset(s) σ̂θ̂ in R
µ y seMean(y)

σ2 y seVar(y)
dµ = µ1 − ρµ2 y1, y2 seDMean(y1,y2,rho)

dσ2 = σ2
1 − ρσ2

2 y1, y2 seDVar(y1,y2,rho)

rµ = µ1/µ2 y1, y2 seRMean(y1,y2)

rσ2 = σ2
1 /σ2

2 y1, y2 seRVar(y1,y2)

Table 4: Various parameters we can test and available
R functions to compute standard error σ̂θ̂ .

These functions can be used in conjunction with
(1) to obtain p-values for various tests. For a simple
example, if you want to use a sample contained in
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E (1) χ2(5) U ([0,5])
n χ2 asymp. χ2 asymp. χ2 asymp.
30 0.2168 0.2733 0.1278 0.2218 0.0086 0.0801
100 0.2194 0.1765 0.1307 0.1442 0.0061 0.0589
500 0.2157 0.1102 0.1367 0.0928 0.0051 0.0543
1000 0.2153 0.0905 0.1323 0.0787 0.0040 0.0539

Table 5: Type I error in terms of n for the test H1 : σ2 < σ2
re f with σ2

re f = 1 (E(1)), 10 (χ2(5)), 25/12 (U ([0,5]))
based on m = 10000 replications.

the vector y to test H0 : σ2 = 1, you can use

2*pnorm(-abs((var(y)-1)/seVar(y)))

This contribution also solves the problem of pro-
viding an implemented “robust” (to departure of the
i.i.d. large sample distribution from normality) al-
ternative to the chi-square single variance test for
large samples. Indeed, we did not find any such
procedure in standard statistical software and so it is
highly likely that practitioners would incorrectly use
a chi-square test on a single variance. It also provides
a very simple alternative to the (ratio of variances)
Fisher test in large samples. Some other “robust”
alternative procedures to the Fisher test in the case
of non Gaussian (not necessary large) samples are
implemented in R: the Bartlett test (bartlett.test),
the Fligner test (fligner.test) and the Levene test
(levene.test available in the lawstat package). R
also provides, through ansari.test and mood.test
functions, Ansari-Bradley’s and Mood’s two-sample
rank-based tests for a difference in scale parameters.
The purpose of this paper is not to compare our tests
to their competitors in terms of power. We neverthe-
less conduct two short simulation studies (limited to
the probability of Type I error): first for the problem
of testing a variance (Table 5), comparing the clas-
sical χ2 single variance test to our procedure, and
second for the problem of comparing (the differences
dσ2 of) two variances (Tables 6, 7 and 8), comparing
the classical Fisher test to our procedure, as well as
Ansari-Bradley’s test and Mood’s test. These sim-
ulations were based on the three distributions used
earlier in Figure 1. The simulations show that the
level α is quite correct (when n increases) for our
procedure in the case of testing a single variance and
for all three alternative tests (ours, Ansari-Bradley’s
and Mood’s tests) for testing two variances.

E (1)
n F asympTest Ansari Mood
30 0.2827 0.0675 0.0478 0.0497
100 0.3083 0.0500 0.0480 0.0484
500 0.3269 0.0454 0.0484 0.0470
1000 0.3260 0.0526 0.0501 0.0515

Table 6: Type I error for the test H1 : σ2
1 6= σ2

2 in terms
of n for m = 10000 replications of the distribution
E(1).

χ2(5)
n F asympTest Ansari Mood
30 0.1605 0.0676 0.0477 0.0472
100 0.1797 0.0537 0.0516 0.0494
500 0.1911 0.0525 0.0505 0.0498
1000 0.1907 0.0526 0.0503 0.0511

Table 7: Type I error for the test H1 : σ2
1 6= σ2

2 in terms
of n for m = 10000 replications of the distribution
χ2(5).

U ([0,5])
n F asympTest Ansari Mood
30 0.0029 0.0652 0.0490 0.0494
100 0.0021 0.0527 0.0490 0.0475
500 0.0024 0.0520 0.0511 0.0511
1000 0.0022 0.0539 0.0528 0.0538

Table 8: Type I error for the test H1 : σ2
1 6= σ2

2 in terms
of n for m = 10000 replications of the distribution
U ([0,5]).

Using asympTest

The R package asympTest consists of a main func-
tion asymp.test and six auxiliary ones designed to
compute standard errors of estimates of different pa-
rameters, see Table 4. The auxiliary functions will
not be the most useful ones for the user, except if
he/she wants to compute the confidence interval
himself/herself. The function asymp.test has been
written in the same spirit as the standard R functions
t.test or var.test. The arguments of asymp.test
and the resulting outputs are also inspired from these
functions. In particular, the function asympt.test re-
turns an object of class "htest" (which is the general
class of test objects in R).

This asymp.test function has several arguments,
similar to those of the t.test function, whose
description can be obtained using the command
?asymp.test.

In order to illustrate this function, let us con-
sider the Digitalis Investigation Group NHLBI
Teaching data set (https://biolincc.nhlbi.nih.
gov/teaching/) which was made available by the
NHLBI. Note that statistical processes such as per-
mutations within treatment groups were used to
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completely anonymize the data; therefore, inferences
derived from the teaching dataset may not be valid.

The DIG Trial was a randomized, double-blind,
multicenter trial with more than 300 centers in the
United States and Canada participating. The pur-
pose of the trial was to examine the safety and effi-
cacy of Digoxin in treating patients with congestive
heart failure in sinus rhythm.

Diastolic BP (DIABP, mmHg) is a known risk fac-
tor of cardiovascular diseases. In this case, it is de-
sirable to compare the variability of this quantity for
placebo (TRTMT=0) and treatment (TRTMT=1) groups,
respectively.

Reading of the data

> require(asympTest)
>
> data(DIGdata)
> attach(DIGdata)
> x <- na.omit(DIABP[TRTMT==0])
> y <- na.omit(DIABP[TRTMT==1])
> c(length(x),length(y))
[1] 3400 3395

Comparing the two variances

Shapiro-Wilk normality test performed by the func-
tion shapiro.test() indicates that the two samples
seem to be far from the Gaussian distribution. Thus,
this should prevent us from using the following
Fisher test.

> var.test(DIABP ~ TRTMT, data = DIGdata,
+ na.action = na.omit)

F test to compare two variances

data: x and y
F = 0.9295, num df = 3399, denom df = 3394
p-value = 0.03328
alternative hypothesis:

true ratio of variances is not equal to 1
95 percent confidence interval:
0.8690651 0.9942238

sample estimates:
ratio of variances

0.929541

Instead, let us use our package.

> asymp.test(DIABP ~ TRTMT, data = DIGdata,
+ na.action = na.omit, parameter = "dVar")

Two-sample asymptotic diff. of variances test

data: DIABP by TRTMT
statistic = -1.5272, p-value = 0.1267
alternative hypothesis:

true diff. of variances is not equal to 0

95 percent confidence interval:
-21.160491 2.626127

sample estimates:
difference of variances

-9.267182

We can see that var.test, not to be used due to the
unlikely normality of the data, significantly shows a
difference in variances (at a 5% level). We don’t ob-
tain the same conclusion with our test.

We can also place ourselves in a fictitious case by
generating a sample x from a U (0;

√
12) (i.e. with

a true population variance σ2 = 1). We then apply
both our test and the classical chi-square test to show
H1 : σ2 > σ2

re f = 0.97.

> n <- 1000
> x <- runif(n, max = sqrt(12))
> asymp.test(x, par = "var", alt = "gr",
+ ref = 0.97)

One-sample asymptotic variance test

data: x
statistic = 1.753, p-value = 0.0398
alternative hypothesis:

true variance is greater than 0.97
95 percent confidence interval:
0.9731491 Inf

sample estimates:
variance
1.021055
> chisq.stat <- (n-1)*var(x)/0.97
> pchisq(chisq.stat, n-1, lower.tail = F)
[1] 0.1207650

For the above generated sample x, we respectively
found the following p-values: 0.0398 and 0.120. In
this case, we can thus see that our proposition cor-
rectly accepts H1 (at the 5% level) but not the chi-
square single variance test.

Conclusion

This paper has introduced a new package called
asympTest. This is a contribution to the many R
procedures available. It is interesting firstly in the
fact that it provides a unified teaching framework
to present classical parametric tests (based on the
Central Limit Theorem). These tests are made read-
ily available in R through an easy to use function
called asymp.test. This function resembles t.test
or var.test, so students will not be confused. Sec-
ondly, it also makes available in R a robust (to non-
normality) alternative to the classical chi-square sin-
gle variance test. In the future, we also plan to pro-
vide tools similar to the power.t.test function in the
context of large samples.
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