
INVITED SECTION: THE FUTURE OF R 5

Facets of R
Special invited paper on “The Future of R”

by John M. Chambers

We are seeing today a widespread, and welcome,
tendency for non-computer-specialists among statis-
ticians and others to write collections of R functions
that organize and communicate their work. Along
with the flood of software sometimes comes an atti-
tude that one need only learn, or teach, a sort of basic
how-to-write-the-function level of R programming,
beyond which most of the detail is unimportant or
can be absorbed without much discussion. As delu-
sions go, this one is not very objectionable if it en-
courages participation. Nevertheless, a delusion it is.
In fact, functions are only one of a variety of impor-
tant facets that R has acquired by intent or circum-
stance during the three-plus decades of the history of
the software and of its predecessor S. To create valu-
able and trustworthy software using R often requires
an understanding of some of these facets and their
interrelations. This paper identifies six facets, dis-
cussing where they came from, how they support or
conflict with each other, and what implications they
have for the future of programming with R.

Facets

Any software system that has endured and retained
a reasonably happy user community will likely
have some distinguishing characteristics that form
its style. The characteristics of different systems are
usually not totally unrelated, at least among systems
serving roughly similar goals—in computing as in
other fields, the set of truly distinct concepts is not
that large. But in the mix of different characteris-
tics and in the details of how they work together lies
much of the flavor of a particular system.

Understanding such characteristics, including a
bit of the historical background, can be helpful in
making better use of the software. It can also guide
thinking about directions for future improvements of
the system itself.

The R software and the S software that preceded
it reflect a rather large range of characteristics, result-
ing in software that might be termed rich or messy
according to one’s taste. Since R has become a very
widely used environment for applications and re-
search in data analysis, understanding something of
these characteristics may be helpful to the commu-
nity.

This paper considers six characteristics, which we
will call facets. They characterize R as:

1. an interface to computational procedures of
many kinds;

2. interactive, hands-on in real time;

3. functional in its model of programming;

4. object-oriented, “everything is an object”;

5. modular, built from standardized pieces; and,

6. collaborative, a world-wide, open-source effort.

None of these facets is original to R, but while many
systems emphasize one or two of them, R continues
to reflect them all, resulting in a programming model
that is indeed rich but sometimes messy.

The thousands of R packages available from
CRAN, BioConductor, R-Forge, and other reposi-
tories, the uncounted other software contributions
from groups and individuals, and the many citations
in the scientific literature all testify to the useful com-
putations created within the R model. Understand-
ing how the various facets arose and how they can
work together may help us improve and extend that
software.

We introduce the facets more or less chronolog-
ically, in three pairs that entered into the software
during successive intervals of roughly a decade. To
provide some context, here is a brief chronology,
with some references. The S project began in our
statistics research group at Bell Labs in 1976, evolved
into a generally licensed system through the 1980s
and continues in the S+ software, currently owned by
TIBCO Software Inc. The history of S is summarized
in the Appendix to Chambers (2008); the standard
books introducing still-relevant versions of S include
Becker et al. (1988) (no longer in print), Chambers
and Hastie (1992), and Chambers (1998). R was an-
nounced to the world in Ihaka and Gentleman (1996)
and evolved fairly soon to be developed and man-
aged by the R-core group and other contributors. Its
history is harder to pin down, partly because the
story is very much still happening and partly be-
cause, as a collaborative open-source project, indi-
vidual responsibility is sometimes hard to attribute;
in addition, not all the important new ideas have
been described separately by their authors. The
http://www.r-project.org site points to the on-line
manuals, as well as a list of over 70 related books and
other material. The manuals are invaluable as a tech-
nical resource, but short on background information.
Articles in R News, the predecessor of this journal,
give descriptions of some of the key contributions,
such as namespaces (Tierney, 2003), and internation-
alization (Ripley, 2005).

An interactive interface

The goals for the first version of S in 1976 already
combined two facets of computing usually kept

The R Journal Vol. 1/1, May 2009 ISSN 2073-4859

http://www.r-project.org


6 INVITED SECTION: THE FUTURE OF R

apart, interactive computing and the development of
procedural software for scientific applications.

One goal was a better interface to new computa-
tional procedures for scientific data analysis, usually
implemented then as Fortran subroutines. Bell Labs
statistics research had collected and written a variety
of these while at the same time numerical libraries
and published algorithm collections were establish-
ing many of the essential computational techniques.
These procedures were the essence of the actual data
analysis; the initial goal was essentially a better in-
terface to procedural computation. A graphic from
the first plans for S (Chambers, 2008, Appendix, page
476) illustrated this.

But that interface was to be interactive, specifically
via a language used by the data analyst communicat-
ing in real time with the software. At this time, a few
systems had pointed the way for interactive scientific
computing, but most of them were highly specialized
with limited programming facilities; that is, a limited
ability for the user to express novel computations.
The most striking exception was APL, created by
Kenneth Iverson (1962), an operator-based interac-
tive language with heavy emphasis on general mul-
tiway arrays. APL introduced conventions that now
seem obvious; for example, the result of evaluating
a user’s expression was either an assignment or a
printed display of the computed object (rather than
expecting users to type a print command). But APL
at the time had no notion of an interface to proce-
dures, which along with a limited, if exotic, syntax
caused us to reject it, although S adopted a number
of features from it, such as its approach to general
multidimensional arrays.

From its first implementation, the S software
combined these two facets: users carried out data
analysis interactively by writing expressions in the
S language, but much of the programming to extend
the system was via new Fortran subroutines accom-
panied by interfaces to call them from S. The inter-
faces were written in a special language that was
compiled into Fortran.

The result was already a mixed system that had
much of the tension between human and machine
efficiency that still stimulates debate among R users
and programmers. At the same time, the flexibility
from that same mixture helped the software to grow
and adapt with a growing user community.

Later versions of the system replaced the inter-
face language with individual functions providing
interfaces to C or Fortran, but the combination of
an interactive language and an interface to com-
piled procedures remains a key feature of R. Increas-
ingly, interfaces to other languages and systems have
been added as well, for example to database systems,
spreadsheets and user interface software.

Functional and object-oriented pro-
gramming

During the 1980s the topics of functional programming
and object-oriented programming stimulated growing
interest in the computer science literature. At the
same time, I was exploring possibilities for the next
S, perhaps “after S”. These ideas were eventually
blended with other work to produce the “new S”,
later called Version 3 of S, or S3, (Becker et al., 1988).

As before, user expressions were still interpreted,
but were now parsed into objects representing the
language elements, mainly function calls. The func-
tions were also objects, the result of parsing expres-
sions in the language that defined the function. As
the motto expressed it, “Everything is an object”. The
procedural interface facet was not abandoned, how-
ever, but from the user’s perspective it was now de-
fined by functions that provided an interface to a C
or Fortran subroutine.

The new programming model was functional in
two senses. It largely followed the functional pro-
gramming paradigm, which defined programming
as the evaluation of function calls, with the value
uniquely determined by the objects supplied as ar-
guments and with no external side-effects. Not all
functions followed this strictly, however.

The new version was functional also in the sense
that nearly everything that happened in evaluation
was a function call. Evaluation in R is even more
functional in that language components such as as-
signment and loops are formally function calls inter-
nally, reflecting in part the influence of Lisp on the
initial implementation of R.

Subsequently, the programing model was ex-
tended to include classes of objects and methods
that specialized functions according to the classes
of their arguments. That extension itself came in
two stages. First, a thin layer of additional code
implemented classes and methods by two simple
mechanisms: objects could have an attribute defin-
ing their class as a character string or a vector of
multiple strings; and an explicitly invoked method
dispatch function would match the class of the func-
tion’s first argument against methods, which were
simply saved function objects with a class string ap-
pended to the object’s name. In the second stage, the
version of the system known as S4 provided formal
class definitions, stored as a special metadata object,
and similarly formal method definitions associated
with generic functions, also defined via object classes
(Chambers, 2008, Chapters 9 and 10, for the R ver-
sion).

The functional and object-oriented facets were
combined in S and R, but they appear more fre-
quently in separate, incompatible languages. Typi-
cal object-oriented languages such as C++ or Java are
not functional; instead, their programming model is
of methods associated with a class rather than with a

The R Journal Vol. 1/1, May 2009 ISSN 2073-4859



INVITED SECTION: THE FUTURE OF R 7

function and invoked on an object. Because the ob-
ject is treated as a reference, the methods can usu-
ally modify the object, again quite a different model
from that leading to R. The functional use of meth-
ods is more complicated, but richer and indeed nec-
essary to support the essential role of functions. A
few other languages do combine functional structure
with methods, such as Dylan, (Shalit, 1996, chapters
5 and 6), and comparisons have proved useful for R,
but came after the initial design was in place.

Modular design and collaborative
support

Our third pair of facets arrives with R. The paper by
Ihaka and Gentleman (1996) introduced a statistical
software system, characterized later as “not unlike
S”, but distinguished by some ideas intended to im-
prove on the earlier system. A facet of R related to
some of those ideas and to important later develop-
ments is its approach to modularity. In a number of
fields, including architecture and computer science,
modules are units designed to be useful in them-
selves and to fit together easily to create a desired
result, such as a building or a software system. R has
two very important levels of modules: functions and
packages.

Functions are an obvious modular unit, espe-
cially functions as objects. R extended the modu-
larity of functions by providing them with an envi-
ronment, usually the environment in which the func-
tion object was created. Objects assigned in this en-
vironment can be accessed by name in a call to the
function, and even modified, by stepping outside
the strict functional programming model. Functions
sharing an environment can thus be used together
as a unit. The programming technique resulting is
usually called programming with closures in R; for
a discussion and comparison with other techniques,
see (Chambers, 2008, section 5.4). Because the eval-
uator searches for external objects in the function’s
environment, dependencies on external objects can
be controlled through that environment. The names-
pace mechanism (Tierney, 2003), an important con-
tribution to trustworthy programming with R, uses
this technique to help ensure consistent behavior of
functions in a package.

The larger module introduced by R is probably
the most important for the system’s growing use, the
package. As it has evolved, and continues to evolve,
an R package is a module combining in most cases
R functions, their documentation, and possibly data
objects and/or code in other languages.

While S always had the idea of collections of soft-
ware for distribution, somewhat formalized in S4
as chapters, the R package greatly extends and im-
proves the ability to share computing results as ef-
fective modules. The mechanism benefits from some

essential tools provided in R to create, develop, test,
and distribute packages. Among many benefits for
users, these tools help programmers create software
that can be installed and used on the three main op-
erating systems for computing with data—Windows,
Linux, and Mac OS X.

The sixth facet for our discussion is that R is a col-
laborative enterprise, which a large group of people
share in and contribute to. Central to the collabo-
rative facet is, of course, that R is a freely available,
open-source system, both the core R software and
most of the packages built upon it. As most read-
ers of this journal will be aware, the combination of
the collaborative efforts and the package mechanism
have enormously increased the availability of tech-
niques for data analysis, especially the results of new
research in statistics and its applications. The pack-
age management tools, in fact, illustrate the essential
role of collaboration. Another highly collaborative
contribution has facilitated use of R internationally
(Ripley, 2005), both by the use of locales in compu-
tations and by the contribution of translations for R
documentation and messages.

While the collaborative facet of R is the least tech-
nical, it may eventually have the most profound im-
plications. The growth of the collaborative commu-
nity involved is unprecedented. For example, a plot
in Fox (2008) shows that the number of packages
in the CRAN repository exhibited literal exponen-
tial growth from 2001 to 2008. The current size of
this and other repositories implies at a conservative
estimate that several hundreds of contributors have
mastered quite a bit of technical expertise and satis-
fied some considerable formal requirements to offer
their efforts freely to the worldwide scientific com-
munity.

This facet does have some technical implications.
One is that, being an open-source system, R is gener-
ally able to incorporate other open-source software
and does indeed do so in many areas. In contrast,
proprietary systems are more likely to build exten-
sions internally, either to maintain competitive ad-
vantage or to avoid the free distribution require-
ments of some open-source licenses. Looking for
quality open-source software to extend the system
should continue to be a favored strategy for R de-
velopment.

On the downside, a large collaborative enterprise
with a general practice of making collective decisions
has a natural tendency towards conservatism. Rad-
ical changes do threaten to break currently working
features. The future benefits they might bring will of-
ten not be sufficiently persuasive. The very success
of R, combined with its collaborative facet, poses a
challenge to cultivate the “next big step” in software
for data analysis.

The R Journal Vol. 1/1, May 2009 ISSN 2073-4859



8 INVITED SECTION: THE FUTURE OF R

Implications

A number of specific implications of the facets of R,
and of their interaction, have been noted in previous
sections. Further implications are suggested in con-
sidering the current state of R and its future possibil-
ities.

Many reasons can be suggested for R’s increasing
popularity. Certainly part of the picture is a produc-
tive interaction among the interface facet, the modu-
larity of packages, and the collaborative, open-source
approach, all in an interactive mode. From the very
beginning, S was not viewed as a set of procedures
(the model for SAS, for example) but as an interactive
system to support the implementation of new pro-
cedures. The growth in packages noted previously
reflects the same view.

The emphasis on interfaces has never diminished
and the range of possible procedures across the in-
terface has expanded greatly. That R’s growth has
been especially strong in academic and other re-
search environments is at least partly due to the abil-
ity to write interfaces to existing and new software
of many forms. The evolution of the package as
an effective module and of the repositories for con-
tributed software from the community have resulted
in many new interfaces.

The facets also have implications for the possible
future of R. The hope is that R can continue to sup-
port the implementation and communication of im-
portant techniques for data analysis, contributed and
used by a growing community. At the same time,
those interested in new directions for statistical com-
puting will hope that R or some future alternative
engages a variety of challenges for computing with
data. The collaborative community seems the only
likely generator of the new features required but, as
noted in the previous section, combining the new
with maintenance of a popular current collaborative
system will not be easy.

The encouragement for new packages generally
and for interfaces to other software in particular are
relevant for this question also. Changes that might
be difficult if applied internally to the core R im-
plementation can often be supplied, or at least ap-
proximated, by packages. Two examples of enhance-
ments considered in discussions are an optional ob-
ject model using mutable references and computa-
tions using multiple threads. In both cases, it can
be argued that adding the facility to R could extend
its applicability and performance. But a substantial
programming effort and knowledge of the current
implementation would be required to modify the in-
ternal object model or to make the core code thread-
safe. Issues of back compatibility are likely to arise
as well. Meanwhile, less ambitious approaches in
the form of packages that approximate the desired
behavior have been written. For the second exam-
ple especially, these may interface to other software
designed to provide this facility.

Opinions may reasonably differ on whether these

“workarounds” are a good thing or not. One may
feel that the total effort devoted to multiple approx-
imate solutions would have been more productive if
coordinated and applied to improving the core im-
plementation. In practice, however, the nature of the
collaborative effort supporting R makes it much eas-
ier to obtain a modest effort from one or a few indi-
viduals than to organize and execute a larger project.
Perhaps the growth of R will encourage the com-
munity to push for such projects, with a new view
of funding and organization. Meanwhile, we can
hope that the growing communication facilities in
the community will assess and improve on the ex-
isting efforts. Particularly helpful facilities in this
context include the CRAN task views (http://cran.
r-project.org/web/views/), the mailing lists and
publications such as this journal.

Bibliography

R. A. Becker, J. M. Chambers, and A. R. Wilks. The
New S Language. Chapman & Hall, London, 1988.

J. M. Chambers. Programming with Data. Springer,
New York, 1998. URL http://cm.bell-labs.
com/cm/ms/departments/sia/Sbook/. ISBN 0-387-
98503-4.

J. M. Chambers. Software for Data Analysis: Program-
ming with R. Springer, New York, 2008. ISBN 978-
0-387-75935-7.

J. M. Chambers and T. J. Hastie. Statistical Mod-
els in S. Chapman & Hall, London, 1992. ISBN
9780412830402.

J. Fox. Editorial. R News, 8(2):1–2, October 2008. URL
http://CRAN.R-project.org/doc/Rnews/.

R. Ihaka and R. Gentleman. R: A language for data
analysis and graphics. Journal of Computational and
Graphical Statistics, 5:299–314, 1996.

K. E. Iverson. A Programming Language. Wiley, 1962.

B. D. Ripley. Internationalization features of R 2.1.0.
R News, 5(1):2–7, May 2005. URL http://CRAN.
R-project.org/doc/Rnews/.

A. Shalit. The Dylan Reference Manual. Addison-
Wesley Developers Press, Reading, Mass., 1996.
ISBN 0-201-44211-6.

L. Tierney. Name space management for R. R News,
3(1):2–6, June 2003. URL http://CRAN.R-project.
org/doc/Rnews/.

John M. Chambers
Department of Statistics
Stanford University
USA
jmc@r-project.org

The R Journal Vol. 1/1, May 2009 ISSN 2073-4859

http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/
http://cm.bell-labs.com/cm/ms/departments/sia/Sbook/
http://cm.bell-labs.com/cm/ms/departments/sia/Sbook/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
mailto:jmc@r-project.org

