
Vol. 5/1, May 2005 51

Conclusions

The R language is a natural environment for the in-
vestigation of magic squares and hypercubes; and
the discipline of translating published algorithms
into R idiom can yield new insight. These insights
include a new generalization of Frénicle’s standard
form to hypercubes, and also what appears to be the
first algorithm for generating magic hypercubes of
any dimension,

Insofar as magic squares and hypercubes are wor-
thy of attention, it is worth creating fast, efficient rou-
tines to carry out the “paper” algorithms of the liter-
ature. I hope that the magic package will continue to
facilitate the study of these fascinating objects.

Acknowledgements

I would like to acknowledge the many stimulating
and helpful comments made by the R-help list over
the years.

Bibliography

W. H. Benson and O. Jacoby. New recreations with
magic squares. Dover, 1976. 49

J. R. Hendricks. Magic tesseracts and N-dimensional
magic hypercubes. Journal of Recreational Mathe-
matics, 6(3):193–201, 1973. 50

R Development Core Team. R: A language and envi-
ronment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria, 2004. URL
http://www.R-project.org. ISBN 3-900051-07-0.
48

Robin Hankin
Southampton Oceanography Centre
European Way
Southampton
United Kingdom
SO14 3ZH
r.hankin@soc.soton.ac.uk

Programmer’s Niche
How Do You Spell That Number?

John Fox

Frank Duan recently posted a question to the r-help
mailing list asking how to translate numbers into
words. The program described in this column is a
cleaned-up and slightly enhanced version of my re-
sponse to his question. I found the problem to be an
interesting puzzle, and the solution uses several pro-
gramming techniques that demonstrate the flexibil-
ity of R, including its ability to manipulate character-
string data and to employ recursive function calls.

One intriguing aspect of the problem is that it re-
quired me to raise into consciousness my subcon-
scious knowledge about how numbers are spoken
and written in English. I was much more aware
of these conventions in the languages (French and
Spanish) that I had studied as a non-native speaker.
A bit later, I realized that there are variations among
English-speaking countries in the manner in which
numbers are spoken and written down. Because I
was born in the United States and have lived most
of my adult life in Canada, I’m terminally confused
about English spelling and usage. Canadian conven-
tions are an amalgam of American and British rules.

In any event, it didn’t take much time to see that
the numbers from one to nineteen are represented
by individual words; the numbers from twenty-one
to ninety-nine are formed as compound words, with
components for the tens and units digits — with the

exceptions of multiples of ten (twenty, thirty, etc.),
which are single words. The Chicago Manual of Style
tells me that these compound words should be hy-
phenated (but offered little additional useful advice
about how numbers are to be written out). Num-
bers from 100 to 999 are written by tacking on (at
the left) a phrase like “six hundred” — that is, com-
posed of a number from one to nine plus the suffix
hundred (and there is no hyphen). Above this point,
additional terms are added at the left, representing
multiples of powers of 1000. In American English
(and in Canada), the first few powers of 1000 have
the following names, to be used as suffixes:

10001 thousand
10002 million
10003 billion
10004 trillion

Thus, for example, the number 210,363,258 would
be rendered “two hundred ten million, three hun-
dred sixty-three thousand, two hundred fifty-eight.”
There really is no point in going beyond tril-
lions, because double-precision numbers can repre-
sent integers exactly only to about 15 decimal dig-
its, or hundreds of trillions. Of course, I could
allow numbers to be specified optionally by ar-
bitrarily long character strings of numerals (e.g.,
"210363258347237492310"), but I didn’t see a real
need to go higher than hundreds of trillions.

One approach to converting numbers to words
would be to manipulate the numbers as integers, but

R News ISSN 1609-3631

http://www.R-project.org
mailto:r.hankin@soc.soton.ac.uk

Vol. 5/1, May 2005 52

it seemed to me simpler to convert numbers to char-
acter strings of numerals, which could then be split
into individual characters: (1) larger integers can
be represented exactly as double-precision floating-
point numbers than as integers in R; (2) it is easier to
manipulate the individual numerals than to perform
repeated integer arithmetic to extract digits; and (3)
having the numerals in character form allows me to
take advantage of R’s ability to index vectors by ele-
ment names (see below).

I therefore defined the following function to con-
vert a number to a vector of characters containing the
numerals composing the number:

> makeDigits <- function(x)
+ strsplit(as.character(x), "")[[1]]

Here are some examples of the use of this func-
tion:

> makeDigits(123456)
[1] "1" "2" "3" "4" "5" "6"
> makeDigits(-123456)
[1] "-" "1" "2" "3" "4" "5" "6"
> makeDigits(1000000000)
[1] "1" "e" "+" "0" "9"

Notice the problems revealed by the second and
third examples: It’s necessary to make provision for
negative numbers, and R wants to render certain
numbers in scientific notation.1 By setting the scipen
(“scientific notation penalty”) option to a large num-
ber, we can avoid the second problem:

> options(scipen=100)
> makeDigits(1000000000)
[1] "1" "0" "0" "0" "0" "0" "0" "0" "0" "0"

It also seemed useful to have a function that con-
verts a vector of numerals in character form back into
a number:

> makeNumber <- function(x)
+ as.numeric(paste(x, collapse=""))
> makeNumber(c("1", "2", "3", "4", "5"))
[1] 12345

Finally, by way of preparation, I constructed sev-
eral vectors of number words:

> ones <- c("zero", "one", "two", "three",
+ "four", "five", "six", "seven",
+ "eight", "nine")
> teens <- c("ten", "eleven", "twelve",
+ "thirteen", "fourteen", "fifteen",
+ "sixteen", " seventeen", "eighteen",
+ "nineteen")
> names(ones) <- names(teens) <- 0:9
> tens <- c("twenty", "thirty", "forty",

+ "fifty", "sixty", "seventy", "eighty",
+ "ninety")
> names(tens) <- 2:9
> suffixes <- c("thousand,", "million,",
+ "billion,", "trillion,")

Because the names of the elements of the first
three vectors are numerals, they can conveniently be
indexed; for example:

> ones["5"]
5

"five"
> teens["3"]

3
"thirteen"
> tens["7"]

7
"seventy"

The vector of suffixes includes a comma after
each word.

Figure 1 shows a function for converting a single
integer to words; I’ve added line numbers to make it
easier to describe how the function works:

And here are some examples of its use, wrapping
long lines of output to fit on the page:

> number2words(123456789)
[1] "one hundred twenty-three million,

four hundred fifty-six thousand,
seven hundred eighty-nine"

> number2words(-123456789)
[1] "minus one hundred twenty-three million,

four hundred fifty-six thousand,
seven hundred eighty-nine"

> number2words(-123456000)
[1] "minus one hundred twenty-three million,

four hundred fifty-six thousand"

I believe that the first five lines of the function are
essentially self-explanatory. The rest of the function
probably requires some explanation, however:

[6] If the number is composed of a single digit,
then we can find the answer by simply in-
dexing into the vector ones; the function
as.vector is used to remove the name of
(i.e., the numeral labelling) the selected el-
ement.

[7-9] If the number is composed of two digits
and is less than or equal to 19, then we can
get the answer by indexing into teens with
the last digit (i.e., the second element of the
digits vector). If the number is 20 or larger,
then we need to attach the tens digit to the
ones digit, with a hyphen in between. If,

1I don’t want to mislead the reader: I discovered these and other problems the hard way, when they surfaced as bugs. The account
here is a reconstruction that avoids my missteps. I can honestly say, however, that it took me much longer to write this column explaining
how the program works than to write the original program. Moreover, in the process of writing up the program, I saw several ways to
improve it, especially in clarity — a useful lesson.

R News ISSN 1609-3631

Vol. 5/1, May 2005 53

[1] number2words <- function(x){
[2] negative <- x < 0
[3] x <- abs(x)
[4] digits <- makeDigits(x)
[5] nDigits <- length(digits)
[6] result <- if (nDigits == 1) as.vector(ones[digits])
[7] else if (nDigits == 2)
[8] if (x <= 19) as.vector(teens[digits[2]])
[9] else trim(paste(tens[digits[1]], "-", ones[digits[2]], sep=""))
[10] else if (nDigits == 3) {
[11] tail <- makeNumber(digits[2:3])
[12] if (tail == 0) paste(ones[digits[1]], "hundred")
[13] else trim(paste(ones[digits[1]], "hundred", number2words(tail)))
[14] }
[15] else {
[16] nSuffix <- ((nDigits + 2) %/% 3) - 1
[17] if (nSuffix > length(suffixes) || nDigits > 15)
[18] stop(paste(x, "is too large!"))
[19] pick <- 1:(nDigits - 3*nSuffix)
[20] trim(paste(number2words(makeNumber(digits[pick])),
[21] suffixes[nSuffix], number2words(makeNumber(digits[-pick]))))
[22] }
[23] if (negative) paste("minus", result) else result
[24] }

Figure 1: A function to convert a single integer into words.

however, the ones digit is 0, ones["0"] is
"zero", and thus we have an embarrassing
result such as "twenty-zero". More gener-
ally, the program can produce spurious hy-
phens, commas, spaces, and the strings ",
zero" and "-zero" in appropriate places.
My solution was to write a function to trim
these off:

trim <- function(text){
gsub("(^\ *)|((\ *|-|,\ zero|-zero)$)",

"", text)
}

The trim function makes use of R’s ability
to process “regular expressions.” See Lum-
ley (2003) for a discussion of the use of regu-
lar expressions in R.

[10-14] If the number consists of three digits,
then the first digit is used for hundreds, and
the remaining two digits can be processed as
an ordinary two-digit number; this is done
by a recursive call to number2words2 — un-
less the last two digits are 0, in which case,
we don’t need to convert them into words.
The hundreds digit is then pasted onto the
representation of the last two digits, and the
result is trimmed. Notice that makeNumber

is used to put the last two digits back into a
number (called tail).

[15-22] Finally, if the number contains more than
three digits, we’re into the realm of thou-
sands, millions, etc. The computation on line
[16] determines with which power of 1000
we’re dealing. Then, if the number is not too
large, the appropriate digits are stripped off
from the left of the number and attached to
the proper suffix; the remaining digits to the
right are recomposed into a number and pro-
cessed with a recursive call, to be attached at
the right.

[23] If the original number was negative, the
word "minus" is pasted onto the front before
the result is returned.

The final function, called numbers2words (shown
in Figure 2), adds some bells and whistles: The vari-
ous vectors of names are defined locally in the func-
tion; the utility functions makeDigits, makeNumbers,
and trim, are similarly defined as local functions;
and the function number2words, renamed helper,
is also made local. Using a helper function rather
than a recursive call permits efficient vectorization,
via sapply, at the end of numbers2words. Were

2It’s traditional in S to use Recall for a recursive function call, but I’m not fond of this convention, and I don’t see an argument for it
here: It’s unlikely that number2words will be renamed, and in any event, it will become a local function in the final version of the program
(see below).

R News ISSN 1609-3631

Vol. 5/1, May 2005 54

numbers2words to call itself recursively, the local def-
initions of objects (such as the vector ones and the
function trim) would be needlessly recomputed at
each call, rather than only once. Because of R’s lex-
ical scoping, objects defined in the environment of
numbers2words are visible to helper. For more on
recursion in R, see Venables (2001).

numbers2words includes a couple of additional
features. First, according to the Oxford English Dic-
tionary, the definition of “billion” differs in the U.S.
and (traditionally) in Britain: “1. orig. and still
commonly in Great Britain: A million millions. (=
U.S. trillion.) ... 2. In U.S., and increasingly in
Britain: A thousand millions.” Thus, if the argument
billion is set to "UK", a different vector of suffixes
is used. Moreover, provision is made to avoid awk-
ward translations that repeat the word “million,”
such as “five thousand million, one hundred million,
... ,” which is instead, and more properly rendered as
“five thousand, one hundred million,”

Second, Bill Venables tells me that outside of the
U.S., it is common to write or speak a number such
101 as “one hundred and one” rather than as “one
hundred one.” (Both of these phrases seem correct
to me, but as I said, I’m hopelessly confused about
international variations in English.) I have there-
fore included another argument, called and, which
is pasted into the number at the appropriate point.
By default, this argument set is to "" when billion
is "US" and to "and" when billion is "UK".

Some examples, again wrapping long lines of
output:

> numbers2words(c(1234567890123, -0123, 1000))
[1] "one trillion,

two hundred thirty-four billion,
five hundred sixty-seven million,
eight hundred ninety thousand,
one hundred twenty-three"

[2] "minus one hundred twenty-three"
[3] "one thousand"
> numbers2words(c(1234567890123, -0123, 1000),
+ billion="UK")

[1] "one billion,
two hundred and thirty-four thousand,
five hundred and sixty-seven million,
eight hundred and ninety thousand,
one hundred and twenty-three"

[2] "minus one hundred and twenty-three"
[3] "one thousand"

> numbers2words(c(1234567890123, -0123, 1000),
+ and="and")

[1] "one trillion,
two hundred and thirty-four billion,
five hundred and sixty-seven million,
eight hundred and ninety thousand,
one hundred and twenty-three"

[2] "minus one hundred and twenty-three"
[3] "one thousand"

Finally, a challenge to the reader: At present,
numbers2words rounds its input to whole numbers.
Modify the program so that it takes a digits argu-
ment (with default 0), giving the number of places to
the right of the decimal point to which numbers are
to be rounded, and then make provision for translat-
ing such numbers (e.g., 1234567.890) into words.

John Fox
Sociology, McMaster University
jfox@mcmaster.ca

Bibliography

T. Lumley. Programmer’s niche: Little bits of string.
R News, 3(3):40–41, December 2003. URL http:
//CRAN.R-project.org/doc/Rnews/. 53

B. Venables. Programmer’s niche. R News, 1(1):27–
30, January 2001. URL http://CRAN.R-project.
org/doc/Rnews/. 54

R News ISSN 1609-3631

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

Vol. 5/1, May 2005 55

numbers2words <- function(x, billion=c("US", "UK"),
and=if (billion == "US") "" else "and"){

billion <- match.arg(billion)
trim <- function(text){

gsub("(^\ *)|((\ *|-|,\ zero|-zero)$)", "", text)
}

makeNumber <- function(x) as.numeric(paste(x, collapse=""))
makeDigits <- function(x) strsplit(as.character(x), "")[[1]]
helper <- function(x){

negative <- x < 0
x <- abs(x)
digits <- makeDigits(x)
nDigits <- length(digits)
result <- if (nDigits == 1) as.vector(ones[digits])
else if (nDigits == 2)

if (x <= 19) as.vector(teens[digits[2]])
else trim(paste(tens[digits[1]], "-", ones[digits[2]], sep=""))

else if (nDigits == 3) {
tail <- makeNumber(digits[2:3])
if (tail == 0) paste(ones[digits[1]], "hundred")
else trim(paste(ones[digits[1]], trim(paste("hundred", and)),

helper(tail)))
}

else {
nSuffix <- ((nDigits + 2) %/% 3) - 1
if (nSuffix > length(suffixes) || nDigits > 15)

stop(paste(x, "is too large!"))
pick <- 1:(nDigits - 3*nSuffix)
trim(paste(helper(makeNumber(digits[pick])),

suffixes[nSuffix], helper(makeNumber(digits[-pick]))))
}

if (billion == "UK"){
words <- strsplit(result, " ")[[1]]
if (length(grep("million,", words)) > 1)

result <- sub(" million, ", ", ", result)
}

if (negative) paste("minus", result) else result
}

opts <- options(scipen=100)
on.exit(options(opts))
ones <- c("zero", "one", "two", "three", "four", "five", "six", "seven",

"eight", "nine")
teens <- c("ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",

"sixteen", " seventeen", "eighteen", "nineteen")
names(ones) <- names(teens) <- 0:9
tens <- c("twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty",

"ninety")
names(tens) <- 2:9
suffixes <- if (billion == "US")

c("thousand,", "million,", "billion,", "trillion,")
else

c("thousand,", "million,", "thousand million,", "billion,")
x <- round(x)
if (length(x) > 1) sapply(x, helper) else helper(x)
}

Figure 2: A function to convert a vector of integers into a vector of strings containing word-equivalents of the
integers.

R News ISSN 1609-3631

