
Vol. 3/3, December 2003 40

Programmer’s Niche
Little Bits of String

by Thomas Lumley

Character strings occupy an unusual position in R.
They are treated as atomic types — little bits of string
— by all the subscripting functions. On the other
hand, in most cases where the programmer really is
treating strings as atomic objects it would be better
to use factors instead.

The decision not to treat strings as vectors of char-
acters makes sense when you consider what sorts of
operations we do on strings. The vectorised opera-
tions in R mostly deal with operating on the same
entry in multiple vectors. With two strings, the ‘same
character’ is more likely to be defined relative to pat-
terns in the string rather than by counting charac-
ters from the beginning. The most useful operations
on strings are not elementwise operations on their
characters, but pattern matching and replacement
operations. In the Unix world these pattern match-
ing operations are described by regular expressions.
R provides two implementations of regular expres-
sions, which allow quite complex text manipulation,
though for efficient processing of very large quanti-
ties of text a specialised tool such as Perl is better. I
will discuss only some features of one of the R imple-
mentations. A more complete description of regular
expressions in R is given by help(regex) and the ref-
erences it cites.

A regular expression is a small program that
matches one or more strings. For example, the reg-
ular expression a regular expression matches the
single string “a regular expression”. R provides
functions grep, sub, gsub, regexpr, and strsplit
that take a regular expression and a string and look
for any of the possible outputs of the regular ex-
pression in the string. This can be useful even
with very simple regular expressions, for example,
apropos("file") returns all the currently defined
objects that have the string "file" in their names.

As the example shows, most characters in a regu-
lar expression just match themselves as output. The
power of regular expressions comes from the special
characters that do more than this. The first two are ^
and $, which represent the beginning and end of the
string respectively. The regular expression ^print
matches “print” at the beginning of the string,
which is found in the strings "print.data.frame"
and "printer.type" but not in "dev.print". In
simpler times the function methods, which lists the
methods available for a given generic function, could
just use a regular expression of this sort to find all
functions whose name began with the name of the
generic; things are much more complicated now.

In addition to representing a single character, we
can represent a class of characters. At the extreme,
the character . matches any character, but more re-
stricted patterns are often more useful. For exam-
ple, the regular expression [[:alpha:]] matches any
single uppercase or lowercase letter, [[:digit:]]
matches any digit, and [[:space:]] matches any of
the white-space characters. Other square-bracket ex-
pressions specify other character classes. You may
see [A-Z] for specifying ranges of characters (be-
tween A and Z in this example), but this should be
used with care (for example, in Danish the letters Æ,
Ø, and Å are not between A and Z).

The special characters present a problem when
you need an actual . or $, say, in a string. To prevent
their being interpreted as special they must be pre-
ceded by a backslash and, given the familiar prob-
lems with C strings, this means typing a double
backslash. To match “.sgml” at the end of a string
(identifying S help files) we need the regular expres-
sion \\.sgml$ (as a convenience, the R functions that
accept regular expressions mostly accept an argu-
ment fixed=TRUE to specify that all special characters
should be interpreted as ordinary characters).

The real power of regular expressions comes from
specifying repetitions of characters or sets of charac-
ters. The qualifiers ?, +, and * specify that the pre-
vious character should be repeated at most once, at
least once, or any number of times. For example,
^[[:space:]]* matches any amount of empty space
at the start of a string, so

sub("^[[:space:]]*", "", string)

will remove any leading whitespace characters from
the strings (that is, replace it with nothing). Paren-
theses create groups that can be repeated together, so
that (".+",[[:space:]]*)* matches any number of
terms in quotation marks, separated by commas and
optionally by space. Even trickier things are possible
with parentheses:

([[:alpha:]]+)[[:space:]]\\1

matches repeated words. The backreference \\1
means ‘the string that the first set of parentheses
matched’. We could remove repeated words from a
string with

> gsub("([[:alpha:]]+)[[:space:]]*\\1", "\\1",
"the the end is is nigh")

[1] "the end is nigh"

The Sweave tools (Leisch, 2002) provide a nice exam-
ple of the integration of regular expressions into R
programs. The underlying R code can process input
files in multiple formats, with the necessary descrip-
tions of the formats given by regular expressions (e.g.
tools::SweaveSyntaxNoweb1)

1in future versions of R this will be utils::SweaveSyntaxNoweb

R News ISSN 1609-3631



Vol. 3/3, December 2003 41

Despite this power, the main use I make of reg-
ular expressions is in simple script processing. For
example, in porting a package written for S-PLUS re-
cently I wrote a function to find all the SGML docu-
mentation files in the package, strip the version con-
trol comments from the beginning of each file, and
feed them to R CMD Sd2Rd to make Rd files. This
could have been done in Perl or probably with a sim-
ple shell script, but it seemed easier just to use R.

An interesting exercise for the reader: Creat-
ing a namespace for an existing package that uses
S3 methods requires registering the methods in
the NAMESPACE file. That is, for a function such
as print.coxph, the NAMESPACE file should contain
S3method(print, coxph). How would you write
a function that looked for methods for a list of
common generic functions and created the neces-
sary S3method calls? You would probably need
to use the functions either strsplit and paste or

regexpr and substr, and would need to remember
that the generic name need not be a single word
(is.na.Surv springs to mind). Some hand edit-
ing would still be required, for example to deter-
mine whether t.test.formula was a method for t
or t.test or neither.

References

Leisch, F. (2002) Sweave, Part I: Mixing R and LATEX.
R News 2(3): 28–31.

Thomas Lumley
Biostatistics, University of Washington
tlumley@u.washington.edu

Recent Events
R at the Statistics Canada Sympo-
sium

R was one of the software packages demonstrated
at the 2003 Statistics Canada Symposium, an annual
event organized by Statistics Canada and presented
near Ottawa, Ontario. The event is attended largely
by the methodologists (statisticians) who work here
and at other national statistical agencies, such as the
US Census Bureau. This year’s symposium was the
20th edition of the conference. The four day event
had two days of software demonstrations with dif-
ferent packages being shown each day. Out of the 10
different packages being demonstrated, 7 were de-
veloped at Statistics Canada for very specific tasks.

Although the software demonstrations were hid-
den in a room out of sight from the main proceed-
ings, there were still several curious visitors to the R
demo computer. We showed some basic demos of

R at work in sampling and in simulation problems,
emphasizing both the simplicity of the code and the
results that can be produced. We also used the built-
in graphics demo, which impressed many people. As
most people working for Statistics Canada use SAS,
many of our discussions were about why one would
use R instead of SAS (besides the fact that R is free).
We had many discussions on programming struc-
ture, creating plots, dealing with large amounts of
data and general ease of use. All our visitors, when
shown the software, seemed to like it and were not
adverse to the idea of using it instead of SAS. In fact,
they couldn’t understand why we were not already
using it more widely.

Krisztina Filep
Social Survey Methods Division
Statistics Canada
Ottawa, Ontario, Canada
Krisztina.Filep@statcan.ca

R News ISSN 1609-3631

mailto:tlumley@u.washington.edu
mailto:Krisztina.Filep@statcan.ca

