
Vol. 4/1, June 2004 33

Programmers’ Niche
A simple class, in S3 and S4

by Thomas Lumley

ROC curves

Receiver Operating Characteristic curves (ROC
curves) display the ability of an ordinal variable to
discriminate between two groups. Invented by radio
engineers, they are perhaps most used today in de-
scribing medical diagnostic tests. Suppose T is the
result of a diagnostic test, and D is an indicator vari-
able for the presence of a disease.

The ROC curve plots the true positive rate (sen-
sitivity), Pr(T > c|D = 1), against the false positive
rate (1−specificity), Pr(T > c|D = 0) for all values
of c. Because the probabilities are conditional on dis-
ease status the ROC curve can be estimated from ei-
ther an ordinary prospective sample or from separate
samples of cases (D = 1) or controls (D = 0).

I will start out with a simple function to draw
ROC curves, improve it, and then use it as the basis
of S3 and S4 classes.

Simply coding up the definition of the ROC curve
gives a function that is efficient enough for most
practical pruposes. The one necessary optimisation
is to realise that ±∞ and the the unique values of
T are the only cutpoints needed. Note the use of
sapply to avoid introducing an index variable for el-
ements of cutpoints.

drawROC <-function(T,D){

cutpoints<-c(-Inf, sort(unique(T)), Inf)

sens<-sapply(cutpoints,

function(c) sum(D[T>c])/sum(D))

spec<-sapply(cutpoints,

function(c) sum((1-D)[T<=c]/sum(1-D)))

plot(1-spec, sens, type="l")

}

It would usually be bad style to use T and c as
variable names, because of confusion with the S-
compatible T==TRUE and the built-in function c(). In
this case the benefit of preserving standard notation
is arguably worth the potential confusion.

There is a relatively simple optimisation of
the function that increases the speed substantially,
though at the cost of requiring T to be a number,
rather than just an object for which > and <= are de-
fined.

drawROC<-function(T,D){

DD<-table(-T,D)

sens<-cumsum(DD[,2])/sum(DD[,2])

mspec<-cumsum(DD[,1])/sum(DD[,1])

plot(mspec,sens, type="l")

}

One pedagogical virtue of this code is that it
makes it obvious that the ROC curve must be mono-
tone: the true positive and false positive rates are cu-
mulative sums of non-negative numbers.

Classes and methods

Creating an S3 class for ROC curves is an easy in-
cremental step. The computational and graphical
parts of drawROC are separated, and an object of class
"ROC" is created simply by setting the class at-
tribute of the result.

The first thing a new class needs is a print
method. The print function is generic, when given
an object of class "ROC" it automatically looks for a
print.ROC function to take care of the work. Failing
that, it calls print.default, which spews the inter-
nal representation of the object all over the screen.

ROC<-function(T,D){

TT<-rev(sort(unique(T)))

DD<-table(-T,D)

sens<-cumsum(DD[,2])/sum(DD[,2])

mspec<-cumsum(DD[,1])/sum(DD[,1])

rval<-list(sens=sens, mspec=mspec, test=TT,

call=sys.call())

class(rval)<-"ROC"

rval

}

print.ROC<-function(x,...){

cat("ROC curve: ")

print(x$call)

}

The programmer is responsible for ensuring that
the object has all the properties assumed by func-
tions that use ROC objects. If an object has class
"duck", R will assume it can look.duck, walk.duck
and quack.duck.

Since the main purpose of ROC curves is to be
graphed, a plot method is also needed. As with
print, plot will look for a plot.ROC method when
handed an object of class "ROC" to plot.

plot.ROC<-function(x, type="b", null.line=TRUE,

xlab="1-Specificity", ylab="Sensitivity",

main=NULL, ...){

par(pty="s")

plot(x$mspec, x$sens, type=type,

xlab=xlab, ylab=ylab, ...)

R News ISSN 1609-3631

Vol. 4/1, June 2004 34

if(null.line)

abline(0, 1, lty=3)

if(is.null(main))

main<-x$call

title(main=main)

}

A lines method allows ROC curves to be graphed
on the same plot and compared. It is a stripped-
down version of the plot method:

lines.ROC<-function(x,...){

lines(x$mspec, x$sens, ...)

}

A method for identify allows the cutpoint to be
found for any point on the curve:

identify.ROC<-function(x, labels=NULL,

...,digits=1)

{

if (is.null(labels))

labels<-round(x$test,digits)

identify(x$mspec, x$sens, labels=labels,...)

}

An AUC function, to compute the area under the
ROC curve, is left as an exercise for the reader.

Generalising the class

The test variable T in an ROC curve may be a model
prediction rather than a single biomarker, and ROC
curves have been used to summarise the discrimina-
tory power of logistic regression and survival mod-
els. A generic constructor function would allow
methods for single variables and for models. Here
the default method is the same as the original ROC
function.

ROC <- function(T,...) UseMethod("ROC")

ROC.default<-function(T,D,...){

TT<-rev(sort(unique(T)))

DD<-table(-T,D)

sens<-cumsum(DD[,2])/sum(DD[,2])

mspec<-cumsum(DD[,1])/sum(DD[,1])

rval<-list(sens=sens, mspec=mspec,

test=TT,call=sys.call())

class(rval)<-"ROC"

rval

}

The ROC.glm method extracts the fitted values
from a binomial regression model and uses them as
the test variable.

ROC.glm<-function(T,...){

if (!(T$family$family %in%

c("binomial", "quasibinomial")))

stop("ROC curves for binomial glms only")

test<-fitted(T)

disease<-(test+resid(T, type="response"))

disease<-disease*weights(T)

if (max(abs(disease %% 1))>0.01)

warning("Y values suspiciously

far from integers")

TT<-rev(sort(unique(test)))

DD<-table(-test,disease)

sens<-cumsum(DD[,2])/sum(DD[,2])

mspec<-cumsum(DD[,1])/sum(DD[,1])

rval<-list(sens=sens, mspec=mspec,

test=TT,call=sys.call())

class(rval)<-"ROC"

rval

}

S4 classes and method

In the new S4 class system provided by the "meth-
ods" package, classes and methods must be regis-
tered. This ensures that an object has the components
required by its class, and avoids the ambiguities of
the S3 system. For example, it is not possible to tell
from the name that t.test.formula is a method for
t.test while t.data.frame is a method for t (and
t.test.cluster, in the "Design" package, is neither).

As a price for this additional clarity, the S4 sys-
tem takes a little more planning, and can be clumsy
when a class needs to have components that are only
sometimes present.

The definition of the ROC class is very similar to
the calls used to create the ROC objects in the S3 func-
tions.

setClass("ROC",

representation(sens="numeric",mspec="numeric",

test="numeric",call="call"),

validity=function(object) {

length(object@sens)==length(object@mspec) &&

length(object@sens)==length(object@test)

}

)

The first argument to setClass gives the name of
the new class. The second describes the components
(slots) that contain the data. Optional arguments in-
clude a validity check. In this case the ROC curve
contains three numeric vectors and a copy of the call
that created it. The validity check makes sure that the
lengths of the three vectors agree. It could also check
that the vectors were appropriately ordered, or that
the true and false positive rates were between 0 and
1.

In contrast to the S3 class system, the S4 system
requires all creation of objects to be done by the new

R News ISSN 1609-3631

Vol. 4/1, June 2004 35

function. This checks that the correct components
are present and runs any validity checks. Here is the
translation of the ROC function.

ROC<-function(T,D){

TT<-rev(sort(unique(T)))

DD<-table(-T,D)

sens<-cumsum(DD[,2])/sum(DD[,2])

mspec<-cumsum(DD[,1])/sum(DD[,1])

new("ROC", sens=sens, mspec=mspec,

test=TT,call=sys.call())

}

Rather than print, S4 objects use show for display.
Here is a translation of the print method from the S3
version of the code

setMethod("show","ROC",

function(object){

cat("ROC curve: ")

print(object@call)

})

The first argument of setMethod is the name of
the generic function (show). The second is the sig-
nature, which specifies when the method should be
called. The signature is a vector of class names, in
this case a single name since the generic function
show has only one argument. The third argument is
the method itself. In this example it is an anonymous
function; it could also be a named function. The nota-
tion object@call is used to access the slots defined
in setClass, in the same way that $ is used for list
components. The @ notation should be used only in
methods, although this is not enforced in current ver-
sions of R.

The plot method shows some of the added flex-
ibility of the S4 method system. The generic func-
tion plot has two arguments, and the chosen method
can be based on the classes of either or both. In
this case a method is needed for the case where the
first argument is an ROC object and there is no sec-
ond argument, so the signature of the method is
c("ROC","missing"). In addition to the two argu-
ments x and y of the generic function, the method
has all the arguments needed to customize the plot,
including a ... argument for further graphical pa-
rameters.

setMethod("plot", c("ROC","missing"),

function(x, y, type="b", null.line=TRUE,

xlab="1-Specificity",

ylab="Sensitivity",

main=NULL, ...){

par(pty="s")

plot(x@mspec, x@sens, type=type,

xlab=xlab, ylab=ylab, ...)

if(null.line)

abline(0,1,lty=3)

if(is.null(main))

main<-x@call

title(main=main)

}

)

Creating a method for lines appears to work the
same way

setMethod("lines","ROC",

function(x,...)

lines(x@mspec, x@sens,...)

)

In fact, things are more complicated. There is no S4
generic function for lines (unlike plot and show).
When an S4 method is set on a function that is not al-
ready an S4 generic, a generic function is created. If
you knew that lines was not already an S4 generic
it would be good style to include a specific call to
setGeneric, to make clear what is happening. Look-
ing at the function lines before

> lines
function (x, ...)
UseMethod("lines")
<environment: namespace:graphics>

and after the setMethod call

> lines
standardGeneric for "lines" defined from
package "graphics"

function (x, ...)
standardGeneric("lines")
<environment: 0x2fc68a8>
Methods may be defined for arguments: x

shows what happens.
Note that the creation of this S4 generic does not

affect the workings of S3 methods for lines. Calling
methods("lines") will still list the S3 methods, and
calling getMethods("lines") will list both S3 and S4
methods.

Adding a method for creating ROC curves from
binomial generalised linear models provides an ex-
ample of setGeneric. Calling setGeneric creates a
generic ROC function and makes the existing function
the default method. The code is the same as the S3
ROC.glm except that new is used to create the ROC
object.

setGeneric("ROC")

setMethod("ROC",c("glm","missing"),

function(T){

if (!(T$family$family %in%

c("binomial", "quasibinomial")))

stop("ROC curves for binomial glms only")

R News ISSN 1609-3631

Vol. 4/1, June 2004 36

test<-fitted(T)

disease<-(test+resid(T,type="response"))

disease<-disease*weights(T)

if (max(abs(disease %% 1))>0.01)

warning("Y values suspiciously far

from integers")

TT<-rev(sort(unique(test)))

DD<-table(-test,disease)

sens<-cumsum(DD[,2])/sum(DD[,2])

mspec<-cumsum(DD[,1])/sum(DD[,1])

new("ROC",sens=sens, mspec=mspec,

test=TT,call=sys.call())

}

)

Finally, a method for identify shows one addi-
tional feature of setGeneric. The signature argu-
ment to setGeneric specifies which arguments are
permitted in the signature of a method and thus
are used for method dispatch. Method dispatch for
identify will be based only on the first argument,
which saves having to specify a "missing" second
argument in the method.

setGeneric("identify",signature=c("x"))

setMethod("identify", "ROC",

function(x, labels=NULL,

...,digits=1){

if (is.null(labels))

labels<-round(x@test, digits)

identify(x@mspec, x@sens,

labels=labels,...)

}

)

Discussion

Creating a simple class and methods requires very
similar code whether the S3 or S4 system is used, and
a similar incremental design strategy is possible. The
S3 and S4 method system can coexist peacefully, even
when S4 methods need to be defined for a function
that already has S3 methods.

This example has not used inheritance, where the
S3 and S4 systems differ more dramatically. Judging
from the available examples of S4 classes, inheritance
seems most useful in defining data structures, rather
than objects representing statistical calculations. This
may be because inheritance extends a class by creat-
ing a special case, but statisticians more often extend
a class by creating a more general case. Reusing code
from, say, linear models in creating generalised lin-
ear models is more an example of delegation than in-
heritance. It is not that a generalised linear model
"is" a linear model, more that it "has" a linear model
(from the last iteration of iteratively reweighted least
squares) associated with it.

Thomas Lumley
Department of Biostatistics
University of Washington, Seattle

Changes in R
by the R Core Team

New features in 1.9.1

• as.Date() now has a method for "POSIXlt" ob-
jects.

• mean() has a method for "difftime" objects and
so summary() works for such objects.

• legend() has a new argument pt.cex.

• plot.ts() has more arguments, particularly
yax.flip.

• heatmap() has a new keep.dendro argument.

• The default barplot method now handles vec-
tors and 1-d arrays (e.g., obtained by table())
the same, and uses grey instead of heat color
palettes in these cases. (Also fixes PR#6776.)

• nls() now looks for variables and functions in
its formula in the environment of the formula
before the search path, in the same way lm()
etc look for variables in their formulae.

User-visible changes in 1.9.0

• Underscore _ is now allowed in syntactically
valid names, and make.names() no longer
changes underscores. Very old code that makes
use of underscore for assignment may now
give confusing error messages.

• Package ’base’ has been split into packages
’base’, ’graphics’, ’stats’ and ’utils’. All four are
loaded in a default installation, but the separa-
tion allows a ’lean and mean’ version of R to be
used for tasks such as building indices.

Packages ctest, eda, modreg, mva, nls, stepfun
and ts have been merged into stats, and lqs has

R News ISSN 1609-3631

