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Editorial
by Simon Urbanek

On behalf of the editorial board, I am pleased to present Volume 15 Issue 2 of the R Journal.

Behind the scenes, several people assist with the journal operations. Mitchell O’Hara-
Wild continues to work on infrastructure, H. Sherry Zhang continues to develop the rjtools
package under the direction of Professor Dianne Cook. In addition, articles in this issue
have been carefully copy edited by Adam Bartonicek and Chase Robertson.

In this issue

This issue features 18 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. Supplementary material
with fully reproducible code is available for download from the Journal website. Topics
covered in this issue are

Graphics and Visualisation

• langevitour: smooth interactive touring of high dimensions, demonstrated with
scRNA-Seq data

• ggdensity: Improved Bivariate Density Visualization in R
• Taking the Scenic Route: Interactive and Performant Tour Animations
• vivid: An R package for Variable Importance and Variable Interactions Displays for

Machine Learning Models

Multivariate Statistics

• Generalized Estimating Equations using the package glmtoolbox
• genpathmox: An R Package to Tackle Numerous Categorical Variables and Hetero-

geneity in Partial Least Squares Structural Equation Modeling

Bayesian Inference

• bqror: An R package for Bayesian Quantile Regression in Ordinal Models
• A framework for estimating and visualising excess mortality during the COVID-19

pandemic

Social Sciences

• PINstimation: An R Package for Estimating Models of Probability of Informed Trading
• mutualinf: An R Package for Computing and Decomposing the Mutual Information

Index of Segregation
• Three-way Correspondence Analysis in R
• Difficult Choices? Estimating Heteroskedastic and Instrumental Variable Models for

Binary Dependent Variables in R

Mixture Models and Optimization

• nlstac: Non-gradient Separable Nonlinear Least Squares Fitting
• Univariate Gaussian mixtures in R
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Clustering and Graphs

• Identifying Counterfactual Queries with the R package cfid
• clustAnalytics: An R Package for Assessing Stability and Significance of Clusters in

Networks

Other

• hydrotoolbox: a Package for Hydrometeorological Data Management
• EviewsR: an R Package for Dynamic and Reproducible Research Using EViews, R, R

Markdown and Quarto

Simon Urbanek
University of Auckland

https://journal.r-project.org
r-journal@r-project.org
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nlstac: Non-Gradient Separable Nonlinear
Least Squares Fitting
by J. A. F. Torvisco, R. Benítez, M. R. Arias, and J. Cabello Sánchez

Abstract A new package for nonlinear least squares fitting is introduced in this paper. This package
implements a recently developed algorithm that, for certain types of nonlinear curve fitting, reduces
the number of nonlinear parameters to be fitted. One notable feature of this method is the absence of
initialization which is typically necessary for nonlinear fitting gradient-based algorithms. Instead, just
some bounds for the nonlinear parameters are required. Even though convergence for this method is
guaranteed for exponential decay using the max-norm, the algorithm exhibits remarkable robustness,
and its use has been extended to a wide range of functions using the Euclidean norm. Furthermore,
this data-fitting package can also serve as a valuable resource for providing accurate initial parameters
to other algorithms that rely on them.

1 Introduction

Experimental data often exhibits non-linear patterns. As such, researchers in applied science often
have to try to fit these data with non-linear models which can be challenging to fit. In this paper, we
introduce the nlstac package (Rodriguez-Arias et al., 2023), which implements the TAC algorithm
for solving separable nonlinear regression problems, among others. Unlike other solvers, it does not
require initialization values. Throughout the paper, we emphasize the potential synergistic usage of
nlstac alongside other commonly used solvers, as it can provide reliable initialization values for them.
The syntax of nlstac follows a similar structure to the solvers in the minpack.lm package (Elzhov et al.,
2023), making it familiar to researchers experienced with those solvers.

The motivation behind developing the nlstac package stems from an approximation problem
involving time series data. Specifically, we were working with data corresponding to measurements
obtained from a thermometer reaching thermal equilibrium with the surrounding medium, particularly
oceanic water. In accord with Newton’s law of cooling, the temporal evolution of these data exhibits
an exponential pattern described by the expression:

a1e−k1t + a2, where a1, a2, k1 ∈ R, k1 > 0, (1)

where t represents the time variable.

Fitting data with the exponential pattern described by equation (1) is a nonlinear optimization
problem. One challenge we encountered with widely used algorithms for such problems was the need
to initialize the parameters in (1), as the solutions often strongly depended on the chosen initial values
—a bad choice of initial values could lead to a sub-optimal local minimum or even make the algorithm
not to converge at all. The TAC algorithm, around which the present package is built, is presented
in Torvisco et al. (2018) and it overcomes this issue by eliminating the requirement for parameter
initialization. It only needs to specify a broad interval in which to search for the nonlinear parameters.
As we worked with the TAC algorithm, its robustness became increasingly evident—robustness in the
sense of stability of the algorithm in relation with noisy data and the convergence for a great variety of
problems. In our opinion, this advantage, along with the lack of initialization, outweighs the need to
specify the exact pattern to be used.

While the convergence of TAC is proven using the max norm, as shown in Torvisco et al. (2018),
we employ the Euclidean norm in the nlstac package and consider more general patterns beyond
equation (1). This extension of TAC beyond its proven convergence conditions is supported by its
reliable performance, as mentioned earlier.

We acknowledge the widespread use of other algorithms for nonlinear fitting, such as Gauss-
Newton or Levenberg-Marquardt, with the former being the default choice for the nls function in the
stats package (R Core Team, 2021). Hence, in the present paper, we aimed to showcase the similarities
and differences between nlstac and the nls fit, not as a competition, but as a demonstration of how
well these two algorithms can work in synergy. Researchers sometimes encounter difficulties in
finding suitable initialization values for nls to achieve convergence. In this regard, since nlstac does
not require users to specify good starting values to converge, the resulting estimates can be used to
provide good starting values to nls or any other initialization-dependent algorithm.
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1.1 Nonlinear regression, or more broadly, a problem of approximation

Nonlinear regression or nonlinear fitting is a standard procedure commonly used in a wide range
of scientific fields. Typically, we start with a dataset of q observations of n regressors (or predictor
variables) and a response variable, namely {(xi, yi), i = 1, . . . , q}, and a mathematical expression
relating the regressors and the response variable. This mathematical expression may present a
nonlinear dependency on several parameters. For instance, the aforementioned general expression is
usually given by

y = f (x; θ) + ε(x; θ), (2)

being f : Rn × Rp → R a function, ε(x; ·), independent and identically distributed random variables
following a spherical normal distribution and θ = (θ1, . . . , θp) being the vector of parameters. Thus,
the problem reduces to finding an estimate of the parameter vector θ∗ such that some cost function is
minimized. A usual choice for the cost function is the well-known least-squares cost function so that
we are solving an optimization problem. Namely, finding θ∗ ∈ Rp such that

g(θ∗) = min
θ

g(θ), g(θ) =
q

∑
i=1

(yi − f (xi; θ))2 . (3)

Please observe it is assumed that only yi’s are observed with error, whereas xi’s are measured
exactly. The possibility of generalizing this to measurement-error models is not implemented in nlstac.
More information about Least Squares Problems can be found in, for example, Björck (1996) or Nocedal
and Wright (2006).

The above problem can be described in Mathematical Analysis as an approximation problem. This
kind of problem is determined by three elements: a set A, which is the object to be approximated; a
family of functions F , whose elements are known as approximants; and finally an approximation
criterion—a procedure to measure how close to A each element of F lies. In an approximation problem,
a canonical question arises: does exist an element f ∈ F which is closest to A —attending to the
approximation criterion— than every other element in F? When the answer to this question happens
to be affirmative, a method to locate one of such elements is needed and this is what nlstac is designed
for.

Let us identify those elements in the problem described above. The element A to be approximated
is the dataset of observations {(xi, yi), i = 1, . . . , q}, which is a subset of Rn × R. The family of
approximants, F , is given by the following p-parametric family

F = { fθ : Rn 7−→ R | fθ(x) = f (x; θ), θ ∈ Rp} ,

being f the mathematical expression relating the regressors and the response variable given in (2).
Finally, the approximation criterion corresponds to the function g in (3). From now on, we will refer to
one or the other definition depending on which one is more clear within the context.

Algorithms for finding the best set of parameters θ∗ of (3) can be divided into local solvers and
global solvers, depending on whether they are designed to find a local or a global minimum of the cost
function, respectively. In general, local solvers are, under certain conditions, fast and accurate. They
are usually based on some sort of gradient descent algorithm and are iterative in nature. That is, they
start at a given initial guess for θ and, at each iteration (hopefully) they find a better approximation of
the minimum. Under some assumptions (e.g. convexity), the local and global minima may coincide.
However, in many cases, we will find that there are many different local minima and, consequently,
the solution given by those algorithms may depend on the initial guess. Therefore, a bad initial guess
could land us in a sub-optimal local minimum and there are even cases for which that initial conditions
may cause the algorithm to not converge. Some local algorithms are the steepest descent method,
incremental steepest descent method, Newton’s method, Quasi-Newton methods, Newton’s methods
with Hessian modification, BFGS algorithm, Gauss-Newton method, or Levenberg-Marquardt method.
More information about this and other methods can be found in, for example, Nocedal and Wright
(2006), Arora (2015) or Rhinehart (2016).

On the other hand, global solvers do not depend that heavily on an initial condition, but they
require an interval or area in which to start looking for the minimum. Some global algorithms, like
grid-search, are known to converge in any case, but they scale very poorly, such that the computational
time grows exponentially with the number of parameters to be found. There are also heuristic solvers,
which are not guaranteed to converge to global minimum, but they give a reasonable approximation in
cases where other algorithms either take too long or do not converge at all. Some examples of this last
kind are Nelder–Mead method, genetic algorithms, particle swarm optimization, simulated annealing,
or ant colony optimization, see Arora (2015).
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1.2 Separable nonlinear regression problems

Some of the previous problems fall into the family of separable nonlinear regression problems. In this
kind of problem, the nonlinear function f in (2) can be written as a linear combination of nonlinear
functions. In particular, f takes the expression

f (x; θ) =
r

∑
i=1

aiϕi(x; b). (4)

With this formulation, the original set of parameters θ has been split into two subsets: the linear
parameters a = (a1, . . . , ar) and the nonlinear parameters b = (b1, . . . , bs). Obviously r + s = p
and thus the number of nonlinear parameters to be determined is smaller than the total number of
parameters. Therefore, the number of parameters to be found using nonlinear algorithms can be
reduced. Separable nonlinear least squares methods are described, for example, in Golub and Pereyra
(2003) and Golub and Pereyra (1973).

In this work we present the package nlstac, based on the TAC algorithm described in Torvisco
et al. (2018) for solving the separable nonlinear regression problem given in (4).

1.3 Related packages

There are some widely used R packages that also deal with the problems nlstac is designed to solve.
However, they rely on different algorithms which are often dependent on the choice of initial values.
These packages are mainly nlsr (Nash and Murdoch, 2023) and minpack.lm, both solving the problems
with variants of the Levenberg-Marquardt algorithm, lbfgs package (Coppola et al., 2022), which
provides an interface to L-BFGS and OWL-QN algorithms, or minqa package (Bates et al., 2014),
implementing derivative-free optimization algorithms. The algorithms used by this package fall into
the aforementioned category of local algorithms.

Other R packages that use global algorithms, mostly of a stochastic nature, are, for example,
DEoptimR (Conceicao, 2022), GenSA (Xiang et al., 2013), GA (Scrucca, 2013), ABCoptim (Vega Yon
and Muñoz, 2017) or pso (Bendtsen., 2022).

There are also packages for fitting models in separable non-linear regression models, although
these tend to be more specialized for specific problem domains. For example, the TIMP package
(Mullen and van Stokkum, 2007) is used for physics and chemistry problems whereas spant package
(Wilson, 2021) deals with magnetic resonance spectroscopy problems. For partially separable nonlinear
fitting we find psqn package (Christoffersen, 2022).

2 The nlstac package

The nlstac package was developed with two objectives: first, to implement the algorithm described
in Torvisco et al. (2018) in functions that could be used for estimating separable nonlinear regression
models, and second, to implement these functions with standard syntax such that they would be
convenient for users familiar with other curve-fitting functions such as lm, nls, or nlsLM from the
minpack.lm package.

The package consists of three units: a formula decomposer, a linear least squares solver, and a grid
search unit.

The workflow is depicted in Figure 1:

FORMULA 
DECOMPOSER

nlstac class 
object

LINEAR LSQ
SOLVER

GRID
SEARCH

data frame

formula object

non linear parameters ranges

stopping conditions

N (size of the grid)

1 2

3

4

5

Figure 1: Schematic workflow of the algorithm used in the nlstac package.
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1. From the dataset contained in a dataframe, an object of class formula, and a list of nonlinear
parameters along with the initial ranges defined for each parameter, the formula decomposer,
coded in internal function get_functions determines the nonlinear functions, ϕi, defined in (4).

2. From the ranges (intervals) of each nonlinear parameter and the number of nodes, N, of each
partition of such intervals, all possible combinations of nonlinear parameters are determined.
For each combination, a linear least square problem is solved, obtaining thus a set of plausible
parameters. This is done by the get_best_parameters internal function. Such a set of ’plausible
parameters’ is obtained in the following way: Let b1, . . . , bs be the nonlinear parameters in (4).
For each nonlinear parameter bi let [ci, di] denote the interval where to seek the estimation of bi
and let ci = b1

i < b2
i < · · · < bN−1

i < bN
i = di denote the partition of such interval. Then, from

these partitions, we construct a mesh in the rectangle [c1, d1]× · · · × [cs, ds]. Next, for each node
of the grid, we obtain the optimal linear parameters by solving a linear least square problem.
The nodes of the grid, along with the optimal linear parameters for each node, constitute the set
of plausible parameters.

3. For each set of plausible parameters, the loss function (namely the sum of the squares of the
residuals) is computed, and a grid search is performed to obtain the minimum value of the loss
function. Let (bm1

1 , . . . , bms
s ) be the node of the grid in which the loss function minimizes.

4. Stopping criteria are met when either the maximum number of iterations is reached or when
the size of the partition of every interval [ci, di] is lower than the tolerance level. If stopping
criteria are not met, the grid is refined: for each parameter, bi, a new subinterval where to seek
the estimation of such parameter is considered, [bmi−1

i , bmi+1
i ] (note that if mi is either 1 or N,

the new subinterval will be [ci, b2
i ] or [bN−1

i , di], respectively). The new grid will be established
by repeating steps 2 to 4 until one stopping criterion is met.

5. When stopping criteria are met, the result is returned as an object of class nlstac.

As indicated in step 5, the output given by the nls_tac function is an object of class nlstac. It is a
list containing the following fields:

• resid: The residuals.

• data: The original data.

• coefficients: A named vector containing the values of the parameters.

• stdError: A named vector with the standard error of the estimation of the coefficients.

• convInfo: Convergence information. Namely, the number of iterations (niter), and the tolerance
reached (tolerance).

• SSR: The sum of the squares of the residuals obtained by the fit.

• fitted: A vector containing the fitted values.

• dataset: A string with the name of the variable containing the data.

• formula: The formula used in the call of the function.

• df: The degrees of freedom

• sigma: The standard deviation estimate.

• Rmat: R matrix in the QR decomposition of the gradient matrix used for the computation of the
standard errors of the coefficients.

The class nlstac has also some extraction methods similar to lm, nls, glm. For instance, the meth-
ods summary.nlstac, predict.nlstac, and predict.summary.nlstac produce identically formatted
output as the summary functions for the lm and nls fits, as will be shown later.

The nlstac package (Rodriguez-Arias et al., 2023) is available in CRAN. The development version
of the package can also be installed from the GitHub repository using the install_github function
from the remotes package (Csárdi et al., 2021): remotes::install_github("rbensua/nlstac").

2.1 Arguments

As was mentioned above, the inputs for the nls_tac function are, at least, the fields data, formula,
tol, N and nlparam.

The data field is a data frame containing the data to be fitted; tol is the tolerance measured as the
relative difference between the values of the parameters in two consecutive iterations; its default value
is 10−4; N is the number of divisions we make in each nonlinear parameter interval in each iteration
(defaults to 10); formula is either an object of formula class or a character string that can be coerced
into a formula, and it must contain the pattern or formula which will be fitted, and nlparam is a list
containing the nonlinear parameters as well as their initial ranges.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859
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2.2 Summary of nlstac class

Information about the fit is stored in an nlstac class, and the function summary can display the most
numerical relevant information about the fit.

Considering the example shown in Subsection 2.3.1 (Example 1. Exponential Decay), once the
analysis is done, the summary function shows us the information of the analysis as follows:

> summary(tacfit)

Formula: temp ~ a1 * exp(-k1 * time) + a2

Parameters:
Estimate Std. Error t value Pr(>|t|)

k1 1.399458e-02 8.107657e-05 172.6095 < 2.22e-16 ***
a1 4.951112e+01 1.447617e-01 342.0182 < 2.22e-16 ***
a2 2.382372e+01 5.877739e-02 405.3212 < 2.22e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1647017 on 180 degrees of freedom

Number of iterations to convergence: 13
Achieved convergence tolerance: 2.87864e-08

As can be seen, function summary gives us information about the formula used in the fitting, the
estimated parameters along with some statistical information, the residual standard error, the number
of iterations necessary to achieve convergence, and, finally, the tolerance value when convergence is
achieved.

3 Examples

In this section, we present several examples to illustrate the use of the nlstac package in various sce-
narios. Each example highlights different aspects of nlstac’s behavior compared to another commonly
used R function for these types of problems: nls, which is included in the stats package and utilizes
the Gauss-Newton algorithm by default.

For each example, we explore two different initializations for nls. First, we initialize nls with a
reasonable set of initial values. Note that the actual values of the parameters are unknown and no a
priori estimation of these values are available; therefore we denote as reasonable a set of values which
are similar to the estimation obtained by TAC. This approach allows us to compare the fit achieved by
nlstac with the widely used nls function. In the second initialization approach, we initialize nls with
the estimation provided by nlstac for the same problem. This second approach serves as a starting
point to ease the convergence of the algorithm used by nls and enables us to observe how effectively
both algorithms can work in tandem. These examples shed light on the versatility and potential of the
nlstac package in conjunction with the established nls function, providing valuable insights into their
combined performance.

In Subsection 2.3.1 and 2.3.2 two examples with real data are presented. In both cases, the nlstac
package obtains a solution, while the nls function does not converge with seemingly reasonable set
of initial values. However, if the nls function is initialized with the output of nlstac, it successfully
converges to a solution. In the first example, the fit remains the same, and in the second one, nls
slightly improves the fit obtained by nlstac. These examples highlight the versatility of nlstac, which
can be used either independently for fitting or to provide accurate initialization values for nls to
converge effectively.

In Subsection 2.3.3 we present an example with simulated data. In this example, way beyond TAC
proven convergence, we obtain a good fit to the model when running the nlstac package. However,
if we initialize the nls function with seemingly reasonable set of initial values, it fails to converge.
Nevertheless, by using the output of nlstac as initialization values for nls, we achieve an even better
fit than what nlstac alone provides. This example also shows that nlstac can serve not only as a
standalone fitting algorithm but also as a tool that enhances the performance of nls by providing
reliable initialization values for improved fitting.

In Subsection 2.3.4, we present another example with simulated data where the nlstac package
accurately fits the given pattern. However, in this case, the nls function converges using both
initialization approaches. Interestingly, when a non-optimal initialization is used, the fit obtained by
nls is poor.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859
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In Subsection 2.3.5, we fit an exponential autoregressive model. This multi-variable example
showcases the robustness of the TAC algorithm showing how the nlstac package can be utilized in
wide range of scenarios. In this example, we generate three different datasets by making perturbations
to a common underlying pattern. This example is quite interesting because for each dataset the
behavior of nls differs.

Furthermore, in Subsection 2.3.6, we utilize the nlstac package to fit real-world data to an autore-
gressive model.

In Subsection 2.3.7, we illustrate how the function parameter in the nls_tac function can be
utilized to explicitly provide the functions within the family of approximants. This feature proves
useful in cases where the algorithm does not accurately recognize the pattern.

Lastly, we want to mention that all figures presented in this section have been generated using the
ggplot2 package (Wickham, 2016).

3.1 Example 1. Exponential Decay

Although we implement nlstac to fit data with virtually any nonlinear function, as mentioned in the
introduction, the original purpose of the TAC algorithm was to fit exponential decays models such as
(1). The convergence of TAC for exponential decays patterns is proved using the max-norm as the
approximation criterion.

Patterns
a1e−k1t + a2, where a1, a2, k1 ∈ R, k1 > 0,

presented in (1) are widely used to fit data coming from measuring the temperature of a body during
a time interval, and their use for this propose is based on Newton’s law of cooling. Let us see an
example of this use.

Five parameters: data, tol, N, formula and nlparam need to be passed, as indicated in Subsection
2.2.1. The first parameter, data, must be a 2-columns matrix containing data: instants and observations.

We intend to fit pattern (1) to dataset Coolingwater from mosaicData package (Pruim et al., 2022).
First, we define variable data.

data <- CoolingWater[40:222,]

Once data is loaded, we specify the tolerance, tol, or stopping criterion, and the number of
divisions to be made in each step, N.

tol <- 1e-7
N <- 10

We usually set the number of divisions to 10. However, if the search intervals for the nonlinear
parameters are very wide or if we suspect that there may be many local minima, it might be advisable
to increase the number of divisions to avoid converging to a sub-optimal local minimum. On the
contrary, if we suspect that the computing time may be too high (for example, if the number of
nonlinear parameters is large), it might be advisable to reduce the number of divisions.

Next, we specify the model to be used in the fitting, form, specifying the nonlinear parameters
included in the model, nlparam, as well as the interval in which we assume they can be found. Please
observe that the function does not require us to initialize the parameters whatsoever, we are just asked
to provide a (wide) interval where to seek them. In this example, we have chosen the interval [10−7, 1]
as the interval where k1 must be sought.

form <- 'temp ~ a1*exp(-k1*time) + a2'
nlparam <- list(k1 = c(1e-7,1))

Finally, we run the nls_tac function to obtain the fit.

tacfit <- nls_tac(formula = form, data = data, nlparam = nlparam, N = N, tol = tol,
parallel = FALSE)

Note that the input formula is either an R formula object or an object coercible to it. For example, in
this case, variable form is a string that can be coerced to a formula object. Also note that we only need
to specify the names and the initial intervals for the nonlinear parameters in the nlparam input. Once
the nonlinear parameters are given, the function nls_tac will call the formula decomposer that will
try to determine the rest of the elements of the formula —i.e. the linear parameters and nonlinear
functions described in equation (4). Finally, note that tacfit is an object of class nlstac containing the
following fields: coefficients, stdError, convInfo, SSR, residuals, data and formula.
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So far we have only used one algorithm for the fitting: the TAC algorithm. A rightful question to
be asked would be how much this fit resembles the one provided by the widely used nonlinear Least
Squares (NLS) algorithm.

For this purpose we will use the NLS algorithm, by means of nls function, to fit the same pattern
to the same data. Since NLS requires initialization values, we initialize parameter k1 as 0.1, and
parameters a1 as 50, and a2 as 20. Then we run nls.

nlsfit1 <- nls(formula = form, data = data, start = list(k1 = 0.1, a1 = 50, a2=20),
control = nls.control(maxiter = 1000, tol = tol))

Although we have chosen reasonable initialization values, the algorithm did not converge. This shows
a strength of TAC, which converges without the need for initialization values.

Besides the use of TAC and NLS as algorithms that can fit by themselves, they can also be used
jointly. Since nlstac does not require initialization, just a set of intervals in which to seek the nonlinear
parameters, nlstac can provide to nls good initialization values so that nls can successfully converge.
The lack of dependence on initialization values of nlstac paired with the speed of nls and extended
use among researchers, make them quite a good team.

When using nlstac and nls together, we use the coefficients obtained in the fit with nlstac to
initialize and run nls for a second time.

nlsfit2 <- nls(formula = form, data = data, start = coef(tacfit),
control = nls.control(maxiter = 1000, tol = tol))

In this case, the nls did indeed converge, but the fit coincides with nlstac’s. This show that nls was
not able to improve nlstac fit, even though it was initialized with its output.

We show the summary of nlstac and nls in Table 1. For both methods, the residual standard error
is 0.1647017 on 180 degrees of freedom. For nlstac, the number of iterations to convergence is 13
and the achieved convergence tolerance is 2.87864×10−8. For nls when fitting with nlstac output as
initialization, the number of iterations to convergence is 1 —meaning the initial values were close to
the optimal values; furthermore, the algorithm was unable to improve those values— and the achieved
convergence tolerance is 1.391929×10−8.

Parameter Estimate Std. Error t value Pr(>|t|)

k1 0.01399458 8.107657e-05 172.6095 < 2.22×10−16 ***
a1 49.51112 0.1447617 342.0182 < 2.22×10−16***
a2 23.82372 0.05877739 405.3212 < 2.22×10−16 ***

Table 1: Example 1. Summary of nlstac and nls for CoolingWater dataset with the model given in (1).
Note that all outputs coincide for both methods.

Figure 2 shows the data as gray dots. Both fits, the one provided by nlstac and the one provided
by nls initialized using nlstac’s best approximation, are shown in green.
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Figure 2: Example 1. Fitting an exponential decay for CoolingWater dataset. The figure shows the
original data (grey points) and the nlstac fit along with the nls fit (green line).

For more examples of using TAC algorithm on real-world data, see section 4 of Torvisco et al.
(2018) or subsection 5.1 of Cabello Sánchez et al. (2021).
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3.2 Example 2. Bi-exponential Decay

In some approximation problems it is necessary to fit the sum of two exponential decays, as published
in Moreno-Flores et al. (2010). While nlstac completely solves this problem, nls, given a bad initial
values, does not converge. However, if we initialize nls with nlstac output, nls fit the data in a very
similar way that nlstac does.

In this example, we intend to fit a function such as

f (t) = a1e−k1t + a2e−k2t + a3, where a1, a2, a3, k1, k2 ∈ R, k1, k2 > 0. (5)

Models of the form such as (5) were used in Moreno-Flores et al. (2010) in the fitting of data produced in
indentation experiments carried out by scanning probe microscopes (e.g., Atomic Force Microscopes)
in studies of viscoelastic mechanical properties of soft matter.

We intend to fit pattern (5) to Indometh data from the datasets package (R Core Team, 2021). We
define parameter data and specify the tolerance, tol, and the number of divisions made in each step,
N:

data <- Indometh[Indometh$Subject == 3, ]
tol <- 1e-7
N <- 10

We set the model to be used in the fitting, form, specifying the nonlinear parameters included in
the model, nlparam, as well as the interval in which we assume they can be found. Finally, we apply
the nls_tac function to get the fit.

form <- 'conc ~ a1*exp(-k1*time) + a2*exp(-k2*time) + a3'
nlparam <- list(k1 = c(1e-7,10), k2 = c(1e-7,10))
tacfit <- nls_tac(formula = form, data = data, nlparam = nlparam, N = N, tol = tol,
parallel = FALSE)

In a similar way as indicated in Example 2.3.1, we run nls initializing every parameter, that is, k1, k2,
a1, a2 and a3, as 1. Later we use the coefficients obtained with nlstac to initialize and run nls for a
second time.

nlsfit1 <- nls(formula = form, data = data,
start = list(k1 = 1,k2 = 1, a1 = 1, a2 = 1, a3 = 1),
control = nls.control(maxiter = 1000, tol = tol))

nlsfit2 <- nls(formula = form, data = data, start = coef(tacfit),
control = nls.control(maxiter = 1000, tol = tol))

While running this last piece of code we encountered an error because of bad initial values when using
a vector of ones to initialize nls. We get a gradient error and nls does not converge. However, if
parameters are initialized using nlstac output, nls does converge.

We show the summaries of nlstac and nls in Table 2 and Table 3, respectively.

Parameter Estimate Std. Error t value Pr(>|t|)

k1 0.94813244 0.14656766 6.46891 0.00064760 ***
k2 9.75308642 5.32150841 1.83277 0.11654040
a1 2.11675784 0.29303012 7.22369 0.00035686 ***
a2 11.09789500 12.99197213 0.85421 0.42577278
a3 0.08168448 0.03165979 2.58007 0.04176551 *

Table 2: Example 2. Summary of nlstac for data of subject 3 in Indometh dataset with model given in
(5). Residual standard error: 0.05351802 on 6 d.o.f. Number of iterations to convergence: 12. Achieved
convergence tolerance: 3.824026×10−8.

Figure 3 shows the data as gray dots; nlstac fit is shown in green and, in dashed red, nls fit is
shown.

Although it is now hidden from the user, this implementation used to show some warnings related
to a deficiency in a matrix rank. The explanation is that we are assuming both parameters k1 and k2
are contained within an interval [10−7, 10], so when we make two equal partitions of the same interval,
one for each parameter, at some point both values will be the same: nodes of [10−7, 10]× [10−7, 10]
where k1 = k2 and therefore we do not have a bi-exponential decay but only an exponential decay.
Since these values are used in the resolution of a linear equation system that does not have a unique
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Parameter Estimate Std. Error t value Pr(>|t|)

k1 0.89971458 0.14914067 6.03266 0.00093743 ***
k2 7.96454599 3.19653381 2.49162 0.04705893 *
a1 2.00446255 0.29689160 6.75150 0.00051489 ***
a2 7.63334977 4.94487377 1.54369 0.17361052
a3 0.07663298 0.03262943 2.34858 0.05716893 .

Table 3: Example 2. Summary of nls for data of subject 3 in Indometh dataset with model given in
(5). Residual standard error: 0.0527844 on 6 d.o.f. Number of iterations to convergence: 8. Achieved
convergence tolerance: 3.646981×10−8.
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Figure 3: Example 2. Fit of a bi-exponential decay for data of subject 3 in Indometh dataset. The figure
shows the original data (grey points), the nlstac fit (green line) and the nls fit (red line)

solution, we obtain a warning because such a unique solution can not be found. The algorithm takes
care of that problem removing these indeterminate parameter sets, as well as the warnings.

Also note that, for some choice of models, permutations of parameters may give the same results.
For example, using the model above, for each pair of parameters (k1, k2) there will be another pair of
parameters (k2, k1) which will offer the same fit. However, that is not a problem for us, other than
for an increase in the time of execution of the code. Another similar scenario is when adjusting two
sinusoidal waves and two exponential decays. If we wanted to avoid making the same calculations
multiple times, we would have to change the code, forcing the user to specify which functions are
non-identifiable for permutations of parameters, so we would get a more time-efficient code at the
cost of simplicity. However we have chosen simplicity over time efficiency.

Another bi-exponential decay example with real data can be found in section 5 of Torvisco et al.
(2018).

3.3 Example 3. Exponential decays with phase displacement

In this example, nlstac converges and nls, even when reasonable initialization values are given, does
not. However, if we use nlstac output as an initialization for nls, nls not only converges but improves
nlstac fitting.

Here we get to see two advantages of TAC algorithm. Firstly, nlstac converges. Secondly, when
given its approximation for nls initialization, nls improves upon this fit. That shows us, again, the
two ways of using nlstac: directly estimating models or providing initial values.

We intend to fit a function such as

f (t) = a1e−b1(t−d1)2
+ a2e−b2(t−d2)2

+ a3e−b3(t−d3)2
+ a4, (6)

where a1, a2, a3, a4, b1, b2, b3, d1, d2, d3 ∈ R. As indicated in Subsection 2.2.1 we need to pass five
parameters: data, tol, N, formula and nlparam.

We create data and determine the tolerance, tol, and the number of divisions we make in each
step, N.

set.seed(12345)
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x <- seq(from = 0, to = 20, length.out = 65)
y <- 2*exp(-10*(x-0.5)^2) + 3*exp(-1*(x-2)^2) + 4*exp(-0.1*(x-5)^2) + 1 + .05*rnorm(65)
data <- data.frame(x,y)
tol <- 1e-5
N <- 6

We set the number of divisions to 6 because otherwise the computation time for nlstac is too high
due to the increased number of nonlinear parameters. This is one of the downsides of nlstac, the
increase of time processing is too high when several nonlinear parameters need to be fitted.

Later, we specify the model to be fitted, form, specifying the nonlinear parameters included in the
model, nlparam, as well as the intervals in which we assume they can be found.

form <- 'y ~ a2*exp(-b1*(x-d1)^2) + a3*exp(-b2*(x-d2)^2)+ a4*exp(-b3*(x-d3)^2)+ a1'
nlparam <- list(b1 = c(7.7,15), b2 = c(0,5.1), b3 = c(1e-4,1.1),

d1 = c(1e-2,1.5), d2 = c(0.1,4), d3 = c(0.11,11))

Finally, we apply the nls_tac function to get the fit.

tacfit <- nls_tac(formula = form, data = data, nlparam = nlparam, N = N, tol = tol,
parallel = FALSE)

As indicated in previous examples, we will run nls. First, we will initialize it with the following
values: a1 = 0.5, a2 = 1, a3 = 3, a4 = 5, b1 = 10, b2 = 0.5, b3 = 0.1, d1 = 0, d2 = 1 and d3 = 1. Later,
we will provide nlstac output as nls initialization

nlsfit1 <- nls(formula = form, data = dat,
start = list(a1 = 0.5, a2 = 1, a3 = 3, a4 = 5, b1 = 10, b2 = 0.5, b3 = 0.1,
d1 = 0, d2 = 1, d3 = 1), control = nls.control(maxiter = 1000, tol = tol))

nlsfit2 <- nls(formula = form, data = dat, start = coef(tacfit),
control = nls.control(maxiter = 1000, tol = tol))

As commented before, nls does not converge with the first initialization but does converge with nlstac
initialization.

We show the results of both implementations in Table 4.

Method a1 a2 a3 a4 b1

nlstac 1.00896226 -1.5798685 3.38784985 3.95157736 7.7
nls 1.00522131 -2.00224548 3.79346203 3.98814647 3.86837135

Method b2 b3 d1 d2 d3

nlstac 0.53116510 0.10359427 1.21392 1.64537609 5.08417547
nls 0.61731929 0.09950229 1.26058001 1.57407878 5.01184086

Table 4: Example 3. Parameter estimates corresponding to nlstac and nls fit for dataset considered in
example 3 with the model given in (6). Values have been rounded to the eighth decimal place. Please
recall that nls initialized without the estimate from nlstac does not converge.

We show the summaries of nlstac and nls in Table 5 and Table 6, respectively.

Figure 4 shows the data as gray dots. In green, nlstac fit is shown. Dashed red line shows nls fit
initialized with the parameters of nlstac’s best approximation.

This example is particularly significant since nlstac is outperformed by nls, both in time (nlstac’s
computing time is significantly higher) and precision (compare the residual standard error value
for both methods in Tables 5 and 6), although nls function needs to be initialized with nlstac best
approximation to be able to converge.

3.4 Example 4. Exponential decay mixed with a sinusoidal signal

In this example, where we mix an exponential decay with a sinusoidal signal, we obtain a good fit
with nlstac and a similar fit with nls when we provide nlstac output as initialization values. However,
if we initialize nls with a bad initialization values, we get a poor fit: nls’ fit identifies the exponential
decay quite properly but fails to identify the sinusoidal signal.

We intend to fit a function such as

f (t) = a1e−k1t + a2 sin(b1t) + a3, where a1, a2, a3, k1, b1 ∈ R, k1, b1 > 0. (7)
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Parameter Estimate Std. Error t value Pr(>|t|)

a1 1.008962 0.026108 38.646 < 2×10−16 ***
a2 -1.579868 0.200716 -7.871 1.41×10−10 ***
a3 3.387850 0.189397 17.888 < 2×10−16 ***
a4 3.951577 0.060719 65.080 < 2×10−16 ***
b1 7.700000 2.148880 3.583 0.00072 ***
b2 0.520107 0.030797 16.888 < 2×10−16 ***
b3 0.103594 0.058464 1.772 0.08195 .
d1 1.213920 0.048245 25.162 < 2×10−16 ***
d2 1.645376 0.007954 206.864 < 2×10−16 ***
d3 5.084175 0.099682 51.004 < 2×10−16 ***

Table 5: Example 3. Summary of nlstac for dataset considered in example 3 with the model given in
(6). Residual standard error: 0.141 on 55 d.o.f. Number of iterations to convergence: 14. Achieved
convergence tolerance: 9.871×10−6.

Parameter Estimate Std. Error t value Pr(>|t|)

a1 1.005221 0.024285 41.392 < 2×10−16 ***
a2 -2.002245 0.350988 -5.705 4.80×10−7 ***
a3 3.793462 0.311814 12.166 < 2×10−16 ***
a4 3.988146 0.054770 72.816 < 2×10−16 ***
b1 3.868371 1.061791 3.643 0.000597 ***
b2 0.617319 0.078514 7.863 1.46×10−10 ***
b3 0.099502 0.006762 14.715 < 2×10−16 ***
d1 1.260580 0.033273 37.886 < 2×10−16 ***
d2 1.574079 0.047734 32.976 < 2×10−16 ***
d3 5.011841 0.087899 57.018 < 2×10−16 ***

Table 6: Example 3. Summary of nls for dataset considered in example 3 with the model given in
(6). Residual standard error: 0.1307 on 55 d.o.f. Number of iterations to convergence: 16. Achieved
convergence tolerance: 2.8×10−6.

As indicated in 2.2.1 we need to pass five parameters: data, tol, N, formula and nlparam.

We create data and determine the tolerance, tol, or stopping criterion, and the number of divisions
to be made in each step, N.

set.seed(12345)
x <- seq(from = 0, to = 10, length.out = 500)
y <- 3*exp(-0.85*x) + 1.5*sin(2*x) + 1 + rnorm(length(x), mean = 0, sd = 0.3)
data <- data.frame(x,y)
tol <- 1e-7
N <- 10

Later we set the model to be used in the fitting, form, specifying the nonlinear parameters included
in the model, nlparam, as well as the intervals in which we assume they can be found.

form <- 'y ~ a1*exp(-k1*x) + a2*sin(b1*x) + a3'
nlparam <- list(k1 = c(0.1,1), b1 = c(1.1,5))

Finally, we apply the nls_tac function to adjust the data.

tacfit <- nls_tac(formula = form, data = data, nlparam = nlparam, N = N, tol = tol,
parallel = FALSE)

As in previous examples, we compare the nlstac and nls output. For the first comparison we will
run nls initializing every parameter, that is, k1, b1, a1, a2 and a3, as 1, and for the second comparison,
we will use nlstac output to initialize and run nls.

nlsfit1 <- nls(formula = form, data = data, start = list(k1 = 1, b1 = 1, a1 = 1,
a2 = 1, a3 = 1) , control = nls.control(maxiter = 1000))

nlsfit2 <- nls(formula = form, data = data, start = coef(tacfit), control =
nls.control(maxiter = 1000))
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Figure 4: Example 3. The combined trend of three exponential decays with phase displacement. The
figure shows the original data (grey points), the nlstac fit (green line) and the nls fit using nlstac’s
best approximation (red line).

We present the results obtained in Table 7. Without looking at any graphic, it is quite evident from
Table 7 alone that the last fit is different from the two others.

Method k1 b1 a1 a2 a3

nlstac 0.81234568 1.99851628 3.01166130 1.51095645 1.00766609

nls
(with nlstac 0.81904149 1.99847422 3.01996411 1.51073313 1.00969794

initialization)

nls
(without nlstac 0.82435634 0.83083729 4.49199629 -0.23904801 0.91892869
initialization)

Table 7: Example 4. Parameters corresponding to nlstac and nls fits for dataset considered in example
4 with the model given in (7). Values have been rounded off to the eighth decimal place.

Summary of nlstac is shown in Table 8 and Table 9 shows the summary of nls initialized with the
best approximation obtained with nlstac. Finally, summary of nls initialized with a vector of ones
appears in Table 10.

Parameter Estimate Std. Error t value Pr(>|t|)

k1 0.812346 0.035145 23.11 <2×10−16 ***
b1 1.998516 0.002132 937.35 <2×10−16 ***
a1 3.011661 0.077098 39.06 <2×10−16 ***
a2 1.510956 0.019734 76.57 <2×10−16 ***
a3 1.007666 0.018885 53.36 <2×10−16 ***

Table 8: Example 4. Summary of nlstac for dataset considered in example 4 with the model given in
(7). Residual standard error: 0.2974 on 495 d.o.f. Number of iterations to convergence: 11. Achieved
convergence tolerance: 3.184×10−8.

Figure 5 shows the data as gray dots. Green line represents the nlstac fit and dashed red line
represents nls fit. Blue line represents nls fit initialized with a vector of ones. It is clear that the last fit
is not accurate. It seems that the nonlinear least squares algorithm has managed to fit the exponential
part of the pattern but it seems to have missed the sinusoidal part.

This example shows a situation where nlstac works perfectly, as well as nls if initialized correctly.
However, if the user does not provide good initialization values, the nonlinear least squares algorithm
might fail to obtain a good fit since it may get stuck in a local minimum.
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Parameter Estimate Std. Error t value Pr(>|t|)

k1 0.819041 0.035388 23.14 <2×10−16 ***
b1 1.998474 0.002132 937.31 <2×10−16 ***
a1 3.019964 0.077382 39.03 <2×10−16 ***
a2 1.510733 0.019733 76.56 <2×10−16 ***
a3 1.009698 0.018813 53.67 <2×10−16 ***

Table 9: Example 4. Summary of nls initialized with nlstac’s best approximation for dataset considered
in example 4 with the model given in (7). Residual standard error: 0.2974 on 495 d.o.f. Number of
iterations to convergence: 4. Achieved convergence tolerance: 5.597×10−9.

Parameter Estimate Std. Error t value Pr(>|t|)

k1 0.82436 0.10069 8.187 2.3×10−15 ***
b1 0.83084 0.06042 13.751 < 2×10−16 ***
a1 4.49200 0.26879 16.712 < 2×10−16 ***
a2 -0.23905 0.07680 -3.112 0.00196 **
a3 0.91893 0.07455 12.326 < 2×10−16 ***

Table 10: Example 4. Summary of nls initialized with a vector of ones for dataset considered in
example 4 with the model given in (7). Residual standard error: 1.056 on 495 d.o.f. Number of
iterations to convergence: 23. Achieved convergence tolerance: 7.587×10−8.

3.5 Example 5. Exponential autoregressive model: a multi-variable approach (p-variable)

Nonlinear time series models are used in a wide range of fields. In this example, we deal with an
especially relevant nonlinear time series model: the exponential autoregressive model. Given a time
series {x1, x2, x3, . . .}, the exponential autoregressive model is defined as

xt =

[
p

∑
i=1

(
ai + bie−cx2

t−1

)
xt−i

]
+ εt,

where εt are independent and identically distributed random variables and independent with xi, p
denotes the system degree, t ∈ N, t > p, and the parameters to be estimated from observations are
c, ai and bi (for i = 1, . . . , p). This model can be found in, for example, Xu et al. (2019) or Chen et al.
(2018).

Some generalizations for the exponential autoregressive model have been made, and in this
example, we will deal with a generalization of Teräsvirta’s extended model that can be found in Chen
et al. (2018, equation (10)) and we present here:

xt = a0 +

[
p

∑
i=1

(
ai + bie−c(xt−d − zi)

2
)

xt−i

]
+ εt, (8)

where zi (for i = 1, . . . , p) are scalar parameters and d ∈ Z.

We would like to point out that the convergence of TAC algorithm has not been established for this
type of problem. Further, this example is substantially different from the above examples since every
observation depends on the previous ones. This model can not be described by a function of just one
real variable. Instead, a vector of p real variables needs to be used. This approach can be developed
considering a function from (Rn−p)p into Rn−p. Therefore we transform a one-dimensional problem
into a p-dimensional one. Let us explain this process. Let x = (x1, . . . , xn) denote the observations
and let us define p variables v1, . . . , vp ∈ Rn−p, being vi = (xp−i+1, . . . , xn−i) for i = 1, . . . , p, which
will allow us to redefine Equation (8) in terms of these new variables:

xt+p = a0 +

[
p

∑
i=1

(
ai + bie−c((vd)t − zi)

2
)
(vi)t

]
+ εt, with t = 1, . . . , n − p, (9)

where vd is fixed with d such that 1 ≤ d ≤ p and (vi)t denote the t-th component of variable vi.
For this example, first, we are going to fix one exponential autoregressive time series. Then we are

going to generate three different datasets: Dataset 1, Dataset 2, and Dataset 3. Each of these datasets is
generated by setting three different seeds (Seed 1, Seed 2, and Seed 3, respectively) in order to add a
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Figure 5: Example 4. Fit of an exponential decay mixed with a sinusoidal signal for dataset considered
in example 4 with the model given in (7). The figure shows the original data (grey points), the nlstac
fit (green line), the nls fit initialized with nlstac output (red line) and the nls fit initialized with a
vector of ones (blue line).

random perturbation to the terms of the previously fixed time series.

The aim of this example is to fit model (9) with p = 2, d = 2, and n = 100 for each dataset. We
start defining a vector, seed, containing the three seeds. We define the tolerance level, tol, and the
parameters for the time series as well as initialize the time series with the first two terms. We also
define the pattern to be fitted.

seed <- c('12','123','1234')
tol <- 1e-5
a0 <- -1.45
a1 <- 1.66
b1 <- -0.47
a2 <- 0.543
b2 <- -0.82
c <- 1.27
z1 <- 2.53
z2 <- 3.85
x <- numeric(100)
x[1] <- 2.7
x[2] <- 3.12
form <- 'y ~ a0+ a1*v1 + b1*v1*exp(-c*(v2-z1)^2) + a2*v2 + b2*v2*exp(-c*(v2-z2)^2)'

We intend to run nlstac in parallel using package doParallel (Corporation and Weston, 2022). We
set up the parallelization:

no_cores <- detectCores() - 1
cl <- makeCluster(no_cores)
registerDoParallel(no_cores)

We are going to define a loop that will iterate three times, one for each dataset. In each iteration
we set a seed and generate its corresponding dataset: seeds ’12’, ’123’, and ’1234’ will generate Dataset
1, Dataset 2, and Dataset 3, respectively. Then we transform the problem into a two-dimensional one
by defining variables y, v1, and v2 as previously described. We create the dataframe, run nlstac in
parallel and run nls with two different initializations: first initialized with c = 1, z1 = 2.25, z2 = 4,
a0 = −1, a1 = 1, b1 = −1, a2 = 1, b2 = −1 and then initialized with nlstac output. The function
tryCatch is used in order to keep the loop running in the event that nls does not converge for some
choice of initial parameters.

for (j in 1:3) {
set.seed(seed[j])
for (i in 3:100){
x[i] <- a0 + (a1+b1*exp(-c*(x[i-2]-z1)^2))*x[i-1] +
(a2+b2*exp(-c*(x[i-2]-z2)^2))*x[i-2] + rnorm(1, mean=0, sd=0.1)}

y <- x[3:100]
v1 <- x[2:99]
v2 <- x[1:98]
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data <- data.frame(v1 = v1, v2 = v2, y = y)
tacfit <- nls_tac(form, data = data,

nlparam = list(c = c(0,2), z1 = c(1,3.5), z2 = c(3,5)),
N = 10, tol=tol, parallel = TRUE)

tryCatch(nlsfit1 <- nls(formula = form, data = data, start = list(c = 1, z1 = 2.25,
z2 = 4, a0 = -1, a1 = 1, b1 = -1, a2 = 1, b2 = -1),
control = nls.control(maxiter = 1000, tol = tol, minFactor = 1e-5)),
error = function(e) {nlsfit1 <<- NULL})

tryCatch(nlsfit2 <- nls(formula = form, data = data, start = coef(tacfit),
control = nls.control(maxiter = 1000, tol = tol, minFactor = 1e-5)),
error = function(e) {nlsfit2 <<- NULL}) }

Finally we stop the parallelization:

stopImplicitCluster()

For Data 1, pattern (9) has successfully been fitted with all three methods. For Data 2, nlstac did
converge but nls did not converge for either of the two initializations. Finally, for Data 3, nls only
converged if initialized with nlstac output, and in this case nls fit slightly improves nlstac’s.

We present the results for all three datasets in Table 11.

Dataset 1 Dataset 2 Dataset 3

nls nls nls
Parameter nlstac (without (with nlstac nlstac nlstac (with nlstac

nlstac init.) init.) init.)

c Estimate 1.038256 1.019213 1.019233 0.246914 1.728395 5.441692
Std. Error 0.487366 0.477747 0.477748 3.816922 2.300992 4.654574

z1
Estimate 2.388889 2.436606 2.436604 3.211423 1.438958 2.261739

Std. Error 0.521781 0.501099 0.501096 0.082645 1.707290 0.287022

z2
Estimate 3.855393 3.881704 3.881695 3.006097 3.843975 3.628858

Std. Error 0.251267 0.231838 0.231837 2.613194 0.296154 0.123689

a0
Estimate -1.929269 -2.691265 -2.691134 5.616140 -8.359206 -3.401572

Std. Error 7.038082 6.687379 6.687395 45.308458 9.373772 5.347638

a1
Estimate 1.778348 1.823764 1.823752 -3.721976 1.312138 1.329813

Std. Error 0.409774 0.437640 0.437630 77.352777 0.075125 0.067164

b1
Estimate -0.813623 -0.832519 -0.832507 5.169974 2.888960 0.327253

Std. Error 0.360567 0.380349 0.380342 77.339916 11.657008 0.542132

a2
Estimate 1.055334 1.349577 1.349517 1.794767 2.716872 0.851547

Std. Error 2.698594 2.549761 2.549766 40.429455 3.641374 1.854555

b2
Estimate -1.272387 -1.392871 -1.392838 -4.026071 -0.873735 -0.310493

Std. Error 1.115143 1.090259 1.090251 55.467877 1.228695 0.348730

SSR 0.701835 0.701740 0.701740 0.690280 0.87582 0.856081

Table 11: Example 5. Summary of all three methods (nlstac, nls without nlstac initialization, nls with
nlstac initialization) for all three datasets considered in example 5 with the model given in (8). Missing
methods for Dataset 2 and Dataset 3 are the result of the non-convergence of such methods.

Figure 6 shows the fitting for those three datasets.

3.6 Example 6. Exponential autoregressive model: a multi-variable approach (p-variable)
with real data.

In this example, we intend to fit model (8) to returns on daily closing prices data from Financial Times
Stock Exchange (FTSE) using nlstac package. More precisely, if vector x = (x1, . . . , xn) denotes the
daily closing prices data, we are going to fit the returns, that is, vector ( x2−x1

x1
, . . . , xi−xi−1

xi−1
, . . . , xn−xn−1

xn−1
).

This data was obtained by EuStockMarkets dataset which is accessible from datasets package. As in the
previous example, we are going to consider p = 2 and d = 2.
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Dataset 1 Dataset 2 Dataset 3
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Figure 6: Example 5. Fits for three exponential autorregresive model datasets with model given in (8)
as determined at the beginning of Example 5. The figure shows the original data (grey points), the
nlstac fit (green line), the nls fit initialized with nlstac output (red line) and the nls fit initialized with
nlstac output (blue line). Note that, in Dataset 1, blue line overlaps the green one.

First, we read in the data and specify the tolerance level:

x <- EuStockMarkets[,4]
x <- diff(x)/x[-length(x)]
tol <- 1e-7

Then we transform the problem into a two-dimensional one:

y <- x[3:length(x)]
v1 <- x[2:(length(x)-1)]
v2 <- x[1:(length(x)-2)]
data <- data.frame(v1 = v1, v2 = v2, y = y)
form <- 'y ~ a0+ a1*v1 + b1*v1*exp(-c*(v2-z1)^2) + a2*v2 + b2*v2*exp(-c*(v2-z2)^2)'

Finally, we make use of package doParallel to run nlstac in parallel:

no_cores <- detectCores() - 1
cl <- makeCluster(no_cores)
registerDoParallel(no_cores)
tacfit <- nls_tac(form, data = data,

nlparam = list(c = c(1e-7,5), z1 = c(1e-7,5), z2 = c(1e-7,5)),
N = 15, tol=tol, parallel = TRUE)

stopImplicitCluster()

Results are summarized in Table 12 and a plot with both the data and the fit obtained by nls_tac
function is depicted in Figure 6

Parameter Estimate Std. Error t value Pr(>|t|)

c 2.857144e-01 4.246881e+02 0.00067 0.99946
z1 3.668653e-03 4.806933e-03 0.76320 0.44544
z2 7.164164e-02 2.281940e-01 0.31395 0.75359
a0 7.571841e-05 2.219138e-04 0.34121 0.73299
a1 -9.276088e+02 1.378917e+06 -0.00067 0.99946
b1 9.277265e+02 1.378917e+06 0.00067 0.99946
a2 -1.374292e+02 2.038046e+05 -0.00067 0.99946
b2 1.376215e+02 2.038049e+05 0.00068 0.99946

Table 12: Example 6. Summary of nlstac for returns from FTSE in EuStockMarkets dataset with
the model given in (8). Residual standard error: 0.00791658 on 1849 d.o.f. Number of iterations to
convergence: 11. Achieved convergence tolerance: 1.94289×10−16.

Another example of an exponential autoregressive model with real data can be consulted in
subsection 6.3 of Cabello Sánchez et al. (2021).
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Figure 7: Example 6. Fit of an exponential autorregresive model for returns from FTSE in EuStockMar-
kets dataset with model given in (8). The figure shows the original data (black lines) and the nlstac fit
(green line).

3.7 Example 7. Explicitly providing the functions of the pattern

Package nlstac relies on the formula infrastructure of the R language to determine the number and
expressions of the nonlinear functions ϕi in (4). This is done internally by the function get_functions.
However, in some cases, the user may want to explicitly state which are the nonlinear functions that
define the separable nonlinear problem (e.g. the formula decomposer fails to automatically identify
those functions). In that case, there is an optional parameter in the nls_tac function, named functions,
which is an array of character strings defining the nonlinear functions. In practical terms, we have not
found an example in which we needed to manually specify the functions defining the model, but the
optional parameter is available nonetheless.

Next, just for illustration purposes, we present here the example shown in Subsection 2.3.4 adding
the functions parameter to the function nls_tac so we explicitly provide the functions:

set.seed(12345)
x <- seq(from = 0, to = 10, length.out = 500)
y <- 3*exp(-0.85*x) + 1.5*sin(2*x) + 1 + rnorm(length(x), mean = 0, sd = 0.3)
data <- data.frame(x,y)
tol <- 1e-7
N <- 10
form <- 'y ~ a1*exp(-k1*x) + a2*sin(b1*x) + a3'
nlparam <- list(k1 = c(0.1,1), b1 = c(1.1,5))
tacfit <- nls_tac(formula = form, data = data,
functions=c('exp(-k1*x)','sin(b1*x)','1'), nlparam = nlparam, N = N, tol = tol,
parallel = FALSE)

4 Code parallelization

The basic idea of the TAC algorithm is to find the optimal values for the linear parameters (by means of
the linear least-square method) for each combination of the nonlinear parameters. Therefore, for every
such combination of nonlinear parameters we have to solve a completely independent optimization
problem, and thus this algorithm can take advantage of parallelization.

The nlstac package implements a parallelization of this stage of the algorithm in the nls_tac
function. Setting the option parallel=TRUE, the function makes use of the %dopar% and foreach
functions of the foreach (Microsoft and Weston, 2022) package and the infrastructure provided by the
parallel (R Core Team, 2021) and doParallel packages.

One might think that parallelization always speeds up the algorithm, but in reality, initializing and
stopping the cluster requires a certain amount of time. Therefore, in some cases it may be convenient
to parallelize and in others it might not be worth it.

As was mentioned in the Introduction, the TAC algorithm, as all grid-search algorithms, scales
poorly with the dimension of the problem (i.e. the number of nonlinear parameters). However, even
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for low-dimensional problems, the speed of the algorithm depends on the number of subdivisions
of each parameter search interval (i.e. the width of the grid), which is defined by the parameter N in
the nls_tac function. Previous affirmations rely on the fact that, for each iteration, the number of
plausible nonlinear parameters happens to be Np, representing N, for each parameter, the number of
nodes belonging to the partition of the interval where the parameter is assumed to be in and p the
number of nonlinear parameters. Note that the number of plausible nonlinear parameters depends on
N and exponentially increases with the number of nonlinear parameters p.

As an illustration of the convenience of using the parallel = TRUE option, Figure 8 depicts a
comparison of non-parallel and parallel modes of the nls_tac function for two standard separable
nonlinear least square problems. Namely, two exponential decays and three exponential decays. That
is:

y = a0 +
n

∑
k=1

ake−bk x, n = 2, 3.

As could be expected, we can see how as the number of nonlinear parameters increases, the compu-
tation time rises exponentially. Also, it shows that only for very small problems (e.g. two nonlinear
parameters) the parallelization is not worth it in some cases (N up to 35). To run this simulation we
had to make use of dplyr package (Wickham et al., 2022).

2 Exponentials 3 Exponentials

0 20 40 60 0 20 40 60

0

1000

2000

3000

0

10

20

30

N

T
im

e 
(s

) Mode

Non−Parallel

Parallel

Figure 8: Comparison between the parallel and the non-parallel implementations of the nls_tac
function for the fitting of two (left) and three (right) exponential decays, for different values of the
number of subdivisions, N. Note how the time of processing is increased around a hundred times
when changing from two nonlinear parameters to three nonlinear parameters.

5 Conclusions

Many popular packages for nonlinear function estimation depend heavily on the choice of starting
values. This package, however, implements an algorithm that needs no initialization and can handle a
wide variety of approximation problems.

Our goal has been to create a package for nonlinear regression using the TAC algorithm and to
show how this algorithm can work either by itself or when combined with other nonlinear estimation
algorithms.

Processing times on problems with a large number of nonlinear parameters can be a problem. In
those cases, it might be advisable to consider the use of a gradient-based algorithm. In future versions,
the implemented grid search could be refined to reduce those processing times.

Despite this possible drawback, we strongly believe that this package will be found useful by
researchers in nonlinear regression problems.
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hydrotoolbox, a Package for
Hydrometeorological Data Management
by Ezequiel Toum and Pierre Pitte

Abstract The hydrometeorological data provided by federal agencies, research groups and private
companies tend to be heterogeneous: records are kept in different formats, quality control processes
are not standardized and may even vary within a given agency, variables are not always recorded
with the same temporal resolution, and there are data gaps and incorrectly recorded values. Once
these problems are dealt with, it is useful to have tools to safely store and manipulate the series,
providing temporal aggregation, interactive visualization for analysis, static graphics to publish
and/or communicate results, techniques to correct and/or modify the series, among others. Here we
introduce a package written in the R language using object-oriented programming and designed to
accomplish these objectives, giving to the user a general framework for working with any kind of
hydrometeorological series. We present the package design, its strengths, limitations and show its
application for two real cases.

1 Introduction

Data management has generated growing interest among the scientific community (Venkatraman 2013;
Donoho 2017), driven by the proliferation of data sharing through the internet, new measurement
techniques and equipment, and open and free access to information obtained from remote sensing.
It is also fueled by new and growing demands from agencies and governments (national and/or
regional) for data-informed decision-making. To realize the full potential of the available information,
there is a need for accurate and efficient tools that can pre-process these vast and heterogeneous data
into more convenient data sets (Addor et al. 2020).
The hydrological community uses data from hydrometeorological stations, remote sensing observa-
tions and outputs from climatic and/or hydrological models (Beven 2012). These data types may
include (but are not limited to):

a. remote sensing: snow cover images, soil humidity, glacier cover areas, digital elevation models.

b. hydro-met stations: air temperature, relative humidity, incoming solar radiation, atmospheric
pressure, precipitation, streamflow records.

c. numerical weather models: air temperature, precipitation, and wind speed forecasting.

d. hydrological models: evolution of the snowpack, simulated streamflow, infiltration rates.

e. large-sample hydrology datasets

Data from remote sensing and climate models is distributed in standardized formats (e.g., .nc, .tiff,
.grb) and therefore there are standardized tools to manipulate them (Hijmans 2017; Conrad et al.
2015; Pierce 2019). This is not the case for hydrometeorological data as each agency, research group
or private company has its own standards. Therefore, the formats, publication frequency, temporal
resolution and quality control vary. As an example, in Argentina, the organizations that manage
hydrological data tend to use proprietary software: a) the Autoridad Interjurisdiccional de las Cuencas
de los ríos Limay, Neuquén y Negro (AIC) uses DIMS (Dynamic Integrated Monitoring System), b) the
Sistema Nacional de Información Hídrica (SNIH) works with Mnemos, and c) the Instituto Nacional del
Agua (INA) uses their own software (personal communication).

The R language has gained a central role within the hydrological community during the last
decade because it allows the user to: a) download and work with multiple data types and formats, b)
extract, manipulate and order data, c) develop hydrological models, d) conduct statistical analyses, e)
view results, and f) export images and documents ready for publication. Slater et al. (2019) pointed
out the benefits and advantages of using R in the hydrological field: (1) it democratizes science and
numerical literacy; (2) it helps the research to be reproducible and open; (3) provides statistical tools;
(4) allows connection to and from other languages; and (5) has the support from a constantly growing
community. Indeed the R community has developed many packages for managing hydrological data
(https://cran.r-project.org/web/views/Hydrology.html), but they tend to be either focused on
Europe and North America or lack a general-purpose framework for efficiently and safely storing and
manipulating hydrometeorological series:

1. hddtools (Vitolo 2017): is designed to facilitate access to a variety of online open data sources
relevant for hydrologists and, more generally, environmental scientists and practitioners. It
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includes functionality for Koppen Climate Classification, Global Runoff Data Centre, Data60UK,
MOPEX (USA) and SEPA (Scotland).

2. climate (Czernecki, Głogowski, and Nowosad 2020): allows automatic downloading of OGIMET,
University of Wyoming (atmospheric vertical profiling data), Polish Institute of Meteorology
and Water Management (National Research Institute) and National Oceanic & Atmospheric
Administration (NOAA).

3. waterData (Ryberg and Vecchia 2017): imports U.S. Geological Survey (USGS) daily hydrologic
data from USGS web services, plots the data, addresses some common data problems, calculates
and plots anomalies.

4. hydroTSM (Zambrano-Bigiarini 2020): provides functions for management, analysis, interpo-
lation and plotting of time series used in hydrology and related environmental sciences. This
package is highly oriented towards hydrological modeling tasks.

5. dataRetrieval (De Cicco et al. 2018): is a collection of functions that help to retrieve U.S.
Geological Survey (USGS) and U.S. Environmental Protection Agency (EPA) water quality and
hydrology data from web services.

6. hyfo (Xu 2020): is a package with focus on processing and visualization of hydrological data
and climate forecasting. Main function includes data extraction, data downscaling, resampling,
gap filler of precipitation, bias correction of forecasting data, flexible time series plot, and spatial
map generation.

hydrotoolbox (Toum 2022) is an R package developed using R’s object-oriented programming
system (S4 classes; Chambers (2017)) that provides a general framework for efficiently storing and
manipulating multiple hydrometeorological datasets, exploiting not only S4 advantages but base R’s
copy on modify semantics. The series and its metadata (e.g.: geo-referenced location, river basin name,
country, among others) are agglomerated in a single class object, allowing for an effective management
of vast and heterogeneous hydrometeorological data. hydrotoolbox also provides a general set of
methods regarding: a) reading multiple datasets with their unique data formats (i.e. delimited files
such as comma-separated values (CSV) and tab-separated values (TSV) and excel files), b) static and
interactive time-series plotting, c) data manipulation, d) data temporal aggregation, among others.
In addition, the current version (v 1.1.2) has specific functions for reading data from Argentina and
Chile. Despite this fact, we want to stress that every user can combine other R functions or packages
for downloading and reading data (including those coming from large-sample hydrological datasets;
Addor et al. (2020)) with the functionality of the package.

The rest of this work is organized as follows: in the Package design section we describe the
underlying ideas with a brief description of the classes, subclasses, methods and functions that
hydrotoolbox offers. In the Case studies section we show two applied examples: the first deals with
a hydrometerological data set and the second deals with post-processing the results of a modeling
exercise with the HBV.IANIGLA model (Toum 2021; Toum et al. 2021). These cases lead to discussion
about the package performance. We conclude with a discussion of possible improvements and ways
to extend the functionality hydrotoolbox.

2 Package design

hydrotoolbox uses the object-oriented programming (OOP) paradigm, a feature that makes the
package flexible and allows other programmers to extend its functionality. In this package, the
properties are related to the hydrometeorological variables and the methods with functions for these
objects manipulation. The following principles guided the design of hydrotoolbox:

1. The time series of each variable must be grouped into stations, as they are organized based
on their geographic location. This allows series registered in the same station or at different
ones to be compared without losing their position, a fundamental aspect for a correct physical
interpretation of the data.

2. Modifications must be recorded in the same file. Most time series have errors that need to be
corrected. This could happen because the time series are discontinuous, the instruments fail,
the variables are not all measured in the same temporal resolution, because of power cuts, or
because local natural conditions induce erroneous measurements (e.g., snowfall undercatch due
to wind; Goodinson and Louie (1998)). Errors are corrected in successive steps but it is crucial
to have access to all versions of the series. This principle also seeks to avoid having multiple
records of the same variable in a given station. The reader will find an example in the Case
studies section.
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Figure 1: Classes for hydrometeorological data in hydrotoolbox package. Arrows indicate the class
that each entity inherits from. The dotted arrow means that an hydromet_station class can be
transformed (by the hm_melt method) to a hydromet_compact class object.

Table 1: Eight out of forty hydrometeorological variables supported in hydromet_station class (use
slotNames(x = "hydromet_station") to see all of them). In the package most of them are rectangular
tables containing date series in their first column (Date and POSIX* classes are allowed).

Slot Variable

hq water-height vs stream-discharge measurements
hw water height level records
qh hourly mean river discharge
qd daily mean river discharge
qm monthly mean river discharge

qa annual river discharge
wspd wind speed
wdir wind direction
. .
. .

. .

3. Expedited visualization. Fast and flexible visualization techniques are a powerful tool for
analyzing and communicating results. The series should be able to be viewed statically and
dynamically.

4. There should be general functions for data manipulation to reduce the need to permanently
create custom functions.

5. Open-ended design to incorporate new objects and/or methods to continue expanding the
package’s functionality.

2.1 Classes and subclasses

Following the first design principle, there is a class and two subclasses for managing hydrometereo-
logical data (Figure 1). The class, called hydromet, contains the station’s metadata (e.g., geographic co-
ordinates, name of the basin, province, country, unique identifier, etc.). The two subclasses correspond
to (a) data from meteorological stations and (b) data derived from modeling. The hydromet_station
subclass contains a table for each measured variable (some of them are shown in Table 1) in combina-
tion with the metadata, allowing users to store in a single object all the information concerning an
hydrometeorological station.

The remaining subclass, called hydromet_compact, stores all series in a single table (called compact). It
was created so that users could store input/output data from models or to save the same variable to
perform regional analyzes (e.g., precipitation series recorded in different rain gauges).

2.2 Methods

The present package’s version provides a set of data processing operations (methods) widely required
in hydrology such as: temporal aggregation, interactive and static visualization, series modification
and statistical summaries. Table 2 provides a complete list accompanied with a brief description. Also,
to make the package more user-friendly, all the methods for object manipulation follow the syntax
hm_action; the hm_ prefix being indicative of the superclass (hydromet) and the action being indicative
of what it does. We believe that this feature greatly eases its application.

Although more details and examples about each of the methods are given in the Case studies
section and in the package documentation and vignettes (Toum 2022), in the next lines we explain
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Table 2: Processing operations for object manipulation in the hydrotoolbox package.

Method Description

hm_agg temporally aggregates data
hm_build_generic automatically loads raw data inside the hydromet_station object
hm_create constructs the hydromet class and its subclasses
hm_get extracts the required table (or metadata) from the object
hm_melt merges several tables into a single one and set it into a hydromet_compact class object

hm_mutate creates, modifies and deletes columns inside an object table (slot)
hm_name changes data frame column names
hm_plot makes static and interactive graphs of the required hydrometeorological variables
hm_report gets basic statistic and a table with missing data
hm_set assigns the (meta)data to an hydromet class or subclass object

hm_show shows the head or tail of the tables inside the object
hm_subset subsets the required table

the use of hm_build_generic. This is a core package function, since it allows to automatically load
raw hydrometeorological data inside an hydromet_station class object. Figure 2 depicts five different
compatible rectangular data configurations. The upper scheme shows allowed configurations for
any delimited type file (Wickham, Hester, and Bryan 2022): a) all time series are stored in a single
file with the first column being the date and the others numeric time series (measured variables), b)
every variable is saved in a single file containing the date, the time series and other kind of data (like
data-quality flags).
Another widely used file type to store hydrometeorological measurements are excel files. The bottom
scheme of Figure 2 depicts the three approaches: a) all time series are stored in a single file and sheet,
b) every sheet (all in the same file) contains a variable (non-numeric columns allowed), and c) multiple
files storing a single variable.

The use of this function is illustrated with two examples (the data can be downloaded from https:
//gitlab.com/ezetoum27/hydrotoolbox/-/tree/master/my_data), but the user can find full-covered
documentation using the ??hm_build_generic command.

#* This code example shows how to use
#* the hm_build_generic() method to
#* automatically load raw hydrometeorological
#* data

library(hydrotoolbox)
library(readr)
library(readxl)

# path to data
my_path <- "./home/my_folder/my_data"

#+++++++++++++++++++
# Rectangular data
#+++++++++++++++++++
#* Case B: multiple files (one per variable)
hm_create(class_name = "station") %>%
hm_build_generic(path = my_path,

file_name = c("h_relativa_cuevas.csv",
"p_atm_cuevas.csv",
"precip_total_cuevas.csv",
"temp_aire_cuevas.csv",
"vel_viento_cuevas.csv"),

slot_name = c("rh", "patm", "precip",
"tair", "wspd"),

by = c("hour", "45 min", "30 min", "1 hour", "15 min"),
FUN = read_csv ) %>%

hm_show()
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Figure 2: Rectangular data formats/file types compatible with the hm_build_generic function. Top
scheme depicts allowed delimited file arrangements while the bottom scheme is for excel files.

#+++++++++++++++++++
# Excel files
#+++++++++++++++++++
#* Case B: single file - multiple sheets (one per variable)
hm_create(class_name = "station") %>%
hm_build_generic(path = my_path,

file_name = "mnemos_guido.xlsx",
slot_name = c("qd", "evap",

"tair","tmax",
"tmin"),

by = c(q = "day", evap = "day",
tair = "6 hour", tmax = "day",
tmin = NULL),

FUN = read_excel,
sheet = c(1L:5L),
skip = 3,
out_name = list( c("q_m3/s", "flag"),

c("evap_mm", "flag"),
c("tair", "flag"),
c("tmax", "flag"),
c("tmin", "flag")

)
) %>%
hm_show()
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3 Case studies

3.1 Daily streamflow record at the Guido station (Mendoza - Argentina)

The following example illustrates how to work with a time-series recorded in an Excel file with a
single sheet (Case A in the bottom panel of Figure 2). This variable is measured at a station located in
the Mendoza River basin from Argentina, a watershed that covers an area of approximately 7110 km2

and provides water to almost 1m inhabitants (Figure 3).

Figure 3: Map of the Mendoza basin including Guido hydrological station, cities, river and main
mountain summits for reference.

In order to explore the data, we propose the following operations:

a. Build the station and obtain basic statistics of the data (hm_build_generic, hm_report and
hm_set methods will be used).

b. Make a visual inspection of the series with hm_plot.

c. Smooth the streamflow record using a five days moving average windows. hm_mutate allows
data manipulation and it can be combined with the user’s or other package’s functions via FUN
and ... arguments.

d. Aggregate the series to monthly average values (via hm_agg).

e. Plot results for publishing using the ggplot2 (Wickham 2016) output of hm_plot.

The first step is to load the original data in a hydromet_station that we are going to called guido.

library(hydrotoolbox)
library(readxl)

# package's data-base
path <- system.file("extdata", package = "hydrotoolbox")

# station building
guido <-
hm_create(class_name = "station") %>%
hm_build_generic(path = path,

file_name = "snih_qd_guido.xlsx",
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slot_name = "qd",
by = "1 day",
out_name = list("q_m3/s"),
sheet = 1L,
FUN = read_excel)

After executing these lines, the user will have an object that contains a table (a tibble in this case)
with the streamflow record in the qd slot. When setting the argument by = "1 day", the function
automatically fill with NA_real_ values the missing dates and also removes duplicated records. On
the other hand, using the default value (by = NULL) will ignore gaps, a feature that can be useful when
loading irregular time series.
As it was previously mentioned, the package also allows setting the metadata inside the object. In
this case we proposed to add the basin area using hm_set, but the user can apply the same command
to incorporate other information (see ??hm_set). Then hm_report is used to get basic statistics on the
streamflow record and also a table with a summary of the missing data. Note that this function also
contains the string "Missings total are in the last rows." (under $miss_data$comment).

# set the basin area
guido <-
guido %>%
hm_set(basin_area = 7110)

# get streamflow's report
guido %>%
hm_report(slot_name = "qd")

#> $stats
#> date q_m3/s
#> min 1956-07-01 8.00000
#> max 2020-06-30 401.00000
#> mean <NA> 44.47951
#> sd <NA> 36.53992
#>
#> $miss_data
#> $miss_data$`q_m3/s`
#> first last time_steps
#> 1 1962-09-01 1962-09-30 30
#> 2 1970-02-13 1970-02-14 2
#> 3 1976-06-22 1976-07-31 40
#> 4 1985-06-01 1985-06-30 30
#> 5 <NA> <NA> 102
#>
#> $miss_data$comment
#> [1] "Missings total are in the last row."

Another essential part of the workflow is data visualization (Wickham and Grolemund 2017). The
user of hydrotoolbox can use the hm_plot function and switch between static and interactive versions
of the plot (using the interactive = TRUE argument). Internally, this function uses ggplot2 and plotly
(Wickham 2016; Sievert 2020) to reproduce time-series plots and provides several arguments to set
axes labels, define colors, line thickness and type, transparency, among others. The following example
shows how to plot the mean daily streamflow. To see the interactive version of Figure 4 please visit
the HTML (online) version of the article.

# ggplot2 daily flow
guido %>%
hm_plot(slot_name = "qd",

col_name = list( "q_m3/s" ),
interactive = FALSE,
line_color = "dodgerblue",
line_size = .7,
y_lab = "Q(m3/s)",
from = "2010-07-01",
to = "2014-06-30")
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Figure 4: Plot of the Guido’s streamflow time series (hydrologial years 2010/11 to 2013/14).

# plotly daily flow
guido %>%
hm_plot(slot_name = "qd",

col_name = list( "q_m3/s" ),
interactive = TRUE,
line_color = "dodgerblue",
line_size = .7,
y_lab = "Q(m3/s)",
from = "2010-07-01",
to = "2014-06-30")

As depicted in Figure 4 the time series shows the effect of instrumental oscillations during the
low water flow periods. One possible solution is to smooth the series using a moving average
window. To do this hydrotoolbox provides the hm_mutate method, a function that enable object’s
data manipulation. In this example we combined the aforementioned method with the package’s
function roll_fun. Furthermore, in order to show another hm_mutate case, we removed two periods
with records below a minimum admissible value by setting them to NA_real_.

# smooth with roll_fun
guido <-
guido %>%
hm_mutate(slot_name = "qd",

FUN = roll_fun,
col_name = "last",
pos = "c",
k = 5,
mean,
out_name = "q_smooth")

# remove doubtful records with set_value
guido <-
guido %>%
hm_mutate(slot_name = "qd",

FUN = set_value,
col_name = "q_smooth",
out_name = "q_set",

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 33

value = rep(NA_real_, 2),
from = c("1965-08-09", "1974-06-26"),
to = c("1965-08-25", "1974-07-04") )

After executing these expressions, the original and new series remain stored in the same object. This
feature avoids having multiple file versions and allows to track the time series modifications, achieving
the second package’s design principle Modifications must be recorded in the same file.

Moving forwards, the following code lines show how to temporally aggregate this series at a
monthly resolution via hm_agg and how to extract this new series and the basin area out of the guido
object using hm_get.

# aggregate daily mean streamflow
# to mean monthly values
guido <-
guido %>%
hm_agg(slot_name = "qd",

col_name = "q_set",
fun = "mean",
period = "monthly",
out_name = "q_mean",
relocate = "qm",
allow_na = 2)

# extract the table
tb_q_month <-
guido %>%
hm_get(slot_name = "qm")

# extract baisn area
basin_area <-
guido %>%
hm_get(slot_name = "basin_area")

In hm_agg we allow a maximum of two missing daily discharge records to compute the mean monthly
streamflow and then, hm_get extracts this table so that the user may save and share it with others in
CSV format. At this point is important to clarify that while hm_get method extracts any slot’s data, the
function hm_show just prints the desired slot.

To conclude this first case study the monthly streamflow is plotted (Figure 5). As the hm_plot
function generates a ggplot2 object (when interactive = FALSE) the user can save and customize the
graph to any style requirement.

# library
library(ggplot2)

# plot
gg_hm <-
guido %>%
hm_plot(slot_name = "qm",

col_name = list( c("q_mean") ),
line_color = "dodgerblue",
line_size = .7,
y_lab = "Q(m3/s)", x_lab = "",
legend_lab = "Mendoza River",
from = "1980-07-01", to = "1990-06-30")

# customize the graph
gg_out <-
gg_hm +
geom_point(col = "red", size = .8) +
theme_light() +
scale_x_date( date_breaks = "4 month", date_labels = "%Y-%m" ) +
scale_y_continuous(breaks = seq(0, 300, 50), limits = c(0, 300) ) +
theme(axis.text = element_text(size = 8),
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Figure 5: Example of customized time-series plot using the hm_plot() method in combination with
labeling, scaling and theme options available on ggplot2.

axis.title.x = element_text(size = 10, face = "bold"),
axis.text.x = element_text(angle = 90, vjust = 0.5),
axis.title.y = element_text(size = 10, face = "bold"),
legend.position = "none")

gg_out

3.2 Post processing of the HBV.IANIGLA hydrological model

The second case study shows how to use the package for post-processing a numerical model output
series. Specifically, it illustrates another hm_mutate case but in combination with another package
function (mutate from dplyr package; Wickham et al. (2021)). The exercise proposes to transform the
units of the Cuevas River basin (Figure 3) glacier mass balance simulations from millimeters of water
equivalent to meters of water equivalent and then plot it (Figure 6). The data for this example has been
previously loaded into an hydromet_compact class object and the reader can download the file from
https://gitlab.com/ezetoum27/hydrotoolbox/-/tree/master/my_data).

# dplyr contains mutate()
library(dplyr)

# glacier mass balance simulation
cuevas_mb <- readRDS(file = "data/cuevas_mb.rds" )

cuevas_mb <-
cuevas_mb %>%
hm_mutate(slot_name = "compact",

FUN = mutate,
`bm (m we)` = round( cuevas / 1000, 2 ),
.keep = "all"
)

cuevas_mb %>% hm_show()

#> $compact
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Figure 6: Model post-processing case example for the Cuevas basin annual glacier mass balance.

#> date cuevas bm (m we)
#> 1 1981-04-01 0 0.00
#> 2 1982-04-01 1240 1.24
#> 3 1983-04-01 130 0.13
#> 4 1984-04-01 350 0.35
#> 5 1985-04-01 -80 -0.08
#> 6 1986-04-01 350 0.35

# use hm_plot()
gg_out <-
cuevas_mb %>%
hm_plot(slot_name = "compact",

col_name = list("bm (m we)"),
line_color = "red3",
line_size = .7,
x_lab = "", y_lab = "MB (m we)" )

# customize the figure
gg_out +
geom_point(col = "blue", size = .8) +
geom_hline(yintercept = 0) +
theme_light() +
scale_x_date( date_breaks = "2 year", date_labels = "%Y" ) +
scale_y_continuous(breaks = seq(-1.5, 1.5, 0.25),

limits = c(-1.5, 1.5) ) +
theme(axis.text = element_text(size = 8),

axis.title.x = element_text(size = 10, face = "bold"),
axis.text.x = element_text(angle = 90, vjust = 0.5),
axis.title.y = element_text(size = 10, face = "bold"),
legend.position = "none")

This simple example suggests that hydrotoolbox is not only suited for managing hydrometeorological
series, but also for pre and post processing hydrological modeling data.
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4 Discussion

The R language community has made significant advances in the development of hydrological
packages, with many of them focusing on data access, numerical modeling, and pre/post-processing
(Slater et al. 2019). The new hydrotoolbox package offers a general framework and methods for
working with hydrometeorological time series data management. To our knowledge, this is the first
general-purpose package for manipulating and visualizing hydrometeorological data to this date.
In the literature there are at least two other packages available in the CRAN repository that have
some functionalities that could be considered similar to hydrotoolbox, namely hyfo and hydroTSM
(Xu 2020; Zambrano-Bigiarini 2020). The first one was designed as part of the European project
EUPORIAS, and it is mainly focused on data processing and visualization for hydrological and
weather forecasting. Therefore, this package’s functions are specialized in spatial data (e.g., NetCDF)
in contrast to hydrotoolbox which focuses on hydrometeorological stations recorded time series.
Additionally, hyfo uses ggplot2 for visualization, which can be used to create publication-quality
static graphs but not interactive visualizations. The other package, hydroTSM, is oriented towards
tasks related to modeling, a shared feature with hydrotoolbox but lacks of a general-purpose system
for hydrometeorological time series manipulation. In programming terms, we think that object-
oriented programming (encapsulated or functional) is an essential mechanism for dealing with the
diversity of available data, while keeping things simpler for the user. In addition, this paradigm makes
hydrotoolbox robust in the following aspects:

a. There are specific methods for manipulating and visualizing the objects that can be created with
the package. This feature makes the workflow less prone to user error because specific and
dedicated functions should be used to access the data.

b. The objects and the modifications that the user makes to the data time series are stored in the
same object, avoiding the duplication of records that can occur in other datasets.

c. Once data has been incorporated, it is easy to get access and plot them. Additionally, hydrotool-
box allows saving the metadata which is a desirable feature when working with meteorological
stations, data from numerical modeling, or series from large-sample hydrological datasets
(Addor et al. 2020).

Although hyfo and hydroTSM overlap with hydrotoolbox in terms of numerical modeling and pre-
and post-processing tasks, neither of these two packages (or those mentionned previously) explicitly
cover hydrometeorological stations data management nor provide a general working framework for
this kind of records.

The package can be used in many applications and the user can also adapt existing functions
or packages with hydrotoolbox’s framework. As case examples, the package’s vignettes show how
the tidyhydat (Albers 2017) and weathercan (LaZerte and Albers 2018) can be combined to work
with Canadian hydrometeorological records (see vignette(topic = "tidyhydat_can", package =
"hydrotoolbox") and vignette(topic = "weathercan_can", package = "hydrotoolbox")).

In a recent publication, Addor et al. (2020) made a review of the current state of large-sample
hydrology (LSH) datasets. The authors proposed general guidelines to support the creation of future
LSH with some of them listed here,

1. provide basic data for each basin, with streamflow records being the cornerstone. The meta-
data should include the name, unique identifier, river and geographical coordinates of each
streamgauge, catchment area and elevation info.
hydrotoolbox provides all the objects with this metadata.

2. following standards when naming variables. Despite the fact that the package doesn’t have
the WATER ML-2 (https://www.ogc.org/standards/waterml - last access 2022-10-13) variable
names, the purpose of this feature is to ensure the consistency and comparability of environ-
mental datasets. This R package provides with a description for each variable, allowing possible
inter-dataset comparisons.

3. use publicly available code for data processing, making code for producing the LSH dataset
available. This feature is important among free and open source software (FOSS).
As a case example, the CAMELS dataset (Alvarez-Garreton et al. 2018; Addor et al. 2017)
provides their users with a GitHub repository with code written in R (https://github.com/
naddor/camels). Despite this, the repository contains a set of functions instead of a package
that can be installed in many operating systems, with documented functions and reproducible
examples. The specialized hydrotoolbox may provide a general framework to integrate this
functions.

Though there are similar and commonly used software in departments related to the management
of hydrometeorological data, they are closed-source proprietary programs. hydrotoolbox is a FOSS,
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which is a key feature not only from the research perspective but also for hydrological practice. Open
source brings transparency to the decision-making and hydrological design processes, and helps to
save license money in emerging countries (Hutton et al. 2016).

To conclude this discussion, some users may have used the older hydroToolkit package. This
turned out to be an early version of hydrotoolbox that we decided to reform after using it in a large
project. We realized that the original five subclasses could be reduced to two, simplifying not only
their use but also improving their long-term maintainability. In addition, we decided to improve
several methods (e.g., time series visualization) that were limited in functionality. Also, to elaborate
the syntax of the functions, methods and their arguments, we followed the suggestions of The tidyverse
style guide document (Wickham 2023), adapting the package to the new standards used within the
community of R programmers.

5 Summary

hydrotoolbox is an new contribution to the R hydrological community, as it is specifically designed
for working with hydrometeorological station records. The package allows the data to be viewed
interactively3 (plotly) or statically (ggplot2) using the same method (hm_plot),3 it also allows the use
of functions from other packages or created by the user via the hm_mutate method.

The case studies show two examples with different aims: the first processed a streamflow record
and the second uses a numerical model output to plot results. More complete and varied examples are
in the documentation of the package and in3 its vignettes (vignette(package = "hydrotoolbox")).

hydrotoolbox is designed to incorporate future improvements. One of them could be functions for
visualizing station’s geographical position (using the metadata) on an interactive map, and perhaps to
allow the user to plot and compare recorded time series. This new function could use capabilities of the
leaflet package, a JavaScript library for producing interactive maps. The main class, hydromet, could
also combine the functionality of existing packages such as raster (Hijmans 2017) or sf (Pebesma 2018)
to include other kind of spatial data (e.g., catchment boundary, soil types, gridded meteorological data,
among others). Finally, new classes and methods could be included for processing field data from
glacier mass balance studies, an activity closely related to the study of the hydrological cycle in cold
regions. This kind of improvements may also make the package useful in other scientific communities
such as glaciology.
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bqror: An R package for Bayesian
Quantile Regression in Ordinal Models
by Prajual Maheshwari and Mohammad Arshad Rahman

Abstract This article describes an R package bqror that estimates Bayesian quantile regression in
ordinal models introduced in Rahman (2016). The paper classifies ordinal models into two types
and offers computationally efficient yet simple Markov chain Monte Carlo (MCMC) algorithms for
estimating ordinal quantile regression. The generic ordinal model with 3 or more outcomes (labeled
ORI model) is estimated by a combination of Gibbs sampling and Metropolis-Hastings algorithm,
whereas an ordinal model with exactly 3 outcomes (labeled ORI I model) is estimated using a Gibbs
sampling algorithm only. In line with the Bayesian literature, we suggest using the marginal likelihood
for comparing alternative quantile regression models and explain how to compute it. The models
and their estimation procedures are illustrated via multiple simulation studies and implemented in
two applications. The article also describes several functions contained within the bqror package, and
illustrates their usage for estimation, inference, and assessing model fit.

1 Introduction

Quantile regression defines the conditional quantiles of a continuous dependent variable as a function
of the covariates without assuming any error distribution (Koenker and Bassett 1978). The method
is robust and offers several advantages over least squares regression such as desirable equivariance
properties, invariance to monotone transformation of the dependent variable, and robustness against
outliers (Koenker 2005; Davino, Furno, and Vistocco 2014; Furno and Vistocco 2018). However,
quantile regression with discrete outcomes is more complex because quantiles of discrete data cannot
be obtained through a simple inverse operation of the cumulative distribution function (cd f ). Besides,
discrete outcome (binary and ordinal) modeling requires location and scale restrictions to uniquely
identify the parameters (see Section 2 for details). Kordas (2006) estimated quantile regression with
binary outcomes using simulated annealing, while Benoit and Van den Poel (2010) proposed Bayesian
binary quantile regression where a working likelihood for the latent variable was constructed by
assuming the error follows an asymmetric Laplace (AL) distribution (Yu and Moyeed 2001). The
estimation procedure for the latter is available in the bayesQR package of R software (Benoit and Van
den Poel 2017). A couple of recent works on Bayesian quantile regression with binary longitudinal
(panel) outcomes are Rahman and Vossmeyer (2019) and Bresson, Lacroix, and Rahman (2021).
Extending the quantile framework to ordinal outcomes is more intricate due to the difficulty in
satisfying the ordering of cut-points while sampling. Rahman (2016) introduced Bayesian quantile
analysis of ordinal data and proposed two efficient MCMC algorithms. Since Rahman (2016), ordinal
quantile regression has attracted some attention, such as in Alhamzawi (2016), Alhamzawi and Ali
(2018), Ghasemzadeh, Ganjali, and Baghfalaki (2018), Rahman and Karnawat (2019), Ghasemzadeh,
Ganjali, and Baghfalaki (2020), and Tian et al. (2021).

Ordinal outcomes occur in a wide class of applications in economics, finance, marketing, and the
social sciences. Here, ordinal regression (e.g. ordinal probit, ordinal logit) is an important tool for
modeling, analysis, and inference. Given the prevalence of ordinal models in applications and the
recent theoretical developments surrounding ordinal quantile regression, an estimation package is
essential so that applied econometricians and statisticians can benefit from a more comprehensive data
analysis. At present, no statistical software (such as R, MATLAB, Python, Stata, SPSS, and SAS) have
any package for estimating quantile regression with ordinal outcomes. The current paper fills this gap
in the literature and describes the implementation of bqror package (version 1.6.0) for estimation and
inference in Bayesian ordinal quantile regression.

The bqror package offers two MCMC algorithms. Ordinal model with 3 or more outcomes
is estimated through a combination of Gibbs sampling (Casella and George 1992) and Metropolis-
Hastings (MH) algorithm (S. Chib and Greenberg 1995). The method is implemented in the function
quantregOR1. For ordinal models with exactly 3 outcomes, the package presents a Gibbs sampling
algorithm that is implemented in the function quantregOR2. We recommend using this procedure
for an ordinal model with 3 outcomes, since its simpler and faster. Both functions, quantregOR1 and
quantregOR2, report typical posterior summaries such as the mean, standard deviation, 95% credible
interval, and inefficiency factor of the model parameters. To compare alternative quantile regression
models, we recommend using the marginal likelihood over the deviance information criterion (DIC).
This is because the “Bayesian approach” to compare models is via the marginal likelihood (Siddhartha
Chib 1995; Siddhartha Chib and Jeliazkov 2001). So, the bqror package also provides functions for
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computing the marginal likelihood. Additionally, the package includes functions for calculating the
covariate effects and example codes to produce trace plots of MCMC draws. Lastly, this paper uses
the bqror package to demonstrate the estimation of quantile ordinal models on simulated data and
real-life applications.

2 Quantile regression in ordinal models

Ordinal outcomes are common in a wide class of applications in economics, finance, marketing, social
sciences, statistics in medicine, and transportation. In a typical study, the observed outcomes are
ordered and categorical; so for the purpose of analysis scores/numbers are assigned to each outcome
level. For example, in a study on public opinion about offshore drilling (Mukherjee and Rahman
2016), responses may be recorded as follows: 1 for ‘strongly oppose’, 2 for ‘somewhat oppose’, 3 for
‘somewhat support’, and 4 for ‘strongly support’. The numbers have an ordinal meaning but have
no cardinal interpretation. We cannot interpret a score of 2 as twice the support compared to a score
of 1, or the difference in support between 2 and 3 is the same as that between 3 and 4. With ordinal
outcomes, the primary modeling objective is to express the probability of outcomes as a function of the
covariates. Ordinal models that have been extensively studied and employed in applications include
the ordinal probit and ordinal logit models (Johnson and Albert 2000; Greene and Hensher 2010), but
they only give information about the average probability of outcomes conditional on the covariates.

Quantile regression with ordinal outcomes can be estimated using the monotone equivariance
property and provides information on the probability of outcomes at different quantiles. In the spirit
of Albert and Chib (1993), the ordinal quantile regression model can be presented in terms of an
underlying latent (or unobserved) variable zi as follows:

zi = x′i βp + ϵi, ∀ i = 1, · · · , n, (1)

where x′i is a 1 × k vector of covariates, βp is a k × 1 vector of unknown parameters at the p-th quantile,
ϵi follows an AL distribution i.e., ϵi ∼ AL(0, 1, p), and n denotes the number of observations. Note
that unlike the Classical (or Frequentist) quantile regression, the error is assumed to follow an AL
distribution in order to construct a (working) likelihood (Yu and Moyeed 2001). The latent variable zi
is related to the observed discrete response yi through the following relationship,

γp,j−1 < zi ≤ γp,j ⇒ yi = j, ∀ i = 1, · · · , n; j = 1, · · · , J, (2)

where γp = (γp,0 = −∞, γp,1, . . . , γp,J−1, γp,J = ∞) is the cut-point vector and J denotes the number
of outcomes or categories. Typically, the cut-point γp,1 is fixed at 0 to anchor the location of the
distribution required for parameter identification (Jeliazkov and Rahman 2012). Given the observed
data y = (y1, · · · , yn)′, the joint density (or likelihood when viewed as a function of the parameters)
for the ordinal quantile model can be written as,

f (y|Θp) =
n

∏
i=1

J

∏
j=1

P(yi = j|Θp)
I(yi=j) (3)

where Θp = (βp, γp), FAL(·) denotes the cd f of an AL distribution and I(yi = j) is an indicator
function, which equals 1 if yi = j and 0 otherwise.

Working directly with the AL likelihood (3) is not convenient for MCMC sampling. Therefore,
the latent formulation of the ordinal quantile model (1), following Kozumi and Kobayashi (2011), is
expressed in the normal-exponential mixture form as follows,

zi = x′i βp + θwi + τ
√

wi ui, ∀ i = 1, · · · , n, (4)

where ϵi = θwi + τ
√

wi ui ∼ AL(0, 1, p), wi ∼ E(1) is mutually independent of ui ∼ N(0, 1), N
and E denotes normal and exponential distributions, respectively; θ = (1 − 2p)/[p(1 − p)] and
τ =

√
2/[p(1 − p)]. Based on this formulation, we can write the conditional distribution of the latent

variable as zi|βp, wi ∼ N(x′i βp + θwi, τ2wi) for i = 1, . . . , n. This allows access to the properties of
normal distribution which helps in constructing efficient MCMC algorithms.

ORI model

The term “ORI model” describes an ordinal model in which the number of outcomes (J) is equal to
or greater than 3, location restriction is imposed by setting γp,1 = 0, and scale restriction is achieved
via constant variance (for a given value of p, variance of a standard AL distribution is constant; see
Rahman (2016)). Note that in contrast to Rahman (2016), our definition of ORI model includes an
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ordinal model with exactly 3 outcomes. The location and scale restrictions are necessary to uniquely
identify the parameters (see Jeliazkov, Graves, and Kutzbach (2008), and Jeliazkov and Rahman (2012)
for further details and a pictorial representation).

During the MCMC sampling of the ORI model, we need to preserve the ordering of cut-points
(γp,0 = −∞ < γp,1 < γp,2 < . . . < γp,J−1 < γp,J = ∞). This is achieved by using a monotone
transformation from a compact set to the real line. Many such transformations are available (e.g.,
log-ratios of category bin widths, arctan, arcsin), but the bqror package utilizes the logarithmic
transformation (Albert and Chib 2001; Rahman 2016),

δp,j = ln(γp,j − γp,j−1), 2 ≤ j ≤ J − 1. (5)

The cut-points (γp,1, γp,2, · · · , γp,J−1) can be obtained from a one-to-one mapping to (δp,2, · · · , δp,J−1).

With all the modeling ingredients in place, we employ the Bayes’ theorem and express the joint
posterior distribution as proportional to the product of the likelihood and the prior distributions. As
in Rahman (2016), we employ independent normal priors: βp ∼ N(βp0, Bp0), δp ∼ N(δp0, Dp0) in the
bqror package. The augmented joint posterior distribution for the ORI model can thus be written as,

π(z, βp, δp, w|y) ∝ f (y|z, βp, δp, w) π(z|βp, w) π(w) π(βp) π(δp),

∝
{ n

∏
i=1

f (yi|zi, δp)
}

π(z|βp, w) π(w) π(βp) π(δp),

∝
n

∏
i=1

{ J

∏
j=1

1{γp,j−1 < zi ≤ γp,j} N(zi|x′i βp + θwi, τ2wi) E(wi|1)
}

× N(βp|βp0, Bp0) N(δp|δp0, Dp0).

(6)

where in the likelihood function of the second line, we use the fact that the observed yi is independent
of (βp, w) given (zi, δp). This follows from equation (2) which shows that yi given (zi, δp) is determined
with probability 1. In the third line, we specify the conditional distribution of the latent variable and
the prior distribution on the parameters.

The conditional posterior distributions are derived from the augmented joint posterior distribution
(6), and the parameters are sampled as per Algorithm 1. This algorithm is implemented in the bqror
package. The parameter βp is sampled from an updated multivariate normal distribution and the
latent weight w is sampled element-wise from a generalized inverse Gaussian (GIG) distribution. The
cut-point vector δp is sampled marginally of (z, w) using a random-walk MH algorithm. Lastly, the
latent variable z is sampled element-wise from a truncated normal (TN) distribution.

Algorithm 1: Sampling in ORI model.

• Sample βp|z, w ∼ N(β̃p, B̃p), where,

– B̃−1
p =

(
∑n

i=1
xi x′

i
τ2wi

+ B−1
p0

)
and β̃p = B̃p

(
∑n

i=1
xi(zi−θwi)

τ2wi
+ B−1

p0 βp0

)
.

• Sample wi|βp, zi ∼ GIG (0.5, λ̃i, η̃), for i = 1, · · · , n, where,

– λ̃i =

(
zi−x′

i βp
τ

)2

and η̃ =
(

θ2

τ2 + 2
)

.

• Sample δp|y, β marginally of w (latent weight) and z (latent data), by generating δ′p using a
random-walk chain δ′p = δp + u, where u ∼ N(0J−2, ι2D̂), ι is a tuning parameter and D̂ denotes
the negative inverse Hessian, obtained by maximizing the log-likelihood with respect to δp.
Given the current value of δp and the proposed draw δ′p, return δ′p with probability,

αMH(δp, δ′p) = min
{

1,
f (y|βp, δ′p) π(βp, δ′p)

f (y|βp, δp) π(βp, δp)

}
;

otherwise repeat the old value δp. The variance of u may be tuned as needed for appropriate
step size and acceptance rate.

• Sample zi|y, βp, γp, w ∼ TN(γp,j−1,γp,j)(x′i βp + θwi, τ2wi) for i = 1, · · · , n, where TN denotes a
truncated normal distribution and γp is obtained via δp using equation (5)
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ORII model

The term “ORII model” is used for an ordinal model with exactly 3 outcomes (i.e., J = 3) where both
location and scale restrictions are imposed by fixing the cut-points. Since there are only 2 cut-points
and both are fixed at some values, the scale of the distribution needs to be free. Therefore, a scale
parameter σp is introduced and the quantile ordinal model is rewritten as follows:

zi = x′i βp + σpϵi = x′i βp + σpθwi + σpτ
√

wi ui, ∀ i = 1, · · · , n,

γj−1 < zi ≤ γj ⇒ yi = j, ∀ i = 1, · · · , n; j = 1, 2, 3,
(7)

where σp ϵi ∼ AL(0, σp, p), (γ1, γ2) are fixed, and recall γ0 = −∞ and γ3 = ∞ . In this formulation,
the conditional mean of zi is dependent on σp which is problematic for Gibbs sampling. So, we
define a new variable νi = σpwi ∼ E(σp) and rewrite the model in terms of νi. In this representation,
zi|βp, σp, νi ∼ N(x′i βp + θνi, τ2σpνi), the conditional mean is free of σp and the model is conducive to
Gibbs sampling.

The next step is to specify the prior distributions required for Bayesian inference. We follow
Rahman (2016) and assume βp ∼ N(βp0, Bp0) and σp ∼ IG(n0/2, d0/2); where IG stands for an
inverse-gamma distribution. These are the default prior distributions in the bqror package. Employing
the Bayes’ theorem, the augmented joint posterior distribution can be expressed as,

π(z, βp, ν, σp|y) ∝ f (y|z, βp, ν, σp) π(z|βp, ν, σp) π(ν|σp) π(βp) π(σp),

∝
{ n

∏
i=1

f (yi|zi, σp)
}

π(z|βp, ν, σp) π(ν|σp) π(βp) π(σp),

∝
{ n

∏
i=1

3

∏
j=1

1(γj−1 < zi ≤ γj) N(zi|x′i βp + θνi, τ2σpνi) E(νi|σp)

}
× N(βp|βp0, Bp0) IG(σp|n0/2, d0/2),

(8)

where the derivations in each step are analogous to those for the ORI model.

The augmented joint posterior distribution, given by equation (8), can be utilized to derive the
conditional posterior distributions and the parameters are sampled as presented in Algorithm 2. This
involves sampling βp from an updated multivariate normal distribution and sampling σp from an
updated IG distribution. The latent weight ν is sampled element-wise from a GIG distribution and
similarly, the latent variable z is sampled element-wise from a truncated normal distribution.

Algorithm 2: Sampling in ORII model.

• Sample βp|z, σp, ν ∼ N(β̃p, B̃p), where,

– B̃−1
p =

(
∑n

i=1
xi x′

i
τ2σpνi

+ B−1
p0

)
and β̃p = B̃p

(
∑n

i=1
xi(zi−θνi)

τ2σpνi
+ B−1

p0 βp0

)
• Sample σp|z, βp, ν ∼ IG(ñ/2, d̃/2), where,

– ñ = (n0 + 3n) and d̃ = ∑n
i=1(zi − x′i βp − θνi)

2/τ2νi + d0 + 2 ∑n
i=1 νi.

• Sample νi|zi, βp, σp ∼ GIG(0.5, λ̃i, η̃), for i = 1, · · · , n, where,

– λ̃i =
(zi−x′

i βp)2

τ2σp
and η̃ =

(
θ2

τ2σp
+ 2

σp

)
• Sample zi|y, βp, σp, νi ∼ TN(γj−1,γj)(x′i βp + θνi, τ2σpνi) for i = 1, · · · , n, and j = 1, 2, 3.

3 Marginal likelihood

Rahman (2016) employed DIC (Spiegelhalter et al. 2002; Gelman et al. 2013) for model comparison.
However, in the Bayesian framework alternative models are typically compared using the marginal
likelihood or the Bayes factor (Poirier 1995; Greenberg 2012). Therefore, we prefer using the marginal
likelihood (or the Bayes factor) for comparing two or more regression models at a given quantile.

Consider a model Ms with parameter vector Θs. Let f (y|Ms, Θs) be its sampling density and
π(Θs|Ms) be the prior distribution; where s = 1, . . . , S. Then, the marginal likelihood for the model
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Ms is given by the expression, m(y|Ms) =
∫

f (y|Θs,Ms)π(Θs|Ms) dΘs. The Bayes factor is the ratio

of marginal likelihoods. So, for any two models Mq versus Mr, the Bayes factor, Bqr =
m(y|Mq)
m(y|Mr)

=∫
f (y|Mq ,Θq) π(Θq |Mq) dΘq∫
f (y|Mr ,Θr) π(Θr |Mr) dΘr

, can be easily computed once we have the marginal likelihoods.

Siddhartha Chib (1995) and later Siddhartha Chib and Jeliazkov (2001) showed that a simple and
stable estimate of marginal likelihood can be obtained from the MCMC outputs. The approach is based
on the recognition that the marginal likelihood can be written as the product of likelihood function
and prior density over the posterior density. So, the marginal likelihood m(y|Ms) for model Ms is
expressed as,

m(y|Ms) =
f (y|Ms, Θs)π(Θs|Ms)

π(Θs|Ms, y)
. (9)

Siddhartha Chib (1995) refers to equation (9) as the basic marginal likelihood identity since it holds
for all values in the parameter space, but typically computed at a high density point (e.g., mean,
mode) denoted Θ∗ to minimize estimation variability. The likelihood ordinate f (y|Ms, Θ∗) is directly
available from the model and the prior density π(Θ∗|Ms) is assumed by the researcher. The novel
part is the computation of posterior ordinate π(Θ∗|y,Ms), which is estimated using the MCMC
outputs. Since the marginal likelihood is often a large number, it is convenient to express it on the
logarithmic scale. An estimate of the logarithm of marginal likelihood is given by,

ln m̂(y) = ln f (y|Θ∗) + ln π(Θ∗)− ln π̂(Θ∗|y), (10)

where we have dropped the conditioning on Ms for notational simplicity. The next two subsections
explain the computation of marginal likelihood for the ORI and ORI I quantile regression models.

Marginal likelihood for ORI model

We know from Section 2.1 that the MCMC algorithm for estimating the ORI model is defined by the
following conditional posterior densities: π(βp|z, w), π(δp|βp, y), π(w|βp, z), and π(z|βp, δp, w, y).
The conditional posteriors for βp, w, and z have a known form, but that of δp is not tractable and
is sampled using an MH algorithm. Consequently, we adopt the approach of Siddhartha Chib and
Jeliazkov (2001) to calculate the marginal likelihood for the ORI model.

To simplify the computational process (specifically, to keep the computation over a reasonable
dimension), we estimate the marginal likelihood marginally of the latent variables (w, z). Moreover,
we decompose the posterior ordinate as,

π(β∗p, δ∗p|y) = π(δ∗p|y)π(β∗p|δ∗p, y),

where Θ∗ = (β∗p, δ∗p) denotes a high density point. By placing the intractable posterior ordinate first,
we avoid the MH step in the reduced run – the process of running an MCMC sampler with one or
more parameters fixed at some value – of the MCMC sampler. We first estimate π(δ∗p|y) and then the
reduced conditional posterior ordinate π(β∗p|δ∗p, y).

To obtain an estimate of π(δ∗p|y), we need to express it in a computationally convenient form.
The parameter δp is sampled using an MH step, which requires specifying a proposal density. Let
q(δp, δ′p|βp, w, z, y) denote the proposal density for the transition from δp to δ′p, and let,

αMH(δp, δ′p) = min
{

1,
f (y|βp, δ′p) π(βp)π(δ′p)

f (y|βp, δp) π(βp)π(δp)
×

q(δ′p, δp|βp, w, z, y)
q(δp, δ′p|βp, w, z, y)

}
, (11)

denote the probability of making the move. In the context of the model, f (y|βp, δp) is the likelihood
given by equation (3), π(βp) and π(δp) are normal prior distributions (i.e., βp ∼ N(βp0, Bp0) and
δp ∼ N(δp0, Dp0) as specified in Section 2.1), and the proposal density q(δp, δ′p|βp, w, z, y) is normal
given by fN(δ′p|δp, ι2D̂) (see Algorithm 1 in Section 2.1). There are two points to be noted about the
proposal density. First, the conditioning on (βp, w, z, y) is only for generality and not necessary as
illustrated by the use of a random-walk proposal density. Second, since our MCMC sampler utilizes a
random-walk proposal density, the second ratio on the right hand side of equation (11) reduces to 1.

We closely follow the derivation in Siddhartha Chib and Jeliazkov (2001) and arrive at the following
expression of the posterior ordinate,

π(δ∗p|y) =
E1{αMH(δp, δ∗p|βp, w, z, y) q(δp, δ∗p|βp, w, z, y)}

E2{αMH(δ∗p, δp|βp, w, z, y)} , (12)

where E1 represents expectation with respect to the distribution π(βp, δp, w, z|y) and E2 represents
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expectation with respect to the distribution π(βp, w, z|δ∗p, y)× q(δ∗p, δp|βp, w, z, y). The quantities in
equation (12) can be estimated using MCMC techniques. To estimate the numerator, we take the

draw {β
(m)
p , δ

(m)
p , w(m), z(m)}M

m=1 from the complete MCMC run and take an average of the quantity
αMH(δp, δ∗p|βp, w, z, y) q(δp, δ∗p|βp, w, z, y), where αMH(·) is given by equation (11) with δ′p replaced by
δ∗p, and q(δp, δ∗p|βp, w, z, y) is given by the normal density fN(δ∗p|δp, ι2D̂).

The estimation of the quantity in the denominator is tricky. This requires generating an additional
sample (say of H iterations) from the reduced conditional densities: π(βp|w, z), π(w|βp, z), and
π(z|βp, δ∗p, w, y), where note that δp is fixed at δ∗p in the MCMC sampling, and thus corresponds to a
reduced run. Moreover, at each iteration, we generate

δ
(h)
p ∼ q(δ∗p, δp|β(h)p , w(h), z(h), y) ≡ fN(δp|δ∗p, ι2D̂).

The resulting quadruplet of draws {β
(h)
p , δ

(h)
p , w(h), z(h)}, as required, is a sample from the distribu-

tion π(βp, w, z|δ∗p, y)× q(δ∗p, δp|βp, w, z, y). With the numerator and denominator now available, the
posterior ordinate π(δ∗p|y) is estimated as,

π̂(δ∗p|y) =
M−1 ∑M

m=1{αMH(δ
(m)
p , δ∗p|Λ(m), y) q(δ(m)

p , δ∗p|Λ(m), y)}

H−1 ∑H
h=1{αMH(δ∗p, δ

(h)
p |Λ(h), y)}

. (13)

where Λ(m) = (β
(m)
p , w(m), z(m)) and Λ(h) = (β

(h)
p , w(h), z(h)).

The computation of the posterior ordinate π(β∗p|δ∗p, y) is trivial. We have the sample of H draws

{w(h), z(h)} from the reduced run, which are marginally of βp from the distribution π(w, z|δ∗p, y).
These draws are utilized to estimate the posterior ordinate as,

π̂(β∗p|δ∗p, y) = H−1
H

∑
h=1

π(β∗p|δ∗p, w(h), z(h), y). (14)

Substituting the two density estimates given by equations (13) and (14) into equation (10), an estimate
of the logarithm of marginal likelihood for ORI model is obtained as,

ln m̂(y) = ln f (y|β∗p, δ∗p) + ln
[
π(β∗p)π(δ∗p)

]
− ln

[
π̂(δ∗p|y) π̂(β∗p|δ∗p, y)

]
, (15)

where the likelihood f (y|β∗p, δ∗p) and prior densities are evaluated at Θ∗ = (β∗p, δ∗p).

Marginal likelihood for ORI I model

We know from Section 2.2 that the ORI I model is estimated by Gibbs sampling and hence we follow
Siddhartha Chib (1995) to compute the marginal likelihood. The Gibbs sampler consists of four con-
ditional posterior densities given by π(βp|σp, ν, z), π(σp|βp, ν, z), π(ν|βp, σp, z), and π(z|βp, σp, ν, y).
However, the variables (ν, z) are latent. So, we integrate them out and write the posterior ordinate as
π(β∗p, σ∗

p |y) = π(β∗p|y)π(σ∗
p |β∗p, y), where the terms on the right hand side can be written as,

π(β∗p|y) =
∫

π(β∗p|σp, ν, z, y)π(σp, ν, z|y) dσp dν dz,

π(σ∗
p |β∗p, y) =

∫
π(σ∗

p |β∗p, ν, z, y)π(ν, z|β∗p, y) dν dz,

and Θ∗ = (β∗p, σ∗
p ) denotes a high density point, such as the mean or the median.

The posterior ordinate π(β∗p|y) can be estimated as the ergodic average of the conditional posterior
density with the posterior draws of (σp, ν, z). Therefore, π(β∗p|y) is estimated as,

π̂(β∗p|y) = G−1
G

∑
g=1

π(β∗p|σ
(g)
p , ν(g), z(g), y). (16)

The term π(σ∗
p |β∗p, y) is a reduced conditional density ordinate and can be estimated with the help

of a reduce run. So, we generate an additional sample (say another G iterations) of {ν(g), z(g)} from
π(ν, z|β∗p, y) by successively sampling from π(σp|β∗p, ν, z), π(ν|β∗p, σp, z), and π(z|β∗p, σp, ν, y), where
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note that βp is fixed at β∗p in each conditional density. Next, we use the draws {ν(g), z(g)} to compute,

π̂(σ∗
p |β∗p, y) = G−1

G

∑
g=1

π(σ∗
p |β∗p, ν(g), z(g), y). (17)

which is a simulation consistent estimate of π(σ∗
p |β∗p, y).

Substituting the two density estimates given by equations (16) and (17) into equation (10), we
obtain an estimate of the logarithm of marginal likelihood,

ln m̂(y) = ln f (y|β∗p, σ∗
p ) + ln

[
π(β∗p)π(σ∗

p )
]
− ln

[
π̂(β∗p|y) π̂(σ∗

p |β∗p, y)
]
, (18)

where the likelihood function and prior densities are evaluated at Θ∗ = (β∗p, σ∗
p ). Here, the likelihood

function has the expression,

f (y|β∗p, σ∗
p ) =

n

∏
i=1

3

∏
j=1

[
FAL

(
γj − x′i β

∗
p

σ∗
p

)
− FAL

(
γj−1 − x′i β

∗
p

σ∗
p

)]I(yi=j)
,

where the cut-points γ are known and fixed for identification reasons as explained in Section 2.2.

4 Simulation studies

This section explains the data generating process for simulation studies, the functions offered in the
bqror package, and usage of the functions for estimation and inference in ordinal quantile models.

ORI model: data, functions, and outputs

Data Generation: The data for the simulation study of the ORI model is generated from the regression:
zi = x′i β + ϵi, where β = (−4, 5, 6), (x2, x3) ∼ U(0, 1), and ϵi ∼ AL(0, σ = 1, p) for i = 1, . . . , n. Here,
U and AL denote a uniform distribution and an asymmetric Laplace distribution, respectively. The z
values are continuous and are classified into 4 categories based on the cut-points (0, 2, 4) to generate
ordinal values of y, the outcome variable. We follow the above procedure to generate 3 data sets with
500 observations (i.e., n = 500) each. The 3 data sets correspond to the quantile p equaling 0.25, 0.50,
and 0.75, and are stored as data25j4, data50j4, and data75j4, respectively. Note that the last two
letters in the name of the data object (i.e., j4) denote the number of unique outcomes in the y variable.

We now describe the major functions for Bayesian quantile estimation of ORI model, demonstrate
their usage, and note the inputs and outputs of each function.

quantregOR1: The quantregOR1 is the primary function for estimating Bayesian quantile regres-
sion in ordinal models with 3 or more outcomes (i.e., ORI model) and implements Algorithm 1. In the
code snippet below, we first read in the data and then do the following: define the ordinal response
variable (y) and covariate matrix (xMat), specify the number of covariates (k) and number of outcomes
(J), and set the prior means and covariances for βp and δp. We then call the quantregOR1 function
and specify the inputs: ordinal outcome variable (y), covariate matrix including a column of ones
(xMat), prior mean (b0) and prior covariance matrix (B0) for the regression coefficients, prior mean (d0)
and prior covariance matrix (D0) for the transformed cut-points, burn-in size (burn), post burn-in size
(mcmc), quantile (p), the tuning factor (tune) to adjust the MH acceptance rate, and the auto correlation
cutoff value (accutoff). The last input verbose, when set to TRUE will print the summary output.

In the code below, we use a diffuse normal prior βp ∼ N(0k, 10 ∗ Ik) where 0k and Ik are matrices
of dimension k × 1 and k × k, respectively. The prior distribution can be further diffused (i.e., made
less informative) by increasing the prior variance from 10 to say 100. Besides, the prior variance for δp
should be small, such as 0.25 ∗ IJ−2, since the distribution is on the transformed cut-points, which is
on the logarithmic scale. If there is a need for prior elicitation, they can be designed from previous
subject based knowledge or by estimating the model on a training sample and then using the results
to form prior distributions (See Greenberg (2012), for examples.)

library('bqror')
data("data25j4")
y <- data25j4$y
xMat <- data25j4$x
k <- dim(xMat)[2]
J <- dim(as.array(unique(y)))[1]
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b0 <- array(rep(0, k), dim = c(k, 1))
B0 <- 10*diag(k)
d0 <- array(0, dim = c(J-2, 1))
D0 <- 0.25*diag(J - 2)
modelORI <- quantregOR1(y = y, x = xMat, b0, B0, d0, D0, burn = 1125,

mcmc = 4500, p = 0.25, tune = 1, accutoff = 0.5,
verbose = TRUE)

[1] Summary of MCMC draws:

Post Mean Post Std Upper Credible Lower Credible Inef Factor
beta_1 -3.6434 0.4293 -2.8369 -4.5073 2.3272
beta_2 4.8283 0.5597 5.9577 3.7624 2.4529
beta_3 5.9929 0.5996 7.2474 4.8819 2.7491
delta_1 0.7152 0.1110 0.9616 0.5004 3.2261
delta_2 0.7456 0.0940 0.9281 0.5543 2.1497

[1] MH acceptance rate: 31.82%
[1] Log of Marginal Likelihood: -545.72
[1] DIC: 1060.56

The outputs from the quantregOR1 function are the following quantities: summary.bqrorOR1,
postMeanbeta, postMeandelta, postStdbeta, postStddelta, gammacp, acceptancerate, logMargLike,
dicQuant, ineffactor, betadraws, and deltadraws. A detailed description of each output is presented
in the bqror package help file. In the summary, we report the posterior mean, posterior standard
deviation, 95% posterior credible (or probability) interval, and the inefficiency factor of the quantile
regression coefficients βp and transformed cut-points δp. These quantities are presented in the last five
columns and labeled appropriately.

The posterior means of (βp, δp) are close to the true values used to generate the data with small
standard deviations. So, the quantregOR1 function is successful in recovering the true values of the
parameters. The inefficiency factor is computed from the MCMC samples using the batch-means
method (Greenberg 2012). They indicate the cost of working with correlated samples. For example, an
inefficiency factor of 3 implies that it takes 3 correlated draws to get one independent draw. As such,
low inefficiency factor indicates better mixing and a more efficient MCMC algorithm. Inefficiency
factor also bears a direct relationship with effective sample size, where the latter can be obtained as
the total number of (post burn-in) MCMC draws divided by the inefficiency factor (Siddhartha Chib
2012). The inefficiency factors for (βp, δp) are stored in the object modelOR1 of class bqrorOR1 and can
be obtained by calling modelORI$ineffactor.

The third last row displays the random-walk MH acceptance rate for δp, for which the preferred
acceptance rate is around 30 percent. The last two rows present the model comparison measures, the
logarithm of marginal likelihood and the DIC. The logarithm of marginal likelihood is computed using
the MCMC outputs from the complete and reduced runs as explained in Section 3, while the principle
for computing the DIC is presented in Gelman et al. (2013). For any two competing models at the
same quantile, the model with a higher (lower) marginal likelihood (DIC) provides a better model fit.

While the two model comparison measures are printed as part of the summary output, they can
also be called individually. For example, the logarithm of marginal likelihood can be obtained by
calling modelORI$logMargLike. Whereas, the DIC can be obtained by calling modelORI$dicQuant$DIC.
Two more quantities that are part of the object modelORI$dicQuant are effective number of parameters
denoted pD and the deviance computed at the posterior mean. They can be obtained by calling
modelORI$dicQuant$pd and modelORI$dicQuant$dev, respectively. Besides, post estimation, one may
also use the command modelORI$summary or summary.bqrorOR1(modelORI) to extract and print the
summary output.

covEffectOR1: The function covEffectOR1 computes the average covariate effect for different
outcomes of ORI model at a specified quantile, marginally of the parameters and the remaining
covariates. While a demonstration of this function is best understood in a real-life study and is
presented in the application section, here we present the mechanics behind the computation of average
covariate effect.

Suppose, we want to compute the average covariate effect when the l-th covariate {xi,l} is set to
the values a and b, denoted as {xa

i,l} and {xb
i,l}, respectively. We split the covariate and parameter

vectors as follows: xa
i = (xa

i,l , xi,−l), xb
i = (xb

i,l , xi,−l), and βp = (βp,l , βp,−l), where −l in the subscript
denotes all covariates (parameters) except the l-th covariate (parameter). We are interested in the
distribution of the difference {Pr(yi = j|xb

i,l)− Pr(yi = j|xa
i,l)} for 1 ≤ j ≤ J, marginalized over {xi,−l}
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and (βp, δp), given the data y = (y1, · · · , yn)′. We marginalize the covariates using their empirical
distribution and the parameters based on the posterior distribution.

To obtain draws from the distribution {Pr(yi = j|xb
i,l)− Pr(yi = j|xa

i,l)}, we use the method of
composition (see Siddhartha Chib and Jeliazkov (2006), Rahman and Vossmeyer (2019), and Bresson,
Lacroix, and Rahman (2021), for additional details). In this process, we randomly select an individual,
extract the corresponding sequence of covariate values, draw a value (βp, δp) from the posterior
distributions, and evaluate {Pr(yi = j|xb

i , βp, δp)− Pr(yi = j|xa
i , βp, δp)}, where,

Pr(yi = j|xq
i , βp, δp)

= FAL(γp,j − xq
i,l βp,l − x′i,−l βp,−l)− FAL(γp,j−1 − xq

i,l βp,l − x′i,−l βp,−l),

for q = b, a and 1 ≤ j ≤ J. This process is repeated for all remaining individuals and other MCMC
draws from the posterior distribution. Finally, the average covariate effect (ACE) for outcome j (for
1 ≤ j ≤ J) is calculated as the mean of the difference in pointwise probabilities,

1
M

1
n

M

∑
m=1

n

∑
i=1

[
Pr(yi = j|xb

i , β
(m)
p , δ

(m)
p )− Pr(yi = j|xa

i , β
(m)
p , δ

(m)
p )

]
, (19)

where (β
(m)
p , δ

(m)
p ) is an MCMC draw of (βp, δp), and M is the number of post burn-in MCMC draws.

ORI I model: data, function, and outputs

Data Generation: The data generating process for the ORI I model closely resembles that of ORI model.
In particular, 500 observations are generated for each value of p from the regression model: zi =
x′i β + ϵi, where β = (−4, 6, 5), (x2, x3) ∼ U(0, 1) and ϵi ∼ AL(0, σ = 1, p) for i = 1, . . . , n. The
continuous values of z are classified based on the cut-points (0, 3) to generate 3 ordinal values for y,
the outcome variable. Once again, we choose p equal to 0.25, 0.50, and 0.75 to generate three samples
from the model, which are referred to as data25j3, data50j3, and data75j3, respectively. The last
two letters in the names of the data objects (i.e., j3) denote the number of unique outcomes in the y
variable.

quantregOR2: The function quantregOR2 implements Algorithm 2 and is the main function and
for estimating Bayesian quantile regression in ORI I model i.e., an ordinal model with exactly 3
outcomes. In the code snippet below, we first read the data, define the required quantities, and then
call the quantregOR2 for estimating the quantile model. The function inputs are as follows: the ordinal
outcome variable (y), covariate matrix including a column of ones (xMat), prior mean (b0) and prior
covariance matrix (B0) for βp, prior shape (n0) and scale (d0) parameters for σp, second cut-point
(gammacp2), burn-in size (burn), post burn-in size (mcmc), quantile (p), auto correlation cutoff value
(accutoff), and the verbose option which when set to TRUE (FALSE) will (not) print the outputs. We
use a relatively diffuse prior distributions on (βp, σp) to allow the data to speak for itself.

library('bqror')
data("data25j3")
y <- data25j3$y
xMat <- data25j3$x
k <- dim(xMat)[2]
b0 <- array(rep(0, k), dim = c(k, 1))
B0 <- 10*diag(k)
n0 <- 5
d0 <- 8
modelORII <- quantregOR2(y = y, x = xMat, b0, B0, n0, d0, gammacp2 = 3,

burn = 1125, mcmc = 4500, p = 0.25, accutoff = 0.5,
verbose = TRUE)

[1] Summary of MCMC draws:

Post Mean Post Std Upper Credible Lower Credible Inef Factor
beta_1 -3.8900 0.4560 -3.0578 -4.8346 2.4784
beta_2 5.8257 0.5341 6.9263 4.8243 2.1231
beta_3 4.7194 0.5227 5.7502 3.7194 2.2693
sigma 0.8968 0.0763 1.0587 0.7626 2.4079

[1] Log of Marginal Likelihood: -404.34

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 48

[1] DIC: 790.72

The outputs from the quantregOR2 function are the following: summary.bqrorOR2, postMeanbeta,
postMeansigma, postStdbeta, postStdsigma, logMargLike, dicQuant, ineffactor, betadraws, and
sigmadraws. A detailed description of each output is presented in the bqror package help file. Once
again, we summarize the MCMC draws by reporting the posterior mean, posterior standard deviation,
95% posterior credible (or probability) interval, and the inefficiency factor of the quantile regression
coefficients βp and scale parameter σp. The output also exhibits the logarithm of marginal likelihood
and the DIC for ORI I model, where the former is computed using the Gibbs output as explain in
Section 3.

covEffectOR2: The function covEffectOR2 computes the average covariate effect for the 3 out-
comes of ORI I model at a specified quantile, marginally of the parameters and remaining covariates.
The principle underlying the computation is analogous to that of ORI model and is explained below.
An implementation of the function is presented in the tax policy application.

Suppose, we are interested in computing the average covariate effect for the l-th covariate {xi,l}
for two different values a and b, and split the covariate and parameter vectors as: xa

i = (xa
i,l , xi,−l),

xb
i = (xb

i,l , xi,−l), β = (βp,l , βp,−l). We are interested in the distribution of the difference {Pr(yi =

j|xb
i,l)− Pr(yi = j|xa

i,l)} for 1 ≤ j ≤ J = 3, marginalized over {xi,−l} and (βp, σp), given the data
y = (y1, · · · , yn)′. We again employ the method of composition i.e., randomly select an individual,
extract the corresponding sequence of covariate values, draw a value (βp, σp) from their posterior
distributions, and lastly evaluate {Pr(yi = j|xb

i , βp, σp)− Pr(yi = j|xa
i , βp, σp)}, where

Pr(yi = j|xq
i , βp, σp)

= FAL

(
γp,j − xq

i,l βp,l − x′i,−l βp,−l

σp

)
− FAL

(
γp,j−1 − xq

i,l βp,l − x′i,−l βp,−l

σp

)
,

for q = b, a, and 1 ≤ j ≤ J = 3. This process is repeated for other individuals and the remaining Gibbs
draws to compute the ACE for outcome j (= 1, 2, 3) as below,

1
G

1
n

G

∑
g=1

n

∑
i=1

[
Pr(yi = j|xb

i , β
(g)
p , σ

(g)
p )− Pr(yi = j|xa

i , β
(g)
p , σ

(g)
p )

]
, (20)

where (β
(g)
p , σ

(g)
p ) is a Gibbs draw of (βp, σp) and G is the number of post burn-in Gibbs draws.

5 Applications

In this section, we consider the educational attainment and tax policy applications from Rahman
(2016) to demonstrate the real data applications of the proposed bqror package. While the educational
attainment study shows the implementation of ordinal quantile regression in ORI model, the tax policy
study highlights the use of ordinal quantile regression in ORI I model. Data for both the applications
are included as a part of the bqror package.

Educational attainment

In this application, the goal is to study the effect of family background, individual level variables, and
age cohort on educational attainment of 3923 individuals using data from the National Longitudinal
Study of Youth (NLSY, 1979) (Jeliazkov, Graves, and Kutzbach 2008; Rahman 2016). The dependent vari-
able in the model, education degrees, has four categories: (i) Less than high school, (ii) High school degree,
(iii) Some college or associate’s degree, and (iv) College or graduate degree. A bar chart of the four categories
is presented in Figure 1. The independent variables in the model include intercept, square root of
family income, mother’s education, father’s education, mother’s working status, gender, race, indica-
tor variables to point whether the youth lived in an urban area or South at the age of 14, and three
indicator variables to indicate the individual’s age in 1979 (serves as a control for age cohort effects).

To estimate the Bayesian ordinal quantile model on educational attainment data, we load the bqror
package, prepare the required inputs and feed them into the quantregOR1 function. Specifically, we
specify the outcome variable, covariate matrix (with covariates in order as in Rahman 2016), prior
distributions for (βp, δp), burn-in size, number of post burn-in MCMC iterations, quantile value
(p = 0.5 for this illustration), and the values for tuning factor and autocorrelation cutoff.

library('bqror')

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=bqror
https://CRAN.R-project.org/package=bqror
https://CRAN.R-project.org/package=bqror
https://CRAN.R-project.org/package=bqror


CONTRIBUTED RESEARCH ARTICLE 49

22.86

35.48

22.32

19.32
897

1392

876

758

0

500

1000

Less than high 
 school

High school 
 degree

Some college or 
 associate's degree

College or 
 graduate degree

N
o.

 o
f O

bs
er

va
tio

ns

Figure 1: Bar chart showing the different categories of educational attainment. The number of
responses (percentage) for each category are shown inside (at the top) of each bar.

data("Educational_Attainment")
data <- na.omit(Educational_Attainment)
data$fam_income_sqrt <- sqrt(data$fam_income)
cols <- c("mother_work","urban","south", "father_educ","mother_educ",

"fam_income_sqrt","female", "black","age_cohort_2","age_cohort_3",
"age_cohort_4")

x <- data[cols]
x$intercept <- 1
xMat <- x[,c(12,6,5,4,1,7,8,2,3,9,10,11)]
yOrd <- data$dep_edu_level
k <- dim(xMat)[2]
J <- dim(as.array(unique(yOrd)))[1]
b0 <- array(rep(0, k), dim = c(k, 1))
B0 <- 1*diag(k)
d0 <- array(0, dim = c(J-2, 1))
D0 <- 0.25*diag(J - 2)
p <- 0.5

EducAtt <- quantregOR1(y = yOrd, x = xMat, b0, B0, d0, D0, burn = 1125,
mcmc = 4500, p, tune=1, accutoff = 0.5, TRUE)

[1] Summary of MCMC draws:

Post Mean Post Std Upper Credible Lower Credible Inef Factor
intercept -3.2546 0.2175 -2.8350 -3.6798 2.3143
fam_income_sqrt 0.2788 0.0230 0.3254 0.2337 2.1396
mother_educ 0.1242 0.0190 0.1619 0.0878 1.9499
father_educ 0.1866 0.0154 0.2165 0.1578 2.3062
mother_work 0.0664 0.0821 0.2287 -0.0930 1.9349
female 0.3492 0.0786 0.5070 0.2022 1.9086
black 0.4413 0.0997 0.6400 0.2506 1.9270
urban -0.0777 0.0971 0.1104 -0.2712 1.9019
south 0.0842 0.0880 0.2529 -0.0895 1.9153
age_cohort_2 -0.0345 0.1192 0.1963 -0.2660 1.7502
age_cohort_3 -0.0426 0.1223 0.2033 -0.2849 1.9053
age_cohort_4 0.4938 0.1212 0.7256 0.2570 1.7512
delta_1 0.8988 0.0276 0.9534 0.8461 4.6186
delta_2 0.5481 0.0313 0.6146 0.4890 3.6003

[1] MH acceptance rate: 26.8%
[1] Log of Marginal Likelihood: -4923.48
[1] DIC: 9781.91
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Figure 2: Trace plots of the MCMC draws in the educational attainment study.

The posterior results1 from the MCMC draws are summarized above. In the summary, we report
the posterior mean and posterior standard deviation of the parameters (βp, δp), 95% posterior credible
interval, and the inefficiency factors. Additionally, the summary displays the MH acceptance rate of
δp, the logarithm of marginal likelihood, and the DIC.

mcmc <- 4500
burn <- round(0.25*mcmc)
nsim <- mcmc + burn
mcmcDraws <- cbind(t(EducAtt$betadraws), t(EducAtt$deltadraws))
color_scheme_set('darkgray')
bayesplot_theme_set(theme_minimal())
mcmc_trace(mcmcDraws[(burn+1):nsim, ], facet_args = list(ncol = 3))

Figure 2 presents the trace plots of the MCMC draws, which can be generated by loading the
bayesplot package and using the codes presented above. The purpose of trace plots is to show that
the Markov chains have converged to the joint posterior distribution, such as shown in Figure 2. The
idea is that the trace plots should show variation around a central value if the chain has converged,
rather than drift without settling down.

Next, we utilize the covEffectOR1 function to compute the average covariate effect for a $10,000
increase in family income on the four categories of educational attainment. In general, the calculation
of average covariate effect requires creation of either one or two new covariate matrices depending
whether the covariate is continuous or indicator (binary), respectively. Since income is a continuous

1The results reported here are slightly different from those presented in Rahman (2016). This difference in results,
aside from lesser number of MCMC draws, is due to a different approach in sampling from the GIG distribution.
Rahman (2016) employed the ratio of uniforms method to sample from the GIG distribution (Dagpunar 2007), while
the current paper utilizes the rgig function in the GIGrvg package that overcomes the disadvantages associated
with sampling using the ratio of uniforms method (see GIGrvg documentation for further details). Also, see
Devroye (2014) for an efficient sampling technique from a GIG distribution.
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variable, a modified covariate matrix is created by adding $10,000 to each observation of family income.
This is xMod2 in the code below and the increased income variable corresponds to xb

i,l for i = 1, · · · , n
in Section 4.1. The second covariate matrix xMod1 (in the code below) is simply the covariate or
design matrix xMat; so with reference to Section 4.1, xa

i,l = xi,l for i = 1, · · · , n. When the covariate of
interest is an indicator variable, then xMod1 also requires modification as illustrated in the tax policy
application.

We now call the covEffectOR1 function and supply the inputs to get the results.

xMat1 <- xMat
xMat2 <- xMat
xMat2$fam_income_sqrt <- sqrt((xMat1$fam_income_sqrt)^2 + 10)
EducAttCE <- covEffectOR1(EducAtt, yOrd, xMat1, xMat2, p = 0.5, verbose = TRUE)

[1] Summary of Covariate Effect:

Covariate Effect
Category_1 -0.0314
Category_2 -0.0129
Category_3 0.0193
Category_4 0.0250

The results shows that at the 50th quantile and for a $10,000 increase in family income, the
probability of obtaining less than high school (high school degree) decreases by 3.14 (1.29) percent, while
the probability of achieving some college or associate’s degree (college or graduate degree) increases by 1.93
(2.50) percent.

Tax Policy

Here, the objective is to analyze the factors that affect public opinion on the proposal to raise federal
taxes for couples (individuals) earning more than $250,000 ($200,000) per year in the United States
(US). The proposal was designed to extend the Bush Tax cuts for the lower and middle income classes,
but restore higher rates for the richer class. Such a policy is considered pro-growth, since it is aimed
to promote economic growth in the US by augmenting consumption among the low-middle income
families. After extensive debate, the proposed policy received a two year extension and formed a part
of the “Tax Relief, Unemployment Insurance Reauthorization, and Job Creation Act of 2010”.

The data for the study was taken from the 2010-2012 American National Election Studies (ANES)
on the Evaluations of Government and Society Study 1 (EGSS 1) and contains 1,164 observations.
The dependent variable in the model, individual’s opinion on tax increase, has 3 categories: Oppose,
Neither favor nor oppose, and Favor (see Figure 3). The covariates included in the model are the intercept,
indicator variables for employment status, income above $75,000, bachelors’ degree, post-bachelors’
degree, computer ownership, cell phone ownership, and white race.

To estimate the quantile model on public opinion about federal tax increase, we load the bqror
package, prepare the data, and provide the inputs into the quantregOR2 function. Specifically, we
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Figure 3: Bar chart for public opinion on tax increase. The number of responses (percentage) for each
category are shown inside (at the top) of each bar.
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define the outcome variable, covariate matrix (with covariates in order as in Rahman 2016), specify the
prior distributions for (βp, σp), choose the second cut-off value, burn-in size, number of post burn-in
MCMC iterations, and values for quantile (p = 0.5 for this illustration) and autocorrelation cutoff.

library(bqror)
data("Policy_Opinion")
data <- na.omit(Policy_Opinion)
cols <- c("Intercept","EmpCat","IncomeCat","Bachelors","Post.Bachelors",

"Computers","CellPhone", "White")
x <- data[cols]
xMat <- x[,c(1,2,3,4,5,6,7,8)]
yOrd <- data$y
k <- dim(x)[2]
b0 <- array(rep(0, k), dim = c(k, 1))
B0 = 1*diag(k)
n0 <- 5
d0 <- 8
FedTax <- quantregOR2(y = yOrd, x = xMat, b0, B0, n0, d0, gammacp2 = 3,

burn = 1125, mcmc = 4500, p = 0.5, accutoff = 0.5, TRUE)

[1] Summary of MCMC draws :

Post Mean Post Std Upper Credible Lower Credible Inef Factor
Intercept 2.0142 0.4553 2.9071 1.0959 1.4473
EmpCat 0.2496 0.2953 0.8294 -0.3270 1.6760
IncomeCat -0.5083 0.3323 0.1329 -1.1580 1.6700
Bachelors 0.0809 0.3744 0.8569 -0.6324 1.6726
Post.Bachelors 0.5082 0.4406 1.3964 -0.3435 1.5053
Computers 0.7167 0.3509 1.4078 0.0219 1.4975
CellPhone 0.8464 0.4027 1.6191 0.0444 1.4524
White 0.0627 0.3659 0.7579 -0.6502 1.4931
sigma 2.2205 0.1442 2.5300 1.9552 2.3161

[1] Log of Marginal Likelihood: -1174.11
[1] DIC: 2334.58

The results (see Footnote 1) from the MCMC draws are summarized above, where we report the
posterior mean, posterior standard deviation, 95% posterior credible interval, and the inefficiency
factor of the parameters (βp, σp). Additionally, the summary displays the logarithm of marginal
likelihood and the DIC. Figure 4 presents the trace plots of the Gibbs draws, which can be generated
by loading the bayesplot package and using the codes below.

mcmc <- 500
burn <- round(0.25*mcmc)
nsim <- mcmc + burn
mcmcDraws <- cbind(t(FedTax$betadraws), t(FedTax$sigmadraws))
color_scheme_set('darkgray')
bayesplot_theme_set(theme_minimal())
mcmc_trace(mcmcDraws[(burn+1):nsim, ], facet_args = list(ncol = 3))

Finally, we utilize the covEffectOR2 function to demonstrate the calculation of average covariate
effect within the ORI I framework. Below, we compute the average covariate effect for computer
ownership (assume this is the l-th variable) on the 3 categories of public opinion about the tax policy.
Here, the covariate is an indicator variable since you may either own a computer (coded as 1) or
not (coded as 0). So, we need to create two modified covariate matrices. In the code snippet below,
the first matrix xMat1 and the second matrix xMat2 are created by replacing the column on computer
ownership with a column of zeros and ones, respectively. With reference to notations in Section 4.1
and Section 4.2, xa

i,l = 0 and xb
i,l = 1 for i = 1, · · · , n. We then call the covEffectOR2 function and

supply the inputs to get the results.

xMat1 <- xMat
xMat1$Computers <- 0
xMat2 <- xMat
xMat2$Computers <- 1
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Figure 4: Trace plots of the MCMC draws in the tax policy study.

FedTaxCE <- covEffectOR2(FedTax, yOrd, xMat1, xMat2, gammacp2 = 3, p = 0.5,
verbose = TRUE)

[1] Summary of Covariate Effect:

Covariate Effect
Category_1 -0.0396
Category_2 -0.0331
Category_3 0.0726

The result on covariate effect shows that at the 50th quantile, ownership of computer decreases
probability for the first category Oppose (Neither favor nor oppose) by 3.96 (3.31) percent, and increases
the probability for the third category Favor by 7.26 percent.

6 Conclusion

A wide class of applications in economics, finance, marketing, and the social sciences have dependent
variables which are ordinal in nature (i.e., they are discrete and ordered, and are characterized by
an underlying continuous variable). Modeling and analysis of such variables has been typically
confined to ordinal probit or ordinal logit models, which offer information on the average probability
of outcome variable given the covariates. However, a recently proposed method by Rahman (2016)
allows Bayesian quantile modeling of ordinal data and thus presents the tool for a more comprehensive
analysis and inference. The prevalence of ordinal responses in applications is well known and hence a
software package that allows Bayesian quantile analysis with ordinal data will be of immense interest
to applied researchers from different fields, including economics and statistics.

The current paper presents an implementation of the bqror package – the only package available
for estimation and inference of Bayesian quantile regression in ordinal models. The package offers
two MCMC algorithms for estimating ordinal quantile models. An ordinal quantile model with 3 or
more outcomes is estimated by a combination of Gibbs sampling and MH algorithm, while estimation
of an ordinal quantile model with exactly 3 outcomes utilizes a simpler and computationally faster
algorithm that relies solely on Gibbs sampling. For both forms of ordinal quantile models, the bqror
package also provides functions for calculating the covariate effects (for continuous as well as binary
regressors) and measures for model comparison – marginal likelihood and the DIC. The paper explains
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how to compute the marginal likelihood from the MCMC outputs and recommends its use over
the DIC for model comparison. Additionally, this paper demonstrates the usage of functions for
estimation and analysis of Bayesian quantile regression with ordinal data on simulation studies and
two applications related to educational attainment and tax policy. In the future, the current package
will be extended to include ordinal quantile regression with longitudinal data and variable selection
in ordinal quantile regression with cross section and/or longitudinal data.
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Gaussian Mixture Models in R
by Bastien Chassagnol, Antoine Bichat, Cheïma Boudjeniba, Pierre-Henri Wuillemin, Mickaël Guedj,
David Gohel, Gregory Nuel, and Etienne Becht

Abstract Gaussian mixture models (GMMs) are widely used for modelling stochastic problems. Indeed,
a wide diversity of packages have been developed in R. However, no recent review describing the
main features offered by these packages and comparing their performances has been performed.
In this article, we first introduce GMMs and the EM algorithm used to retrieve the parameters of
the model and analyse the main features implemented among seven of the most widely used R
packages. We then empirically compare their statistical and computational performances in relation
with the choice of the initialisation algorithm and the complexity of the mixture. We demonstrate
that the best estimation with well-separated components or with a small number of components
with distinguishable modes is obtained with REBMIX initialisation, implemented in the rebmix
package, while the best estimation with highly overlapping components is obtained with k-means
or random initialisation. Importantly, we show that implementation details in the EM algorithm
yield differences in the parameters’ estimation. Especially, packages mixtools (Young et al. 2020) and
Rmixmod (Langrognet et al. 2021) estimate the parameters of the mixture with smaller bias, while
the RMSE and variability of the estimates is smaller with packages bgmm (Ewa Szczurek 2021) ,
EMCluster (W.-C. Chen and Maitra 2022) , GMKMcharlie (Liu 2021), flexmix (Gruen and Leisch 2022)
and mclust (Fraley, Raftery, and Scrucca 2022). The comparison of these packages provides R users
with useful recommendations for improving the computational and statistical performance of their
clustering and for identifying common deficiencies. Additionally, we propose several improvements
in the development of a future, unified mixture model package.

1 Introduction to Mixture modelling

Formally, let’s consider a pair of random variables (X, S) with S ∈ {1, . . . , k} a discrete variable and
designing the component identity of each observation. When observed, S is generally denoted as
the labels of the individual observations. k is the number of mixture components. Then, the density
distribution of X is given in Equation (1):

fθ(X) = ∑
S

fθ(X, S)

=
k

∑
j=1

pj fζ j(X), X ∈ R

(1)

where θ = (p, ζ) = (p1, . . . , pk, ζ1, . . . , ζk) denotes the parameters of the model: pj is the proportion
of component j and ζ j represents the parameters of the density distribution followed by component j.
In addition, since S is a categorical variable parametrized by p, the prior weights must enforce the unit
simplex constraint (Equation (2)): {

pj ≥ 0 ∀j ∈ {1, . . . , k}
∑k

j=1 pj = 1
(2)

In terms of applications, mixture models can be used to achieve the following goals:

• Clustering: hard clustering consists in determining a complete partition of the n observations x1:n
into k disjoint non-empty subsets. In the context of mixture model-based clustering, this is done
by assigning each observation i to the cluster ŝi = arg maxj ηi(j) that maximises the posterior
distribution (MAP) (see Equation (3)):

ηi(j) := Pθ(Si = j|Xi = xi) (3)

• Prediction: the purpose is to predict a response variable Y from an explanatory variable X. The
dependent variable Y can either be discrete, taking values in classes {1, . . . , G} (classification
task) or continuous (regression task). In this paper, we do not extensively discuss application of
mixture models to regression purposes but refer the reader to Bouveyron and Girard (2009) for
mixture classification and Shimizu and Kaneko (2020) for mixtures of regression models.
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In section Univariate and multivariate Gaussian distributions in the context of mixture models,
we describe the most commonly used family, the Gaussian Mixture Model (GMM). We then present
the MLE estimation of the parameters of a GMM, introducing the classic EM algorithm in section
Parameter estimation in finite mixtures models. Finally, we introduce bootstrap methods used to
evaluate the quality of the estimation and metrics used for the selection of the best model in respectively
appendices Derivation of confidence intervals in GMMs and Model selection.

1.1 Univariate and multivariate Gaussian distributions in the context of mixture models

We focus our study on the finite Gaussian mixture models (GMM) in which we suppose that each of
the k components follows a Gaussian distribution.

We recall below the definition of the Gaussian distribution in both univariate and multivariate
context. In the finite univariate Gaussian mixture model, the distribution of each component fζ j(X) is
given by the following univariate Gaussian p.d.f. (probability density function) (Equation (4)):

fζ j(X = x) = φζ j (x|µj, σj) :=
1√

2πσj
exp

−
(x−µj )

2

2σ2
j (4)

which we note: X ∼ N (µj, σj).

In the univariate case, the parameters to be inferred from each component, ζ j, are: µj, the location
parameter (equal to the mean of the distribution) and σj, the scale parameter (equal to the standard
deviation of the distribution with a Gaussian distribution).

Following parsimonious parametrisations with respect to univariate GMMs are often considered:

• homoscedascity: variance is considered equal for all components, σj = σ, ∀j ∈ {1, . . . , k}, as
opposed to heteroscedascity where each sub-population has its unique variability.

• equi-proportion among all mixtures: pj =
1
k j ∈ {1, . . . , k} 1

In the finite multivariate Gaussian mixture model, the distribution fζ j(X) of each component j,
where X ∈ RD = (X1, . . . , XD)

⊤ is a multivariate random variable of dimension D, is given by the
following multivariate Gaussian p.d.f. (Equation (5)):

fζ j(X = x) = det(2πΣj)
− 1

2 exp
(
−1

2
(x − µj)Σ

−1
j (x − µj)

⊤
)

(5)

which we note X ∼ ND(µj, Σj). The parameters to be estimated for each component can be
decomposed into:

• µj =

µ1j
...

µDj

 ∈ RD, the D-dimensional mean vector.

• Σj, the MD(R) positive-definite 2covariance matrix, whose diagonal terms are the individual
variances of each feature and the off-diagonal terms are the pairwise covariance terms.

Three families of multivariate GMMs are often considered:

• the spherical family, Σj = σ2
j ID, with σj ∈ R∗

+, refers to GMMs whose covariance matrix is
diagonal with an unique standard deviation term. The corresponding volume representation is
a D−hypersphere of radius σj.

1A rarer constraint considered implies to enforce a linear constraint over the clusters’ means, of the following
general form: ∑k

j=1 ajµj = 0, with {a1, . . . , ak}. For instance, the R package epigenomix considers a k = 3
component mixture in the context of transcriptomic (differential analyses) and epigenetic (histone modification)
to automatically identify undifferentiated, over and under-expressed genes between case and control samples.
A common constraint then is to enforce the distribution of fold changes corresponding to the undifferentiated
expressed genes to have a distribution centred on 0. Combining equality of means and equality of variances is
irrelevant, as the model is then degenerate. Additionally, setting constraints on the means makes the estimation of
the parameters challenging, as detailed in Appendix Extensions of the EM algorithm to overcome its limitations.

2The positive-definiteness constraint can be interpreted from a probabilistic point of view as a necessary
condition such that the generalised integral of the multivariate distribution is defined and sum-to-one over R or
from the statistical definition of the covariance. A symmetric real matrix X of rank D is said to be positive-definite if
for any non-zero vector v,∈ RD , the following constraint v⊤Xv > 0 is enforced.
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• the diagonal family, Σj = diag
(

σ2
1j, . . . , σ2

1D

)
, with σj ∈ RD

+, refers to GMMs whose covariance
matrix is diagonal. Its associated volume representation is an ellipsoid whose main axes are
aligned with the D canonical basis of RD. Of note, the null constraint imposed over the off-
diagonal terms in the spherical and diagonal families imply that the multivariate distribution
can be further decomposed and analysed as the product of univariate independent Gaussian
realisations.

• the ellipsoidal family, also named the general family, refer to GMMs whose covariance matrix,
Σj, can be any arbitrary positive-definite D × D matrix. Thus, the corresponding clusters for
each component J are ellipsoidal, centred at the mean vector µj, and volume and orientation
respectively determined by the eigenvalues and the eigenvectors of the covariance matrix Σj.

In the multivariate setting, the volume, shape, and orientation of the covariances can be con-
strained to be equal or variable across clusters, generating 14 possible parametrisations with dif-
ferent geometric characteristics (Banfield and Raftery 1993; Celeux and Govaert 1992). We review
them in Appendix Parameters estimation in a high-dimensional context and Table 5. Of note, the cor-
relation matrix can be easily derived from the covariance matrix with the following normalisation:

cor(X) =

(
cov(xl ,xm)√

var(xl)×
√

var(xm)

)
(l,m)∈D×D

. Correlation if strictly included between -1 and 1, the

strength of the correlation is given by its absolute value while the type of the interaction is returned by
its sign. A correlation of 1 or -1 between two features indicates a strictly linear relationship.

For the sake of simplicity and tractability, we will only consider the fully unconstrained model in
both the univariate (heteroscedastic and unbalanced classes) and multivariate dimension (unbalanced
and complete covariance matrices for each cluster) in the remainder of our paper.

1.2 Parameter estimation in finite mixtures models

A common way for estimating the parameters of a parametric distribution is the maximum likelihood
estimation (MLE) method. It consists in estimating the parameters by maximising the likelihood,
or equivalently the log-likelihood of a sample. In what follows, ℓ(θ|x1:n) = log( f (x1:n|θ)) is the
log-likelihood of a n-sample. When all observations are independent, it simplifies to ℓ(θ|x1:n) =
∑n

i=1 log( f (xi|θ)). The MLE consists in finding the parameter estimate θ̂ which maximises the log-
likelihood θ̂ = arg max ℓ(θ|x1:n).

Recovering the maximum of a function is generally performed by finding the values at which its
derivative vanishes. The MLE in GMMs has interesting properties, as opposed to the moment estimation
method: it is a consistent, asymptotically efficient and unbiased estimator (Chen 2016; McLachlan and
Peel 2000).

When S is completely observed, for pairs of observations (x1:n, s1:n), the log-likelihood of a finite
mixture model is simply given by Equation (6):

ℓ(θ|X1:n = x1:n, S1:n = s1:n) =
n

∑
i=1

k

∑
j=1

[
log

(
fζ j (xi, si = j)

)
+ log(pj)

]
1si=j

(6)

where an analytical solution can be computed provided that a closed-form estimate exists to
retrieve the parameters ζ j for each components’ parametric distribution. The MLE maximisation, in this
context, involves the estimation of the parameters for each cluster, denoted as ζ j. The corresponding
proportions, pj, can be straightforwardly computed as the ratios of observations assigned to cluster j
relative to the total number of observations, n.

However, when S is unobserved, the log-likelihood, qualified as incomplete with respect to the
previous case, is given by Equation (7):

ℓ(θ|x1:n) =
n

∑
i=1

log


k

∑
j=1

pj fζ j (xi)︸ ︷︷ ︸
sum of of logs

 (7)

The sum of terms embed in the log function (see underbrace section in Equation (7)) makes it
intractable in practice to derive the null values of its corresponding derivative. Thus, no closed form
of the MLE is available, including for the basic univariate GMM model. This is why most parameter
estimation methods derive instead from the EM algorithm, first described in Dempster, Laird, and
Rubin (1977). We describe its main theoretical properties, the reasons for its popularity, and its main
limitations in the next section.
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1.3 The EM algorithm

In cases where both S and the parameters associated to each cluster are unknown, there is no available
closed-form solution that would jointly maximise the log-likelihood, as defined in Equation (7), with
respect to the set of parameters (θ, S). However, when either S or θ are known, the estimation of the
other parameters is straightforward. Hence, the general principle of EM-like algorithms is splitting this
complex non-closed joint MLE estimation of (S, θ) into the iterative estimation of Sq from θ̂q−1 and X
(expectation phase, or E-step of the algorithm) and the estimation of θ̂q from (Sq and X (maximisation
phase, or M-step), with θ̂q−1 being the estimated parameters at the previous step q − 1, until we reach
the convergence.

The EM algorithm sets itself apart from other commonly used methods by taking into account
all possible values taken by the latent variable S. To do so, it computes the expected value of the
log likelihood of θ, conditioned by the posterior distribution Pθ̂q−1

(S|X), also named as the auxiliary
function. Utilising the assumption of independence among observations in a mixture model, the
general formula of this proxy function of the incomplete log-likelihood is given in finite mixture
models by Equation (8).

Q(θ|θ̂q−1) := ES1:n |X1:n ,θ̂q−1
[ℓ(θ|X1:n, S1:n)]

=
n

∑
i=1

k

∑
j=1

ηi(j)
(

log(pj) + log(P(Xi|Si = j, θ))
) (8)

with θ̂q−1 = θ̂ the current estimated parameter value.

In practice, the EM algorithm consists in performing alternatively E-step and M-step until conver-
gence, as described in the pseudocode below (Box 1):

Box 1: the EM algorithm

• step E: determine the posterior probability function ηi(j) for each observation of X for
each possible discrete latent class, using the initial estimates θ̂0 at step q = 0, or the
previously computed estimates θ̂q−1. The general formula is given by Equation (9):

ηi(j) =
pj fζ j (xi)

∑k
j=1 pj fζ j (xi)

(9)

• step M: compute the mapping function θ̂q := M(θ|θ̂q−1) = arg max Q(θ|θ̂q−1) which
maximises the auxiliary function. One way of retrieving the MLE associated to the
auxiliary function is to determine the roots of its derivative, namely solving Equation
(10)a:

∂Q(θ|θ̂q−1)

∂θ
= 0 (10)

aTo ensure that we reach a maximum, we should assert that the Hessian matrix evaluated at the MLE is
indeed negative definite.

Interestingly, the decomposition of the incomplete log-likelihood associated to a mixture model
ℓ(θ|X) reveals an entropy term and the so-called auxiliary function (Dempster, Laird, and Rubin
1977). It can be used to prove that maximising the auxiliary function at each step induces a bounded
increase of the incomplete log-likelihood. Namely, the convergence of the EM algorithm, defined by
comparisons of consecutive log-likelihood, is guaranteed, provided the mapping function returns
the maximum of the auxiliary function. Yet, the convergence of the series of estimated parameters
(θq)q≥0 −→

i→+∞
θ̂ is harder to prove but has been formally demonstrated for the exponential family (a

superset of the Gaussian family), as stated in Dempster, Laird, and Rubin (1977).

Additionally, the EM algorithm is deterministic, meaning that for a given initial estimate θ0 the
parameters returned by the algorithm at a given step q are fixed. However, this method requires the
user to provide an initial estimate, denoted as θ0, of the model parameters and to specify the number
of components in the mixture. We review some classic initialisation methods in Initialisation of the
EM algorithm and some algorithms used to overcome the main limitations of the EM algorithm in the
Appendix Extensions of the EM algorithm to overcome its limitations.
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Finally, the prevalent choice of Gaussian distributions to characterize the distribution of random
observations is guided by a set of interesting properties. In particular, Geary (1936) has shown that
the Normal distribution is the only distribution for which the Cochran’s theorem (Cochran 1934) is
guaranteed, namely for which the the mean and variance of the sample are independent of each other.
Additionally, similar to any distribution proceeding from the exponential family, the MLE statistic is
sufficient3.

1.4 Initialisation of the EM algorithm

EM-like algorithms require an initial estimate of the parameters, θ0, to optimise the maximum like-
lihood. Initialisation is a crucial step, as a bad initialisation can possibly lead to a local sub-optimal
solution or trap the algorithm in the boundary of the parameter space. The most straightforward
initialisation methods, such as random initialisation, are standalone and do not require any addi-
tional initialisation algorithms, whereas meta-methods, such as short-EM, still need to be initialised by
alternative methods. The commonly-used initialisation methods encompass:

• The Model-based Hierarchical Agglomerative Clustering (MBHC) is an agglomerative hierarchical
clustering based on MLE criteria applied to GMMs (Scrucca and Raftery 2015). First, the
MBHC is initialised by assigning each observation to its own cluster. Next, the pair of clusters
that maximises the likelihood of the underlying statistical model among all possible pairs is
merged. This procedure is repeated until all clusters are merged. The final resulting clusters
are then simply the last k cuts of the resulting dendrogram. When the data is univariate and
homoscedastic, or when the underlying distribution has a diagonal covariance matrix, the
merging criterion performs similarly to Ward’s criterion, in that merging of the two clusters also
simultaneously minimizes the sum of squares. As opposed to the other initialisation methods
described hereafter, MBHC is a deterministic method which does not require careful calibration
of hyperparameters. However, as acknowledged by the author of the method (Fraley 1998), the
resulting partitions are generally suboptimal compared to other initialisation methods.

• The conventional random initialization method, frequently employed for the initialization step
of the k-means algorithm, involves the random selection of k distinct observations, which are
referred to as centroids. Subsequently, each observation is assigned to the nearest centroid, a
process reminiscent of the C-step in the CEM algorithm (Biernacki, Celeux, and Govaert 2003).
This is the method used in this paper, unless otherwise stated. Alternative versions of this
method have been developed: for instance, the package mixtools draws the proportions of the
components from a Dirichlet distribution, whose main advantage lies in respecting the unit
simplex constraint (Equation (2))4, but uses binning methods to guess the means and standard
deviations of the components. Similarly, Kwedlo (2013) proposes a method in which the means
of the components are randomly chosen, but with an additional constraint of maximising the
Mahalanobis distance between the selected centroids. This enables to cover a larger portion of
the parameters’ space.

• k-means is a CEM algorithm, in which the additional assumption of balanced classes and
homoscedascity implies that each observation in the E-step is assigned to the cluster with
the nearest mean (the one with the shortest Euclidean distance). K-means is initialised by
randomly selecting k points, known as the centroids. It is often chosen for its fast convergence
and memory-saving consumption.

• The quantile method sorts each observation xi in an increasing order and splits them into equi-
balanced quantiles of size 1/k. Then, all observations for a given quantile are assumed to belong
to the same component. 5

• The Rough-Enhanced-Bayes mixture (REBMIX) algorithm is implemented in the rebmix (Nagode
2022) package and the complete pseudo-code is described thoroughly in (Nagode 2015; Panic,
Klemenc, and Nagode 2020). The key stages implemented by the rebmix algorithm for initialis-
ing the parameters of GMMs encompass:

3The Pitman–Koopman–Darmois theorem (Koopman 1936) states that only the exponential family provides
distributions whose statistic can summarize arbitrary amounts of iid draws using a finite number of values

4Without prior knowledge favouring one component over another, the Dirichlet distribution is generally
parametrised by α = 1

k , implicitly stating that any observation has equal chance to proceed from a given cluster.
In that case, the corresponding distribution is parametrised by a single scalar value α, called the concentration
parameter.

5This method is only available in the univariate framework, since it is not possible to define a unique partition of
the observable space into k-splits. For example, in bivariate setting, a binning with k = 2 components on each axis
leads to a total of 2 × 2 = 4 binned regions, which raises the selection issue of the best k hyper-squared volumes for
the initial parameters estimation. More generally, (D

k ) binning choices are possible in the multivariate setting.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=rebmix


CONTRIBUTED RESEARCH ARTICLE 61

– First, the observations are processed using one of these three methods: k-nearest neigh-
bours (KNN), Parzen kernel density estimation, or binned intervals. With the binned
interval method, the observations are initially divided into

√
nD intervals of equal lengths.

The mode of one of the components’ distribution is subsequently determined by the
midpoint of the interval with the highest frequency. The observations lying within the
interval are used as preliminary estimates, referred to as “rough” parameters in Nagode
(2015).

– All other observations and intervals are then iteratively assigned to the currently estimated
component or to residual components, the ones that have not yet been characterised. The
decision to assign an interval to either the currently estimated component or one of the
residual components depends on the magnitude of the discrepancy between the observed
and the expected frequency within the interval.

– Finally, all intervals assigned to the currently estimated component (and not only the
interval including the mode of the distribution) are used to determine the parameters
of the associated Gaussian distribution. Since this step relies on a more comprehensive
number of observations for parameter estimation, guaranteeing in principle more robust
estimates, this stage is referred to as “enhanced” estimation in Nagode (2015). The
algorithm terminates when all intervals have been assigned to a cluster, and the parameters
of the various distribution components have been estimated.

The rebmix algorithm can thus be seen as a natural extension of the quantile method, with more
rigorous statistical support. Two drawbacks of the algorithm include the need for intensive calibration
of hyperparameters and its inadequacy for the estimation of highly overlapping or high dimensional
mixture distributions6.

• The meta-methods consist generally in short runs of EM-like algorithms, namely CEM, SEM and
EM (see Appendix B: Extensions of the EM algorithm to overcome its limitation), with alleviated
convergence criterion. The main idea is to use several random initial estimates with shorter
runs of the algorithm to explore larger regions of the parameter space and avoid being trapped
in a local maximum. Yet, these methods are highly dependent on the choice of the initialisation
algorithm (Biernacki, Celeux, and Govaert 2003).

• In the high-dimensional setting, if the number of dimensions D exceeds the number of ob-
servations n, all previous methods must be adjusted, usually by first projecting the dataset
into a smaller, suitable subspace and then inferring prior parameters in it. In particular, EM-
MIXmfa, in the mixture of common factor analysers (MCFA) approach, initialises the shared
projection matrix Q by either keeping the first d eigen vectors generated from standard principal
component analysis or uses custom random initialisations (Baek, McLachlan, and Flack 2010).

Following this theoretical introduction, we empirically evaluate the performance of the aforemen-
tioned R packages, considering various initialization algorithms and the complexity of the GMMs
distributions. Precisely, we outline the simulation framework used to compare the seven packages in
Methods and report the results in Results. We conclude by providing a general simplified framework
to select the combination of package and initialisation method best suited to its objectives and the
nature of the distribution of the dataset.

2 A comprehensive benchmark comparing estimation performance of
GMMs

We searched CRAN and Bioconductor mirrors for packages that can retrieve parameters of GMM
models. Briefly, out of 54 packages dealing with GMMs estimation, we focused on seven packages that
all estimate the MLE in GMMs using the EM algorithm, were recently updated and allow the users
to specify their own initial estimates: bgmm, EMCluster, flexmix, GMKMcharlie, mclust, mixtools
and Rmixmod. The complete inclusion process is detailed in Appendix C, the meta-analysis workflow
for the final selection of CRAN and Bioconductor platforms. The flowchart summarising our choices is
represented in Figure 1.

6The method we describe here to preprocess the observations in order to estimate the empirical density
estimation, namely the “histogram method” is not well suited for high dimensional data, as the exponential
growth of the volume with respect to dimensionality leads to data sparsity, related to the well-known issue of the
“curse of dimensionality”. Indeed,

√
nD distinct intervals will be parsed by the method and the probability with

an increasing number of features and decreasing number of observations that no clear local maximum emerges
converges to 1. In high-dimensional context, the Parzen window or the KNN method should be favoured, see
(Nagode 2015), p. 16.
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Figure 1: A minimal roadmap used for the selection of the packages reviewed in our benchmark.

We also include two additional packages dedicated specifically to high-dimensional settings,
namely EMMIXmfa (Rathnayake et al. 2019) and HDclassif (Berge, Bouveyron, and Girard 2019) to
compare their performance with standard multivariate approaches in complex, but non degenerate
cases. We summarise the main features and use cases of the seven + two reviewed packages in Table
1. The three most commonly used packages are mixtools, mclust and flexmix. However, the mclust
package is by far the most complete with many features provided to visualise and evaluate the quality
of the GMM estimate. bgmm has the greatest number of dependencies, while mclust only depends
of base R packages. Additionally, in parallel to clustering tasks, flexmix and mixtools packages
perform regression of mixtures and implement mixture models using other parametric distributions
or non-parametric methods via kernel-density estimation.

Table 1: Main features of the reviewed packages, sorted by decreasing number of daily downloads.
Downloads per day returns the daily average number of downloads for each package on the last 2 years.
Recursive dependencies column counts the complete set of non-base packages required, as first-order
dependencies depend on other packages as well.

Package Version Regression Implemented
models

Downloads
per day

Last
update Imports Recursive

dependencies Language

mclust 5.4.7 5223 31/10/2022 R (≥ 3.0) 0 Fortran

flexmix 2.3-17
Poisson, binary,
non-parametric,
semi-parametric

3852 07/06/2022 R (≥ 2.15.0), modeltools,
nnet, stats4 3 R

mixtools 1.2.0
multinomial, gamma,

Weibull, non-parametric,
semi-parametric

178 05/02/2022 R (≥ 3.5.0), kernlab,
segmented, survival 6 C

Rmixmod 2.1.5 39 18/10/2022 R (≥ 2.12.0), Rcpp,
RcppEigen 4 C++

EMCluster 0.2-13 33 12/08/2022 R (≥ 3.0.1), Matrix 3 C

bgmm 1.8.4 27 10/10/2021 R (≥ 2.0),
mvtnorm, combinat

77 R

GMKMcharlie 1.1.1 12 29/05/2021 Rcpp, RcppParallel,
RcppArmadillo 3 C++

EMMIXmfa 2.0.11 12 16/12/2019 NA 0 C
HDclassif 2.2.0 35 12/10/2022 rARPACK 13 R

We further detail features specifically related to GMMs in Table 2. We detail row after row its
content below:

• The parametrisations used to provide parsimonious estimation of the GMMs are reviewed in
Parameter estimation in finite mixtures models and summarised in rows 1 and 2 (Table 2) for the
univariate and multivariate setting. We refer to the package as “canonical” when it implements
both homoscedastic and heteroscedastic parametrisations in the univariate setting, and the
14 parametrisations listed in Supplementary Table 3 in the multivariate setting. Adding the
additional constraint of equi-balanced clusters results in a total to 14 × 2 = 28 distinct models
and 2 × 2 = 4 parametrisations, respectively in the univariate and multivariate setting. Since
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EMMIXmfa and HDclassif are dedicated to the analysis of high-dimensional datasets, they
project the observations in a smaller subspace and are not available in the univariate setting.
Given an user-defined or prior computed intrinsic dimension, we can imagine using any of the
standard parametrisations available for instance in the mclust package, and listed in Appendix
Parsimonious parametrisation of multivariate GMMs. In addition, HDclassif allows each cluster j
to be represented with its own subspace intrinsic dimension dj, as we describe in further details
in Appendix Parameters estimation in a high-dimensional context.

• The EM algorithm is the most commonly employed method for estimating the parameters of
GMMs, however, alternative algorithms based on the EM framework, are reviewed in Appendix
B: Extensions of the EM algorithm to overcome its limitations and row 3 of Table 2. Especially, GMMs
estimation is particularly impacted by the presence of outliers, justifying a specific benchmark
(see Appendix A small simulation to evaluate the impact of outliers). We briefly review the most
common initialisation algorithms in section Initialisation of the EM algorithm and row 4 of
Table 2, a necessary and tedious task for both the EM algorithm and its alternatives.

• To select the best parametrisations and number of components that fit the mixture, several met-
rics are provided by the reviewed packages (Model selection and row 5). Due to the complexity of
computing the true distribution of the estimated parameters, bootstrap methods are commonly
used used to derive confidence intervals (see Appendix Derivation of confidence intervals in GMMs
and row 6 in Table 2).

• Six packages supply several functions for visualisation, summarised in the last row of Table 2, to
display either the distributions corresponding to the estimated parameters or compare quickly
the performance across packages. However, mclust is by far the most complete one, with density
plots (in the univariate setting) and isodensity plots (bi-dimensional in the bivariate setting
or in higher dimensions after appropriate dimensionality reduction), with the option to plot
custom confidence intervals and critical regions, and finally boxplot bootstrap representations
for displaying the distribution of the benchmarked estimated parameters.

High-dimensional packages provide specific representations adjusted to the high-dimensional
settings, notably allowing the user to visualise the projected factorial representation of its dataset in a
two or three-dimensional subspace. They also provide specialised performance plots, notably scree
plots or BIC scatter plots to represent in a compact way numerous projections and parametrisations.

Table 2: Custom features associated to GMMs estimation for any of the benchmarked packages.

mclust flexmix mixtools Rmixmod EMCluster bgmm GMKMcharlie EMMIXmfa HDclassif

Models Available (univariate) canonical unconstrainedcanonical canonical unconstrainedcanonical unconstrained NA NA

Models Available (multivariate) canonical
unconstrained
diagonal
or general

unconstrainedcanonical unconstrained

4 models
(diagonal
and
general,
either
compo-
nent
specific or
global)

unconstrained

4 models
(either
component-
wise or
common,
on the
intrinsic
and
diagonal
residual
error co-
variance
matrices)

canonical
on
projected
dimen-
sion

Variants of the EM algorithm VBEM SEM,
CEM ECM SEM,

CEM CW-EM, MML AECM SEM,
CEM

Initialisation hierarchical clustering,
quantile

short-EM,
random random

random,
short-EM,
CEM,
SEM

random,
short-EM

k-means,
quantile k-means

k-means,
random,
heuristic

short-EM,
random,
k-means

Model or Cluster Selection BIC, ICL, LRTS AIC, BIC,
ICL

AIC, BIC,
ICL,
CAIC,
LRTS

BIC, ICL,
NEC

AIC, BIC,
ICL, CLC GIC BIC, ICL,

CV

Bootstrap Confidence Intervals

Visualisation

performance, histograms
and boxplots of
bootstrapped estimates,
density plots (univariate),
scatter plots with
uncertainity regions and
boundaries (bivariate),
isodensity (bivariate , 2D
projected PCA or
selecting coordinates)

density
curves

density
curves,
scatter
plots with
uncer-
tainty
bound-
aries

performance,
scatter
plots with
uncer-
tainty
bound-
aries

projected
factorial
map

projected
factorial
map, per-
formance
(Cattell’s
scree plot,
BIC per-
formance,
slope
heuristic)

2.1 Methods

In addition to the the seven packages selected for our benchmark, we include a custom R implementa-
tion of the EM algorithm used as baseline, referred to as RGMMBench, and for the high-dimensional
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setting we select packages EMMIXmfa and HDclassif, on the basis of criteria detailed in Appendix C,
General workflow. Code for RGMMBench is provided in Appendix Application of the EM algorithm to
GMMs. To compare the statistical performances of these packages, we performed parametric bootstrap
(Derivation of confidence intervals in GMMs) and built an experimental design to cover distinct mixture
distributions parameter configurations, using prior user-defined parameters.

For each experiment, we assign each observation to an unique cluster by drawing n labels S1:n from
a multinomial distribution whose parameters were the prior user-defined proportions p = (p1, . . . , pk).
Then, each observation xi assigned to hidden component j is drawn from a Normal distribution using
the stats::rnorm() function for the univariate distribution and MASS::mvrnorm for the multivariate
distribution. The complete code used for simulating data is available on GitHub at RGMMBench.
Finally, we obtain an empirical distribution of the estimated parameters by computing the MLE of
each randomly generated sample.

For all the packages, we used the same convergence threshold, 10−6, and maximum of 1,000
iterations, as a numerical criterion for convergence. We generated simulated data with n = 200
observations in the univariate setting and n = 500 observations in the bivariate setting. We set the
number of observations in order to minimise the probability of generating a sample without drawing
any observations from one of the components7. Unless stated explicitly, we kept the default hyper-
parameters and custom global options provided by each package. For instance, the flexmix package
has a default option, minprior, set by default to 0.05, which removes any component present in the
mixture with a ratio below 0.05. Besides, the fully unconstrained model was the only one which
we implemented both in the univariate and multivariate settings, as it is the only parametrisation
implemented in all the seven packages.

We compared the packages’ performances using five initialisation methods: random, quantile,
k-means, rebmix and hierarchical clustering in the univariate setting. We benchmarked the same
initialisation methods in the multivariate setting, except for the quantile method which has no
multivariate equivalent (see section Initialisation of the EM algorithm):

• We used the function EMCluster::rand.EM() with 10 random restarts and minimal cluster
size of 2 for the random initialisation. The method implemented by EMCluster is the most
commonly used, described in details in Biernacki, Celeux, and Govaert (2003) and in section
Initialisation of the EM algorithm.

• To implement the k-means initialisation, we used the stats::kmeans() function with a conver-
gence criterion fo 10ˆ{-2} and maximum of 200 iterations. The initial centroid and covariance
matrix for each component were computed by restricting to the sample observations assigned to
the corresponding component. The approach is close to the one adopted by the CEM algorithm
(see Appendix B: Extensions of the EM algorithm to overcome its limitations).

• We used the mclust::hcV() function for the MBHC algorithm. This method has two main
limitations: just like the k-means implementation, it only returns a cluster assignment to each
observation instead of the posterior probabilities, and the splitting process to generate the
clusters sometimes results in clusters composed of only one observation. To avoid this, we
added a small epsilon to each posterior probability.

• We used in the univariate setting bgmm::init.model.params for the quantiles initialisation.

• To implement the rebmix method, we used the rebmix::REBMIX function, using the kernel density
estimation for the estimation of the empirical density distribution coupled with EMcontrol set to
one to prevent the algorithm from starting EM iterations.

• Any of the seven packages could be used to implement the small EM method. We decided
to use the mixtools::normalmixEM as it is the closest one to our custom implementation. We
specified 10 random restarts, a maximal number of iterations of 200 and an alleviated absolute
threshold of 10−2. Preliminary experiments have led us to consider the removal of the small EM
initialization method from the simulation benchmark. This decision is based on the observation
that the differences of performance observed between the packages were no longer significant
(see supplementary Figure 9).

We sum up in Table 3 the general configuration used to run the scripts. Additionally, all simulations
were run with the same R (R Core Team 2023) version 4.0.2 (2020-06-22).

Preliminary experiments suggested that the quality of the estimation of a GMM is mostly affected
by the overlap between components’ distribution and level of unbalance between components. We
quantified the overlap between two components by the following overlap score (OVL, see Equation
(11)), with a smaller score denoting well-separated components:

7It is especially critical in cases of highly unbalanced configurations, as detailed in Appendix Practical details for
the implementation of our benchmark
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Table 3: Global options shared by all the benchmarked packages.

Initialisation methods Algorithms Criterion threshold Maximal iterations Number of observations

midrule hc, kmeans, small
EM,rebmix, quantiles,

random

EM R, Rmixmod, bgmm,
mclust, flexmix,

EMCluster, mixtools,
GMKMCharlie

10−6 1000 100, 200, 500, 1000, 2000,
5000, 10000

OVL(i, j) =
∫

min( fζi (x), fζ j (x))dx with i ̸= j (11)

We may generalise this definition to k components by averaging the individual components’
overlap. We use the function MixSim::overlap from the MixSim package (Melnykov, Chen, and
Maitra 2021) that approximates this quantity using a Monte-Carlo based method (see appendices An
analytic formula of the overlap for univariate Gaussian mixtures and Practical details for the implementation of
our benchmark for further details).

The level of imbalance may be evaluated with entropy measure (Equation (12)):

H(S) = −
k

∑
j=1

pj logk(pj) (12)

with k is the number of components and pj = P(S = j) is the frequency of class j.
We considered 9 distinct configuration parameters, associated with distinct values of OVL and

entropy in the univariate setting, 20 configurations in the bivariate setting, and 16 configurations in
the high-dimensional setting. Briefly, in the univariate setting, we simulated components with the
same set of four means (0, 4, 8, and 12), three sets of mixture proportions
[(0.25, 0.25, 0.25, 0.25); (0.2, 0.4, 0.2, 0.2); (0.1, 0.7, 0.1, 0.1)] and three variances: (0.3, 1, 2). In the bivari-
ate setting, we consider two sets of proportions: [(0.5, 0.5); (0.9, 0.1)], two sets of coordinate centroids:
[(0; 20), (20, 0)] and [(0; 2), (2, 0)], the same variance of 1 for each feature and for each component for
illustrative purposes of the direct relation linking the correlation and the level of OVL and five sets of
correlation:[(−0.8,−0.8); (0.8,−0.8); (−0.8, 0.8); (0.8, 0.8); (0, 0)].

Finally, we tested eight configurations in the high-dimensional framework, setting to D = 10 the
number of dimensions. We modified the level of overlap (definition is reported in Equation (11)) and
the imbalance between the component proportions across our simulations. Additionally, we tested
two types of constraints on the covariance matrix: fully parametrised and spherical (see Appendix
Parsimonious parametrisation of multivariate GMMs). Each of the parameter configurations tested in
the high-dimensional setting was evaluated with n = 200 observations and n = 2000 observations.
Additionally, instead of manually defining the parameters for the high-dimensional simulation, we
used the MixSim function from the MixSim package (Melnykov, Chen, and Maitra 2021). This function
returns the user a fully parametrised GMM, with a prior defined level of maximum or average
overlap8.

The complete list of parameters used is reported respectively in Table 4 for the univariate setting,
Table 5 for the bivariate setting and 6 for the high-dimensional setting. We benchmarked simulations
where the components were alternatively very distinct or instead very overlapping, as well as of equal
proportions or instead very unbalanced. The adjustments made to meet the specific requirements of
high dimensional packages are detailed in Practical details for the implementation of our benchmark.

We report the most significant results and features and the associated recommendations in next
section Results.

2.2 Results

All figures and performance overview tables are reported in Supplementary Figures and Tables in the
univariate simulation for the univariate setting, Supplementary Figures and Tables in the bivariate simulation
for the bivariate scenario and Supplementary Figures and Tables in the HD simulation for the high
dimensional scenario.

Balanced and non-overlapping components

8Unfortunately, as discussed in further details in Appendix An analytic formula of the overlap for univariate Gaussian
mixtures, the MixSim package does not compute the global distribution overlap, but instead returns the mean
of pairwise overlap between any component (however, with two components, these two alternative definitions
match.) Finally, it is not possible to set the proportions of the components before the generation of the parameters,
except for clusters with equal proportions, and contrary to the expect behaviour of additional parameter PiLow,
supposed to define the smallest mixing proportion.
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In the univariate setting, with balanced components and low OVL (scenario U1 in Table 4), the
parameter estimates are identical in most cases across initialisation methods and packages, notably
the same estimates are returned with k-means or rebmix initialisation. However, the random initial-
isation method leads to a higher variance and bias on the parameter estimates than other methods
(Supplementary Figure 4 and Supplementary Table 6), with some estimates fitting only local maxima,
far from the optimal value.

Similarly, the scenarios in the bivariate setting (configurations B6-B10 in Table 5), with a focus on B6,
B7 and B10 visualised in Supplementary Figure 16, feature well-separated and balanced components.
Consistent with conclusions from the corresponding univariate configurations, all benchmarked
packages return the same estimates across initialisation methods.

Unbalanced and non-overlapping components

However, with unbalanced classes and low OVL (scenario U7 in 4), the choice of the initialisation
method is crucial, with quantiles and random methods yielding more biased estimates and proned to
fall in local maximum. Rebmix initialisation provides the best estimates, with the smallest MSE and
bias across packages (Supplementary Figure 5 and supplementary Table 7, always associated with
the highest likelihood. Overall, with well-discriminated components, most of the differences on the
estimation originate from the choice of initialisation method, while the choice of the package has only
small impact.

In the bivariate framework, two configurations featured both strongly unbalanced and well-
separated components, similarly to scenario U3 in Table 4: the configurations B12 (Supplementary
Figure 12 and Table 12) and B14 (Supplementary Figure 13 and Supplementary Table 13). Similarly,
configurations B16, B17 and B20 (Table 5) with similar characteristics are summarised in supplementary
Figure 17. In all these configurations, neither the initialisation method nor the package have a statistical
significant impact on the overall performance.

Similarly, configurations HD1a-HD4b in Table 6) in the high dimensional setting display well-
separated clusters, with a representative outcome represented in Supplementary Figure 19 and
Supplementary Table 16. Consistent with the results obtained in the analogous univariate and bivariate
scenarios, in the unbalanced and non-overlapping framework, the majority of the benchmarked
packages produce highly consistent and similar estimates when hierarchical clustering and k-means
were used for parameter initialisation. However, bgmm and EMCluster clearly perform worse when
the rebmix initialization method is used (however, overall, rebmix performs poorly, regardless of the
package used for estimation). Notably, initialisations with the rebmix package tend to display a much
larger number of poor estimations, some of which can be identified with the local maxima associated
with parameter switching between the two classes. Finally, the two additional packages dedicated to
high-dimensional clustering display the worst performances, with EMMIXmfa returning the most
biased parameters and HDclassif the most noisy estimates. EMMIXmfa is the only package that
returned highly biased estimates of the components’ proportions in this setting.

Balanced and overlapping components

When the overlap between components increases, the bias and variability of the estimates tends to
increase, and the choice of initialisation method becomes more impactful. The least biased and noisy
estimations with balanced components in the univariate setting (scenario U3 in Table 4) are obtained
with the k-means initialisation (Supplementary Figure 3 and Table 8) while the rebmix initialisation
returns the most biased and noisy estimates. Similar results are found in the bivariate setting with a
balanced and highly overlapping two-component GMM (configurations B1-B5 from Table 5), with
the best performance reached with the k-means initialisation method, followed by MBHC. This is
emphasised in supplementary Figure 16, in the top three most complex configurations, namely B1, B2
and B5. If the shape of the covariance matrix is well-recovered, no matter the package, the Hellinger
distances are significantly higher (and thus the estimate further away from the target distribution)
with the random and rebmix methods.

Similarly, in the high-dimensional scenario HD7 of Table 6), presenting balanced but highly
overlapping clusters with a full covariance structure, the best performance was obtained with k-means
initialisation, while the rebmix initialisation returned the most biased and noisy estimates. While
EMMIXmfa performed well when it converged, it returned an error in most cases (see Column Success
of supplementary Table 17). The least biased estimates were returned by mixtools and Rmixmod
and the least noisy by flexmix, mclust and GMKMCharlie (smaller MSE). Interestingly, in the high-
dimensional setting, the packages EMCluster and bgmm exhibited worse performance. In particular,
as can be seen in panel E of supplementary Figure 20, the proportions of the components recovered
the ]0 − 1[k simplex.

Conversely, the EMCluster package, and to a lesser extent, the bgmm package, performed sur-
prisingly well when datasets were simulated with an underlying spherical covariance structure, even
though the estimation was not performed explicitly with this constraint (Supplementary Table 19).
Indeed, it seems like that the off-diagonal terms tended to converge towards 0, as showcased in
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Supplementary Figure 21, in Panel C, in which the fourth row from top represents the bootstrap
intervals associated to the pairwise covariance between dimension 1 and 2 of each cluster.

Unbalanced and overlapping components

With unbalanced components and high OVL (scenario U9 in Table 4), all packages, no matter the
initialisation method, provided biased estimates, with a higher variability of the parameter estimates
compared to other configurations. The least biased estimates were obtained with k-means or random
initialisation, but with a higher variability on the estimates with random initialisation (Supplementary
Table 9). Delving further into the individual analysis of the parameter estimates associated to each
component, we found out that the least biased estimates were achieved with rebmix initialisation
for the most distinguishable components. For instance, in our configuration, the clusters 2 and 4
(see Supplementary Figure 7 and Table 9) were better characterised with the rebmix method. This
observation aligns with the rebmix’s underlying framework, using the modes of the distribution for
initialising the component (Nagode 2015). With highly-overlapping distributions and unbalanced
components, both the choice of the initialisation algorithm and the package have a substantial impact
on the quality of the estimation of this mixture.

Two configurations in our bivariate simulation feature distributions with both strong OVL and
unbalanced components. Especially, the scenario B11 (Table 5) has the strongest OVL overall, with
notably a risk of wrongly assigning minor component 2 to major component 1 of 0.5 (a random method
classifying each observation to cluster 1 or 2 would have the same performance).

First, we observe that the the random and rebmix initialisation methods have similar performance,
significantly better than k-means or MBHC (Supplementary Figure 11). Specifically, the rebmix
method returns the least biased estimates, while the random method is associated with the lowest
MSE (respectively for configurations B11 and B15, the supplementary Tables 11 and 14). Second, the
estimates differ across packages only in these two complex configurations, with packages Rmixmod
and mixtools returning more accurate estimates than the others. It it is particularly emphasised in
Scenario B15, where the component-specific covariance matrices are diagonal with same non-null
input, and thus should present spherical density distributions. However, only the first class of
packages correctly recovers the spherical bivariate 95% confidence regions while they are slightly
ellipsoidal with the second class of packages (Panel B, Supplementary Figure 14).

With full covariance structures and unbalanced proportions, as depicted in the high-dimensional
Scenario HD8a) and b) of Table 6, the general observations stated in the previous subsection for the
high dimensional setting hold, namely that the least biased estimates are returned by packages not
specifically designed for high-dimensional data, with the k-means initialisation (Supplementary Table
12 and supplementary Figure 22). Furthermore, the EMCluster and bgmm packages and the two
packages dedicated to high-dimensional, perform similarly with n = 200 observations (sub-scenario
a) and n = 2000 observations (sub-scenario b), whereas we would expect narrower and less biased
confidence intervals by increasing the number of observations by a factor of 10.

Finally, with spherical covariance structures and unbalanced proportions, the best performances,
both in terms of bias and variability, are obtained with flexmix, mclust and GMKMCharlie. Indeed,
as detailed later in Conclusions, these packages are more sensitive to the choice of the initialisation
method and have a greater tendency to get trapped in the neighbourhood of the initial estimates (Sup-
plementary Table 19 and supplementary Figure 22). Accordingly, k-means initialisation performs best
since it assumes independent and homoscedastic features for each cluster. Furthermore, EMMIXmfa is
the package that best estimates the off-diagonal terms in this setting, as highlighted in supplementary
Table 19.

Identification of two classes of packages with distinct behaviours

By summarizing the results obtained across all simulations, we identify two classes of packages
with distinct behaviours (Figure 2):

• The first class of packages, represented by Rmixmod and mixtools, returns similar estimates to
our baseline EM implementation. The estimates returned by these packages are less biased but
at the extent of a higher variability on the estimates. Additionally, with overlapping mixtures,
they tend to be slower compared to the second class, since they require additional steps to reach
convergence.

• The second class of packages, composed of the other reviewed packages, is more sensitive to
the initialisation method. This leads to more biased but less variable estimates, especially when
assumptions done by the initialisation algorithm are not met.

Panels A, B and C display, respectively in the univariate, bivariate and high-dimensional setting,
the heatmap of the Pearson correlation between the estimated parameters across the benchmarked
packages for the most discriminative scenario (the one featuring the most unbalanced and overlapping
components): scenario U9, Table 4 in the univariate setting, scenario B11, Table 5, for the bivari-
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Figure 2: Panels A, B and C show respectively the heatmap of the Pearson correlation in the univari-
ate, bivariate and high-dimensional framework between the parameters estimated by the packages,
evaluated for the most discriminating and complex scenario. The correlation matrix was computed
using the function stats::cor with option complete to remove any missing value related to a failed
simulation, and the heatmap generated with the Bioconductor package ComplexHeatmap. Panel D
represents a tree summarising the main differences between the benchmarked packages, in terms of
the EM implementation. They are discussed in more detail in Appendix EM-implementation differences
across reviewed packages.

ate simulation and scenario HD8, Table 6 for the high-dimensional simulation, with the k-means
initialisation.

We further identified with this representation minor differences for the estimation of the pa-
rameters between Rmixmod and mixtools, while three subgroups can be identified in the second
class of packages: the first subset with bgmm and mclust, the second subset with EMCluster and
GMKMcharlie packages and the flexmix package, which clearly stands out from the others, as being
the one most likely to be trapped at the boundaries of the parameter space. After examining the
source codes of the packages, we attribute this differences to custom implementation choices of the
EM algorithm, such as the way numerical underflow is managed or the choice of a relative or absolute
scale to compare consecutive computed log-likelihoods (see Appendix EM-implementation differences
across reviewed packages and Panel D, Figure 2). In the high-dimensional setting, the second class of
packages showed additional heterogeneity, with EMCluster and bgmm setting themselves apart from
the other three packages.

Failed estimations

Finally, in some cases, neither the specific EM algorithm implemented by each package nor the
initialisation method were able to return an estimate with the expected number of components, or
converged to a degenerate distribution (e.g., with infinite or zero variances). In that case, we considered
the estimation as failed and accordingly we did not include it into the visualisations and the summary
metric tables.

Most of the failed estimations occurred with the rebmix initialisation. Indeed, an updated version
of the package forced the user to provide a set of possible positive integer values for the number
of components, with at least a difference of two between the model with the most components and
the model with the least components (we therefore set the parameter cmax to k + 1 and cmin to
k − 1).In scenarios where the distributions associated with each cluster exhibit significant overlap,
there is an increased risk of incorrectly estimating the number of components. This arises from the
inherent difficulty of discerning the modes within the overall distribution. For instance, in the most
complex scenario B11, characterized by strong overlap and imbalanced clusters (refer to Table 5),
up to 20% of initialisations were unsuccessful. Similarly, in the second most challenging scenario,
B15, approximately 10% of initializations failed against an averaged number of 4% of the simulations
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exhibiting an inaccurate estimation of the number of components.

Removing errors proceeding from the initialisation method, only the flexmix package failed in
returning an estimate matching the user criteria in some configurations of the univariate and bivariate
settings. In both cases, the strong assumption that any cluster with less than 5% of the observations is
irrelevant, results in trimming one or more components9. This strong agnostic constraint on component
proportions led to failures in configurations featuring strongly overlapping clusters, with up to 20%
failed estimations with the random initialisation method in scenario B11 (Table 5) and 80% failed
estimations in the univariate setting10 with the rebmix initialisation with scenario U9, Table 4.

In a relatively high dimensional framework, as tested on our third benchmark (Table 6), none
of the algorithms that were initialised with the random method (EMCluster::rand.EM()) converged
successfully. Indeed, of the 16 configurations tested, the covariance returned during the initialisation
was systematically non-positive definite for at least one of the components, violating the properties
of covariance matrices. Furthermore, an analysis of summary metrics in scenarios HD1 and HD8,
reported in supplementary Tables 20 and 21, revealed a notably higher rate of failures when employing
rebmix initialisation in conjunction with packages tailored for high dimensionality, such as HDclassif
EMMIXmfa. This discrepancy was in stark contrast to the more reliable and consistent initial estimates
returned by k-means or hierarchical clustering.

Furthermore, as shown by the comparison of summary metrics with n = 200 and n = 2000
observations in supplementary Tables 20 and 21, respectively for the simplest scenario HD1 and the
most complex one HD8, the rebmix initialisation on the one hand, and the packages dedicated to high
dimensionality or those of the second class of packages that show a particular behaviour, present
much more failures than the k-means or hierarchical clustering initialisation.

3 Conclusions

There are many packages that implement the EM algorithm for estimating the parameters of GMMs.
But only few are regularly updated, implement both the unconstrained univariate and multivariate
GMM, and enable the user to provide its own initial estimates. Hence, among the 54 packages dealing
with GMMs available on CRAN or Bioconductor repositories, we focused our review on 7 packages
which implement all of these features. We believe that our in-depth review of the packages can help
users to quickly find the best package for their clustering pipeline and highlight limitations in the
implementation of some packages. Our benchmark covers a much broader range of configurations
than the previously-published studies (Nityasuddhi and Böhning 2003; Lourens et al. 2013; Leytham
1984; Xu and Knight 2010), as we studied the impact of the level of overlap and the imbalance of the
mixture proportions on the quality of the estimation.

Interestingly, the EM algorithm occasionally yields biased and inefficient estimates when the
components overlap a lot, which agrees with the past literature (Lourens et al. 2013; Leytham 1984; Xu
and Knight 2010). This appears to go counter to the theoretical results presented by Leytham (1984),
which demonstrated the asymptotic consistency, unbiasedness, and efficiency of maximum likelihood
estimates of GMMs. However, it’s important to note that this theoretical demonstration relies on the
definition of a “local” environment, necessitating the prior setting of boundaries within which the
theorem’s conditions are met (in other words, the definition of the support, which delineates the region
where the initial values can be sampled from). It’s not then surprising that the EM algorithm struggles
in reaching the global maximum of the distribution in the presence of multiple local extremes.

When all components are well-separated or have a relatively small number of components (three or
fewer), we found that the best estimation (lowest MSE and bias) is reached with the latest initialisation
method developed, namely the rebmix one. Notably, the global maximum is always properly found in
our simulations with distinguishable components. Yet, with overlapping components, the least biased
and variable estimates overall are obtained with k-means initialisation, enforcing the robustness of the
method while the assumptions for using it are not met.

On the contrary, with unbalanced and numerous components (above three), the quantiles initiali-
sation leads to the most biased estimates while the rebmix initialisation induces the highest variability.
Indeed, rebmix initialisation is not fit for highly overlapping mixtures, since one of its most restrictive
assumption is that each generated interval of the empirical mixture distribution can be associated
unambiguously to a component (see Initialisation of the EM algorithm and Nagode (2015)).

Furthermore, rebmix is not particularly adjusted to deal with high-dimensional mixtures, display-
ing systematically poorer performance compared to other initialisation strategies, such as k-means or
hierarchical clustering, as illustrated by the summary metrics listed in Appendix Supplementary Figures

9With a two-components mixture like our bivariate scenario, this even implies to consider an unimodal distribu-
tion of the dataset

10the gap proceeds from the stronger level of imbalance and the greater number of components
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and Tables in the HD simulation. Higher risk of returning a sub-optimal extremum likely arises from the
increased data sparsity in high dimensional datasets, which grows as the square root of the number of
dimensions

√
D (Convergence of distance definitions). Thus, we expect that most of the equally-large

intervals binning the sampling space and that are used to initiate the rebmix algorithm contain either
no or only observation, preventing from retrieving the numerically defined mode of the distribution
and increasing the risk of initiating the algorithm in a spurious neighbourhood.

About the remaining initialisation strategies, we observed that, even in the well-separated case,
random initializations can sometimes yield highly biased estimates, far from the true parameter values.
Consistent with our observations, it was shown in Jin et al. (2016) that the probability for the EM
algorithm to converge from randomly initialised estimates to a local suboptimal maximum is non
null above two components, increasing with the number of components. Additionally, the local
maximum of the likelihood function obtained can be arbitrarily worse than the global maximum.
Finally, hierarchical clustering does not take into account any uncertainty on the assignment for an
observation to a given class, which explains its rather bad performances with overlapping components.
Overall, there is always an initialisation algorithm performing better than the hierarchical clustering,
and further it is also by far the slowest and most computationally intensive initialisation method (see
supplementary Figure 10).

Our study reveals that while the EM algorithm is supposed to be deterministic, the estimates
obtained from its implementations can differ across packages. We were able to link these differences
with custom choices of EM implementations across the benchmarked packages. Two distinct classes of
packages emerge, each with specific approaches to address certain limitations of the EM algorithm.
The first class, exemplified by mixtools and Rmixmod typically yields smaller but less biased estimates
that exhibit lower sensitivity to the choice of initialization method. However, these estimates tend to
have higher variability and require longer running times to achieve convergence. The second class,
composed of the remaining packages, provide estimates with reduced MSE, but at the extent of a
higher bias on the estimates. One plausible explanation is that the first class of packages, comparing
absolute iterations of the function to be maximised, tends on average to perform more iterations. The
estimated results are accordingly more consistent and closer to the true MLE estimation but at the
expense of an increased risk of getting trapped in a local extrema or a plateau, explaining the greater
number of outliers observed. Among them, flexmix stands out by choosing an unbiased but non
MLE-estimate of the covariance matrix, without any clear improvement of the overall performance in
our simulations.

Based on these results, we design a decision tree indicating the best choice of package and
initialisation method in relation with the shape of the distribution, displayed in Figure 3. Interestingly,
our conclusions are consistent between the univariate and bivariate settings. Furthermore, most of the
general recommendations on the best choices of packages with respect to the characteristics of the
mixture model generally hold in a relatively higher dimensional setting11. From this, we assume that
projection into a lower-dimensional space is only beneficial in a very high-dimensional setting, for
example when the number of dimensions exceeds the number of observations, or when unrestricted
parameter estimation (with the full covariance structure) is practically infeasible for computational
reasons.

Comparing all these packages suggest several improvements.

1. The use of C++ code speeds up the convergence of the EM algorithm compared to a native R
implementation.

2. All packages dealing with GMMs should use k-means for overlapping, complex mixtures and
rebmix initialisation for well-separated components, provided that the dimension of the dataset
is relatively small. The final choice between these two could be set after a first run or visual
inspection aiming at determining roughly the level of entropy across mixture proportions and
the degree of overlap between components.

3. The packages should allow the user to set their own termination criteria (either relative or
absolute log-likelihood or over the estimates after normalisation). Interestingly, EMMIXmfa is
the only package among those examined that allows the user to consider an absolute or relative
convergence endpoint of the EM algorithm, through the conv_measure attribute, with diff and
ratio options respectively.

4. With a great number of components or complex overlapping distributions, the optimal package
should integrate prior information when available, e.g. via Bayesian estimation.

While mclust appeared as the most complete package to model GMMs in R, none of the packages
reviewed in this report features all the characteristics mentioned above. We thus strongly believe that

11We should note, however, that a larger sample space revealed that the packages bgmm and EMCluster display
more biased and noisy parameters compared to the other packages benchmarked and that their performance was
surprisingly unaffected by the number of simulated realisations
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Figure 3: A decision tree to select the best combination of package and initialisation method with
respect to the main characteristics of the mixture. It’s worth pointing that in both univariate and low
dimension multivariate settings, the recommandations are similar.

our observations will help users identify the most suitable packages and parameters for their analyses
and guide the development or updates of future packages.

4 Simulation settings

For ease of reading, we reproduce below the parameter configurations used to run the three bench-
marks, respectively for the univariate (Table 4), bivariate (5) and high dimensional setting (Table
6).

Table 4: The 9 parameter configurations tested to generate the samples of the univariate experiment,
with k = 4 components.

ID Entropy OVL Proportions Means Correlations

U1 1.00 3.3e-05 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U2 1.00 5.7e-03 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U3 1.00 2.0e-02 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 2 / 2 / 2 / 2

U4 0.96 3.3e-05 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U5 0.96 5.8e-03 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U6 0.96 2.0e-02 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 2 / 2 / 2 / 2

U7 0.68 2.7e-05 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U8 0.68 4.4e-03 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U9 0.68 1.5e-02 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 2 / 2 / 2 / 2

5 Additional files

• Additional files related to the univariate setting

– S1. Bootstrap distributions of the estimated parameters for each scenario described in 4.
– S2. Mean, standard deviation, bias and MSE for each individually estimated parameter in

configurations listed in 4.
– S3. Distribution of the running times taken for the EM estimation of the parameters of the

GMM, across all nine configurations described in 4, for each benchmarked package. We
selected the k-means algorithm to initialise the EM algorithm, as being the least variable
for a given package and scenario.
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Table 5: The 20 parameter configurations tested to generate the samples of the bivariate experiment.

ID Entropy OVL Proportions Means Correlations

B1 1.00 0.15000 0.5 / 0.5 (0,2);(2,0) -0.8 / -0.8

B2 1.00 0.07300 0.5 / 0.5 (0,2);(2,0) -0.8 / 0.8

B3 1.00 0.07300 0.5 / 0.5 (0,2);(2,0) 0.8 / -0.8

B4 1.00 0.00078 0.5 / 0.5 (0,2);(2,0) 0.8 / 0.8

B5 1.00 0.07900 0.5 / 0.5 (0,2);(2,0) 0 / 0

B6 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) -0.8 / -0.8

B7 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) -0.8 / 0.8

B8 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0.8 / -0.8

B9 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0.8 / 0.8

B10 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0 / 0

B11 0.47 0.06600 0.9 / 0.1 (0,2);(2,0) -0.8 / -0.8

B12 0.47 0.01600 0.9 / 0.1 (0,2);(2,0) -0.8 / 0.8

B13 0.47 0.05000 0.9 / 0.1 (0,2);(2,0) 0.8 / -0.8

B14 0.47 0.00045 0.9 / 0.1 (0,2);(2,0) 0.8 / 0.8

B15 0.47 0.03900 0.9 / 0.1 (0,2);(2,0) 0 / 0

B16 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) -0.8 / -0.8

B17 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) -0.8 / 0.8

B18 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0.8 / -0.8

B19 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0.8 / 0.8

B20 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0 / 0

– S4. Distribution of the time computations taken by the six initialisation methods listed in
Table 3.

• Additional files related to the outliers setting:

– S5. Bootstrap distributions of the estimated parameters used to generate Supplementary
Figure 2. We additionally include the otrimle package, dedicated to these extreme distri-
butions. Two configurations were tested, introducing 2% and 4% of outliers drawn from
an improper uniform distribution.

– S6. Mean, standard deviation, bias and MSE for each individually estimated parameter
in both configurations visualised on Supplementary Figure 2, for each combination of
package and initialisation method.

• Additional files related to the bivariate benchmark:

– S7. Bootstrap distributions of the estimated parameters for each scenario described in 5.

– S8. Mean, standard deviation, bias and MSE for each individually estimated parameter in
configurations listed in 5.
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Table 6: The 16 parameter configurations tested to generate the samples in a high dimensional context.
The first digit of each ID index refers to an unique parameter configuration (identified by its level
of overlap, entropy and topological structure, either circular or ellipsoidal, of the covariance matrix,
while the lowercase letter depicts the number of observations, a) with n = 200 and b) with n = 2000.

ID OVL Number of
observations Proportions Spherical

HD1a 1e-04 200 0.5 / 0.5

HD1b 1e-04 2000 0.5 / 0.5

HD2a 1e-04 200 0.19 / 0.81

HD2b 1e-04 2000 0.19 / 0.81

HD3a 1e-04 200 0.5 / 0.5

HD3b 1e-04 2000 0.5 / 0.5

HD4a 1e-04 200 0.21 / 0.79

HD4b 1e-04 2000 0.21 / 0.79

HD5a 2e-01 200 0.5 / 0.5

HD5b 2e-01 2000 0.5 / 0.5

HD6a 2e-01 200 0.15 / 0.85

HD6b 2e-01 2000 0.15 / 0.85

HD7a 2e-01 200 0.5 / 0.5

HD7b 2e-01 2000 0.5 / 0.5

HD8a 2e-01 200 0.69 / 0.31

HD8b 2e-01 2000 0.69 / 0.31

– S9. Distribution of the running times taken for the EM estimation of the parameters of the
GMM, across all twenty configurations described in 5, for each benchmarked package. We
selected the k-means algorithm to initialise the EM algorithm, as being the least variable
for a given package and scenario.

• Additional files related to the high-dimensional benchmark:

– S10. Bootstrap distributions of the estimated parameters for each scenario described in 6.

– S11. Mean, standard deviation, bias and MSE for each individually estimated parameter
in configurations listed in 6.

– S12. Distribution of the running times taken for the EM estimation of the parameters of the
GMM, across all twenty configurations described in 6, for each benchmarked package. We
selected the k-means algorithm to initialise the EM algorithm, as being the least variable
for a given package and scenario.
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mutualinf: An R Package for Computing
and Decomposing the Mutual Information
Index of Segregation
by Rafael Fuentealba-Chaura, Daniel Guinea-Martin, Ricardo Mora, and Julio Rojas-Mora

Abstract In this article, we present the R package mutualinf for computing and decomposing the
mutual information index of segregation by means of recursion and parallelization techniques. The
mutual information index is the only multigroup index of segregation that satisfies strong decompos-
ability properties, both for organizational units and groups. The mutualinf package contributes by (1)
implementing the decomposition of the mutual information index into a “between” and a “within”
term; (2) computing, in a single call, a chain of decompositions that involve one “between” term and
several “within” terms; (3) providing the contributions of the variables that define the groups or the
organizational units to the overall segregation; and (4) providing the demographic weights and local
indexes employed in the computation of the “within” term. We illustrate the use of mutualinf using
Chilean school enrollment data. With these data, we study socioeconomic and ethnic segregation in
schools.

1 Introduction

Typically, segregation is measured using groups of individuals assigned to organizational units. A
segregation index is a mathematical function that maps the joint distribution of groups and organiza-
tional units into R+. Traditional measures, such as the dissimilarity (Duncan and Duncan, 1955) or the
Gini (Flückiger and Silber, 1999) indices, are appropriate for computing segregation when (i) there are
two groups and (ii) the organizational units lack a hierarchical or multilevel structure.

One classic example from the segregation literature addresses measuring segregation among Black
and White students in schools. However, even in this simple scenario, there may be information in the
data that calls for a less restrictive use of the indices. First, there are often multiple sources of identity
and affiliation that may result in nondichotomous groups (Akerlof and Kranton, 2010). For example,
ethnic classification may include more than two categories. Additionally, the definition of groups
can be extended by operating a Cartesian product among multiple sources of segregation: ethnicity,
gender, religion, income, and language are consequential factors defining group membership in many
societies. In this case, we would need to use a multigroup segregation index (Reardon and Firebaugh,
2002).

Second, we may hypothesize that multigroup ethnic segregation in schools is produced via two
channels. One is the segregation between the ethnic majority and the remainder. The second channel is
the segregation among minorities. In this scenario, we should be interested in decomposing the overall
value of a segregation index into (i) a “between” term (gauging segregation in schools between the
majority and the minorities) and (ii) a “within” term (computing segregation among the minorities).
An index that satisfies the so-called strong group decomposability (SGD) property achieves this goal in
the best possible way (Frankel and Volij, 2011).

We are also interested in another multilevel structure of the situation. For example, in many
countries, schools belong to districts, and district authorities may have powers over the assignment of
students to schools. We should examine: (i) how much ethnic segregation is in districts and (ii) how
much is in schools. For this, we’ll break down the total segregation into that of larger areas (districts)
and specific units (schools). Complying with the so-called strong unit decomposability (SUD) property
addresses this goal (Frankel and Volij, 2011).

As far as we know, the mutual information or M index—originally proposed to study race
segregation in Chicago’s public schools (Theil and Finizza, 1971)—is the only multigroup segregation
index that simultaneously satisfies the two abovementioned properties.

There are two packages in R to compute M and its decompositions. First, the mutual_total
function of the segregation package (Elbers, 2021) computes the index itself and the “within” term of
the decomposition. By calling mutual_total twice, we obtain a simple “between”-“within” decompo-
sition.1 Second, in this article, we present the mutualinf package (Fuentealba-Chaura et al., 2021) for

1This package has additional features not directly related to the decompositions discussed in this paper. It (i)
computes local segregation scores; (ii) uses bootstrap procedures to conduct inferential analyses; (iii) decomposes
pairwise comparisons of indices to solve the problem of marginal dependence; and (iv) computes the H index,
which is a normalization of the M index.
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computing complex “between”-“within” decompositions, i.e., decompositions with multiple “within”
terms.

In the next section, we introduce the M index and its decomposability properties. Next, we
illustrate its usage with an application to a Chilean school enrollment dataset. We then explain the
package structure. The last section summarizes the main contributions of the mutualinf package.

2 Statistical model

Consider two discrete random variables, unit and group. Let png represent the joint proportion of
individuals for whom unit = n and group = g. Then,

Punit,group = {png|∀n ∈ 1, . . . , N, ∀g ∈ 1, . . . , G} (1)

denotes the joint distribution of the discrete random variables unit and group, and ∑N
n=1 ∑G

g=1 png = 1.

In addition, let pn• = ∑G
g=1 png such that

Punit = {pn•|∀n ∈ 1, . . . , N} (2)

denotes the marginal distribution of individuals across units. Similarly, let p•g = ∑N
n=1 png, and

Pgroup = {p•g|∀g ∈ 1, . . . , G} (3)

be the marginal distribution across groups. Finally, let

Punit|g =

{
png

p•g
|∀g and n

}
(4)

and

Pgroup|n =

{
png

pn•
|∀g and n

}
(5)

be the conditional distributions across units and groups.

The M index is the weighted average of the natural logarithm of the ratio between (i) the actual joint
distribution of units and groups and (ii) the joint distribution under the hypothesis of independence
or no association.

M =
G

∑
g=1

N

∑
n=1

png log
(

png

pn•p•g

)
, (6)

where we set 0× logb

(
1
0

)
= 0. For simplicity, the M index uses the natural logarithm, although any

base will work:

Mb =
M

loge (b)
. (7)

As a measure of association, the index captures the excess uncertainty that exists when we learn
about someone’s unit and group separately rather than jointly. When groups and units are independent,
the joint proportions png equal the proportions under independent assignment: png = pn•p•g.2 Then,
naturally, M = 0. Note that this is the minimum of the index. In effect, the M index is nonnegative
and less than or equal to the logarithm of min{G, N}. Often, G < N; and so the index reaches its
maximum value, log(G), whenever equal-sized groups are isolated in separate units.

The M index builds on the concept of entropy from information theory (Kullback, 1959): the
average information attained when we learn the value of a discrete variable. Frankel and Volij (2011)
characterize M with six ordinal axioms. Interestingly, and rather conveniently, the M index can be
expressed in two different but equivalent ways that represent two notions of segregation that Massey
and Denton (1988) propose: segregation as the average departure of (i) Pgroup|n from Pgroup and (ii) of
Punit|g from Punit.

2It can be shown that the M index is a monotonic transformation of the likelihood ratio test of random assignment
across units and groups (Zoloth, 1974).
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2.1 Decomposability properties

Social scientists who study sources of segregation should use an index that satisfies either SUD or
SGD or both depending on whether the interest lies in sources stemming from units, groups, or both
(Mora and Ruiz-Castillo, 2003; Frankel and Volij, 2011; Mora and Ruiz-Castillo, 2011).

Let S be an SUD index of segregation defined over variables group and unit. Consider a partition
of all the units, n = 1, . . . , N, into K major units, k = 1, . . . , K. Let SK be the index of segregation
that we obtain after taking the K major units as organizational units. SK is usually referred to as the
“between” term. Following Frankel and Volij (2011), we decompose an SUD index as:

S = SK +
K

∑
k=1

pk•S(k), (8)

where pk• is the demographic share of major unit k, and S(k) is the segregation index of major unit
k. With an SUD index, the following scenario holds: if the differences in group proportions across
the units of each major unit k vanished but the differences in group proportions across major units
remained, segregation would decrease by the amount in ∑K

k=1 pk•S(k). (The latter expression is
commonly referred to as the “within” term.) In other words, ∑K

k=1 pk•S(k) represents the exclusive
contribution of unit segregation that arises within major units (e.g., school segregation within districts);
therefore, it is unrelated to segregation that arises in major units (Mora and Ruiz-Castillo, 2011).
Conversely, for a partition of group, we can decompose an SGD index into a “between” and a “within”
term following a similar procedure.

As mentioned above, we can study sources of segregation only with indices that satisfy the SUD
and/or SGD properties. Consider, for example, the situation in which the Cartesian product of several
discrete variables define group. Let A be the subset of all the variables defining group. If index S
satisfies the SGD property, we can decompose it card(A) times. Each decomposition would take the
categories resulting from excluding one variable at a time as the major groups. Denote S(A\j), ∀j ∈ A
as the “within” term in the decomposition that takes the Cartesian product of all the variables in A\j
as supergroups. This term, S(A\j), identifies the exclusive contribution of the variable j to the overall
group segregation in variable unit. For notational simplicity, let us express this as follows:

Sj := S (A\j) . (9)

In general, S ̸= ∑J
j=1 Sj. We can always define:

I = S−
J

∑
j=1

Sj. (10)

Therefore, I ∈ R can be interpreted as the “interaction” among all the variables in A, i.e., the slack or
surplus in S that cannot exclusively be attributed to any variable in A. Hence:

S =
J

∑
j=1

Sj + I. (11)

Conversely, with index S satisfying SUD, we can study the segregation stemming from variable
unit. If S satisfies both SGD and SUD, we can identify the exclusive contributions to overall segregation
that come from all variables defining group and unit. The contributions of the group variables are
computed on the segregation defined along all unit variables. Conversely, the contributions of the unit
variables are computed on the segregation defined using all the group variables. Correspondingly, the
resulting conceptual framework does not allow for simultaneously measuring the contributions of
the group and unit variables. Nonetheless, it is possible to compute the segregation that stems from a
subset of the unit and group variables.

The M index is the only multigroup segregation index that is known to satisfy the SUD and SGD
properties simultaneously and that can, therefore, implement decompositions 8 and 11.

3 Illustration of mutualinf with school data

We illustrate the use of mutualinf with Chilean school enrollment data from the 2016-2018 period. The
data include all students (n = 287,546) in the schools of the regions of Biobío, La Araucanía, and Los
Ríos. These are the three administrative regions with the largest proportion of Mapuche people, the
main ethnic minority in Chile.
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Variable Description

Individual Characteristics
year Student enrollment/academic year.
gender Student gender code.
csep Preferential student allowance category.
grade Student grade/year.
ethnicity Self-reported Native ethnicity.

School Characteristics
school School ID.
district Administrative district where the school is located.
region Administrative region where the school is located.
rural School with multiage classrooms.
sch_type Whether the school is public, charter, or private.

Table 1: Variable definitions. Individual-level enrollment data, 2016–2018, Biobío, La Araucanía, and
Los Ríos regions (Chile).

We merged three datasets using unique student identifiers and enrollment years. Datos Abiertos,
“Open Data” in Spanish, (Ministry of Education, https://datosabiertos.mineduc.cl/) is the main
dataset. It includes individual-level information about all the students enrolled in grades/years 4 and
8 (grade). This includes their school (school), enrollment/academic year (year), gender (gender), and
whether they receive (partially or fully) the government means-tested allowance for students (csep,
the acronym of “preferential student allowance” in Spanish subvención escolar preferencial).3 A total
of 168,684 (58.7%) students received either the partial or full allowance. Moreover, the data include
school-level information: the school ID (there are 2,454 schools), the school’s ownership status (public,
private, or charter; sch_type), rural or urban location (rural), administrative district (there are 98
administrative districts; district), and region (the three regions abovementioned; region).

The two other datasets are the Cuestionario de Calidad y Contexto de la Educación para Padres y Apoder-
ados (“Quality and Education Survey for Parents and Guardians”) and the Cuestionario de Estudiantes
(“Student Survey”, Education Quality Agency, https://www.agenciaeducacion.cl/). With them, we
construct a proxy for belonging to the Mapuche ethnic minority (ethnicity): we classify a student as
Mapuche if he or she, or at least one parent, self-identifies as such. With this, the broadest possible
definition of the Mapuche group with these data, there are 41,884 (14.6%) Mapuche students in the
sample4

3.1 School segregation

In this section, we work with the aggregated school enrollment data described in Table 1. First, we
load the package mutualinf. The data.table function of this package automatically allows us to use
our examples (DT_Seg_Chile):5

> library(mutualinf)

3The criteria for receiving a full or partial subsidy during the period 2016-2018 are closely related to the
socioeconomic level of the student’s family. Hence, the type of student subsidy received by each student is a proxy
for his or her socioeconomic status, SES. In particular, students who receive no allowance are high SES students;
students who receive partial allowance are middle SES students; and students with full allowance are low SES
students.

4According to the Chilean Statistical Office, in the 2017 Census 12.8 percent of the population consider themselves
to belong to one of the native peoples of the country. The “Quality and Education Survey for Parents and Guardians”
and the “Student Survey” record only whether a student self-identifies as a member of a native group. Still, the
Mapuches account for over 99 percent of the native population in the three regions that we study (Instituto Nacional
de Estadísticas, 2018).

5The categories for the variable csep in DT_Seg_Chile have been modified so that the table fits the margins: s
for subsidized, ps for partially-subsidized, and ns for non-subsidized.
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> DT_Seg_Chile
year school district csep ethnicity rural region sch_type gender grade fw

1: 2016 4531 8101 ps non-Mapuche urban Biobio public female 4 22
2: 2016 4531 8101 s non-Mapuche urban Biobio public female 4 19
3: 2016 4531 8101 s Mapuche urban Biobio public female 4 2
4: 2016 4531 8101 ns non-Mapuche urban Biobio public female 4 5
5: 2016 4531 8101 ps Mapuche urban Biobio public female 4 2

---
55956: 2018 22495 14204 ps non-Mapuche urban Los Rios charter male 8 1
55957: 2018 22495 14204 ps Mapuche urban Los Rios charter male 8 2
55958: 2018 22495 14204 s Mapuche urban Los Rios charter male 8 5
55959: 2018 22495 14204 ns non-Mapuche urban Los Rios charter male 8 1
55960: 2018 22495 14204 ns Mapuche urban Los Rios charter male 8 1

Each row in the database is a unique combination of the values that the variables in Table 1 take,
representing a subset of the students. The last column, fw, contains the number of students enrolled in
each unique subset. The remaining columns correspond to the variables in Table 1.

The mutual function can calculate the M index at its simplest level, i.e., as a measure of group
segregation in a set of units. For example, suppose that the objective is to compute the M index of
socioeconomic school segregation. In that case, schools define the units, and the preferential student
allowance categories (proxies of socioeconomic status) define the three socioeconomic groups. The
following code computes socioeconomic segregation in schools:

> mutual(data = DT_Seg_Chile,
group = "csep",
unit = "school")
M

1: 0.1995499

As previously stated, log(min(G, N)) is the upper bound of the M index. Hence, a given index
value represents different segregation levels depending on G and N. Normalization can help in this
situation. Given that there are only three socioeconomic groups but many more schools, the upper
bound in this case is log(3) ≈ 1.0986. We can use this value to normalize M, i.e., to rescale its value
as a proportion of maximum segregation: 0.1995/1.0986 = 0.1816 or, in other words, in our data,
socioeconomic groups generate only 0.1816× 100 = 18.16% of the maximum segregation that there
could be. The cardinality of any normalized index, i.e., the index value we calculate with it, only
warrants this limited interpretation. However, it comes at a high price for the normalized M index
because it no longer satisfies the SGD property. Conversely, if the upper bound were defined by N,
the resulting normalized index would no longer satisfy the SUD property (Guinea-Martin and Mora,
2021).

To return to our example, we can also compute ethnic segregation in schools:

> mutual(data = DT_Seg_Chile,
group = "ethnicity",
unit = "school")

M
1: 0.06213906

The mutual function can also take on board multiple group dimensions. For example, we can
measure socioeconomic and ethnic segregation in schools:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = "school")
M

1: 0.2610338

In the above example, the mutual function defines groups as combinations of socioeconomic and
ethnic categories. By design, the value of the overall segregation thus obtained (0.2610338) must be
greater than or equal to the value for the segregation measured for socioeconomic or ethnic groups
separately: 0.1995499 and 0.06213906, respectively. Note that 0.1995499 (0.06213906) is the value of
the “between” term in the decomposition of the total segregation in schools (0.2610338) that there
is within socioeconomic (ethnic) categories. Given that the “within” term must be nonnegative, it
follows that the “between” term cannot be greater than total segregation.

More generally, segregation analyses can be computed using a variety of unit- and/or group-
defining variables. For example,
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> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "district"))
M

1: 0.2610338

computes the socioeconomic and ethnic segregation in combinations of schools and districts. Note
that the result, 0.2610338, is identical to that obtained in the previous case. The reason is that each
school belongs to only one district; hence, the combinations of schools and districts coincide with the
set of schools. This occurs because the two variables are hierarchically related and districts partition
schools. In other words, districts do not add information about segregation beyond what is obtained
from schools.

However, the variables that define the units may not lie in a hierarchy. For example, defining
the units with the school identification code (school) and ownership type (sch_type), we obtain a
different value for the overall socioeconomic and ethnic segregation:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "sch_type"))
M

1: 0.2610865

Why is this so? It turns out that a few schools changed ownership during the sample period, making
for a nonhierarchical relationship between school and sch_type, the two unit-defining variables. The
consequence is a slight increase in the overall measure of socioeconomic and ethnic segregation from
0.261033 to 0.2610865 that is entirely due to the enlargement of the set of units from schools to the
combination of schools and ownership type.

Setting the option by allows us to compute the index for subsets of data separately. In our database,
the variable region partitions data into three regions:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "sch_type"),
by = "region")
region M

1: Biobio 0.2312423
2: La Araucania 0.2367493
3: Los Rios 0.2125013

The segregation in La Araucania is greater than that in either Biobio or Los Rios. By including more
than one variable in option by, the subsets are defined by the Cartesian product of the categories of
these variables. To illustrate it, we include the variables region and year to option by:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "sch_type"),
by = c("region", "year"))

region year M
1: Biobio 2016 0.2423257
2: Biobio 2017 0.2599383
3: Biobio 2018 0.2696983
4: La Araucania 2016 0.2818232
5: La Araucania 2017 0.2749189
6: La Araucania 2018 0.2873032
7: Los Rios 2016 0.2489342
8: Los Rios 2017 0.2540016
9: Los Rios 2018 0.2664027

In the above example, we obtain a segregation index for each combination of region and year: the
socioeconomic segregation and ethnic segregation in Biobio and Los Rios increase during the sample
period (2016-2018); however, the segregation in La Araucania falls in 2017 and grows in 2018.

The within option additively decomposes the total segregation index into a “between” and a
“within” term. We return to the by="region" example:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "sch_type"),
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by = "region",
within = "ethnicity")
region M M_B_ethnicity M_W_ethnicity

1: Biobio 0.2312423 0.02582674 0.2054156
2: La Araucania 0.2367493 0.04840892 0.1883404
3: Los Rios 0.2125013 0.03324738 0.1792539

We obtain three terms for each region. The first, M, contains total segregation and matches the values
without the within option. The second, M_B_ethnicity, contains values for the “between” term
that measures ethnic segregation in the combinations of schools and types of schools. The third,
M_W_ethnicity, contains values for the “within” term. These values are the weighted averages of the
socioeconomic segregation (in the combinations of schools and types of schools) computed for each
ethnic group (with weights equal to the demographic importance of each ethnicity). This “within” term
is the part of the total segregation, M, that stems exclusively from socioeconomic differences. Hereafter,
we will refer to these “within” terms, which isolate sources of segregation, as “contributions”. In this
case, M_W_ethnicity is the socioeconomic contribution to total segregation M.

It is also possible to decompose the M index into a “between” and a “within” socioeconomic term:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "sch_type"),
by = "region",
within = "csep")
region M M_B_csep M_W_csep

1: Biobio 0.2312423 0.2030819 0.02816039
2: La Araucania 0.2367493 0.1906641 0.04608521
3: Los Rios 0.2125013 0.1774420 0.03505928

Now, we obtain, again, three terms for each region. The first, M, captures total segregation as before.
The second, M_B_csep, is the socioeconomic segregation in the combinations of schools and types of
schools. The third, M_W_csep, is the ethnic contribution.

The within option also allows us to sequentially conduct more than one decomposition, using
either major units and/or supergroups. Consider parsing the combinations of csep, ethnicity, and
gender as supergroups:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity", "gender"),
unit = c("school", "grade"),
by = "region",
within = c("csep", "ethnicity"))
region M M_B_csep M_W_csep M_W_csep_ethnicity

1: Biobio 0.3026811 0.2086340 0.04019188 0.05385515
2: La Araucania 0.3261384 0.1970565 0.07945498 0.04962692
3: Los Rios 0.3328145 0.1833409 0.06585940 0.08361417

In the above output, we obtain four terms for each region. The first, M, is the socioeconomic, ethnic,
and gender segregation in the combinations of schools and grades, i.e., in the organizational units. The
second, M_B_csep, is the socioeconomic segregation in the combinations of schools and grades. The
third, M_W_csep, presents the weighted average across all socioeconomic levels of ethnic segregation
in schools and grades. (This term is not the contribution of ethnicity because it also includes the
interaction between ethnicity and gender.) The fourth, M_W_csep_ethnicity, is the contribution of
gender to total segregation. Note that labels M_W_csep and M_W_csep_ethnicity are shortcuts for
M_W_csep_B_ethnicity and M_W_csep_W_ethnicity_B_gender, respectively.

Returning to the example without gender, we can directly obtain contributions using the
contribution.from option. Take the following example:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "sch_type"),
by = "region",
contribution.from = "group_vars")
region M C_csep C_ethnicity interaction

1: Biobio 0.2312423 0.2054156 0.02816039 -0.002333648
2: La Araucania 0.2367493 0.1883404 0.04608521 0.002323710
3: Los Rios 0.2125013 0.1792539 0.03505928 -0.001811897
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Following Equations (9) and (10), we obtain four terms for each region: M, C_csep, C_ethnicity, and
interaction. M is total segregation, as already presented. C_csep is the socioeconomic contribution. It
matches the “within” ethnicity term (M_W_ethnicity) in the first within example above. C_ethnicity
is the ethnic contribution. It matches the “within” socioeconomic term (M_W_csep) in the second
within example above. Finally, interaction is equal to M minus the sum of C_csep and C_ethnicity,
as defined in Equation (10). In other words, the interaction is the part of the total socioeconomic and
ethnic segregation that exists in the combinations of schools and school types that cannot exclusively
be attributed to either socioeconomic status or ethnicity. The socioeconomic contribution is largest in
Biobio (0.2054156), and the ethnicity contribution is largest in La Araucania (0.04608521).

A positive interaction term, such as the one in La Araucania, signals that socioeconomic status
and ethnicity are sources pushing segregation together in the same direction. Many authors employ
the term intersectionality to refer to this sort of “double disadvantage” scenario, where people from a
poor minority are more segregated from the rest than they would be if they were only poor or from an
ethnic minority (Crenshaw, 1990).

By contrast, a negative interaction term, as that for Biobio and Los Rios, reflects that socioeconomic
status and ethnicity pull in opposite directions: their effects cancel each other out to a certain extent.
This situation has been reported empirically previously (Guinea-Martin et al., 2015). However, it
remains undertheorized in the literature on the multidimensional nature of social inequality and
segregation.

We can perform the same analysis conditional on group variables using the option within:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "sch_type"),
by = "region",
within = "ethnicity",
contribution.from = "unit_vars")
region M M_B_ethnicity C_school C_sch_type interaction

1: Biobio 0.2312423 0.02582674 0.1053177 3.885868e-05 0.10005903
2: La Araucania 0.2367493 0.04840892 0.1276039 7.777505e-06 0.06072869
3: Los Rios 0.2125013 0.03324738 0.1065172 7.811955e-05 0.07265861

In the above output, there are five terms for each region. The first term, M, matches the first term
in the previous example. The second term, M_B_ethnicity, contains measures of ethnic segregation
in schools and school types. The following two columns, (C_school and C_sch_type), are the contri-
butions of schools and school types, respectively, to socioeconomic segregation after controlling for
ethnic segregation. The last term, interaction, is the part of segregation that cannot exclusively be
attributed to either schools or their ownership types.

The contribution.from option can also be used to display the contributions of a subset of variables.
For example,

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "sch_type"),
by = "region",
contribution.from = "csep")
region M C_csep

1: Biobio 0.2312423 0.2054156
2: La Araucania 0.2367493 0.1883404
3: Los Rios 0.2125013 0.1792539

returns M and C_csep.

The contributions can also be displayed for organizational units. Take the following example:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "sch_type"),
by = "region",
contribution.from = "unit_vars")
region M C_school C_sch_type interaction

1: Biobio 0.2312423 0.1293566 4.860549e-05 0.10183706
2: La Araucania 0.2367493 0.1709480 8.563946e-06 0.06579272
3: Los Rios 0.2125013 0.1351602 1.903942e-04 0.07715072

The first column in the above output holds measures of total segregation, M, as before. The second
column, C_school, contains the contributions of schools. The third column, C_sch_type, contains
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the contribution of ownership type. The fourth column, interaction, is the part of socioeconomic
and ethnic segregation that cannot exclusively be attributed to segregation in either schools or by
ownership type. As previously stated, most schools in the sample period retain their ownership type,
so each school can almost uniquely be classified by its sch_type. Hence, ownership is a negligible
source of information.

The display of the contributions is simpler when variables are hierarchically related:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "district"),
by = "region",
contribution.from = "unit_vars")
region M C_school C_district interaction

1: Biobio 0.2311937 0.1558457 0 0.07534802
2: La Araucania 0.2367407 0.1635589 0 0.07318187
3: Los Rios 0.2123109 0.1605696 0 0.05174127

The contribution of districts, C_district, is zero because each school is in only one district; conse-
quently, there is no segregation by district within schools.

The analysis of contributions using option contributions.from can be generalized to situations
with more than two sources of segregation on either the group or the unit dimension but not both (see
the Statistical Model section). For example, in the following code, we consider three sources of group
segregation as given by the variables csep, ethnicity, and gender:

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity", "gender"),
unit = c("school", "sch_type"),
by = "region",
contribution.from = "group_vars")
region M C_csep C_ethnicity C_gender interaction

1: Biobio 0.2732082 0.2143819 0.03442763 0.04196586 -0.01756726
2: La Araucania 0.2718253 0.2017662 0.05742349 0.03507595 -0.02244036
3: Los Rios 0.2838373 0.1942702 0.04659460 0.07133600 -0.02836349

In the output, there are columns for total segregation (M), the contributions of each of the three sources
of group segregation (C_csep, C_ethnicity, and gender), and the interaction term. Total segregation
increases when the students’ gender is considered. It is the highest in Los Rios (0.2838373).

In the index decompositions, the “within” terms are weighted averages of local indices with
demographic weights. To assess the relative importance of demographic weights versus local indices,
we set the option components=TRUE.

> mutual(data = DT_Seg_Chile,
group = c("csep", "ethnicity"),
unit = c("school", "sch_type"),
within = "csep",
components = TRUE)

$Total
M M_B_csep M_W_csep

1: 0.2610865 0.1995741 0.06151239

$W_Decomposition
csep p within

1: partially-subsidized 0.2668582 0.04907351
2: subsidized 0.5866331 0.07331278
3: non-subsidized 0.1465087 0.03691946

In the element labeled W_Decomposition, we obtain all the components of the linear combination
that constitutes the “within” term. In particular, we obtain (i) the demographic weights (p) and
(ii) the indexes of ethnic segregation in schools and ownership type (within) for each of the three
socioeconomic groups (csep) in the data. The average of within, weighted by p, is the value of
the “within” term displayed in the output labeled $Total, i.e., M_W_csep: 0.06151239. By inspecting
the components of the within term, we conclude that students who obtain the full allowance drive
the “within” term: they are both (i) the largest demographic group and (ii) the group where ethnic
segregation in schools and ownership type is the highest.
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4 Package structure

The mutualinf package requires data.table (Dowle and Srinivasan, 2021) to speed up data processing.
The package provides two functions. The first, prepare_data, allows the user to convert a microdata
file to a multidimensional frequency table of the data.table and mutual.data classes. The mutual
function calculates and decomposes the M index. Figure 1 represents the package graphically, showing
the relationships between the objects and functions of the package.

mutual.data
object

prepare_data

- data: tabular object
- vars: vector
- fw: numeric / character
- col.order: numeric / character / vector

mutual

- data: mutual.data object
- group: numeric / character / vector
- unit: numeric / character / vector
- by: numeric / character / vector
- within: numeric / character / vector
- contribution.from: numeric / character / vector
- components: boolean
- cores: numeric

datatable

functions

parallel

mclapply function

Object:data.table

segregation report

mutualinf

tabular
object

Figure 1: Package structure

Algorithm 1 mutual_within

Require: data,group,unit,within,by,i,pk•,result
if i == 1 then

result← ∅
Compute M for the first variable of within (the between term)
Compute pk•
Remove the first variable from within and append it to by
i← i + 1
Append to result the between term
Append to result mutual_within(data,group,unit,within,by,i,pk•,result) return result

else if within== ∅ then
Mk ← ∅
for k ∈ the Cartesian product of the variables in by do

Append to Mk the M for k
end for
if i>2 then

Subtract the dot product between pk• and Mk from the last element in result
end if
Append to result the dot product between pk• and Mk return result

else
Mk ← ∅
for k ∈ the Cartesian product of the variables in by do

Append to Mk the M for k
end for
if i>2 then

Subtract the dot product between pk• and Mk from the last element in result
end if
i← i + 1
Append to result the dot product between pk• and Mk
Remove the first variable from within and append it to by
Compute pk•
Append to result mutual_within(data,group,unit,within,by,i,pk•,result) return result

end if

Depending on its parameters, the mutual function carries out three different levels of analysis—
basic, intermediate, and advanced—and outputs either indices alone or indices and their components.
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At its most basic level, the algorithm computes the M index. In its first level of analysis, the
mutual function computes the index using the variables that define groups and units established by
the parameters group and unit, respectively. In its second level, mutual generates subsets (identified
by the by parameter) on which it computes the index.

At the intermediate degree of complexity, mutual performs “between” and “within” decomposi-
tions of the index. In its first level, computes the decomposition with a single variable in the within
parameter. If this variable belongs to the unit parameter, the function computes the decomposition
that is shown in Equation (8) by applying the SUD property. Conversely, if this variable belongs to
the group parameter, the function computes the decomposition that relies on the SGD property. In its
second level, mutual generates subsets over the vector of variables defined in the by parameter. It then
computes the index and its decompositions for each subset.

At its highest complexity, mutual allows for multiple decompositions. In its first level of analysis,
it computes the index and decompositions for each element in the within parameter.In its second
level, the function generates subsets using the by parameter and computes the index and its multiple
decompositions for each subset.

In Algorithm 1, we illustrate the recursive calculation of all the terms in a decomposition by
groups or units. This algorithm receives as inputs data, the dataset or multidimensional frequency
table processed with prepare_data; group, the set of variables that identify the groups; unit, the set
of variables that identify the units; within, the set of variables in which the index is decomposed;
by, the set of variables that identify the subsets of the dataset; i, a control variable to identify if the
decomposition is the first one performed; pk•, the demographic weights of the subsets obtained with
by; and result, the variable that contains the output of the algorithm. See that result is both an input
and an output variable due to the recursive implementation of the algorithm.

5 Conclusions

In this paper, we introduce the mutualinf package that implements a general approach for using the
strong decomposability properties of the mutual information index in R. mutualinf exploits both
recursion and parallelization techniques to facilitate the chained computation of “within” terms in
complex decompositions of the index. We use Chilean primary school enrollment data to illustrate
the usefulness and flexibility of the package. Of all the sources of segregation in schools considered,
socioeconomic differences among students constitute the main source. The contributions to the overall
segregation of ethnicity and gender are substantially lower.

6 Availability

The package is available in CRAN https://cran.r-project.org/web/packages/mutualinf/. The
development version is available in GitHub https://github.com/RafaelFuentealbaC/mutualinf.
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A Workflow for Estimating and
Visualising Excess Mortality During the
COVID-19 Pandemic
by Garyfallos Konstantinoudis, Virgilio Gómez-Rubio, Michela Cameletti, Monica Pirani, Gianluca
Baio, and Marta Blangiardo

Abstract COVID-19 related deaths estimates underestimate the pandemic burden on mortality because
they suffer from completeness and accuracy issues. Excess mortality is a popular alternative, as it
compares the observed number of deaths versus the number that would be expected if the pandemic
did not occur. The expected number of deaths depends on population trends, temperature, and spatio-
temporal patterns. In addition to this, high geographical resolution is required to examine within
country trends and the effectiveness of the different public health policies. In this tutorial, we propose
a workflow using R for estimating and visualising excess mortality at high geographical resolution.
We show a case study estimating excess deaths during 2020 in Italy. The proposed workflow is fast to
implement and allows for combining different models and presenting aggregated results based on
factors such as age, sex, and spatial location. This makes it a particularly powerful and appealing
workflow for online monitoring of the pandemic burden and timely policy making.

1 Introduction

Estimating the burden of the effect of the COVID-19 pandemic on mortality is an important chal-
lenge (Weinberger et al., 2020). The estimates of COVID-19 related deaths are subject to testing capacity
and changes in definition and reporting guidelines, raising accuracy and completeness considerations
(Aburto et al., 2021; Konstantinoudis et al., 2022). In addition, the estimates of COVID-19-related
deaths give an incomplete picture of the mortality burden of the COVID-19 pandemic, as they do
not account for the indirect pandemic effects due to, for instance, disruption to health services (Kac-
zorowski and Del Grande, 2021). Alternatively, excess mortality has been extensively used to evaluate
the impact of the COVID-19 pandemic on mortality (Rossen et al., 2020; Islam et al., 2021; Kontis et al.,
2020; Konstantinoudis et al., 2022; Verbeeck et al., 2021).

Excess mortality is estimated by comparing the observed number of deaths in a particular time
period with the expected number of deaths under the counterfactual scenario of the event (pandemic)
not having had occurred. Typically, this counterfactual scenario is calculated using a comparison
period, for instance, several previous years (https://www.euromomo.eu/). Calculating the expected
number of deaths accurately requires accounting for factors such as population trends, seasonality,
temperature, public holidays and spatio-temporal dependencies. While accounting for the above-
mentioned factors, most studies to date have estimated excess mortality at the national level (see Rossen
et al., 2020; Weinberger et al., 2020), and some have examined excess mortality across countries (Islam
et al., 2021; Kontis et al., 2020, 2021).

While national-level estimates of excess mortality give valuable insights into the total number of
excess deaths, they do not allow for evaluation of within-country geographical differences. However,
such information is essential to understand the country’s transmission patterns and effectiveness of
local policies and measures to contain the pandemic (Kontopantelis et al., 2021). Temporal trends in
excess mortality can substantially differ across regions of the same country (Blangiardo et al., 2020),
which makes national-based comparisons even more challenging. Therefore, understanding the effect
of the COVID-19 pandemic on mortality requires higher spatial resolution and models that account
for spatial, temporal and spatio-temporal dependencies.

When working at high spatio-temporal resolution, data are generally sparse, and this leads to
highly variable excess mortality estimates. This is aggravated by the fact that excess deaths tend to
be subject to spatial and temporal correlation. This makes it essential to use statistical methods that
can account for these dependencies and provide robust and accurate estimates. The disease mapping
framework, which is commonly employed in epidemiology to study the spatio-temporal variation of
diseases (Waller et al., 1997; Moraga, 2018), can be exploited to estimate excess mortality at subnational
and weekly level. The Bayesian approach is naturally suited in this context, as it is able to model
complex dependency structures, as well as to incorporate uncertainty in the data generating and
modelling process. In addition, while fully propagating the uncertainty, it allows for summaries of
results at any desired level of spatio-temporal aggregation (using for instance coarser geographical
units suitable for policy implementation). This in combination with fast approximate methods to
inference, such as the Integrated Laplace Approximation (INLA; Rue et al., 2009), make this framework
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Figure 1: Diagram of the workflow: data wrangling in black, analysis in green, post-processing in
orange and packages in red (timeDate; Wuertz et al., 2023, lubridate; Grolemund and Wickham, 2011,
dplyr; Wickham et al., 2023a, stringr; Wickham, 2022, readr; Wickham et al., 2022, tidyr; Wickham
et al., 2023b, reshape2; Wickham, 2007, rgdal; Bivand et al., 2023, spdep; Bivand, 2022, sf; Pebesma,
2018, shiny; Chang et al., 2022, leafpop; Appelhans and Detsch, 2021, shinyalert; Attali and Edwards,
2021, shinydashboard; Chang and Borges Ribeiro, 2021, ecwmfr; Hufkens et al., 2019, ncdf4; Pierce,
2023, raster; Hijmans (2023), data.table; Dowle and Srinivasan, 2022, abind; Plate and Heiberger,
2016, ggplot2; Wickham, 2016, patchwork; Pedersen, 2022, viridis; Garnier et al., 2021, RColorBrewer;
Neuwirth, 2022). NUTS stands for Nomenclature of Territorial Units for Statistics with NUTS3 being
the highest spatial resolution available and NUTS2 coarser but appropriate for policy making.

particularly powerful and appealing for the monitoring of the pandemic burden and timely policy
making.

Here, we describe how to run a study on excess mortality at high spatial and temporal resolution
using a Bayesian approach and R. This tutorial provides a detailed explanation of the modelling
approach used previously to quantify excess mortality in 5 European regions (Konstantinoudis et al.,
2022). We have further modified the way we model long-term trends in Konstantinoudis et al. (2022),
as we showed that it provides more accurate predictions (Riou et al., 2023). Figure 1 illustrates the
workflow followed in this paper together with the main R packages used. Source code for replicating
the data wrangling (R scripts prefixed with 01, 02 or 03), analysis (R scripts prefixed with 04) and
post-processing steps (R scripts prefixed with 05 or 06 and the App folder) and data files are available
from GitHub at https://github.com/gkonstantinoudis/TutorialExcess.
This tutorial is structured as follows: we first describe the modelling framework and present the case

study in Italy. We then show how to run and evaluate the model, and extract and visualise the results.
Finally, we present an R-shiny app which makes the results effectively and easily disseminated.

2 Bayesian hierarchical spatio-temporal model to estimate excess mortal-
ity

We propose a Bayesian hierarchical model to quantify the effect of spatio-temporal location on
excess mortality under extreme events such as the COVID-19 pandemic, stratified by specific age-sex
population groups. To do so, we first describe the statistical model for predicting the number of deaths
from all-causes based on historical data, in the counterfactual scenario in which the pandemic did not
take place. Then, we show how to estimate the magnitude of excess deaths over a specific period of
time, with associated uncertainty, by comparing the predicted versus the actual number of deaths.

Let yjstk and Pjstk be the number of all-cause deaths and the population at risk for the j-th week,
j = 1, . . . , Jt, where Jt is the total number of weeks of the year t (t = 2015, . . . 2019), the s-th spatial
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unit (s = 1, . . . S, where S is the number of provinces in Italy), and k-th age-sex group (k = 1, . . . 10).
Also let x1jt, x2t and zjst denote the adjustment covariates, respectively: public holidays (x1jt = 1 if
week j of the t-th year contains a public holiday and 0 otherwise), the year that the j-the week belongs
to, and temperature. We assume that the historical observed number of deaths, conditional on the
risk rjstk, follows a Poisson distribution, with a log-linear model for the risk. To simplify notation, we
omit k, although the following model was fitted to all k age-sex groups (with the elements of the linear
predictor also depending on k):

yjst|rjst ∼Poisson(µjst = rjstPjst),

log
(

rjst

)
= β0jt + β1x1jt + β2x2t + f (zjst) + bs + wjt.

(1)

Here, β0jt is the week-specific intercept in year t given by β0jt = β0 + ϵjt for the k-th age-sex group,
where β0 is the global intercept and ϵjt is an unstructured random effect representing the deviation
of each week from the global intercept, which is modelled using independent and identically (iid)
distributed Gaussian prior distribution with zero-mean and variance equal to τ−1

ϵ . The parameters
β1 and β2 are unknown regression coefficients associated to the public holidays covariate x1jt and
a long term linear trend. The effect of temperature, f (·), is allowed to be non-linear by specifying a
second-order random walk (RW2) model:

zjst | z(j−1)st, z(j−2)st, τz ∼ Normal
(

2z(j−1)st + z(j−2)st, τ−1
z

)
,

where τ−1
z is the variance.

Terms bs and wj are spatial and temporal random effects, respectively. We specify the spatial
random effect term, bs, with a convolution prior (Besag et al., 1991), and the temporal random effect
term, wj with a non-stationary in time prior. In detail, we model b using a reparameterisation of the
popular Besag-York-Mollié prior, which is a convolution of an intrinsic conditional autoregressive
(CAR) model and an iid Gaussian model. Let us be the spatially structured component defined by an
intrinsic CAR (Besag, 1974) prior us|ui, i ∈ ∂s ∼ (ū, τ−1

u /ms), where ū is the mean of the neighbours
and ∂s and ms are respectively the set and the number of neighbours of area s, τ−1

u the conditional

variance, and vs the unstructured component with prior vs
iid∼ Normal(0, τ−1

v ). We model bs as follows
(Besag et al., 1991; Riebler et al., 2016; Konstantinoudis et al., 2020):

bs =
1√
τb

(√
1 − ϕv⋆s +

√
ϕu⋆

s

)
where u⋆

s and v⋆s are standardised versions of us and vs such that their variance is equal to 1 (Simpson
et al., 2017). The term 0 ≤ ϕ ≤ 1 is a mixing parameter, which measures the proportion of the marginal
variance explained by the structured effect. Finally, we assign to the temporal random effect term,
wjt, a Gaussian random walk model of order 1 (RW1). This component captures seasonality and is
specified as:

wjt | w(j−1)t, τw ∼ Normal(w(j−1)t, τ−1
w ).

The Bayesian representation of the above model is completed once we select priors for the fixed
effects β0 and β and the hyperparameters: τϵ, τz, τb, τw, and ϕ. For the fixed effects we selected mini-
mally informative Normal distributions, whereas for the hyperparameters we specified "penalising
complexity" (PC) priors (Simpson et al., 2017). PC priors are defined by penalising deviations from a
“base” model (e.g., specified in terms of a specific value of the hyperparameters) and have the effect of
regularising inference, while not implying too strong prior information. Technically, PC priors imply
an exponential distribution on a function of the Kullback–Leibler divergence between the base model
and an alternative model in which the relevant parameter is unrestricted. This translates to a suitable
“minimally informative”, regularising prior on the natural scale of the parameter.

In order to quantify the weekly excess mortality at sub-national level for specific age-sex population
groups, we need to predict the number of deaths that would be expected if the COVID-19 pandemic
had not occurred. In Bayesian analysis, this can be performed by drawing random samples from
the posterior predictive distribution (that is, the distribution of unobserved values conditional on
the observed values from previous years). Specifically, letting θθθ be the model parameters, D be the
observed data, and yjst∗ be the count of deaths that we want to predict, we have:

p(yjst∗ | D) =
∫

p(yjst∗ | θθθ)p(θθθ | D)dθθθ. (2)

Operationally, we first generate random samples from the joint posterior marginal of the parame-
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ters specified in Equation (1) at the highest spatial resolution available (NUTS3 regions; Nomenclature
of Territorial Units for Statistics 3 regions, https://ec.europa.eu/eurostat/web/nuts/background/).
Following that, we use the samples to compute the linear predictor, compute the mean parameter of
the Poisson distribution via inverse link function, and obtain the predicted number of deaths, which
represents the baseline number of deaths assuming the pandemic did not take place.

Finally, to estimate the excess deaths, the predicted number of deaths is compared against the
actual observed number of deaths. Further, this allows us to compute the relative change in mortality
(relative to what we would expect if the pandemic did not occur). This is obtained by (i) subtracting
the predicted number of deaths from the observed number of deaths in each time point j in the t∗-th
year and spatial unit s (number of excess deaths or NED), and (ii) dividing NED by the predicted
number of deaths for each sample and multiplying by 100 (yielding % relative excess mortality or
REM).

The model estimates are computed using Integrated Nested Laplace Approximation (INLA; Rue
et al., 2009, which performs approximate Bayesian inference on the class of latent Gaussian models (Rue
and Held, 2005). Unlike simulation based Markov chain Monte Carlo method, INLA is a deterministic
algorithm, which employs analytical approximations and efficient numerical integration schemes to
provide accurate approximations of the posterior distributions in short computing times. The INLA
software is provided through the R package INLA, which can be downloaded from https://www.r-
inla.org/.

3 Motivating example: Italy

3.1 Outcome data

We retrieved all-cause mortality data during 2015-2020 in Italy from the Italian National Institute
of Statistics (https://www.istat.it/). Data were available weekly (ISO week), by age (5-year age
groups), sex and NUTS3 regions. As the COVID-19 mortality rates increase with age, we aggregated
mortality counts based on the following age groups: <40, 40-59, 60-69, 70-79 and 80 years and older
(Davies et al., 2021).

3.2 Population data

Population data in Italy during 2015-2020 were retrieved from the Italian National Institute of Statistics.
The data represent the population in Italy on first of January of every year stratified by age (5-year age
groups), sex and NUTS3 regions. To retrieve weekly population, we performed linear interpolation by
the selected age groups (<40, 40-59, 60-69, 70-79 and 80+), sex, and NUTS3 regions using populations
on the first of January of the current and next year. Population counts on the first of January 2021,
which takes COVID-19 deaths in 2020 into consideration, were available at the time of analysis. Our
goal was, however, to predict mortality for 2020, as if the pandemic had not occurred. Thus we
performed an additional linear interpolation by age, sex and NUTS3 regions to predict the population
at January 1st 2021, using the years 2015-2020 (Figure 2, panel A). Object pop is a tibble containing
the NUTS3 region ID (NUTS318CD), age group (ageg), sex (sex), year (year) and population counts
(population):

pop
# A tibble: 6,420 x 5
# Groups: ageg, sex [10]
NUTS318CD ageg sex year population
<chr> <fct> <chr> <dbl> <dbl>
1 TO less40 female 2015 435758
2 TO less40 female 2016 427702
3 TO less40 female 2017 420498
4 TO less40 female 2018 413141
5 TO less40 female 2019 406937
6 TO less40 female 2020 402768
7 TO less40 male 2015 449605
8 TO less40 male 2016 443941
9 TO less40 male 2017 439522
10 TO less40 male 2018 433365
# ... with 6,410 more rows
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We can use the following code (based on tidyverse and "piping" principles) to calculate the
population of the 1st of January 2021 by NUTS3 regions, sex and age:

pop %>% group_by(NUTS3, sex, age) %>%
summarise(pop = as.vector(coef(lm(pop ~ year)) %*% c(1, 2021))) %>%
mutate(year = 2021) -> pop2021

We acknowledge that the linear trend in the population is a rather simplistic assumption. In
subsequent analyses in Switzerland, we proposed a spatio-temporal approach similar with equation
(1) to model the population counts had the pandemic not occurred (Riou et al., 2023). The code for that
analysis is also online available online (https://github.com/jriou/covid19_ascertain_deaths).
Once we obtained the year 2021 we performed an additional linear interpolation to calculate weekly
number of population as shown on Figure 2, panel B.

3.3 Covariates

We used covariates related to ambient temperature, national holidays, and year of death, to improve
the model’s predictions. Data on air temperature during 2015-2020 in Italy at 2m above the surface
of land were retrieved from the ERA5 reanalysis data set of the Copernicus climate change program

Figure 2: A schematic representation of the weekly population estimation procedure focusing on
females aged 40-49 in Venice during 2015-2019 as an example. On panel A we show how we used the
historical data (black points) and fit a linear regression (red dashed line) to predict 2021 (red triangle).
On the panel B we show how we predicted weekly population by drawing lines between the years.

Figure 3: Schematic representation of the temperature misalignment procedure. A) The temperature
obtained by ERA5 at 2015-01-01 00:00:00. B) NUTS3 regions in blue and a sample of the centroids of
the pixels from the ERA5 raster. C. Mean temperature per NUTS3 region during the 1st week of 2015.
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(Hersbach et al., 2020). The geographical resolution of the ERA5 estimates is 0.25◦ × 0.25◦ (panel A of
Figure 3). We calculated the weekly mean by the centroids of the 0.25◦ × 0.25◦ grid (panel B of Figure
3) and then averaged the weekly temperature over the ERA5 centroids that overlay with the NUTS3
regions (panels B and C of Figure 3).

3.4 Fitting the model

The modelling process in INLA consists of three main steps: (1) the selection of priors, (2) definition of
the model "formula" (which sets out the expression for the generalised linear predictor), and (3) the
call to the main function inla, which computes the estimates.

In particular, we constructed the PC priors for σϵ =
√

1/τϵ, σz =
√

1/τz, σb =
√

1/τb and
σw =

√
1/τw based on the assumption that it is unlikely to have a relative risk higher than exp(2)

based solely on spatial, yearly and seasonal variation, Figure 4, panel A. For the mixing parameter ϕ,
we set Pr(ϕ < 0.5) = 0.5 reflecting our lack of knowledge about whether overdispersion or strong
spatial autocorrelation should dominate the field b, Figure 4, panel B.

These assumptions can be encoded using the following code:

# Defines the priors
hyper.bym <- list(

theta1 = list('PCprior', c(1, 0.01)),
theta2 = list('PCprior', c(0.5, 0.5))

)
hyper.iid <- list(theta = list(prior="pc.prec", param=c(1, 0.01)))

# Defines the model "formula"
formula =

deaths ~ 1 + offset(log(population)) + hol + id.year +
f(id.tmp, model = 'rw2', hyper = hyper.iid, constr = TRUE, scale.model = TRUE) +
f(id.wkes, model = 'iid', hyper = hyper.iid, constr = TRUE) +
f(id.time, model = 'rw1', hyper = hyper.iid, constr = TRUE, scale.model = TRUE,
cyclic = TRUE) +
f(id.space, model = 'bym2', graph = "W.adj", scale.model = TRUE, constr = TRUE,
hyper = hyper.bym)

control.family = inla.set.control.family.default()

# Calls INLA to fit the model
inla.mod = inla(formula,

data = dat,
family = "Poisson",
verbose = TRUE,
control.family = control.family,
control.compute = list(config = TRUE),
control.mode = list(restart = T),
num.threads = round(parallel::detectCores()*.8),
control.predictor = list(link = 1))

After fitting the model, we take 1000 samples from the (approximated) posterior distribution of
the linear predictor and we use each drawn sample as the mean of a Poisson distribution to retrieve
the predicted mortality counts:

post.samples <- inla.posterior.sample(n = 1000, result = inla.mod)
predlist <- do.call(cbind, lapply(post.samples, function(X)
exp(X$latent[startsWith(rownames(X$latent), "Pred")])))

pois.samples <- apply(predlist, 2, function(Z) rpois(n = length(Z), lambda = Z))

This allows us to estimate the entire predictive posterior distribution of the mortality counts,
incorporating both the sampling and the linear predictor uncertainty.

3.5 Model validation

To examine model validity, we performed a cross validation, leaving out one historical year at a
time and predicting the weekly number of deaths by NUTS3 regions for the year left out. As part
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Figure 4: Penalised complexity (PC) priors for the hyperparameters of the spatial field. A) The implied
PC prior for the standard deviation (as the original scale of the prior is the precision). B) The PC prior
for the mixing parameter ϕ.

of this validation we used future years to train predictions for past, but in a previous study we also
showed that the model selected was performing well when other types of cross-validations were used
(Riou et al., 2023). For each stratum, we calculated the correlation between observed and fitted and a
coverage probability, i.e. the probability that the observed death fall into the 95% credible interval
(95% CrI) of the predicted.

4 Results

4.1 Cross-validation

Overall, we found that the model performed well in predicting the expected number of deaths. The
correlation between true and expected number of deaths varied from 0.39 (95% CrI: 0.37, 0.40) in
females 40< to 0.95 (95% CrI: 0.94, 0.95) in females 80> and coverage probability from 0.92 in females
40< to 0.96 in males 60-69, 70-79:

# Correlation Coverage
# less40F 0.39 (0.37, 0.40) 0.92
# 40-59F 0.78 (0.77, 0.78) 0.95
# 60-69F 0.83 (0.82, 0.83) 0.95
# 70-79F 0.91 (0.90, 0.91) 0.95
# 80plusF 0.95 (0.94, 0.95) 0.95
# less40M 0.51 (0.50, 0.52) 0.93
# 40-59M 0.83 (0.83, 0.84) 0.95
# 60-69M 0.87 (0.86, 0.87) 0.96
# 70-79M 0.92 (0.91, 0.92) 0.96
# 80plusM 0.94 (0.94, 0.94) 0.95

4.2 Expected number of deaths

The object pois.samples.list contains 1000 samples from the posterior predictive distribution (2),
i.e. 1000 samples of the expected number of deaths by age, sex, NUTS3 regions and week, had the
pandemic not occurred. We can access the different age-sex groups as follows:

names(pois.samples.list)
# "F_less40" "F_40_59" "F_60_69" "F_70_79" "F_80plus"
# "M_less40" "M_40_59" "M_60_69" "M_70_79" "M_80plus"

where F stands for females and M for males across the different age groups. To get an idea about the
structure of the data, we can use the head() function for females 60-69 and check the first 10 samples
(V1 through to V10) of excess deaths for the first 6 weeks of 2020 in the 001 region (Torino)

pois.samples.list$F_60_69 %>%
select(paste0("V", 1:10), EURO_LABEL, ID_space, year) %>%
head()
# V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 EURO_LABEL ID_space year
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# 262 22 18 17 15 17 18 13 19 16 17 2020-W01 001 2020
# 263 18 16 21 20 16 23 13 12 23 17 2020-W02 001 2020
# 264 17 23 20 26 12 16 12 19 17 13 2020-W03 001 2020
# 265 13 8 13 30 22 17 16 22 17 19 2020-W04 001 2020
# 266 14 20 15 15 19 18 23 14 12 18 2020-W05 001 2020
# 267 17 14 14 9 14 15 17 19 19 14 2020-W06 001 2020

We can also calculate median and 95% CrI expected number of deaths for this specific age-sex group
across all years by NUTS3 region:

pois.samples.list$F_60_69 %>%
select(starts_with("V"), "ID_space") %>%

group_by(ID_space) %>%
summarise_all(sum) %>%
rowwise(ID_space) %>%
mutate(median = median(c_across(V1:V1000)),

LL = quantile(c_across(V1:V1000), probs= 0.025),
UL = quantile(c_across(V1:V1000), probs= 0.975)) %>%

select(ID_space, median, LL, UL) %>%
head()

# A tibble: 107 × 4
# Rowwise: ID_space
# ID_space median LL UL
# <chr> <dbl> <dbl> <dbl>
# 1 001 814 748 885.
# 2 002 72 55 90
# 3 003 139 116 167
# 4 004 212 183. 243.
# 5 005 86 67 107
# 6 006 178 150 208
# 7 007 46 33 62
# 8 008 86 68 107
# 9 009 113 93 135.
# 10 010 341 301. 380
# . . . with 97 more rows

4.3 Excess mortality

The above results can be combined in different ways using the functions get2020data() and
get2020weeklydata() to calculate excess mortality (in the R script functions.R). The function get2020data()
aggregates over the entire country, NUTS2 regions, sex, age and time resulting in the object d, whereas
the function get2020weeklydata() aggregates over the entire country, NUTS2 regions, sex and age
but not over time resulting in the object d_week.

names(d)
# "province" "region" "country"
names(d$province)
# "none" "age" "sex" "agesex"
names(d$province$age)
# "40<" "40-59" "60-69" "70-79" "80+"
names(d$province$sex)
# "F" "M"
names(d$province$agesex)
# "F40<" "F40-59" "F60-69" "F70-79" "F80+" "M40<" "M40-59" "M60-69" "M70-79" "M80+"

Province stands for the NUTS3 regions (the resolution we used to fit the models), region for
the NUTS2 (coarser than NUTS3, appropriate for policy making) and country for the nationwide
aggregation. Within these aggregations users can select the option "none" being the total aggregation
by age and sex, "age" by sex, "sex" by age and "agesex" refers to no age and sex aggregation. The
objects d and d_week have similar structure and contain summary statistics for REM and NED and
posterior probabilities of a positive REM or NED:

head(d$province$none)
# Simple feature collection with 6 features and 24 fields
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# Geometry type: POLYGON
# Dimension: XY
# Bounding box: xmin: 6.626865 ymin: 44.06028 xmax: 9.21355 ymax: 45.95041
# CRS: +proj=longlat +datum=WGS84
# ID_space SIGLA DEN_UTS observed population mean.REM median.REM sd.REM
# 1 001 TO Torino 32478 2226317.2 21.37414 21.36545 1.116582
# 2 002 VC Vercelli 3216 168761.7 32.27082 32.15534 3.133142
# 3 003 NO Novara 5274 364529.4 23.62994 23.71569 2.220801
# 4 004 CN Cuneo 8716 585479.3 20.16665 20.22069 1.742638
# 5 005 AT Asti 3745 211437.1 26.37080 26.30691 2.660622
# 6 006 AL Alessandria 7916 416090.6 28.27706 28.21510 2.052881
# LL.REM UL.REM exceedance.REM median.REM.cat exceedance.REM.cat median.pred
# 1 19.19396 23.50963 1 20%> (0.95, 1] 26761
# 2 26.51331 38.74179 1 20%> (0.95, 1] 2434
# 3 19.18442 27.97865 1 20%> (0.95, 1] 4263
# 4 16.67966 23.54490 1 20%> (0.95, 1] 7250
# 5 21.19545 31.77340 1 20%> (0.95, 1] 2965
# 6 24.48449 32.33309 1 20%> (0.95, 1] 6174
# LL.pred UL.pred mean.NED median.NED sd.NED LL.NED UL.NED exceedance.NED
# 1 26296 27249 5717.153 5717.5 246.42447 5229.975 6182.075 1
# 2 2318 2543 783.265 782.5 57.49419 673.975 898.025 1
# 3 4121 4428 1006.667 1011.0 76.69947 848.925 1153.000 1
# 4 7055 7471 1461.215 1466.0 105.25269 1245.975 1661.075 1
# 5 2842 3092 780.189 780.0 62.31281 654.950 903.000 1
# 6 5982 6360 1743.404 1742.0 98.74248 1556.975 1934.125 1
# median.NED.cat exceedance.NED.cat geometry
# 1 1000> (0.95, 1] POLYGON ((7.859044 45.59758...
# 2 [500, 1000) (0.95, 1] POLYGON ((8.204465 45.93567...
# 3 1000> (0.95, 1] POLYGON ((8.496878 45.83934...
# 4 1000> (0.95, 1] POLYGON ((7.990897 44.82381...
# 5 [500, 1000) (0.95, 1] POLYGON ((8.046805 45.12815...
# 6 1000> (0.95, 1] POLYGON ((8.405489 45.20148...

Notice that the object d$province$none is a simple feature collection, making mapping it straight-
forward using the ggplot2 package and geom_sf function. In Figure 5 (plots 1A, 2A and 3A) we show
the median posterior of REM for total age and sex at the national, NUTS2 and NUTS3 regional level.
For these plots we used the object d with the selection "none" and plot the median REM (median.REM),
for example for 3A:

# prov <- "Foggia"
# d$province$none %>%
# filter(DEN_UTS == prov) %>%
# select(geometry) %>%
# ggplot() +
# geom_sf(data = d$province$none, aes(fill = median.REM.cat)) +
# geom_sf(fill = NA, col = col.highlight, size = .8) +
# scale_fill_manual(values=colors, name = "", drop = FALSE) +
# theme_light() + ggtitle(paste0("3A. NUTS3 regions: ", prov))

Overall, the REM in Italy during 2020 was between 15-20%, meaning that 15-20% more people died
that year than how many would be expected based on historical data, see Figure 5, panel 1A. When
the higher geographical resolution is assessed, it was revealed that north and in particular Lombardia
was the region hit the worst, with the REM exceeding 20%, see Figure 5, panels 1B and 1C. Figure 6
shows a measure of uncertainty of the REM, now for the different age groups and both sexes (selection
"age"). The probability of a positive excess (exceedance.REM) in older people was larger than 0.95
almost everywhere, see Figure 6.

Panels 1B and 1C of Figure 5 show the median temporal nationwide excess mortality together
with 95% CrI by sex after aggregating the different age groups (using d_week and the "sex" selection).
We observe a clear first pandemic wave during March and May and a second one during mid October
and December in 2020. During the first pandemic wave, there were weeks when the median REM
reached almost 100% in males, Figure 5.
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Figure 5: Median relative excess mortality by spatial region during 2020: 1A) nationwide, 2A) NUTS2
and 3A) NUTS3 level, and weekly median relative excess mortality and 95% credible intervals (95%
probability that the true value lies within this interval) by sex during 2020 in: 1B) males nationwide,
1C) females nationwide, 2B) males in Puglia, 2C) females in Puglia, 3B) males in Foggia and 3C)
females in Foggia.
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Panels 2B, 2C, 3B and 3C of Figure 5 show the median spatio-temporal excess mortality together
with 95% CrI by sex after aggregating over the different age groups. Panels 2B and 2C highlight the
region of Puglia, where during the first wave of the pandemic experienced increases excess mortality.
This increase follows similar trends as the nationwide excess mortality (Panels 1B and 1C). When we
increase the spatial resolution in panels 3B and 3C, we highlight the province of Foggia, where there
was insufficient evidence of a positive excess during the first wave, but strong during the second.

Figure 6: Posterior probability that the relative excess mortality is positive for both sexes during 2020
by age group and NUTS3 region.

4.4 Shiny Web-Application

To be able to effectively examine and communicate the different aggregation levels of the output of
our modelling framework, we have also developed a Shiny Web-Application (WebApp), Figure 7.
The WebApp provides spatial, temporal and spatio-temporal analysis tabs, and within each tab there
are plots and summary statistics for the level of aggregation selected from the drop-down menu.
Users can select across different variables (REM or NED), statistics (median or posterior probability),
sex (males, females or both), age group (40 <, 40 − 59, 60 − 69, 70 − 79, 80 > and all) and different
geographical level (national, NUTS2 or NUTS3 regions). Summary statistics for each area are available
and they are displayed in a pop-up window, which is activated by clicking on the area of interest. In
addition, graphical pop-ups are provided to show the weekly estimates for each area with the leafpop
R-package (Appelhans and Detsch, 2021), in the spatio-temporal analysis tab.
The WebApp that we have developed is hosted at http://atlasmortalidad.uclm.es/italyexcess/.
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Figure 7: Shiny App developed to navigate through the excess mortality estimates during 2020 in Italy
across the different aggregations.

5 Summary

This tutorial provides a detailed explanation of the workflow used previously to calculate excess
mortality during the COVID-19 pandemic in 5 European regions (Konstantinoudis et al., 2022). The
main model used here is slightly modified based on updated results (Riou et al., 2023). We have
proposed a Bayesian workflow for estimating excess mortality and shown how to use R and INLA
to retrieve fast and accurate estimates. The proposed workflow also allows for combining different
models and presenting the results stratified by age, sex, spatial and temporal location. We have
given a practical example of how to use the proposed framework to model the excess mortality
during the 2020 COVID-19 pandemic in Italy at small area level. We also developed a Shiny App
to effectively communicate the results. The methodological framework can be extended to monitor
excess mortality caused by other extreme events; for instance, natural hazards such as tropical cyclones
(Parks et al., 2022) or heatwaves (Konstantinoudis et al., 2023). Potential methodological extensions of
the proposed framework also include modelling the younger age groups with a zero-inflated Poisson
distribution. The proposed framework can also be extended to provide an automated tool for online
disease surveillance and policy making.
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Generalized Estimating Equations using
the new R package glmtoolbox
by L.H. Vanegas, L.M. Rondón, and G.A. Paula

Abstract This paper introduces a very comprehensive implementation, available in the new R package
glmtoolbox, of a very flexible statistical tool known as Generalized Estimating Equations (GEE),
which analyzes cluster correlated data utilizing marginal models. As well as providing more built-
in structures for the working correlation matrix than other GEE implementations in R, this GEE
implementation also allows the user to: (1) compute several estimates of the variance-covariance
matrix of the estimators of the parameters of interest; (2) compute several criteria to assist the selection
of the structure for the working-correlation matrix; (3) compare nested models using the Wald test as
well as the generalized score test; (4) assess the goodness-of-fit of the model using Pearson-, deviance-
and Mahalanobis-type residuals; (5) perform sensibility analysis using the global influence approach
(that is, dfbeta statistic and Cook’s distance) as well as the local influence approach; (6) use several
criteria to perform variable selection using a hybrid stepwise procedure; (7) fit models with nonlinear
predictors; (8) handle dropout-type missing data under MAR rather than MCAR assumption by using
observation-specific or cluster-specific weighted methods. The capabilities of this GEE implementation
are illustrated by analyzing four real datasets obtained from longitudinal studies.

1 Introduction

The Generalized Estimating Equations (GEE), proposed by Liang and Zeger (1986), extend the theo-
retical framework of the Generalized Least Squares (GLS) by allowing the variance of the response
variable distribution to be proportional to a known function of its mean, resulting thus in a very
flexible statistical tool for the analysis of heteroskedastic discrete and continuous cluster correlated
data. Unlike conditional models such as random-effect models, the GEE approach is based on marginal
models. In addition, and according to Lipsitz and Fitzmaurice (2008), GEE can also be regarded as a
multivariate generalization of the quasi-likelihood approach to Generalized Linear Models (GLMs)
introduced by Wedderburn (1974). The main advantage of GEE over other approaches to analyzing
cluster correlated data lies in that this methodology does not require the full specification of the
multivariate distribution of the (discrete or continuous) response vector measured on each subject or
cluster, reducing the possibility of model misspecification. Indeed, GEE just requires the following:

• Specification of a variance function, which describes the mechanism of heteroscedasticity
(if there is any), that is, it describes the way in which the variance of the response variable
distribution is assumed to be dependent on its mean.

• Specification of a regression structure, very similar to that described in the theoretical framework
of the GLMs (see, for instance, McCullagh and Nelder (1989)), that includes a link function and
a linear predictor, which describe the way the mean of the response variable distribution is
assumed to be dependent on some continuous and/or discrete regressors.

• Specification of a correlation matrix structure. This matrix describes the dynamic of the linear
association between the different measurements of the response variable performed on the same
subject or cluster.

This paper introduces the package glmtoolbox, which, besides providing more built-in structures
for the working correlation matrix than other GEE implementations available in R, has several features,
including: (1) compute several estimates of the variance-covariance matrix of the estimators of the
parameters of interest; (2) compute several criteria to assist the selection of the structure for the
working correlation matrix; (3) compare nested models using the Wald test as well as the generalized
score test; (4) assess the goodness-of-fit of the model using Pearson-, deviance- and Mahalanobis-type
residuals; (5) perform sensibility analysis using the global influence approach (that is, dfbeta statistic
and Cook’s distance) as well as the local influence approach; (6) use several criteria to perform variable
selection using a hybrid stepwise procedure; (7) fit models with nonlinear predictors; (8) handle
dropout-type missing data under MAR rather than MCAR assumption by using observation-specific or
cluster-specific weighted methods. The rest of this paper is organized as follows: in Section 2 the main
features of the GEE model setup are described; in Section 3 the main features of the implementation
of GEE in the package glmtoolbox are described and compared with those available in the packages
gee (Carey, 2022), geepack (Yan, 2002; Højsgaard et al., 2005) and geeM (McDaniel et al., 2013), which
are the most widely used packages in R to analyze cluster correlated data using GEE; in Section 4
the capabilities of this implementation are illustrated by analyzing four real datasets obtained from
longitudinal studies.
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2 Generalized Estimating Equations

Let yi = (yi1, . . . , yij, . . . , yi ni )
⊤ for i = 1, . . . , n be the multivariate response of interest measured on n

subjects or clusters, which are assumed to be realizations of independent random vectors denoted
here by Yi = (Yi1, . . . , Yij, . . . , Yi ni )

⊤ for i = 1, . . . , n, where ni represents the size of the ith cluster or
the number of measurements performed on the ith subject. So, the total number of observations is
N = n1 + . . . + nn. The random variables associated with the ith subject or cluster, given by Yij for
j = 1, . . . , ni, are assumed to satisfy the following:

Var(Yij) =
ϕ

ωij
V(µij) and Corr(Yij, Yik) = rjk(ρ),

where µij = E(Yij), ϕ > 0 is the dispersion parameter, ωij > 0 are known weights typically specified
to be 1, V(µ) > 0 is the variance function, and rjk(ρ) is the Pearson’s linear correlation coefficient,
which is assumed to be dependent just on j, k and the unknown nuisance parameter vector denoted
here by ρ = (ρ1, . . . , ρq)⊤. In addition, µij is assumed to be dependent on a vector of p continuous
and/or discrete regressors, denoted here by (x1ij, . . . , xpij), in the following way:

g(µij) = x⊤ij β, (1)

where g(µ) is a strictly monotone and twice-differentiable known function better known as link
function, xij = (1, x1ij, . . . , xpij)

⊤ and β = (β0, β1, . . . , βp)⊤ is the interest parameter vector.

According to Liang and Zeger (1986), the estimate of β, denoted here by β̂, reduces to the solution to
the (p + 1) equations given by U(β̂) = 0, where

U(β) = ϕ−1
n

∑
i=1

X⊤i KiV
−1
i (yi − µi) = ϕ−1

n

∑
i=1

X⊤i WiK
−1
i (yi − µi) = ϕ−1X⊤WK−1(y − µ), (2)

in which Xi = (xi1, . . . , xini )
⊤, Wi = KiV

−1
i Ki, Ki = diag{1/g′(µi1), . . . , 1/g′(µini )}, Vi = A

1
2
i RiA

1
2
i ,

Ai = diag{V(µi1)/ωi1, . . . , V(µini )/ωini}, Ri is a square matrix whose (j, k)th entry is rjk(ρ), µi =

(µi1, . . . , µini )
⊤, X = (X⊤1 , . . . , X⊤n )⊤, W = blockdiag{W1, . . . , Wn}, K = blockdiag{K1, . . . , Kn}, y =

(y⊤1 , . . . , y⊤n )⊤ and µ = (µ⊤1 , . . . , µ⊤n )
⊤. Moreover, the estimate of ϕ may be written as follows:

ϕ̂ =
1

N − p − 1

n

∑
i=1

ni

∑
j=1

(yij − µ̂ij)
2

V(µ̂ij)/ωij
,

where µ̂ij = g−1(x⊤ij β̂). If the model for the mean (µ) is correctly specified, then, under certain

regularity conditions, β̂ is consistent for β and its distribution is such that (Liang and Zeger, 1986):

√
n(β̂ − β)

D−−−→
n→∞

N (0, Var(β̂)),

where

Var(β̂) = lim
n→∞

(
1
n

X⊤WX
)−1
(

1
n

n

∑
i=1

X⊤i WiK
−1
i Var(Yi)K

−1
i WiXi

)(
1
n

X⊤WX
)−1

.

Therefore, if the mean model is correctly specified, then β̂ remain consistent and asymptotically
normal distributed regardless of whether or not the correlation matrix structure is correctly specified.
Indeed, if the structure of the correlation matrix is also correctly specified, that is, if Var(Yi) = ϕVi for
i = 1, . . . , n, then Var(β̂) reduces to

Var(β̂) = lim
n→∞

ϕ

(
1
n

X⊤WX
)−1

.

3 R package glmtoolbox

The function glmgee() is the GEE solver available in the package glmtoolbox. That function includes
the typical arguments present in regression routines such as lm() and glm(), that is, it includes
arguments such as formula, weights, start, data and subset. In addition, the objects generated by
the function glmgee() are associated with the typical extraction methods such as summary(), print(),
coef(), vcov(), fitted(), confint(), anova(), residuals(), predict(), leverage(), dfbeta() and
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cooks.distance(). Next, the main features of the implementation of GEE in glmtoolbox are described
and compared with those available in the packages gee, geepack and geeM.

3.1 Link and variance functions

The available options for the link (g(µ)) and variance function (V(µ)) in the routine glmgee() are the
following:

family V(µ) g(µ)

gaussian 1 inverse
(
µ−1), identity (µ), log (log(µ))

binomial µ(1 − µ) logit
(
log
(

µ
1−µ

))
, cloglog (log(− log(1 − µ))),

probit
(
Φ−1(µ)

)
, cauchit

(
tan
(

π
2 (2µ − 1)

))
poisson µ sqrt

(
µ

1
2

)
, identity (µ), log (log(µ))

Gamma µ2 inverse
(
µ−1), identity (µ), log (log(µ))

inverse.gaussian µ3 1/muˆ2
(
µ−2), inverse (µ−1), identity (µ), log (log(µ))

negative.binomial(θ)
1

µ(1 + µ/θ) log (log(µ)), identity (µ), sqrt
(
µ

1
2

)
tweedie(θ,γ)

2
µθ log(µ) if γ = 0 and µγ if γ ̸= 0

1 function available in package MASS

2 function available in package statmod

Moreover, new families and new link functions may be defined by the user as described on the
help page of the routine glm(). The variance functions V(µ) = µ3 and V(µ) = µ(1 + µ/θ) are not
available in gee.

3.2 Estimating algorithm

The (p + 1) equations given by U(β̂) = 0 may be solved using the following algorithm:

Step 0: Start the counter at t = 0; set the tolerance limit, ϵ > 0; set the maximum number of iterations,
nmax; and set the initial value for β, say β[0].

Step 1: Compute ρ[t] from the Pearson’s residuals evaluated at β[t], denoted here by r[t]ij .

Step 2: Compute β[t+1] = β[t] + [K(β[t])]−1U(β[t]) = (X⊤W[t]X)−1X⊤W[t]ỹ[t].

Step 3: Compute δ(t+1) = δ(β[t], β[t+1]).

Step 4: Update the counter by t = t + 1.

Step 5: Repeat Steps 1,2,3 and 4 until δ(t) < ϵ or t > nmax.

Step 6: If δ(t) < ϵ, then β̂ is defined to be β[t]. Otherwise, convergence was not achieved.

Note that,

• β[0] is specified to be the estimate of β in the GLM under which the random variables Yij for
i = 1, . . . , n and j = 1, . . . , ni are assumed to be independent. This may be easily obtained by
using the function glm(). However, the starting value, β[0], also may be supplied by the user
with the argument start of the function glmgee().

• r[t]ij =
yij − µ

[t]
ij√

ϕ[t] V(µ
[t]
ij )/ωij

for i = 1, . . . , n and j = 1, . . . , ni, with ϕ[t] =
1

N − p − 1

n
∑

i=1

ni

∑
j=1

(yij − µ
[t]
ij )

2

V(µ
[t]
ij )/ωij

.

• δ(a, b) is a non-negative and strictly increasing function of the “difference” between the vec-
tors a = (a1, . . . , ap+1)

⊤ and b = (b1, . . . , bp+1)
⊤. For instance, δ(a, b) = ||b − a||r or δ(a, b) =

||(b − a)∗||r, where ||a||r =
(
|a1|r + . . . + |ap+1|r

)1/r for any r ≥ 1, ||a||∞ = max{|a1|, . . . , |ap+1|}
and (b − a)∗ :=

(
(b1 − a1)/|a1|, . . . , (bp+1 − ap+1)/|ap+1|

)
. The comparison criterion in the

function glmgee() is δ(a, b) = ||(b − a)∗||∞ = max{|b1 − a1|/|a1|, . . . , |bp+1 − ap+1|/|ap+1|}.
In addition, the values of the tolerance limit, ϵ, and the maximum number of iterations, nmax,
may be specified in the function glmgee() via its arguments toler and maxit, respectively. By
default, toler = 0.00001 and maxit = 50. If trace=TRUE is specified in the function glmgee(),
then the values of δ(β[t], β[t+1]) are printed until convergence is reached or the maximum
number of iterations is exceeded.
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• K(β) = E
(

∂U(β)

∂β⊤

)
= ϕ−1

n
∑

i=1
X⊤i WiXi = ϕ−1X⊤WX and ỹ = Xβ + K−1(y − µ). Therefore, β̂

may be written as β̂ = (X⊤ŴX)−1X⊤Ŵ ˆ̃y, in which Ŵ and ˆ̃y represent to W and ỹ evaluated at
β̂, respectively. Thus, β̂ can be regarded as the GLS estimate of β in a linear model such that
E(Ỹ) = Xβ and Var(Ỹ) = σ2Ŵ−1, with ˆ̃y being the observed value of the random vector Ỹ.

The package glmtoolbox also includes an extracting method, named estequa(), associated with
the objects generated by the function glmgee(), which allows the user to verify if, actually, the
parameter estimates satisfy the generalized estimating equations, that is, the extracting method
estequa() provides the value of the vector U(β) evaluated at the parameter estimates and the observed
data.

3.3 Structures for the working-correlation matrix

The available options for the structure of the working correlation matrix in the function glmgee() are
the following:

• corstr=“Independence”:

Corr(Yij, Yik) =

{
1, if j = k,
0, if j ̸= k

• corstr=“Exchangeable”:

Corr(Yij, Yik) =

{
1, if j = k,
ρ, if j ̸= k,

and ρ[t] =
1

M − p − 1

n

∑
i=1

∑
j<k

r[t]ij r[t]ik ,

where M =
1
2

n
∑

i=1
ni(ni − 1).

• corstr=“AR-M-dependent(m)”:
If m = 1, then the values of Corr(Yij, Yik) become

Corr(Yij, Yik) =

{
1, if j = k,
ρ|j−k|, if j ̸= k,

and ρ[t] =
1

M − p − 1

n

∑
i=1

ni−1

∑
j=1

r[t]ij r[t]i,j+1,

where M =
n
∑

i=1
(ni − 1).

• corstr=“Stationary-M-dependent(m)”:

Corr(Yij, Yi,j+l) =


1, if t = 0,
ρl , if l = 1, . . . , m,
0, if l > m,

and ρ
[t]
l =

1
Ml − p − 1

n

∑
i=1

ni−l

∑
j=1

r[t]ij r[t]i,j+l ,

where Ml =
n
∑

i=1
(ni − l).

• corstr=“Non-Stationary-M-dependent(m)”:

Corr(Yij, Yik) =


1, if j = k,
ρjk, if 0 < |j − k| ≤ m,
0, if |j − k| > m,

and ρ
[t]
jk =

1
n − p − 1

n

∑
i=1

r[t]ij r[t]ik ,

• corstr=“Unstructured”:

Corr(Yij, Yik) =

{
1, if j = k,
ρjk, if j ̸= k,

and ρ
[t]
jk =

1
n − p − 1

n

∑
i=1

r[t]ij r[t]ik ,

• corstr=“User-defined”:
Supplied by the user at the argument corr.

In geepack the structure Stationary-M-dependent is not available. Furthermore, Non-Stationary-M-dependent
and AR-M-dependent (for m > 1) structures are not available in geepack nor in geeM.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 109

3.4 Missing values

The rows of the data set with the same value in the variable specified by the argument id of the
function glmgee() are assumed to belong to the same cluster regardless of whether they are located in
consecutive rows. If the data are longitudinal, that is, if the data consist of measurements performed on
the same subject/cluster but at different time points, then, by default, the function glmgee() assumes
that the rows belonging to the same subject/cluster are ordered in time. However, the function
glmgee() allows specifying, via its argument waves, an integer-valued vector, which by default is set
to be 1, . . . , ni, with the time points of the rows corresponding to each subject/cluster.

In longitudinal data, in which the structures for the working correlation matrix such as AR-M-dependent,
Stationary-M-dependent, Non-Stationary-M-dependent and Unstructured become meaningful, the
missing values may be present in one of the following ways:

• Missing values are located at the first time points.
• Intermittent missing values, that is, missing values intermixed with non-missing values in time.
• Missing values located at the last time points, also known as dropouts.

Similar to the packages geepack and geeM, the GEE solver in the package glmtoolbox allows the user
to specify, via its argument waves, the way in which the missing values occurred, that is, it allows the
user to specify an integer-valued vector with the time points of the non-missing values. By default,
waves is set to be 1, . . . , ni, meaning the missing values, if any, occurred at the last time points. The
missing-data pattern is assumed to be Missing Completely At Random (MCAR) (see, for instance, Laird
(1988)). Statistical inferences based on the GEE approach under the presence of missing values remain
valid in such a scenario. According to Lipsitz and Fitzmaurice (2008), the data are said to be MCAR
when the probability that responses are missing is unrelated to either the specific values that, in
principle, should have been obtained (the missing responses) or the set of observed responses. In
Section 2.4.2, the weighted GEE method to handle dropout-type missing data under the MAR (Missing
At Random) assumption is approached. The MAR assumption is weaker than MCAR.

3.5 Variance estimation

The vcov-type extraction method associated with the objects generated by the function glmgee()
allows the user to compute five different estimates of Var(β̂). The user may specify the estimate
type through the argument type of the vcov-type method. The five types of estimates for Var(β̂) are
described as follows:

• type=“model”:

V̂arM(β̂) = [K(β̂)]−1 = ϕ̂
(
X⊤ŴX

)−1

• type=“robust” (Liang and Zeger, 1986):

V̂arR(β̂) =
(
X⊤ŴX

)−1
(

n

∑
i=1

X⊤i ŴiK̂
−1
i eie

⊤
i K̂−1

i ŴiXi

)(
X⊤ŴX

)−1
,

where ei = yi − µ̂i. This estimator is robust to misspecification of the working correlation matrix.
That is, it is a consistent estimator of Var(β̂) provided that the mean model (µ) is correctly
specified.

• type=“df-adjusted”:
V̂arA(β̂) =

n
n − p − 1

V̂arR(β̂)

• type=“bias-corrected” (Mancl and DeRouen, 2001):

V̂arB(β̂) =
(
X⊤ŴX

)−1
(

n

∑
i=1

X⊤i ŴiK̂
−1
i ẽiẽ

⊤
i K̂−1

i ŴiXi

)(
X⊤ŴX

)−1
,

where ẽi = (I − Ĥi)
−1ei and Ĥi = K̂iXi

(
X⊤ŴX

)−1
X⊤i K̂iV̂

−1
i . The “bias-corrected” estimator for

Var(β̂) is also robust to the misspecification of the working correlation matrix, and is very useful
in cases where the sample size is “small” due to its improved finite sample properties.

• type=“jackknife” (Lipsitz et al., 1990):

V̂arJ(β̂) =

(
n

∑
i=1

β̂1
(i) − β̂1

)(
n

∑
i=1

β̂1
(i) − β̂1

)⊤
= V̂arB(β̂)− 1

n

(
n

∑
i=1

β̂ − β̂1
(i)

)(
n

∑
i=1

β̂ − β̂1
(i)

)⊤
,
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where β̂1
(i) is the “one-step approximation” of β̂(i) given in Section 2.3.8, with β̂(i) representing

the estimate of β obtained from the dataset in which the ith cluster or subject is excluded, and
β̂1 = n−1(β̂1

(1) + . . . + β̂1
(n)).

The summary-type method associated with the objects generated by the function glmgee() also allows
the user to choose among the five different types of estimates for Var(β̂) through its argument varest.

3.6 Comparison of nested models

The package glmtoolbox includes an anova-type method associated with the objects generated by
the function glmgee(), which allows the user to compare nested GEE models (that is, it allows the
user to assess the hypothesis system H0 : β∗ = 0 versus H1 : β∗ ̸= 0, where the elements
of β∗ are a subset of those of β, as β∗ may be written as β∗ = L⊤β, in which L is a r × (p + 1)
contrast matrix) by using not just the Wald test but also the generalized score test (Rotnitzky and
Jewell, 1990; Boos, 1992)). The following decision rule may be used to assess the hypothesis system
H0 : β∗ = 0 versus H1 : β∗ ̸= 0:

“Reject H0 at the approximate 100(α)% significance level if ξ > χ2
1−α(r)”,

where α ∈ (0, 1), χ2
1−α(r) is the 100(1 − α)th percentile of the chi-square distribution with r degrees-of-

freedom, and ξ is one of the following statistics:

• test=“wald”. Computes the Wald test, which is based on the following statistic:

ξW =
(
L⊤β̂
)⊤(

L⊤V̂arR(β̂)L
)−1(

L⊤β̂
)

.

• test=“score”. Computes the generalized score test, whose statistic, denoted here by ξS , reduces
to the following expression evaluated at the estimate of β obtained under the restriction given
by H0 (that is, the estimate of β restricted to β∗ = 0):

U⊤(β)

[
V̂arM(β̂)L

(
L⊤V̂arR(β̂)L

)−1
L⊤V̂arM(β̂)

]
U(β).

The packages gee and geeM do not include an anova-type method. On the other hand, the anova-
type method available in geepack() allows the user to compare nested models using just the Wald
test.

3.7 Criteria for choosing a working correlation structure

The selection criteria available in glmtoolbox are the following:

• Quasi-likelihood under Independence model Criterion (Pan, 2001):

QIC = −2
n

∑
i=1

ni

∑
j=1

µ̂ij∫
yij

ωij
(yij − µij)

ϕ̂ V(µij)
dµij + 2 trace

{
ϕ̂−1(X⊤K̂Â−1K̂X)V̂arR(β̂)

}

The expressions for
µ̂ij∫
yij

ωij
(yij − µij)

V(µij)
dµij for the variance functions in Table 2.3.1 are listed in

Table 9.1 of McCullagh and Nelder (1989).

• Correlation Information Criterion (Hin and Wang, 2009):

CIC = trace
{

ϕ̂−1(X⊤K̂Â−1K̂X)V̂arR(β̂)
}

• Gosho-Hamada-Yoshimura’s Criterion (Gosho et al., 2011; Gosho, 2014):

GHYC = trace


(1

n

n

∑
i=1

(yi − µ̂i)(yi − µ̂i)
⊤
)(

1
n

n

∑
i=1

ϕ̂V̂i

)−1

− I

2
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• Pardo-Alonso’s Criterion (Pardo and Alonso, 2019):

PAC =

∣∣∣∣∣∣∣∣
det
(

1
n

n
∑

i=1
(yi − µ̂i)(yi − µ̂i)

⊤
)

det
(

1
n

n
∑

i=1
ϕ̂V̂i

) − 1

∣∣∣∣∣∣∣∣
• Rotnitzky-Jewell’s Criterion (Hin et al., 2007):

RJC =

[1 − trace(RJC)

p + 1

]2

+

[
1 − trace(RJC 2

)

p + 1

]2
1

2

,

where RJC = V̂arR(β̂)[V̂arM(β̂)]−1.

• Akaike-type penalized Gaussian Pseudo-likelihood Criterion (Carey and Wang, 2011; Zhu and
Zhu, 2013; Fu et al., 2018):

AGPC =
n

∑
i=1

[
ni log(2π) +

1
ϕ̂
(yi − µ̂i)

⊤V̂−1
i (yi − µ̂i) + log(ϕ̂|V̂i|)

]
+ 2(p + 1 + q)

• Schwarz-type penalized Gaussian Pseudo-likelihood Criterion (Carey and Wang, 2011; Zhu and
Zhu, 2013; Fu et al., 2018):

SGPC =
n

∑
i=1

[
ni log(2π) +

1
ϕ̂
(yi − µ̂i)

⊤V̂−1
i (yi − µ̂i) + log(ϕ̂|V̂i|)

]
+ log(n)(p + 1 + q)

The above criteria may be computed for one or more GEE models using the extraction methods QIC(),
CIC(), GHYC(), PAC(), RJC(), AGPC() and SGPC().

3.8 Global influence

The dfbeta- and cooks.distance-type extraction methods associated with the objects generated by the
function glmgee() compute and, optionally, display plots of the statistics dfbeta and Cook’s distance,
which are “leave-one-out” statistics computed to quantify the effect on the estimates of the parameters
of interest of deleting each subject/cluster or observation. If the ith cluster is excluded, these statistics
may be expressed as follows:

Dfbeta
(i) = β̂ − β̂

(i) and CD
(i) =

1
(p + 1)

(β̂ − β̂
(i) )

⊤[V̂ar(β̂)]−1(β̂ − β̂
(i) ),

respectively, where β̂
(i) represents the estimate of β computed from the dataset in which the ith cluster

has been excluded. Similar to the extraction function vcov(), the estimate of Var(β̂) to be used in the
computation of the Cook’s distance can be chosen by using the argument varest of the function
cooks.distance(), whose options are varest=“model”, varest=“robust”, varest=“df-adjusted’,
varest=“bias-corrected’ and varest=“jackknife”. To avoid computational burden, the values
of β̂

(i) are replaced by their “one-step approximations”, denoted here by β̂1
(i)

. Next, the two methods
for the computation of the “one-step approximations” available in the dfbeta- and cooks.distance-type
extraction methods (through their arguments method) are described:

• method=“full”. β̂
(i) is replaced by the result of the first iteration of the estimating algorithm of

the GEE when it is performed using: (i) the dataset in which the ith cluster has been excluded;
and (ii) a starting value which is the solution to the same GEE but computed from the dataset
including all clusters (that is, the current β̂).

• method=“Preisser-Qaqish”. β̂
(i) is replaced by the result of the first iteration of the estimating

algorithm of the GEE when it is performed using: (i) the dataset in which the ith cluster has
been excluded; (ii) a starting value which is the solution to the same GEE but computed from
the dataset including all clusters (that is, the current β̂); and (iii) the working correlation matrix
is assumed to be known and equal to its current estimate. According to Preisser and Qaqish
(1996); Hammill and Preisser (2006), β̂1

(i)
reduces to

β̂1
(i)
= β̂ −

(
X⊤ŴX

)−1
X⊤i ŴiK̂

−1
i ẽi.
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Thus, V̂arB(β̂) =
n
∑

i=1
(Dfbeta

(i) )(Dfbeta
(i) )

⊤. Similar, but more complicated closed-form expres-

sions for β̂1
(ij)

are given in Preisser and Qaqish (1996) and Hammill and Preisser (2006) when
observations instead of clusters/subjects have been excluded from the dataset. The statistics
based on those values of β̂

(ij) may be obtained by specifying level=“observations” when using
the extraction methods dfbeta() and cooks.distance().

3.9 Local influence

The localInfluence-type extraction method associated with the objects generated by the function
glmgee() computes and, optionally, displays plots of some local influence measures based on the
approach proposed by Cook (1986). Let u be a set of perturbations applied to the model and/or the
data. The resulting estimating equations are denoted by U(β|u). Similar to Jung (2008), the following
is assumed: (i) the working correlation matrix is known and equal to its current estimate; (ii) the
quasi-likelihood function Q(β) exists such that U(β) is its gradient; and (iii) u0 exists, such that
U(β|u0) and U(β) coincide. So, the influence of the set of perturbations u on the estimate of β may be
assessed by studying the conformal normal curvature, Cd, around u0, along a unitary direction d, in
which Cd = 2|d⊤C d| and

C = ∆̂⊤[−Q̈(β̂)]−1∆̂,

where ∆̂ corresponds to the (p + 1)× dim(u) matrix given by
∂U(β|u)

∂u⊤ = (∆1, . . . , ∆n) evaluated at

β = β̂ and u = u0, and Q̈(β̂) corresponds to the (p + 1)× (p + 1) matrix given by
∂U(β|u)

∂β⊤ evaluated

at β = β̂ and u = u0. The matrix Q̈(β) may be written as follows

Q̈(β) =
n

∑
i=1

X⊤
i

[
diag{D(ai)V

−1
i (yi − µi)}+ KiV

−1
i D(bi)

]
Xi

in which D(ai) and D(bi) are diagonal matrices with diagonal elements given by ai1, . . . , aini and
bi1, . . . , bini , respectively, where

aij = − 1
[g′(µij)]2

[
g′′(µij)

g′(µij)
+

V′(µij)

2V(µij)

]
and bij = − 1

g′(µij)

[
1 +

(yij − µij)V′(µij)

2V(µij)

]
.

Next, the options for the perturbation schemes available in the extraction method localInfluence()
(through its argument perturbation) are described:

• Case weight perturbations

(1) Clusters (perturbation=“cw-clusters”):

U(β|u) =
n

∑
i=1

uiX
⊤
i KiV

−1
i (yi − µi).

Therefore, dim(u) = n, u0 = (1, . . . , 1)⊤ and ∆̂i = XiK̂iV̂
−1
i (yi − µ̂i) is a (p + 1) × 1

matrix.

(2) Observations (perturbation=“cw-observations”)

U(β|u) =
n

∑
i=1

X⊤
i Kidiag(ui)V

−1
i (yi − µi),

in which ui = (ui1, . . . , uini )
⊤. Therefore, dim(u) = N, u0 = (1, . . . , 1)⊤ and ∆̂i =

X⊤
i diag{K̂iV̂

−1
i (yi − µ̂i)} is a (p + 1)× ni matrix.

• Response perturbation (perturbation=“response”):
If the response is continuous, then the value of yij is perturbed by adding a quantity which is
proportional to the standard deviation of Yij, thus,

U(β|u) =
n

∑
i=1

X⊤
i KiV

−1
i (yi +

√
ϕ[diag(Vi)]

1
2 ui − µi),

in which ui = (ui1, . . . , uini )
⊤. Therefore, dim(u) = N, u0 = (0, . . . , 0)⊤ and ∆̂i = ϕ̂

1
2 X⊤

i K̂iV̂
−1
i [diag(V̂i)]

1
2

is a (p + 1)× ni matrix.
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• Perturbation of covariates (perturbation= “covariate”):
If the r-column of X corresponds to a continuous covariate, then the values of that covariate are
perturbed by adding a quantity which is proportional to its standard deviation, cr, thus,

U(β|u) =
n

∑
i=1

(
Xi + uiδ

⊤
r

)
KiV

−1
i

(
yi − g−1

[
zi + (Xi + uiδ

⊤
r )β

])
,

in which ui = (ui1, . . . , uini )
⊤ and δr is a (p + 1)-dimensional column vector of zeros with

the known constant cr in the r-th position. Therefore, dim(u) = N, u0 = (0, . . . , 0)⊤ and

∆i = crδr

{
(yi − µ̂i)

⊤V̂−1
i K̂i + (Xi β̂)

⊤
[
M̂iV̂

−1
i (yi − µ̂i)− K̂iV̂

−1
i K̂i1ni

]
1⊤ni

}
is a (p + 1) × ni

matrix, where Mi is a diagonal matrix with diagonal elements mi1, . . . , mini , with mij =

−g′′(µij)/[g′(µij)]
3.

The options to study the local influence from Cd available in the extraction method localInfluence()
(through its argument type) are described as follows:

• type=“local”. Computes and, optionally, displays an index plot of the elements of dmax (that
is, the eigenvector which correspond to the maximum absolute eigenvalue of C). The vector
dmax is computed using the power iteration algorithm.

• type=“total”. Computes and, optionally, displays an index plot of the elements of the main
diagonal of C.

3.10 Variable selection

The function stepCriterion() associated with the objects generated by the function glmgee() allows
the user to iteratively choose the more “relevant” and/or ” significant” variables and/or effects in the
model fit by using either of the following “hybrid stepwise” strategies (see James et al. (2013), page
212):

• direction=“forward”. The “hybrid forward stepwise” strategy starts with the simplest model
(which may be set at the argument scope, and by default, is a model whose parameters in the
linear predictor, except the intercept, if there is, are set to be 0), and then the candidate models
are built by hierarchically including effects in the linear predictor, whose “relevance” and/or
“importance” in the model fit is assessed by comparing nested models (that is, by comparing
the models with and without the included effect) using a criterion previously specified. If an
effect is included in the model, this strategy may also remove any effect which, according to the
previously specified criterion, no longer contributes to an improvement in the model fit.

• direction=“backward”. The “hybrid backward stepwise” strategy starts with the more complex
model (which may be specified at the argument scope), and then the candidate models are
built by hierarchically removing effects in the linear predictor, whose “relevance” and/or
“importance” in the model fit is assessed by comparing nested models (that is, by comparing the
models with and without the excluded effect) using a criterion previously chosen. If an effect is
excluded from the model, then this strategy may also add any effect which, according to the
criterion previously specified, provides an improvement in the model fit.

The available comparison criteria are the following:

• criterion=“qic”. QIC

• criterion=“qicu”. According to Pan (2001), the QICu may be written as

QICu = −2
n

∑
i=1

ni

∑
j=1

µ̂ij∫
yij

ωij
(yij − µij)

ϕ̂ V(µij)
dµij + 2(p + 1)

• criterion=“agpc”. AGPC

• criterion=“sgpc”. SGPC

• criterion=“p-value”. p-values of the Wald (test=“wald”) or generalized score (test=“score”)
tests.

According to Xu et al. (2019), the AGPC and SGPC outperform other existing methods in selecting
variables, and they perform well regardless of whether the working correlation structure is correctly
specified or not.
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3.11 Leverage

The leverage-type extraction method associated with the objects generated by the function glmgee()
computes and, optionally, displays a plot of the leverage measures at the cluster- and observation-level.
According to Preisser and Qaqish (1996); Hammill and Preisser (2006), the observation leverage for
the jth observation of the ith cluster is the value of the jth diagonal element of the matrix Ĥi. Cluster
leverage for cluster i is the mean of the observation leverages. This, unlike the sum of observation
leverages, makes the leverage measures comparable when there are clusters of different sizes. The
leverage at cluster- and observation-level may be obtained from the leverage-type extraction method
(leverage()) by specifying level=“clusters” and level=“observations”, respectively.

3.12 Residuals

The residuals-type extraction method associated with the objects generated by the function glmgee()
computes and, optionally, displays a plot of three different types of residuals. The user may specify the
residual type through the argument type of the residuals-type method. The residuals are computed
to quantify the goodness-of-fit of the model at the cluster-level (Mahalanobis-type residuals) and
at the observation-level (Pearson- and deviance-type residuals). Indeed, a plot of the Pearson- or
deviance-type residuals versus the fitted values may be a useful tool to assess if, for instance, the
specified variance function provides a suitable description of the dispersion present in the data. As
follows, three types of residuals are described:

• type=“pearson”. Computes the Pearson-type residuals, given by

rP
ij =

yij − µ̂ij√
ϕ̂ V(µ̂ij)/ωij

for i = 1, . . . , n and j = 1, . . . , ni.

• type=“deviance”. Computes the deviance-type residuals, given by

rD
ij = sign(yij − µ̂ij)

√
d(yij, µ̂ij, ωij)/ϕ̂ for i = 1, . . . , n and j = 1, . . . , ni,

where d(yij, µij, ωij) represents the contribution to the non-scaled deviance of the jth measure-
ment performed on the ith subject or cluster.

• type=“mahalanobis”. Computes the Mahalanobis-type residuals, given by

rM
i = n−1

i (yi − µ̂i)
⊤[V̂ar(Yi)]

−1(yi − µ̂i) =
n−1

i
ϕ̂

(yi − µ̂i)
⊤V̂−1

i (yi − µ̂i) for i = 1, . . . , n.

The residuals-type extraction method in geepack provides neither deviance- nor Mahalanobis-type
residuals computation, whereas gee and geeM do not include a residuals-type extraction method.

4 Extensions

4.1 Nonlinear predictors

Unlike that described in expression (1), where g(µij) is restricted to being a linear combination of
the elements of the parameter vector β, in the new model formulation described here, g(µij) may be
expressed using a more general family of functions of β = (β1, . . . , βp)⊤. That is,

g(µij) = η(xij, β),

where ηij(β) ≡ η(xij, β) is a continuous and twice differentiable function of β, with xij being a vector
of continuous and/or discrete regressors. The estimate of β can be obtained by solving the p non-linear
equations given by U(β̂) = 0, where

U(β) = ϕ−1
n

∑
i=1

D⊤
i KiV

−1
i (yi − µi) = ϕ−1

n

∑
i=1

D⊤
i WiK

−1
i (yi − µi) = ϕ−1D⊤WK−1(y − µ),

in which D = (D⊤
1 , . . . , D⊤

n )
⊤, Di = (di1, . . . , dini )

⊤ and dij = (∂ηij(β)/∂β1, . . . , ∂ηij(β)/∂βp)⊤. This
type of GEE model is implemented in the function gnmgee() of the package glmtoolbox. The arguments
of the function gnmgee() are very similar to those of glmgee(). Nevertheless, the form of the non-
linear function ηij(β) and the starting value for β in the estimation algorithm must be set by the user
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via the arguments formula and start of gnmgee(). But, the argument formula also accepts built-in
non-linear functions such as SSasymp(), SSasympOff(), SSasympOrig(), SSbiexp(), SSfol(), SSfpl(),
SSgompertz(), SSlogis(), SSmicmen() and SSweibull(), which do not require user-supplied starting
values.

4.2 Weighted GEE methods

In longitudinal studies, in which the response variable is planned to be measured at J time points
on each subject/cluster, the weighted GEE methods provide consistent estimates under the MAR
assumption when the missing data pattern is dropout and its mechanism is correctly specified (Robins
et al., 1995). Let tij = 1 if the response is observed on the ith subject/cluster at time j, and 0 otherwise,
which is assumed to be a realization of a random variable denoted here by Tij. In addition, let
ti = 1 + ti1 + ti2 + . . . + ti J the time of dropout for the ith subject/cluster, so, ti ∈ {2, . . . , J + 1}. The
probability of observing yij may be expressed using the following logistic model:

logit(πij) = logit
(
Pr
[

Tij = 1 | Ti,j−1 = 1, xi1, . . . , xij, Yi1, . . . , Yi,j−1

])
= z⊤ijτ,

where τ = (τ0, τ1, . . . , τs)⊤ is an unknown parameter vector and zij = (1, zij1, . . . , zijs) is a vector
of regressors which may include visit indicator variables (I(j = 2),. . . ,I(j = J − 1), where I(·) is
the indicator function), covariates (xi1, . . . , xij) and past responses (yi1, . . . , yi,j−1). The maximum
likelihood estimate of τ is τ̂ = argmax

τ ∈Rs+1
ℓ(τ), where (Robins et al., 1995; Preisser et al., 2002)

ℓ(τ) =
n

∑
i=1

t∗i
∑
j=1

ti,j−1

[
tij log(πij) + (1 − tij) log(1 − πij)

]
is the log-likelihood function of τ, in which t∗i = min(ti, J) and ti0 = 0. If the missing data pattern is
dropout, then ti1 = 1 is assumed for all i = 1, . . . .n. Therefore,

π̂ij =


1 if j = 1

exp(z⊤ij τ̂)

1 + exp(z⊤ij τ̂)
if j > 1

The estimate of τ satisfies
∂ℓ(τ)

∂τ

∣∣∣∣
τ=τ̂

= S1 + . . . + Sn = 0, where Si = Z⊤i (t − π̂), Zi = (zi1, . . . , zit∗i )
⊤,

t = (ti1, . . . , tit∗i )
⊤ and π̂ = (π̂i1, . . . , π̂it∗i )

⊤.

Observation-specific weights

According to Fitzmaurice et al. (2011), the underlying idea of this weighting method is to base the
estimation on the observed responses but weight them to account for the probability of remaining in
the study. When using the observation-specific weighted GEE method, the covariates for all occasions
for a subject/cluster must be observed, regardless of whether the response is missing. That is, the
input data set must contain J observations for each subject/cluster. The estimate of β is the solution to
the (p + 1) nonlinear equations given by U∗(β̂) = 0, in which U∗(β) may be expressed as follows

U∗(β) = ϕ−1
n

∑
i=1

X⊤i KiV
−1
i Λi(yi − µi),

where Λi = diag{ti1λi1, . . . , ti Jλi J} and λij = 1/(π̂i1 × π̂i2 × . . . × π̂ij). The estimator of β has an
asymptotic normal distribution with consistent estimator of its asymptotic variance given by (Robins
et al., 1995; Preisser et al., 2002)

V̂ar(β̂) =

(
n

∑
i=1

X⊤i K̂iV̂
−1
i ΛiK̂iXi

)−1( n

∑
i=1

EiE
⊤
i

)(
n

∑
i=1

X⊤i K̂iV̂
−1
i ΛiK̂iXi

)−1

,

where Ei = X⊤i K̂iV̂
−1
i Λi(yi − µ̂i)−

(
n
∑

i=1
X⊤i K̂iV̂

−1
i Λi(yi − µ̂i)S⊤i

)(
n
∑

i=1
SiS⊤i

)−1
Si.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 116

Subject/Cluster-specific weights

In the cluster-specific weighted GEE method, covariates for a cluster who dropout at time k must
be observed for occasions up to and including time k. That is, each subject must have at least k
observations in the input data set. The estimate of β is the solution to the (p + 1) nonlinear equations
given by U(β̂) = 0, in which U(β) is given by (2), but where the weights in the matrices A1, . . . , An
are set to be ω∗

ij = ωij × λi for i = 1, . . . , n and j = 1, . . . , ti − 1. The value of λi may be computed as
follows

λ−1
i =

ti−1

∏
j=1

π̂ij

(1 − π̂iti )
I(ti ≤ J).

The estimator of β has an asymptotic normal distribution with a consistent estimator of its asymptotic
variance given by (Robins et al., 1995; Preisser et al., 2002)

V̂ar(β̂) =

(
n

∑
i=1

X⊤i K̂iV̂
−1
i K̂iXi

)−1( n

∑
i=1

EiE
⊤
i

)(
n

∑
i=1

X⊤i K̂iV̂
−1
i K̂iXi

)−1

,

where Ei = X⊤i K̂iV̂
−1
i (yi − µ̂i)−

(
n
∑

i=1
X⊤i K̂iV̂

−1
i (yi − µ̂i)S⊤i

)(
n
∑

i=1
SiS⊤i

)−1
Si.

The weighted GEE methods based on observation-specific weights and cluster-specific weights are
implemented in the function wglmgee() of the package glmtoolbox, whose arguments are very similar
to those of the function glmgee(). In that function, the user sets the GEE and missingness models at
the same argument of type Formula (Zeileis and Croissant, 2010). In addition, the user sets the type of
weighting method: observation-specific weights (level=“observations”) or cluster-specific weights
(level=“clusters”). The wglmgee() function estimates the parameters of the missingness model and
uses them to compute the required weights. Then, wglmgee() introduces the weights in the estimation
process of the GEE model parameters as well as in the estimation of their asymptotic variance matrix.

5 Examples

5.1 Growth patterns of trees under two types of atmosphere

The dataset of this example, described by Diggle et al. (2002) and available in the spruces object of
glmtoolbox, is composed of the columns tree, days, size and treat (see Table 1). The analysis of
this dataset aims to assess the effect of ozone pollution on tree growth. Ozone pollution is common
in urban areas, thus the impact of increased ozone concentrations on tree growth is of considerable
interest. The response variable is tree size (size), where size is conventionally measured by the
product of tree height and stem diameter squared. A total of 79 trees, identified in the dataset by the
column tree, were considered in this experiment. In the first group a total of 54 trees were grown
under an ozone-enriched atmosphere (treat=“ozone-enriched”), that is, ozone exposure at 70 parts
per billion, whereas in the second group, a total of 25 trees were grown under a normal atmosphere
(treat=“normal”). The size of each tree was observed and recorded exactly 13 times across the time
since the experiment began (days), so the data are balanced and the number of rows in the dataset is
1027. The main objective of the analysis is to compare the growth patterns of trees under two types of
atmosphere: normal and ozone-enriched.

Column Role Description
tree Cluster/subject identifier Identifier of the tree
days Explanatory variable Number of days after the treatment began
treat Explanatory variable Treatment: “normal” or “ozone-enriched”
size Response variable Tree size

Table 1: Columns in the object spruces of the package glmtoolbox.

An adjusted for skewness box-plot of the data (Figure 1), obtained using the function adjbox() in
the package robustbase (Maechler et al. (2022)), shows that ozone suppresses tree growth. The plot
also indicates that under the two types of atmosphere the location as well as the dispersion of the
tree size are non-decreasing and non-linear functions of the time since the experiment began, which
suggests the data should be analyzed using a GEE with the following features: (i) a linear predictor
which includes a polynomial effect of the time, as well as a dummy variable to indicate the type of
atmosphere under which the trees grew; and (ii) an increasing variance function such as V(µ) = µ,
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V(µ) = µ2 or V(µ) = µ3, which is aimed to include in the model the heteroscedasticity observed in
the data.
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Figure 1: Growth patterns of trees under normal and ozone-enriched atmospheres.

Plots (not shown here) of the deviance-type residuals versus the fitted values for two GEE with
logarithmic link, working correlation matrix specified to be the identity matrix, and variance functions
V(µ) = µ and V(µ) = µ3, reveal megaphone shaped and inverted megaphone shaped patterns,
respectively, indicating thus how inappropriate such variance functions are for describing the het-
eroscedasticity present in the data. On the other hand, the same plot but using the variance function
V(µ) = µ2 (Figure 2(a)) does not reveal any trend, indicating that the data could be suitably analyzed
under the assumption of a constant coefficient of variation. So, several GEE with the variance function
V(µ) = µ2, logarithmic link, and different structures for the working correlation matrix are fitted to
the data. Then, the selection criteria available in glmtoolbox are used to choose the more suitable
structure for the correlation matrix.

> data(spruces)
> m1 <- glmgee(size ~ poly(days,4) + treat, id=tree, family=Gamma(log), data=spruces)
> m2 <- update(m1, corstr="Exchangeable")
> m3 <- update(m1, corstr="AR-M-dependent(1)")
> m4 <- update(m1, corstr="AR-M-dependent(2)")
> m5 <- update(m1, corstr="AR-M-dependent(3)")

> a <- CIC(m1, m2, m3, m4, m5, verbose=FALSE)
> b <- QIC(m1, m2, m3, m4, m5, verbose=FALSE)
> c <- GHYC(m1, m2, m3, m4, m5, verbose=FALSE)
> d <- RJC(m1, m2, m3, m4, m5, verbose=FALSE)
> e <- AGPC(m1, m2, m3, m4, m5, verbose=FALSE)
> f <- SGPC(m1, m2, m3, m4, m5, verbose=FALSE)
> cbind(a,QIC=b[,"QIC"],GHYC=c[,"GHYC"],RJC=d[,"RJC"],AGPC=e[,"AGPC"],SGPC=f[,"SGPC"])

Object Correlation CIC QIC GHYC RJC AGPC SGPC
1 m1 Independence 23.43 42068 116.42 41.303 13539 13554
2 m2 Exchangeable 23.43 42068 40.96 7.639 11689 11706
3 m3 AR-M-dependent(1) 23.66 42086 11.26 0.129 10941 10957
4 m4 AR-M-dependent(2) 23.56 42158 13.72 0.489 10981 11000
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5 m5 AR-M-dependent(3) 23.56 42201 12.45 0.914 10994 11016

Most of the selection criteria (that is, Gosho-Hamada-Yoshimura’s criterion, Rotnitzky-Jewell’s
criterion, Akaike-type penalized Gaussian pseudo-likelihood criterion, and Schwarz-type penalized
Gaussian pseudo-likelihood criterion) suggest the first-order autoregressive (AR-1) and Independence
as the more and less adequate structures for the correlation matrix, respectively. GEE with the AR-1
structure for the correlation matrix is summarized as follows:

> summary(m3)
Sample size

Number of observations: 1027
Number of clusters: 79

Cluster size: 13
*********************************************************************
Model

Variance function: Gamma
Link function: log

Correlation structure: AR-M-dependent(1)
*********************************************************************
Coefficients

Estimate Std.Error z-value Pr(>|z|)
(Intercept) 5.90378 0.10486 56.30321 < 2e-16
poly(days, 4)1 19.20015 0.51848 37.03159 < 2e-16
poly(days, 4)2 -2.85755 0.20585 -13.88147 < 2e-16
poly(days, 4)3 5.41639 0.18246 29.68549 < 2e-16
poly(days, 4)4 -3.57407 0.12478 -28.64405 < 2e-16
treatozone-enriched -0.25861 0.12835 -2.01486 0.043919

Dispersion 0.32866
*********************************************************************
Working correlation

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
[1] 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76 0.73 0.70 0.68 0.66
[2] 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76 0.73 0.70 0.68
[3] 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76 0.73 0.70
[4] 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76 0.73
[5] 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78 0.76
[6] 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81 0.78
[7] 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84 0.81
[8] 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87 0.84
[9] 0.76 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90 0.87
[10] 0.73 0.76 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93 0.90
[11] 0.70 0.73 0.76 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97 0.93
[12] 0.68 0.70 0.73 0.76 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00 0.97
[13] 0.66 0.68 0.70 0.73 0.76 0.78 0.81 0.84 0.87 0.90 0.93 0.97 1.00

The Wald test and the generalized score test suggest that there is no interaction between time and
the type of atmosphere. This is because, as shown below, the p-values associated with that effect are
“large”.

> m3a <- update(m3, . ~ . + poly(days,4):treat)
> anova(m3a, test="wald")
Wald test

Model 1 : size ~ 1
Model 2 : size ~ poly(days, 4)
Model 3 : size ~ poly(days, 4) + treat
Model 4 : size ~ poly(days, 4) + treat + poly(days, 4):treat

Chi df Pr(>Chi)
1 vs 2 1931.9813 4 < 2e-16 ***
2 vs 3 4.0597 1 0.04392 *
3 vs 4 3.6641 4 0.45336

> anova(m3a, test="score")
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Generalized score test

Model 1 : size ~ 1
Model 2 : size ~ poly(days, 4)
Model 3 : size ~ poly(days, 4) + treat
Model 4 : size ~ poly(days, 4) + treat + poly(days, 4):treat

Chi df Pr(>Chi)
1 vs 2 61.3028 4 1.544e-12 ***
2 vs 3 3.3687 1 0.06645 .
3 vs 4 3.4665 4 0.48300

Variance estimation

Next, the estimates of Var(β̂0), Var(β̂1), . . . , Var(β̂5) are obtained using four different estimators.

> cbind(model=diag(vcov(m3, type="model")),
+ robust=diag(vcov(m3, type="robust")),
+ bias.corrected=diag(vcov(m3, type="bias-corrected")),
+ jackknife=diag(vcov(m3, type="jackknife")))

model robust bias.corrected jackknife
(Intercept) 0.0110 0.0110 0.0119 0.0119
poly(days, 4)1 0.2564 0.2688 0.2758 0.2758
poly(days, 4)2 0.0922 0.0424 0.0435 0.0435
poly(days, 4)3 0.0352 0.0333 0.0342 0.0342
poly(days, 4)4 0.0283 0.0156 0.0160 0.0160
treatozone-enriched 0.0159 0.0165 0.0176 0.0176

Parameter interpretation

Across time, the expected size of the trees that grew under the ozone-enriched atmosphere is approx-
imately 22.79% = 100 × [1 − exp(β̂treat)] lower than that of the trees that grew under the normal
atmosphere, where βtreat represents the parameter associated with the dummy variable indicating
the type of atmosphere under which the trees grew. According to the Wald test, the hypothesis
H0 : βtreat ≥ 0 versus H1 : βtreat < 0 is rejected at the approximate level of 5%, indicating thus that the
ozone-enriched atmosphere suppresses tree growth.

Variable selection

As an illustration, the procedure of variable selection is applied using the strategy “hybrid forward
stepwise” with the p-value of the generalized score test as the comparison criterion, and where the
thresholds for add and drop effects are set at 10% and 5%, respectively. In addition, the simplest
and most complex models are specified to be 1 and 1+poly(days,4)+treat+poly(days,4):treat,
respectively. As shown below, the best linear predictor according to the chosen strategy incorporates
both time and atmosphere, but not the interaction between them. The same results are obtained when
the strategy of variable selection is changed as follows: (i) the generalized score test is replaced by
the Wald test; (ii) and the “hybrid forward stepwise” procedure is replaced by the “hybrid backward
stepwise”.

stepCriterion(m3, direction="forward", criterion="p-value", test="score",
+ scope=list(lower=~1, upper=~poly(days,4)*treat), levels=c(0.10,0.05))

Variance function: Gamma
Link function: log

Correlation structure: AR-M-dependent(1)
Comparison criteria: P(Chisq>)(*)

Initial model:
~ 1

Step 0 :
df QIC QICu AGPC SGPC P(Chisq>)(*)

+ poly(days, 4) 4 39944 39928 10927 10941 1.544e-12
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+ treat 1 19534 19517 12353 12360 0.03618
<none> 18998 18989 12362 12367

Step 1 : + poly(days, 4)

df QIC QICu AGPC SGPC P(Chisq>)(*)
+ treat 1 42086 42051 10941 10957 0.06645
<none> 39944 39928 10927 10941

Step 2 : + treat

df QIC QICu AGPC SGPC P(Chisq>)(*)
+ poly(days, 4):treat 4 41815 41787 10954 10980 0.483
<none> 42086 42051 10941 10957

Final model:
~ poly(days, 4) + treat
****************************************************************************
(*) p-values of the generalized score test
Effects are added when their p-values are lower than 0.1
Effects are excluded when their p-values are higher than 0.05
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Figure 2: Some diagnostic plots for the GEE with correlation structure AR-1 fitted to the data on
growth patterns of trees.
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Residual analysis

> residuals(m3, type="deviance", plot.it=TRUE, pch=16)
> residuals(m3, type="mahalanobis", plot.it=TRUE, identify=3)

According to the Mahalanobis-type residuals (Figure 2(b)) the trees for which the model has the
lowest goodness-of-fit are those identified as O1T09, O1T17 and O2T14. Although those trees grew
under an ozone-enriched atmosphere, which seems to be associated with expected sizes lower than
those of the trees which grew under the normal atmosphere, their observed sizes across the time are
even greater than those observed for 70% of the trees which grew under a normal atmosphere.

Global influence

> dfbeta(m3, method="full", coefs="treat", identify=4)

According to the statistic Dfbeta at the cluster-level for β̂treat (Figure 2(c)), the trees known as
N1T02, N1T07 and N2T07 are those providing the greatest evidence which supports the negative effect
of the ozone-enriched atmosphere on the growth pattern of the trees, as their exclusion from the dataset
leads the estimate of βtreat closer to zero. Those trees grew under a normal atmosphere, and their sizes
across time are higher than those observed for 90% of the trees growing under such an atmosphere. On
the other hand, the tree identified as N1T10 is that providing the greatest evidence against the negative
effect of the ozone-enriched atmosphere on the growth pattern of the trees, because its exclusion
from the dataset decreases the estimate of βtreat. The tree identified as N1T10 grew under a normal
atmosphere, however, its size across time is lower than that observed for 90% of the trees growing
under the ozone-enriched atmosphere.

Local influence

> localInfluence(m3, type="total", perturbation="cw-clusters", coefs="treat",
+ plot.it=TRUE, identify=4)

The plot of the total local influence under the case weight perturbation scheme at the cluster-level
for β̂treat (Figure 2(d)) highlights the trees identified as N1T07, N1T02, N2T07 and N1T10 as suspected
to be influential on the estimate of βtreat, which confirms the results of the global influence analysis
above.

5.2 Comparison with other GEE solvers

The parameter estimates and the associated standard errors provided by the function glmgee() are
compared with those generated by the GEE solvers available in the packages gee, geepack and geeM.
The results are presented in Table 2. The values provided by the other GEE solvers are very similar to
those generated by the function glmgee().

glmtoolbox geepack gee geeM
(Intercept) 5.904(0.105) 5.903(0.105) 5.904(0.105) 5.904(0.105)

poly(days, 4)1 19.200(0.518) 19.186(0.519) 19.201(0.518) 19.200(0.518)
poly(days, 4)2 -2.858(0.206) -2.860(0.206) -2.857(0.206) -2.858(0.206)
poly(days, 4)3 5.416(0.182) 5.414(0.182) 5.417(0.182) 5.416(0.182)
poly(days, 4)4 -3.574(0.125) -3.572(0.125) -3.574(0.125) -3.574(0.125)

treatozone-enriched -0.259(0.128) -0.257(0.128) -0.259(0.128) -0.259(0.128)
ρ 0.97 0.97 0.97 0.97

Table 2: Parameter estimates (standard errors) of the GEE model with correlation structure AR-1 fitted
to the data on growth patterns of trees.

5.3 Treatment of severe postnatal depression

The dataset of this example, available in the object depression of glmtoolbox and composed of
columns named subj, group, visit, dep and depressd (see Table 3), arose from a double-blind placebo-
controlled study on the efficacy of oestrogen given transdermally for treatment of severe postnatal
depression (Gregoire et al., 1996). A total of 61 women with severe depression (identified in the dataset
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by the column subj), which began within 3 months of childbirth and persisted for up to 18 months
postnatal, were randomly assigned to either a control group (group=“placebo”) of size 27, which were
treated with a placebo patch, or an active treatment group (group=“oestrogen”) of size 34, which
were treated with an oestrogen patch. Prior to therapy, all women were assessed by self-ratings of
depressive symptoms on the Edinburgh Postnatal Depression Scale (EPDS), where higher scores are
indicative of higher levels of depression. A monthly EPDS (dep) was collected for six months once
treatment began (visit). The binary response (depressd) was 1 to indicate severe depression when
the EDPS value was greater than or equal to 11, and 0 in other cases. There are missing values in
the data, because for some women, just two measurements of the response variable are available.
However, those missing values are positioned at the last time positions, so, there are no intermixed
missing values, and the argument waves of the function glmgee() is not needed.

Column Role Description
subj Cluster/subject identifier Identifier of the woman
group Explanatory variable Treatment: “placebo” or “oestrogen”
visit Explanatory variable Number of months after the treatment began
depressd Response variable 1 if EDPS ≥ 11 and 0 otherwise

Table 3: Columns in the object depression of the package glmtoolbox.

A plot of the data (Figure 3) suggests that oestrogen patches are an effective treatment for postnatal
severe depression, as across time, the proportion of women with severe depression is lower in the
group treated with oestrogen patches than in the group treated with placebo patches. The plot also
indicates that the (logit of the) proportion of women with severe depression decreases linearly as a
function of the time since the therapy began, but the rate of decreasing seems to be independent of the
type of patch (placebo or oestrogen), which suggests that the data could be analyzed by using a GEE
with the logit link function and a linear predictor including the effects of time and type of patch, but
without the interaction between them.
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Figure 3: Evolution of the (logit of the) proportion of women with severe depression.

Several GEE with variance function V(µ) = µ(1 − µ), logit link function, and different structures
for the working correlation matrix are fitted to the data. Then, some selection criteria available in
glmtoolbox are used to choose the more suitable structure for the correlation matrix.

> data(depression)
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> m1 <- glmgee(depressd ~ visit + group, id=subj, family=binomial(logit), data=depression)
> m2 <- update(m1, corstr="Exchangeable")
> m3 <- update(m1, corstr="AR-M-dependent(1)")
> m4 <- update(m1, corstr="AR-M-dependent(2)")
> m5 <- update(m1, corstr="AR-M-dependent(3)")

> a <- CIC(m1, m2, m3, m4, m5, verbose=FALSE)
> b <- QIC(m1, m2, m3, m4, m5, verbose=FALSE)
> c <- AGPC(m1, m2, m3, m4, m5, verbose=FALSE)
> d <- SGPC(m1, m2, m3, m4, m5, verbose=FALSE)
> cbind(a,QIC=b[,"QIC"],AGPC=c[,"AGPC"],SGPC=d[,"SGPC"])

Object Correlation CIC QIC AGPC SGPC
1 m1 Independence 7.708 383.555 304.2907 310.6233
2 m2 Exchangeable 8.048 377.815 247.9647 256.4082
3 m3 AR-M-dependent(1) 6.971 358.244 234.4696 242.9131
4 m4 AR-M-dependent(2) 7.031 363.784 234.9438 245.4982
5 m5 AR-M-dependent(3) 7.230 366.387 231.5530 244.2183

According to most of the selection criteria, the AR-1 structure is more suitable. Here is the summary
of the GEE with that structure for the working correlation matrix:

> summary(m3)
Sample size

Number of observations: 356
Number of clusters: 61

Min 25% 50% 75% Max
Cluster sizes: 2 4 7 7 7

*********************************************************************
Model

Variance function: binomial
Link function: logit

Correlation structure: AR-M-dependent(1)
*********************************************************************
Coefficients

Estimate Std.Error z-value Pr(>|z|)
(Intercept) 3.23604 0.51842 6.24218 4.3152e-10
visit -0.62632 0.07477 -8.37681 < 2.22e-16
groupoestrogen -1.77723 0.54578 -3.25631 0.0011287

Dispersion 1.02842
*********************************************************************
Working correlation

[1] [2] [3] [4] [5] [6] [7]
[1] 1.000 0.513 0.263 0.135 0.069 0.036 0.018
[2] 0.513 1.000 0.513 0.263 0.135 0.069 0.036
[3] 0.263 0.513 1.000 0.513 0.263 0.135 0.069
[4] 0.135 0.263 0.513 1.000 0.513 0.263 0.135
[5] 0.069 0.135 0.263 0.513 1.000 0.513 0.263
[6] 0.036 0.069 0.135 0.263 0.513 1.000 0.513
[7] 0.018 0.036 0.069 0.135 0.263 0.513 1.000

The Wald test and the generalized score test indicate that there is no interaction between time and
the type of patch. As shown below, the p-values associated with that effect are “large”.

> m3a <- update(m3, . ~ . + visit:group)
> anova(m3a, test="wald")
Wald test

Model 1 : depressd ~ 1
Model 2 : depressd ~ visit
Model 3 : depressd ~ visit + group
Model 4 : depressd ~ visit + group + visit:group

Chi df Pr(>Chi)
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1 vs 2 88.1275 1 < 2.2e-16 ***
2 vs 3 10.6036 1 0.001129 **
3 vs 4 2.2104 1 0.137082

> anova(m3a, test="score")
Generalized score test

Model 1 : depressd ~ 1
Model 2 : depressd ~ visit
Model 3 : depressd ~ visit + group
Model 4 : depressd ~ visit + group + visit:group

Chi df Pr(>Chi)
1 vs 2 39.9226 1 2.642e-10 ***
2 vs 3 10.9208 1 0.0009509 ***
3 vs 4 2.3977 1 0.1215150

Variance estimation

Next, the estimates of Var(β̂0), Var(β̂1), Var(β̂2) are obtained using four different estimators.

> cbind(model=diag(vcov(m3, type="model")),
+ robust=diag(vcov(m3, type="robust")),
+ bias.corrected=diag(vcov(m3, type="bias-corrected")),
+ jackknife=diag(vcov(m3, type="jackknife")))

model robust bias.corrected jackknife
(Intercept) 0.26219 0.26875 0.29023 0.29023
visit 0.00844 0.00559 0.00583 0.00583
groupoestrogen 0.21114 0.29788 0.32441 0.32441

Parameter interpretation

Regardless of the type of patch (placebo or oestrogen), the probability of severe depression decreases
across time. However, the odds of severe depression of women treated with oestrogen patches is
approximately 83.09% = 100 × [1 − exp(β̂group)] lower than that of women treated with placebo
patches, where βgroup represents the parameter associated with the dummy variable indicating the
type of patch the women were treated with.

Variable selection

As an illustration, the procedure of variable selection is applied using the strategy “hybrid forward
stepwise” with the QIC as the comparison criterion. In addition, the simplest and most complex
models are specified to be 1 and 1 + visit + group + visit*group, respectively. According to this
strategy, the “best” linear predictor consists of the effects of time and type of patch, but without the
interaction between them. The same results are obtained in the following scenarios: (i) the “hybrid
forward stepwise” is replaced by the “hybrid backward stepwise”; and (ii) the comparison criterion
based on the QIC is replaced by the AGPC.

> stepCriterion(m3a, direction="forward", criterion="qic")

Variance function: binomial
Link function: logit

Correlation structure: AR-M-dependent(1)
Comparison criteria: QIC

Initial model:
~ 1

Step 0 :
df QIC QICu AGPC SGPC P(Chisq>)(*)

+ visit 1 413.89 409.23 273.13 279.46 < 2.2e-16
+ group 1 443.77 440.13 366.77 373.10 0.000424
<none> 465.70 463.63 385.09 389.31
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Figure 4: Some diagnostic plots for the GEE with correlation structure AR-1 fitted to the data on
postnatal depression.

Step 1 : + visit

df QIC QICu AGPC SGPC P(Chisq>)(*)
+ group 1 358.24 350.30 234.47 242.91 0.001129
<none> 413.89 409.23 273.13 279.46

Step 2 : + group

df QIC QICu AGPC SGPC P(Chisq>)(*)
<none> 358.24 350.30 234.47 242.91
+ group:visit 1 358.63 351.24 234.60 245.16 0.1371
- visit 1 443.77 440.13 366.77 373.10 <2e-16

Final model:
~ visit + group
****************************************************************************
(*) p-values of the Wald test

Residual analysis

> residuals(m3, type="mahalanobis", plot.it=TRUE, identify=3)

Mahalanobis-type residuals suggest that the women for whom the model has the lowest goodness-
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of-fit are those identified as 10, 14 and 20 (Figure 3(a)). Those women were treated with placebo
patches and just one month after therapy began their EDPS decreased until reaching values lower than
11. However, one or two months later their EDPS values increased to 11 or higher.

Global influence

> dfbeta(m3, method="full", coefs="group", identify=6)

The plot of the dfbeta statistic for β̂group at the cluster-level (Figure 3(b)) highlights the women
identified as 5, 18, 26, 31, 39 and 51. The EDPS values of the women identified as 31, 39 and 51
remained higher or equal to 11 even after they were treated with oestrogen patches. Their exclusion
from the dataset decreases the estimate of βgroup, that is, increases the evidence on the effectiveness
of oestrogen patches for treatment of postnatal severe depression. On the other hand, the values on
the EDPS of the women identified as 5, 18 and 26 remained lower than 11 since the first or second
month since therapy began, although they were treated with placebo patches, so their exclusion from
the dataset also increases the evidence on the effectiveness of the oestrogen patches for treatment of
postnatal severe depression.

Local influence

> localInfluence(m3, type="total", perturbation="cw-clusters", coefs="group",
+ plot.it=TRUE, identify=4)
> localInfluence(m3, type="total", perturbation="cw-observations", coefs="group",
+ plot.it=TRUE, identify=7)

According to the plot of the total local influence for β̂group under the case weight perturbation
scheme at the cluster-level (Figure 3(c)), the women identified as 5, 18, 20 and 26 are suspected
to be influential on β̂group. At least 4/7 of the EDPS measurements carried out on those women
were smaller than 11, although they were supplied with placebo patches. The plot of the total local
influence for β̂group under the case weight perturbation scheme at the observation-level (Figure 3(d))
highlights mainly two kinds of observations: (1) measurements of the EDPS in which, unlike the
others measurements made on the same women, the values were lower than 11, although they were
treated with placebo patches (second measurement performed on women identified as 10 and 14);
(2) measurements of the EDPS performed on women treated with placebo patches and in which, for
the first time for those women since the treatment began, the reported value was lower than 11, thus
indicating absent severe depression, which remains until the end of the observation period (second,
third and fourth measurements performed on women identified as 26, 18 and 5, respectively).

Comparison with other GEE solvers

The parameter estimates and the associated standard errors provided by the function glmgee() are
compared with those calculated by the GEE solvers available in the packages gee, geepack and geeM.
The results are presented in Table 4. The values obtained with the other GEE solvers are very similar
to those obtained with the function glmgee().

glmtoolbox geepack gee geeM
(Intercept) 3.236(0.518) 3.276(0.531) 3.214(0.514) 3.199(0.543)

visit -0.626(0.075) -0.630(0.077) -0.624(0.074) -0.633(0.077)
groupestrogen -1.777(0.546) -1.847(0.556) -1.754(0.543) -1.781(0.572)

ρ 0.51 0.48 0.47 0.51

Table 4: Parameter estimates (standard errors) of the GEE model with correlation structure AR-1 fitted
to the data on severe postnatal depression.

5.4 Growth patterns of two soybean genotypes

This dataset, analyzed in Davidian and Giltinan (1995) and Pinheiro and Bates (2000) and available
in the object Soybean of the package nlme (Pinheiro et al., 2022), arose from an experiment aimed
at comparing growth patterns of two genotypes of soybeans: Plant Introduction (Variety=“P”), an
experimental strain, and Forrest (Variety=“F”), a commercial variety. The average leaf weight per
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plant (weight), in grams, was measured at 14, 20, 27, 34, 41, 55, 69 and 84 days after planting (Time) in
each plot (Plot). As an illustration, only plots planted in 1989 (Year=“1989”) are analyzed here. Table
5 describes the roles played in the analysis of the variables in the Soybean dataset. The graph of the
data (Figure 5) indicates that the location of the response (average leaf weight per plant) increases
non-linearly over time. In addition, there is an approximately proportional relationship between the
mean and the standard deviation, as the variance of the response variable (in the log scale) seems to be
constant. As a result, the data may be analyzed assuming that the coefficient of variation is constant,
that is, using a quadratic variance function. Moreover, the graph of the data also indicates that at each
time point, the location of the response is larger for the experimental strain (Variety=“P”) than for the
commercial variety (Variety=“F”) of soybean.

Column Role Description
Plot Cluster/subject identifier Identifier of the plot
Variety Explanatory variable Treatment: “F” (experimental) or “P” (commercial)
Year Explanatory variable Year the plot was planted
Time Explanatory variable Days after planting
weight Response variable Average leaf weight per plant

Table 5: Columns in the object Soybean of the package nlme.
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Figure 5: Average leaf weight per plant over time.

The data are analyzed using a model where the mean of the random variable Yij (jth measurement
of the average leaf weight per plant performed on the ith plot) is given by the following logistic-type
curve:

µij =
β1 + β4 Varietyij

1 + exp
(
−(Timeij − β2 − β5 Varietyij)/(β3 + β6 Varietyij)

) , i = 1, . . . , 16; j = 1, . . . , 8,

where Varietyij = 1 if the soybean genotype is the experimental strain and Varietyij = 0 otherwise.
Therefore, the horizontal asymptote as Time → ∞ (also known as the carrying capacity), the inflection
point and the scale parameter of µ for commercial varieties of soybean are β1, β2 and β3; and (β1 + β4),
(β2 + β5) and (β3 + β6) for experimental strains.

The starting value for β in the algorithm of parameter estimation is obtained through the built-in
function SSlogis().
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> data(Soybean,package="nlme")
> Soybean2 <- subset(Soybean,Year=="1989")
> Soybean2 <- within(Soybean2,x <- ifelse(Variety=="P",1,0))
>
> m0 <- gnmgee(weight ~ SSlogis(Time,b1,b2,b3), id=Plot, family=Gamma(identity),
+ data=Soybean2)
> start <- c(coef(m0),rep(0,3))
> names(start) <- paste0("b",1:6)
> start

b1 b2 b3 b4 b5 b6
14.185637 51.453724 7.086697 0.000000 0.000000 0.000000

Then, GEE models with quadratic variance function and different correlation matrix structures are
fitted to the data.

> m1 <- gnmgee(weight ~ (b1 + b4*x)/(1 + exp(-(Time - b2 - b5*x)/(b3 + b6*x))),
+ start=start, id=Plot, family=Gamma(identity), data=Soybean2)
> m2 <- update(m1, corstr="Exchangeable")
> m3 <- update(m1, corstr="AR-M-dependent(1)")
> m4 <- update(m1, corstr="AR-M-dependent(2)")
> m5 <- update(m1, corstr="AR-M-dependent(3)")
> m6 <- update(m1, corstr="AR-M-dependent(4)")

As shown below, the correlation matrix structure chosen by the most of the criteria (that is, CIC, QIC,
GHYC and PAC) is AR-M-dependent(3).

> a <- CIC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> b <- QIC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> c <- GHYC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> d <- PAC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> e <- AGPC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> f <- SGPC(m1, m2, m3, m4, m5, m6, verbose=FALSE)
> cbind(a,QIC=b[,"QIC"],GHYC=c[,"GHYC"],PAC=d[,"PAC"],AGPC=e[,"AGPC"],SGPC=f[,"SGPC"])

Object Correlation CIC QIC GHYC PAC AGPC SGPC
1 m1 Independence 6.951 6163.648 8.126 0.9847 90.5844 95.2200
2 m2 Exchangeable 6.951 6163.648 7.552 0.9785 86.8152 92.2233
3 m3 AR-M-dependent(1) 6.795 6098.876 6.640 0.9753 86.1055 91.5136
4 m4 AR-M-dependent(2) 6.713 6095.808 6.622 0.9737 87.7812 93.9619
5 m5 AR-M-dependent(3) 6.708 6094.956 6.621 0.9736 89.7920 96.7453
6 m6 AR-M-dependent(4) 6.752 6115.573 6.673 0.9741 91.3912 99.1171

The chosen model is summarized as follows:

> summary(m5)

Sample size
Number of observations: 128

Number of clusters: 16
Cluster size: 8

*************************************************************
Model

Variance function: Gamma
Link function: identity

Correlation structure: AR-M-dependent(3)
*************************************************************
Coefficients

Estimate Std.Error z-value Pr(>|z|)
b1 10.58794 0.54866 19.29779 < 2e-16
b2 52.08512 0.99860 52.15828 < 2e-16
b3 7.01786 0.19565 35.87033 < 2e-16
b4 7.48960 0.88795 8.43475 < 2e-16
b5 -0.77453 1.29528 -0.59797 0.54986
b6 0.09913 0.24511 0.40441 0.68591

Dispersion 0.05686
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*************************************************************
Working correlation

[1] [2] [3] [4] [5] [6] [7] [8]
[1] 1.000 0.253 0.151 0.053 0.025 0.010 0.004 0.002
[2] 0.253 1.000 0.253 0.151 0.053 0.025 0.010 0.004
[3] 0.151 0.253 1.000 0.253 0.151 0.053 0.025 0.010
[4] 0.053 0.151 0.253 1.000 0.253 0.151 0.053 0.025
[5] 0.025 0.053 0.151 0.253 1.000 0.253 0.151 0.053
[6] 0.010 0.025 0.053 0.151 0.253 1.000 0.253 0.151
[7] 0.004 0.010 0.025 0.053 0.151 0.253 1.000 0.253
[8] 0.002 0.004 0.010 0.025 0.053 0.151 0.253 1.000

These results suggest that only the horizontal asymptote as Time → ∞ depends on the soybean variety.
Their estimates are 10.588 grams and 18.078 grams for commercial varieties and experimental soybean
strains, respectively.

5.5 Amenorrhea rates over time

The dataset of this example, available in the object amenorrhea of glmtoolbox and comprised of the
columns named ID, Dose, Time, and amenorrhea (see Table 6), arose from a longitudinal clinical trial of
contracepting women (Machin et al., 1988; Fitzmaurice et al., 2011). A total of 1151 women completed
menstrual diaries. The diary data were used to generate a binary sequence for each woman, indicating
whether she had experienced amenorrhea (the absence of menstrual bleeding for a specified number
of days) on the day of randomization and three additional 90-day intervals. This trial compared the
two treatments (injections of 100 mg or 150 mg of depot-medroxyprogesterone acetate (DMPA)) in
terms of how amenorrhea rates change over time with continued use of the contraceptive method.
Figure 6 shows that amenorrhea rates increase across treatments, but that it appears that women
treated with 150 mg of DMPA are more likely to experience amenorrhea than those treated with 100
mg of DMPA at each time point. Moreover, Figure 6 shows that the proportion of women experiencing
amenorrhea (on the logit scale) increases non-linearly over time. A feature of this clinical trial is that
there was substantial dropout. This is when a woman skips a particular injection and never returns for
subsequent injections. Indeed, 38% of the women dropped out before the trial ended; 17.2% dropped
out after receiving only one injection of DMPA, 13.5% dropped out after receiving only two injections
of DMPA, and 7.3% dropped out after receiving three injections of DMPA. The subsequent statistical
analysis is performed using the weighted GEE method, as it is assumed that the missing data pattern
is better described by MAR than MCAR.

Column Role Description
ID Cluster/subject identifier Identifier of the woman
Dose Explanatory variable Treatment: “100mg” or “150mg” of DMPA
Time Explanatory variable Number of 90-day intervals since the trial began
amenorrhea Response variable 1 if experienced amenorrhea; 0 otherwise

Table 6: Columns in the object amenorrhea of the package glmtoolbox.

The data are analyzed using a model in which the probability of the ith woman experienced
amenorrhea at time j, denoted here by µij, is such that

logit(µij) = 1 + Time+ Time2 + Dose.

For the missingness model the following systematic component is considered

logit(πij) = 1 + CTime+ Dose+ ylag1,

where CTime is a categorical version of the explanatory variable Time and ylag1 is defined to be
yi,j−1 if j > 1 and 0 if j = 1. In addition, the structure of the working correlation matrix is set to be
AR-M-dependent(1). The observation-specified weighted GEE method results are the following:

> data(amenorrhea)
> amenorrhea2 <- within(amenorrhea,{Ctime <- factor(Time)
+ Ctime <- relevel(Ctime,ref="1")
+ ylag1 <- c(0,amenorrhea[-length(ID)])
+ ylag1 <- ifelse(Time==0,0,ylag1)})
>
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Figure 6: Amenorrhea rates over time.

> fit1 <- wglmgee(amenorrhea ~ poly(Time,2) + Dose | Ctime + Dose + ylag1,
+ family=binomial, data=amenorrhea2, id=ID, corstr="AR-M-dependent(1)",
+ scale.fix=TRUE, scale.value=1, level="observations")
> summary(fit1)

Clusters by dropout time
Time 1 2 3 4 Freq %

---- ---- ---- ---- | ---- ----
X . . . | 198 17.2
X X . . | 155 13.5
X X X . | 84 7.3
X X X X | 714 62

---- ---- ---- ---- | ---- ----
| 1151 100

*************************************************************
Coefficients of missingness model

Estimate Std.Error z-value Pr(>|z|)
(Intercept) 2.4349 0.1401 17.3845 < 2.2e-16 ***
Ctime1 -0.7247 0.1438 -5.0399 4.659e-07 ***
Ctime2 -0.5911 0.1469 -4.0250 5.698e-05 ***
Dose150mg -0.0174 0.1049 -0.1663 0.8679
ylag1 -0.5765 0.1122 -5.1369 2.793e-07 ***
*************************************************************
Observation-specific Weighted GEE

Variance function: binomial
Link function: logit

Correlation structure: AR-M-dependent(1)
*************************************************************
Coefficients

Estimate Std.Error z-value Pr(>|z|)
(Intercept) -0.6835 0.0750 -9.1136 < 2e-16 ***
poly(Time, 2)1 40.7447 2.2598 18.0301 < 2e-16 ***
poly(Time, 2)2 -4.6883 1.9528 -2.4008 0.01636 *
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Dose150mg 0.2437 0.1061 2.2975 0.02159 *

Dispersion 1.0000
*************************************************************
Working correlation

[1] [2] [3] [4]
[1] 1.000 0.414 0.171 0.071
[2] 0.414 1.000 0.414 0.171
[3] 0.171 0.414 1.000 0.414
[4] 0.071 0.171 0.414 1.000

According to the missingness model, the probability of remaining in the trial increases over
time, regardless of the amenorrhea status reported by the women in the previous measurement. In
addition, the missingness model indicates that the probability of remaining in the trial is higher
for women without amenorrhea in their previous measurement, regardless of how many DMPA
injections they have received. Therefore, the MAR assumption seems more appropriate than MCAR.
Moreover, according to the model for µ, the odds of experiencing amenorrhea is approximately
27.6% = 100 × [exp(β̂Dose)− 1] higher in women treated with 150 mg of DMPA than those treated
with 100 mg of DMPA, where βDose represents the parameter associated with the explanatory variable
Dose. This is irrespective of the number of 90-day intervals since the experiment began. The results of
the cluster-specific weighted GEE approach (do not show here) are very similar.
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clustAnalytics: An R Package for
Assessing Stability and Significance of
Communities in Networks
by Martí Renedo-Mirambell and Argimiro Arratia

Abstract This paper introduces the R package clustAnalytics, which comprises a set of criteria for
assessing the significance and stability of communities in networks found by any clustering algorithm.
clustAnalytics works with graphs of class igraph from the R-package igraph, extended to handle
weighted and/or directed graphs. clustAnalytics provides a set of community scoring functions, and
methods to systematically compare their values to those of a suitable null model, which are of use
when testing for cluster significance. It also provides a non parametric bootstrap method combined
with similarity metrics derived from information theory and combinatorics, useful when testing for
cluster stability, as well as a method to synthetically generate a weighted network with a ground truth
community structure based on the preferential attachment model construction, producing networks
with communities and scale-free degree distribution.

1 Introduction

The segmentation of a network into communities such that individuals in the same community
share similar features, whilst individuals across communities are dissimilar is a technique known
as clustering, and is a principal task in the analysis of networks. This can be achieved by various
algorithms that differ significantly in their understanding of what constitutes a community (or cluster)
and in the way to find them. Once a clustering algorithm is selected, the user is faced with the problem
of determining how meaningful the clusters obtained are. Here is where clustAnalytics comes into
play.

clustAnalytics contains a suite of novel methods to validate the partitions of networks obtained
by any given clustering algorithm. In particular, its clustering validation methods focus on two of
the most important aspects of cluster assessment: the significance and the stability of the resulting
clusters. Clusters produced by a clustering algorithm are considered to be significant if there are
strong connections within each cluster, and weaker connections (or fewer edges) between different
clusters. On the other hand, stability measures how much a clustering remains unchanged under small
perturbations of the network. In the case of weighted networks, these could include the addition and
removal of vertices, as well as the perturbation of edge weights.

clustAnalytics handles weighted networks (that is, those in which the connections between nodes
have an assigned numerical value representing some property of the data), as well as unweighted, and
contains several other functionalities for producing different statistics on a network, and measures of
similarity of partitions produced by two different clustering algorithms, most notably an enhanced
version of the Reduced Mutual Information (RMI) of Newman et al. (2020). In the following sections
we introduce some examples of usage and highlight the principal tasks resolved by clustAnalytics.

2 Background concepts

Community detection on networks, which are represented by graphs, is a very active topic of research
with many applications. The igraph (Csardi and Nepusz, 2006) package contains a collection of the
most popular algorithms for this task, such as the Louvain (Blondel et al., 2008), walktrap (Pons and
Latapy, 2005) and label propagation Raghavan et al. (2007) algorithms.

Evaluating the significance of the community structure of a network is no simple task, because there
is not an authoritative definition of what a significant community is. However, there is some agreement
in the literature (see the survey by Fortunato (2010)) in that communities should have high internal
connectivity (presence of edges connecting nodes in the community) while being well separated from
each other. These notion can be quantified and formalized by applying several community scoring
functions (also known as quality functions in (Fortunato, 2010)), that gauge either the intra-cluster
or inter-cluster density. clustAnalytics implements the most relevant, or representative, community
scoring functions following the taxonomy of these quality measures done by Yang and Leskovec
(2015) and the further discussion on how to adapt them to weighted networks in (Arratia and Renedo-
Mirambell, 2021).
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significance

scoring
functions

scoring_functions(g, com, type , weighted, w_max)
average_degree, average_odf, conductance, coverage,
cut_ratio, density_ratio, edges_inside, expansion, FOMD,
internal_density, max_odf, normalized_cut,
weighted_clustering_coefficient, weighted_transitivity

graph
rewiring

rewireCpp(g, Q=100, weight_sel="const_var", lower_bound=0,
upper_bound=NULL)

evaluation

evaluate_significance(g, alg_list, gt_clustering, w_max)
evaluate_significance_r(g, alg_list, gt_clustering,

Q=100, lower_bound=0, w_max=NULL,
table_style = "default")

stability

boot_alg_list(g, alg_list, R=999, return_data=FALSE,
type="global")

reduced_mutual_information(c1, c2, base=2, normalized=FALSE,
method="approximation2")

other functions

apply_subgraphs(g, com, f, ...)
barabasi_albert_blocks(m, p, B, t_max, G0=NULL, t0=NULL,

G0_labels=NULL, type="block_first")
sample_with_replacement=FALSE

sort_matrix(M)

Table 1: clustAnalytics list of functions split by category.

However, to evaluate the significance of clusters on a given network, one needs reference values of
the scoring functions to determine whether they are actually higher than those of a comparable network
with no community structure. For this, we use a method described in (Arratia and Renedo-Mirambell,
2021) that rewires edges (or transfers some of their weight, in the case of weighted networks) while
keeping the degree distribution constant. Then, it can be determined that the partition of a network
contains significant clusters if it obtains sufficiently better scores than those for a comparable network
with uniformly distributed edges.

On the other hand, stability measures how much the partition of a network into communities
remains unchanged under small perturbations. In the case of weighted networks, these could include
the addition and removal of vertices, as well as the perturbation of edge weights. This is consistent
with the idea that meaningful clusters should capture an inherent structure in the data and not be
overly sensitive to small or local variations, or the particularities of the clustering algorithm. To
measure the variation that such perturbations present in the clusters, there are multiple similarity
metrics available. We have selected for inclusion the Variation of Information (Meilă, 2007), the
Reduced Mutual Information (Newman et al., 2020), and the Rand Index (both in its original and
adjusted forms) (Hubert and Arabie, 1985). The first two are based on information theory, while the
second one counts agreements and disagreements in the membership of pairs of elements. Then, it
is possible to evaluate the network using resampling methods such as nonparametric bootstrap, as
described for clustering on Euclidean data by Hennig (2007), and later for networks by Arratia and
Renedo-Mirambell (2021), and quantify the deviations from the initial partition with the similarity
measures.

3 The clustAnalytics package

The clustAnalytics package (version 0.5.4) contains 23 functions for assessing clustering significance
and stability, and other useful utilites. These are listed in Table 1 grouped by category. It also contains
some auxiliary functions to support package management and provide useful baseline graphs with
communities. Check these in the reference manual. In what follows we detail the usage of the main
functions.

3.1 Cluster significance

The scoring functions are formally defined in (Arratia and Renedo-Mirambell, 2021), and were selected
and programmed based on the analysis of appropriate scoring functions for unweighted graphs made
in (Yang and Leskovec, 2015). They take into account the weights of the edges if the graph is weighted.
They take as arguments the graph as an igraph object, and a membership vector: a vector of the
same length as the graph order for which each element is an integer that indicates the cluster that its
corresponding vertex belongs to.
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A general call to all the scoring functions is made with scoring_functions(), which computes all
the scores and returns a dataframe containing a row for each community (if type = "local") and a
column for each score, or alternatively (if type = "global") returns a single row with the weighted
average scores. Additionally, an individual function is available for each of the scores, as listed in
Table 1. The package includes efficient implementations of the clustering coefficient and transitivity
for weighted networks introduced by McAssey and Bijma (2015).

The main functions for significance evaluation are
evaluate_significance_r() and evaluate_significance().

The first one takes an igraph graph and a list of clustering algorithms, and computes the scoring
functions of the resulting communities, both on the original graph and on rewired versions of it for
comparison. The second version does the same while skipping the rewired graphs. By default the
clustering algorithms used by these functions are Louvain, label propagation and Walktrap, but they
can take any list of clustering algorithms for igraph graphs. Both functions allow for comparison
against ground-truth in cases where this is known.

The edge rewiring method (including its versions for weighted networks) is available separately
as rewireCpp. This differs from the igraph function rewire, in that it is capable of rewiring weighted
as well as directed graphs while keeping the weighted degrees constant.

Rewiring algorithm

The function rewireCpp provided by the package is an implementation of the switching algorithm
that rewires edges while keeping the degree distribution constant described in (Milo et al., 2003; Rao
et al., 1996) (conceived originally for unweighted graphs). The function has been extended to work
with weighted and/or directed graphs.

The directed version works very similarly to the undirected one. In the unweighted case, at each
step of the algorithm, two directed edges AC and BD are selected randomly, and replaced with the new
edges AD, BC (as in the original algorithm, any steps that would produce self-edges or multi-edges
are skipped). For vertices A and B, we add and remove 1 to the out-degree, so it remains constant (as
well as the in-degree, since no incoming edges are modified). Analogously, we add and remove one
incoming edge to both the C and D vertices, so their in-degrees remain constant as well.

We do the same for the directed weighted case, extending the undirected unweighted algorithm.
This time, when edges AC and BD are selected, there is a transfer of a certain amount w̄ of weight
from both AC and BD to AD and BC. This means that the only effects on the in and out-degrees are
adding and removing w̄ to out-degrees of vertices A and B, and the same to out-degrees of vertices C
and D, which means that they all remain constant.

If the graph is directed, the rewireCpp function automatically detects it and internally runs the
implementation for directed graphs, so there is no need to specify direction as a parameter. The
following example is a food network (where edges indicate predator-prey relationships) from the
igraphdata package:

> data(foodwebs, package="igraphdata")
> rewired_ChesLower <- rewireCpp(foodwebs$ChesLower, weight_sel = "max_weight")

In the weighted case, the rewiring algorithm transfers a certain amount w of weight from some
edges to others. The package provides two settings, which are chosen according to what type of
weighted graph is provided as input:

• Complete graphs with a fixed upper bound: These graphs have an edge between every pair of
vertices, which will usually be the result of applying some function to each pair. For example,
networks resulting from computing correlations of time series (where each series corresponds
to a vertex, and the edge weights are the correlations between series) fall into this category.

• More sparse graphs with weights that are non-negative but not necessarily upper bounded:
This describes most commonly found weighted graphs, where the weights quantify some
characteristic of the edges. Multigraphs also fit here, if we reinterpret them as weighted graphs
where the edge weight is the number of parallel edges between each pair of vertices.

Of the first type, we show an example built from correlations of currency exchange time series (from
Arratia and Renedo-Mirambell (2021)). In this network (g_forex included in the package) vertices are
pairs of exchange rates, and the edge weights are the correlations of their corresponding time series,
scaled to the interval [0, 1]. In this case, the appropriate setting is the one that keeps the variance of the
edge weights constant.

> data(g_forex, package="clustAnalytics")
> rewireCpp(g=g_forex, weight_sel="const_var", lower_bound=0, upper_bound=1)
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As for the second type, this includes most of the well known examples of weighted graphs, such
as Zachary’s karate club graph:

> data(karate, package="igraphdata")
> rewired_karate <- rewireCpp(karate, weight_sel="max_weight")

The number of iterations, which is computed as Q · #edges can be controlled with the parameter Q,
but we recommend leaving it on the default value (Q = 100), which has been shown to provide more
than enough shuffling, while still being very fast (Arratia and Renedo-Mirambell, 2021, p.10).

3.2 Cluster stability

As for the study of cluster stability, the function used to perform the evaluation is boot_alg_list().
This performs a bootstrap resampling (i.e. uniform sampling of the vertices with replacement) of
the input graph, applies a given list of clustering algorithms, and measures the variation of the
communities obtained in the resampled graphs with respect to the original communities. In more
detail, for each input graph and a list of clustering algorithms, the set of vertices in the input graph
is resampled many times, the induced graph is obtained by taking the new set of vertices with the
induced edges from the original graph (two vertices are joined with an edge on the resampled graph if
they were on the original graph), and the clustering algorithms are applied to it. Then, the resulting
clusterings (in each of the resampled graphs) are compared to the clustering of the original graph using
several metrics: the variation of information (vi.dist from package mcclust), normalized reduced
mutual information (NRMI) and both adjusted and regular Rand index (rand.index from package
fossil and adjustedRandIndex from package mclust). If return_data is set to TRUE, the output is a list
of objects of class boot (from package boot); otherwise, returns a table with the mean distances from
the clusters in the original graph to the resampled ones, for each of the algorithms.

The Reduced Mutual Information is provided as a separate function:
reduced_mutual_information().

This is an implementation of Newman’s Reduced Mutual Information (RMI) Newman et al. (2020), a
version of the mutual information that is corrected for chance. The exact computation of this metric
cannot be reasonably achieved for even moderately sized graphs, so it must be approximated. We
provide two analytical methods for this approximation, and other that combines a Monte Carlo method
with the analytical formula (method="hybrid").

> data(karate, package="igraphdata")
> c1 <- membership(cluster_louvain(karate))
> c2 <- V(karate)$Faction
> reduced_mutual_information(c1, c2, method="approximation2")
[1] 0.5135699

Just as with the standard mutual information, the RMI can be normalized as well:

> reduced_mutual_information(c1, c2, method="approximation2", normalized=TRUE)
[1] 0.6621045

3.3 Graph generators and other utilities

In the analysis of clustering algorithms it is useful to generate controlled examples of networks with
communities. The package igraph provides the function sample_sbm which builds random graphs
with communities from the stochastic block model, and hence these networks have binomial degree
distribution.

We provide in clustAnalytics the barabasi_albert_blocks() function, which produces scale-free
graphs using extended versions of the Barabási-Albert model that include a community structure.
This function generates the graph by iteratively adding vertices to an initial graph and joining them
to the existing vertices using preferential attachment (existing higher degree vertices are more likely
to receive new edges). Additionally, vertices are assigned labels indicating community membership,
and the probability of one vertex connecting to another is affected by their community memberships
according to a fitness matrix B (if a new vertex belongs to community i, the probability of connecting
to a vertex of community j is proportional to Bij).

The parameters that need to be set are m the number of new edges per step, the vector p of
label probabilities, the fitness matrix B (with the same dimensions as the length of p), and t_max the
final graph order. The initial graph G0 can be set manually, but if not, an appropriate graph will be
generated with m edges per vertex, labels sampled from p, and edge probabilities proportional to B.
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There are two variants of the model. If type="Hajek", new edges are connected with preferential
attachment to any existing vertex but using the appropriate values of B as weights (see (Hajek
and Sankagiri, 2019)). If type="block_first", new edges are connected first to a community with
probability proportional to the values of B, and then a vertex is chosen within that community
with regular preferential attachment. In this case, the resulting degree distribution is scale-free (see
(Renedo-Mirambell and Arratia, 2023) for a proof of this fact).

This is a simple example with just two communities and a graph of order 100 and size 400:

> B <- matrix(c(1, 0.2, 0.2, 1), ncol=2)
> G <- barabasi_albert_blocks(m=4, p=c(0.5, 0.5), B=B, t_max=100, type="Hajek",

sample_with_replacement = FALSE)
> plot(G, vertex.color=(V(G)$label), vertex.label=NA, vertex.size=10)

Figure 1: Example of the barabasi_albert_communities function with the community labels as vertex
colors.

Finally, it is worth mentioning the apply_subgraphs() function, which is used internally in the
package, but has also been made available to the user because it can be very convenient. It simply
calls a function f on each of the communities of a graph (treated as it’s own igraph object), acting as a
wrapper for the vapply function. The communities are given as a membership vector com. For a very
simple example, we call it to obtain the order of each of the factions of the karate club graph:

> apply_subgraphs(g=karate, com=V(karate)$Faction, f=gorder)
[1] 16 18

4 An introductory example

As a toy example we consider a famous benchmark social network: the Zachary’s karate club
graph (Zachary, 1977). First to showcase the graph randomization procedure rewireCpp, we ap-
ply it to the Zachary’s karate club graph with the default settings (positive weights with no upper
bound, which suits this graph):

> library(clustAnalytics)
> data(karate, package="igraphdata")
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> rewired_karate <- rewireCpp(karate, weight_sel = "max_weight")
> par(mfrow=c(1,2), mai=c(0,0.1,0.3,0.1))
> plot(karate, main="karate")
> plot(rewired_karate, main="rewired_karate")

The resulting plots are shown in Figure 2.
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Figure 2: Karate club graph before and after the edge randomization process. Colors represent the
faction of each participant, the ground truth clustering in this network.

The resulting rewired graph has lost its original communities centered around nodes A and H,
and if any alternative community structure appears, it is only due to chance. Now we continue with
an analysis of significance and stability of some known clustering algorithms on the Zachary’s karate
club graph.

4.1 Evaluating cluster significance

The function evaluate_significance takes the graph and a list of clustering functions as arguments.
If the graph has a known ground truth community structure (such as the factions in the karate club),
we can set ground_truth=TRUE and set gt_clustering as the membership vector to evaluate it and
compare it to the results of the clustering algorithms. In our karate graph the ground truth is available
with V(karate)$Faction.

> evaluate_significance(karate, ground_truth=TRUE,
+ alg_list=list(Louvain=cluster_louvain,
+ "label prop"= cluster_label_prop,
+ walktrap=cluster_walktrap),
+ gt_clustering=V(karate)$Faction)

Louvain label prop walktrap ground truth
size 9.58823529 10.52941176 10.00000000 17.05882353
internal density 1.29491979 1.29766214 1.32254902 0.76885813
edges inside 50.35294118 59.17647059 51.82352941 104.82352941
av degree 5.05882353 5.29411765 5.05882353 6.14705882
FOMD 0.26470588 0.29411765 0.26470588 0.41176471
expansion 3.47058824 3.00000000 3.47058824 1.29411765
cut ratio 0.14311885 0.12786548 0.14540629 0.07638889
conductance 0.25696234 0.22578022 0.25484480 0.09518717
norm cut 0.37937069 0.34206059 0.38131607 0.19090909
max ODF 0.43576990 0.42077566 0.51172969 0.38911607
average ODF 0.18336040 0.17884402 0.18493603 0.07498851
flake ODF 0.05882353 0.02941176 0.08823529 0.00000000
density ratio 0.87751142 0.88955342 0.86846364 0.90017702
modularity 0.41978961 0.41510519 0.41116042 0.37146614
graph_order 34.00000000 34.00000000 34.00000000 34.00000000
n_clusters 4.00000000 4.00000000 4.00000000 2.00000000
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mean_cluster_size 8.50000000 8.50000000 8.50000000 17.00000000
coverage 0.74458874 0.77922078 0.74458874 0.90476190
global density ratio 0.75864388 0.76992481 0.74273256 0.80043860
VIdist_to_GT 0.90782167 0.82624391 0.87293838 0.00000000

If a ground truth clustering has been provided, the row VIdist_to_GT indicates the variation of
information distance (Meilă, 2007) between that and each of the partitions. In this case the label
propagation algorithm obtains the partition closest to the ground truth, while the Louvain algorithm
is the furthest.

With the function evaluate_significance_r we compute the scoring functions as above, and
we compare the results to those of a distribution of randomized graphs obtained with the rewiring
method. The parameters of the rewiring method can be selected as shown in Table 1, in this case
we specify weight_sel="max_weight", but we could also set an upper bound if appropriate to the
graph. The resulting (default) table is shown below. This is a table with three columns per algorithm:
the scores for the original graph, the mean of the corresponding scores for the rewired graphs and
its percentile rank within the distribution of scores for rewired graphs. If parameter table_style =
"string", the function instead returns a table with a column per algorithm where each element is of
the format "original|rewired(percentile)".

> evaluate_significance_r(karate,
+ alg_list=list(Lv=cluster_louvain,
+ "WT"= cluster_walktrap),
+ weight_sel="max_weight", n_reps=100)

Lv WT Lv_r WT_r Lv_perc WT_perc
size 9.58823529 10.00000000 8.1670588 8.3705882 0.86 0.81
internal density 1.29491979 1.32254902 1.3911098 1.3728923 0.45 0.55
edges inside 50.35294118 51.82352941 29.1011765 39.1491176 0.99 0.82
av degree 5.05882353 5.05882353 3.6779412 3.8764706 1.00 0.98
FOMD 0.26470588 0.26470588 0.1723529 0.1955882 0.98 0.87
expansion 3.47058824 3.47058824 6.2323529 5.8352941 0.00 0.02
cut ratio 0.14311885 0.14540629 0.2383912 0.2325316 0.00 0.00
conductance 0.25696234 0.25484480 0.4755745 0.4825704 0.00 0.01
norm cut 0.37937069 0.38131607 0.6760032 0.7073753 0.00 0.00
max ODF 0.43576990 0.51172969 0.6456208 0.6610584 0.00 0.03
average ODF 0.18336040 0.18493603 0.4450276 0.4626576 0.00 0.01
flake ODF 0.05882353 0.08823529 0.3423529 0.4088235 0.00 0.01
density ratio 0.87751142 0.86846364 0.7441942 0.7591046 1.00 1.00
modularity 0.41978961 0.41116042 0.1797852 0.1545682 1.00 1.00
clustering coef 0.54148426 0.61381521 0.4306771 0.4253075 0.76 0.87
graph_order 34.00000000 34.00000000 34.0000000 34.0000000 0.00 0.00
n_clusters 4.00000000 4.00000000 4.8200000 6.4800000 0.04 0.05
mean_cluster_size 8.50000000 8.50000000 7.2306667 5.7914928 0.72 0.85
coverage 0.74458874 0.74458874 0.5413420 0.5705628 1.00 0.98
global density ratio 0.75864388 0.74273256 0.5296269 0.5789977 1.00 0.98

Depending on the application, more emphasis might be given to some of the metrics over others,
but in most cases, those that take into account both internal and external connectivity (such as the
modularity, conductance, or density ratio) will be the most relevant. Networks with significant clusters
should result in values that are on the extremes of the distribution of rewired scores (so percentile rank
one or close to one for the scores where higher values are better, and zero or close to zero for those
where lower is better). The interpretation of the results is discussed in more detail in (Arratia and
Renedo-Mirambell, 2021).

If one simply wishes to compare clustering algorithms against each other, though, the distribution
of rewired scores is not necessary and the evaluate_significance function should be used instead.

4.2 Applying scoring functions

If it is the case that we already have some explicit community partition, but not the algorithm that
produced it, we can assess its significance by applying the scoring functions directly to the network
and the partition. To apply all scoring functions at once use scoring_functions with either type local
or global:

> scoring_functions(karate, V(karate)$Faction, type="local")
size internal density edges inside av degree FOMD expansion cut ratio
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1 16 0.8250000 99 6.187500 0.5000000 1.375000 0.07638889
2 18 0.7189542 110 6.111111 0.3333333 1.222222 0.07638889
conductance norm cut max ODF average ODF flake ODF density ratio modularity

1 0.10000000 0.1909091 0.3636364 0.05651941 0 0.9074074 NA
2 0.09090909 0.1909091 0.4117647 0.09140548 0 0.8937500 NA

> scoring_functions(karate, V(karate)$Faction, type="global")
size internal density edges inside av degree FOMD expansion cut ratio

[1,] 17.05882 0.7688581 104.8235 6.147059 0.4117647 1.294118 0.07638889
conductance norm cut max ODF average ODF flake ODF density ratio modularity

[1,] 0.09518717 0.1909091 0.3891161 0.07498851 0 0.900177 0.3714661
graph_order n_clusters mean_cluster_size coverage global density ratio

[1,] 34 2 17 0.9047619 0.8004386

Alternatively, we can apply the scoring functions individually. Each is called with the graph and
the membership vector as arguments, and return a vector with the scores for each community:

> cut_ratio(karate, V(karate)$Faction)
[1] 0.07638889 0.07638889

> conductance(karate, V(karate)$Faction)
[1] 0.10000000 0.09090909

A case in point are the clustering coefficient and transitivity. As they can be applied to weighted
graphs in general and not only to their partition into communities, they are simply called with the
graph as the only argument:

> weighted_clustering_coefficient(karate)
[1] 0.8127164

To be able to obtain the result for every community in the graph, we provide the function
apply_subgraphs; which given a graph, a membership vector and a scalar function that takes a
graph as input, applies the function to every community and returns the vector of results. In this case
it works as follows:

> apply_subgraphs(karate, V(karate)$Faction, weighted_clustering_coefficient)
[1] 0.9514233 0.7783815

4.3 Evaluating cluster stability

Here we perform a nonparametric bootstrap to the karate club graph and the same selection of
algorithms. For each instance, the set of vertices is resampled, the induced graph is obtained by taking
the new set of vertices with the induced edges from the original graph, and the clustering algorithms
are applied. Then, these results are compared to the induced original clusterings using the metrics
mentioned above: the variation of information (VI), the normalized reduced mutual information
(NRMI), and both adjusted and regular Rand index (Rand and adRand). Their exact definitions can be
found in (Arratia and Renedo-Mirambell, 2021).

> boot_alg_list(g=karate, return_data=FALSE, R=99,
+ alg_list=list(Louvain=cluster_louvain,
+ "label prop"= cluster_label_prop,
+ walktrap=cluster_walktrap))

Louvain label prop walktrap
VI 0.2657555 0.3623330 0.2608622
NRMI 0.7024417 0.3415649 0.6959898
Rand 0.8584598 0.5969139 0.8609266
AdRand 0.6457648 0.2574423 0.6645099
n_clusters 5.9191919 5.1313131 6.3030303

Note that in this table the variation of information is a distance, so lower values indicate similar
partitions, while for the NRMI, Rand, and adRand, higher values mean the partitions are more similar
(1 means they are the same partition). Therefore, algorithms that produce stable clusters should result
in low values of VI, and high values of the rest of metrics. In this example network we can see how
the Louvain and walktrap algorithms have similar stability, while the label propagation algorithm
performs much worse, and this is reflected in all metrics.
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4.4 Clustering assessment on synthetic ground truth networks

We can evaluate the significance and stability of clusters produced by a set of clustering algorithms
on a network with known community synthetically created with the stochastic block model (with
function sample_sbm) or the preferential attachment model (with barabasi_albert_blocks). The
former produces a network with binomial degree distribution, and the latter produces networks with
scale-free degree distribution.

Let us generate a graph from a stochastic block model in which we set very strong clusters: the
elements in the diagonal of the matrix are much larger than the rest, so the probability of intra-cluster
edges is much higher than that of inter-cluster edges.

> pm <- matrix (c(.3, .001, .001, .003,
.001, .2, .005, .002,
.001, .005, .2, .001,
.003, .002, .001, .3), nrow=4, ncol=4)

> g_sbm <- igraph::sample_sbm(100, pref.matrix=pm, block.sizes=c(25,25,25,25))
> E(g_sbm)$weight <- 1
> memb <- c(rep(1,25), rep(2,25), rep(3,25), rep(4,25))
> significance_table_sbm <- evaluate_significance(g_sbm, gt_clustering=memb)
> significance_table_sbm

Louvain label prop walktrap ground truth
size 25.00000000 2.144000e+01 25.00000000 25.00000000
internal density 0.26500000 3.228846e-01 0.26500000 0.26500000
edges inside 79.50000000 6.968000e+01 79.50000000 79.50000000
av degree 3.18000000 3.010000e+00 3.18000000 3.18000000
FOMD 0.43000000 4.000000e-01 0.43000000 0.43000000
expansion 0.24000000 5.800000e-01 0.24000000 0.24000000
cut ratio 0.00320000 6.907324e-03 0.00320000 0.00320000
conductance 0.03812704 1.091380e-01 0.03812704 0.03812704
norm cut 0.05064474 1.272639e-01 0.05064474 0.05064474
max ODF 0.29047619 3.554762e-01 0.29047619 0.29047619
average ODF 0.03789358 1.068777e-01 0.03789358 0.03789358
flake ODF 0.00000000 1.000000e-02 0.00000000 0.00000000
density ratio 0.98728802 9.778080e-01 0.98728802 0.98728802
modularity 0.69994949 6.663131e-01 0.69994949 0.69994949
clustering coef 0.28604270 3.302172e-01 0.28604270 0.28604270
graph_order 100.00000000 1.000000e+02 100.00000000 100.00000000
n_clusters 4.00000000 6.000000e+00 4.00000000 4.00000000
mean_cluster_size 25.00000000 1.666667e+01 25.00000000 25.00000000
coverage 0.96363636 9.121212e-01 0.96363636 0.96363636
global density ratio 0.97584906 9.498650e-01 0.97584906 0.97584906
VIdist_to_GT 0.00000000 3.403855e-01 0.00000000 0.00000000

In this case, memb is the membership vector of the ground truth clusters of the model. The clusters
in the network are so strong that both the Louvain and walktrap algorithms manage to identify and
match them exactly (their VI distance to the ground truth clustering is zero).

We now assess for stability of the clustering algorithms on this sbm graph:

> b_sbm <- boot_alg_list(g=g_sbm, return_data=FALSE, R=99)
> b_sbm

Louvain label prop Walktrap
VI 0.1234341 0.1769217 0.1178832
NRMI 0.8536997 0.7841236 0.8656356
Rand 0.9411244 0.9230160 0.9472768
AdRand 0.8306925 0.7651778 0.8476909
n_clusters 6.9797980 7.7070707 7.4646465

We can clearly see that for all metrics, the results are much more stable than in the previous
example, which makes sense because we purposefully created the SBM graph with very strong
clusters.
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5 The clustAnalytics package in context of related R packages

The outstanding quality of clustAnalytics is that it is a set of robust and efficient measures for assessing
significance and stability of clustering algorithms on graphs with the convenience of working with
igraph objects, which makes it a valuable complement to the igraph package (Csardi and Nepusz,
2006). A revision of the CRAN Task View: Cluster Analysis & Finite Mixture Models shows that there are
very few packages devoted to assessing quality of clusters in general, and none for igraph graphs as
input. One could use in a limited manner some of the existing packages by converting igraph graphs to
their adjacency matrices, but then quality evaluation follows different paradigms not quite pertaining
to networks. For instance, the package ClustAssess (Shahsavari et al., 2022) conceived for evaluating
robustness of clustering of single-cell RNA sequences data using proportion of ambiguously clustered
pairs, as well as similarity across methods and method stability using element-centric clustering
comparison; sigclust (Huang et al., 2014) which provides a single function to assess the statistical
significance of splitting a data set into two clusters; clValid (Brock et al., 2021) implements Dunn
Index, Silhouette, Connectivity, Stability, BHI and BSI, for a statistical and biological-based validation
of clustering results. None of these apply directly to igraph objects, and were not conceived for the
analysis of clustering in social networks.
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PINstimation: An R Package for
Estimating Probability of Informed
Trading Models
by Montasser Ghachem and Oguz Ersan

Abstract The purpose of this paper is to introduce the R package PINstimation. The package is
designed for fast and accurate estimation of the probability of informed trading models through
the implementation of well-established estimation methods. The models covered are the original
PIN model (Easley and O’Hara 1992; Easley et al. 1996), the multilayer PIN model (Ersan 2016),
the adjusted PIN model (Duarte and Young 2009), and the volume- synchronized PIN (Easley, De
Prado, and O’Hara 2011; Easley, López De Prado, and O’Hara 2012). These core functionalities of
the package are supplemented with utilities for data simulation, aggregation and classification tools.
In addition to a detailed overview of the package functions, we provide a brief theoretical review of
the main methods implemented in the package. Further, we provide examples of use of the package
on trade-level data for 58 Swedish stocks, and report straightforward, comparative and intriguing
findings on informed trading. These examples aim to highlight the capabilities of the package in
tackling relevant research questions and illustrate the wide usage possibilities of PINstimation for
both academics and practitioners.

1 Introduction

Informed trading indicates the presence of information asymmetry in a given market, and is usually
attributed to trading with better-quality information and/or more sophisticated tools for analyzing
available information (see Ahn et al., 2008). Given its impact on prices and liquidity, researchers have
dedicated considerable effort to the measurement of informed trading, and to the characterization of
its relevant aspects (Berkman et al., 2014; Chang et al., 2014; Bongaerts et al., 2014; Hsieh and He, 2014;
Yin and Zhao, 2015; Guo and Qiu, 2016). The growth in informed trading measures has been made
possible thanks to the availability of rich datasets, and as a response to the continuously evolving
nature of trading in financial markets.

Despite the plethora of alternative and more recent measures, "fundamental" measures developed
by the pioneering works are still widely used in academic research. Some prominent measures include:
relative trade informativeness measure (Hasbrouck, 1991), percentage-price-impact measure (Huang
and Stoll, 1996), adverse selection component (Huang and Stoll, 1997) and the adverse information
parameter (Madhavan et al., 1997). Above the rest, the probability of informed trading (PIN; Easley
and O’Hara, 1992; Easley et al., 1996) has probably been the most widely used measure of informed
trading in the literature. Easley and O’Hara, beginning with their foundational work in 1987 and
continuing through subsequent studies in the 1990s and 2000s, developed, tested and refined the
PIN measure to quantify informed trading in financial markets. A major factor behind the persistent
wide use (prominence) of the PIN model lies in the branch of studies addressing the limitations of
the model, remedying to the challenges of its estimation; and extending the original model. Due
to the rapid evolution of trading in financial markets, the estimation of the original PIN model has
become vulnerable to errors; and the model – and its assumptions – as it was first suggested has faced
difficulties in matching the real world. Over the years, many extensions and improvements to the PIN
model have been developed, addressing various shortcomings of the original model and estimation
challenges. However, because of their more complex theoretical underpinnings and implementation
details, most of these models have not been adopted by the wider academic and practitioner audience.
To address these issues, the PINstimation package seeks to provide easy and convenient access to
these extensions of the PIN model. To this end, the package is designed in a compact structure allowing
users to directly obtain informed-trading estimates solely by the use of an intraday trading data. The
package includes easy-to-use functions, that accurately implement preexisting, and novel remedial
solutions to estimation challenges as suggested in the literature. Besides, it provides a rich toolbox for
simulating datasets, something that can help researchers conduct robust, and reliable comparative
analyses. By the introduction of the package, we hope to contribute to further use of the PIN models
in academic research, to improve the validity, and quality of scientific findings within the field, and
eventually to heighten the interest of practitioners in these models.

To our knowledge, there are two packages available for the estimation of PIN models: pinbasic
(Recktenwald, 2018, 2019) and InfoTrad (Celik and Tiniç, 2017, 2018). Both packages have limited scope
as they solely focus on the original PIN model (Easley et al., 1996). In addition to scope differences,
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other motivations for users to shift to PINstimation are that (1) the package pinbasic has recently been
placed in the archive by CRAN (2) the package InfoTrad in its current version (V.1.2) is not error-free.1

PINstimation contains functions to estimate probability of informed trading (PIN) as introduced
by Easley and O’Hara (1992), and Easley et al. (1996). The estimation procedures implemented in these
functions help to avoid floating point errors, boundary solutions, and convergence to local maxima.
Besides, the package provides a comprehensive treatment of two important extensions of the PIN
model. The multilayer probability of informed trading model (MPIN model; Ersan, 2016), in contrast
to the original PIN model, allows for multiple information types, and assumes that information
events cluster in layers with uniform informed trading intensity. Relaxing the assumption of a unique
information type allows for a more realistic, and accurate treatment of informed trading. However, it
poses, at least, two additional challenges: (1) the larger parameter space of the MPIN model makes it
more likely that the maximum likelihood estimate may lie on the parameter boundary, and (2) An
accurate determination of the number of information layers is crucial to produce reliable estimations of
the probability of informed trading. PINstimation tackles these two issues by including a function to
generate strategic2 initial parameter sets, and three functions for estimating the number of information
layers in datasets. The second extension is the adjusted probability of informed trading model (AdjPIN
model; Duarte and Young, 2009). This model challenges the assumption that trading is only performed
by uninformed liquidity traders and informed traders, and accounts for the possibility of liquidity
shocks to both the buy and sell side. PINstimation provides functions to estimate the AdjPIN measure
and the PSOS (probability of a symmetric order flow shock), as well as three functions to generate
initial sets of parameters for maximum-likelihood estimation. In addition to the standard maximum-
likelihood method, the package provides a novel implementation of the estimation of PIN models via
the expectation-conditional maximization algorithm. The speed, and accuracy of this algorithm has
been recently documented in Ghachem and Ersan (2022). As for informed trading in high-frequency
settings, PINstimation enables users to estimate the volume-synchronized probability of informed
trading (VPIN; Easley et al., 2011, 2012). This measure is an adaptation of the PIN measure to the
high-frequency trading, and aims to capture the order flow toxicity in a trading data. Finally, the
package offers two supporting utilities: (1) a rich simulation toolbox to simulate data according to
the assumptions of the different PIN models and, thereby, test the accuracy of estimation algorithms,
and (2) a fast implementation of the prominent trade classification algorithms that allow users to
generate daily sequences of buyer-initiated, and seller-initiated trades from raw trading level data.
Such sequences are to be used later as inputs for the estimations of PIN, MPIN, and AdjPIN models.

The remainder of this paper is organized as follows. Next section provides a brief introduction to
the theoretical background of PIN models. Third section presents a detailed description of the package
and illustrates its applications through several examples. Fourth section reports and discusses the
results of two empirical investigations conducted using the package. The last section concludes with a
summary of the package capabilities and a discussion of its potential extensions.

2 Theoretical background

2.1 PIN model

Easley and O’Hara (1992) developed a model where the change in the order imbalance is associated to
the presence of informed trading. The information can be either positive, leading to excess trading
on the buy side, or negative, leading to excess trading on the sell side. On days with no information
event, there are only uninformed traders in the market. On the days with a good-information (bad-
information) event, informed buyers (sellers) join uninformed buyers and sellers to trade on the
information. Statistically, Easley et al. (1996) model total trades by a finite Poisson mixture model,
where the numbers of buyer-initiated and seller-initiated trades; follow each a Poisson distribution.

1In fact, two of the five functions suffer from implementation errors. The function EA() implements the algorithm
of Ersan and Alıcı (2016), but performs the clustering process inaccurately: the days within the information-event
cluster are distributed into good-event and bad-event days via a clustering step based on order imbalance rather
than the actual step of grouping them into two based on the sign of order imbalance. The function YZ() of the same
package implements the algorithm of Yan and Zhang (2012). It, however, contains an error in the denominator of
the PIN formula. The correct formula should be PIN = αµ/(αµ + εb + εs). This error might impact the results in
research papers using the package (See, for instance, Figure 12 in Griffin et al. (2021) – very poor performance of
PIN estimates using YZ()). Our comparative tests confirm those observations, as the mean absolute errors in PIN
estimates of InfoTrad and PINstimation implementations are 0.02476, and 0.00014 respectively for Yan and Zhang
(2012); and 0.00777 and 0.00014 respectively for Ersan and Alıcı (2016).

2Strategic initial parameter sets stand in contrast to those obtained through random selection or grid-search
methods, as they are derived from the characteristics of the dataset used for the estimation. They are typically
limited in number and meticulously selected to cover relevant areas in the parameter space, ensuring a more
accurate and efficient optimization process.
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The likelihood of observing B buyer-initiated trades (or buys) and S seller-initiated trades (or sells) on
a trading day is stated as:

L (B, S|Θ) = α(1 − δ)e−(µ+εb) (µ+εb)
B

B! e−εs εS
s

S! + αδe−εb εB
b

B! e−(µ+εs) (µ+εs)
S

S! + (1 − α) e−εb εB
b

B! e−εs εS
s

S!
(1)

where Θ = (α, δ, µ, εb, εs) is the set of parameters to be estimated: α is the probability of occurrence of
information events, δ is the conditional probability that the information event is a bad event, µ is the
informed trading intensity, and εb and εs are uninformed trading intensities on the buy and sell sides,
respectively. For a time period of N days, the joint likelihood of observing a set of daily buys and sells,
M = (Bi, Si)

N
i=1 is presented as:

L (M|Θ) =
N

∏
i=1

L (Bi, Si|Θ) (2)

Typically, the estimation of the five parameters is performed via maximum likelihood estimation
(MLE). Once the parameter set Θ is estimated, the probability of informed trading (PIN) is calculated
as:

PIN =
αµ

αµ + εb + εs
(3)

The PIN model relies on several assumptions. First, trading days are assumed to be independent
of each other, an assumption that leads to the joint likelihood in Eq.(2). Tests on the validity of
independence assumption provide supportive evidence and sample results are reported in Easley et al.
(1997). Second, information events are assumed to occur outside trading hours. Third, at most one
information event can occur in any given trading day. Finally, information events are assumed to be of
a single type, i.e., leading to the same magnitude of informed trading µ, whenever they occur.

2.2 MPIN model

The MPIN model (Ersan, 2016) is a generalization of PIN model that allows for multiple information
event types (information layers). When the number of layers J equals to 1, then the model is simplified
to the original PIN model. The model relaxes several assumptions of the PIN model. First, information
events can be of different types, i.e., generate different magnitudes of informed trading. Second, more
than one information event can occur at any given day. Third, the model allows for the occurrence of
information events within trading hours. The model’s ability to handle multiple information types
enables these two last features. It can aggregate the effects of multiple events or identify instances of
partially disseminated informed trading on any given day by introducing an additional layer.

The parameter set of an MPIN model with J layers Θm =
(
α1, . . . , αJ , δ1, . . . , δJ , µ1, . . . , µJ , εb, εs

)
has length 3J + 2, where (αj)j=1...J is the probability of occurrence for an information event in layer j,
(δj)j=1...J is the (conditional) probability the event in layer j is a bad-information event, (µj)j=1...J is the
informed trading intensity in layer j, εb and εs are the uninformed trading intensities. Similar to the
PIN model, the multilayer probability of informed trading (MPIN) is the ratio of expected informed
trading intensity to the expected total trading intensity as:

MPIN =
∑J

j=1 αjµj

∑J
j=1 αjµj + εb + εs

(4)

The estimation of the MPIN model using the standard maximum-likelihood estimation requires
a prior estimation of the number of information layers in the data. An algorithm for detecting the
number of layers in a dataset has already been suggested by Ersan (2016). Ersan and Ghachem (2022a)
improved this algorithm by refining the correction for the order imbalance.

2.3 AdjPIN model

Duarte and Young (2009) suggest an alternative, extended informed trading model, to address two
main concerns. First, for many stocks, there is a well-documented positive correlation between the
numbers of buyer- and seller-initiated trades (Duarte and Young, 2009). This fact cannot be modelled by
the original PIN model. Second, it is difficult to capture the large variance of buys and sells by the use
of PIN model, if investors are restricted to be of two types: informed and liquidity traders. Accordingly,
the authors introduce an extended model, in which a symmetric order-flow shock to both buy and sell
sides is introduced. On any given day, in addition to information events, a positive liquidity shock,
symmetric in buys and sells, can occur. In addition to the adjusted PIN measure (AdjPIN) capturing
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the probability of informed trading, the model introduces the probability of symmetric order flow
shock (PSOS) that measures the probability of a trade to occur due to a symmetric liquidity shock.
The parameter set of the original AdjPIN model Θa = (α, δ, θ, θ′, µb, µs, εb, εs, ∆b, ∆s) has 10 elements:
α is the probability of occurrence of an information event; δ is the probability that the information
event is a bad event; µb ( µs) is the informed trading intensity on the buy (sell) side; εb (εs) is the
uninformed trading intensity on the buy (sell) side. θ (θ

′
) is the probability of a symmetric order flow

shock occurrence in the absence (presence) of an information event. ∆b (∆s) is the additional arrival
rate of buys (sells) caused by symmetric liquidity shocks. Once the parameter set Θa is estimated,
typically through MLE, AdjPIN and PSOS are calculated as follows:

AdjPIN =
α (δµs + (1 − δ) µb)

α (δµs + (1 − δ) µb) + (∆b + ∆s)
(
αθ

′ + (1 − α) θ
)
+ εb + εs

(5)

PSOS =
(∆b + ∆s)

(
αθ

′
+ (1 − α) θ

)
α (δµs + (1 − δ) µb) + (∆b + ∆s)

(
αθ

′ + (1 − α) θ
)
+ εb + εs

(6)

2.4 Computation issues for PIN, MPIN, and AdjPIN estimations

PIN estimation is prone to two main sources of numerical errors. First, large numbers of trades (buys
and sells) in the power terms (Eq 2) can lead to floating point exception problem.3 While this was not a
problem in 1990’s, most stocks in developed markets today are traded tens of thousands of times a day,
rendering the likelihood function in Eq (2) numerically intractable. Consequently, several logarithmic
transformations (factorizations) of the likelihood function have been suggested to address this problem.
Easley et al. (2008) were the first authors to suggest a factorization of the likelihood function, however
their transformation is shown to generate non-negligible biases (Lin and Ke, 2011; Yan and Zhang,
2012). Lin and Ke (2011) provide another factorization leading to more accurate estimates. Finally,
Ersan (2016) suggests a similar, yet simpler factorization that leads to the same results as with Lin
and Ke (2011), yet in shorter estimation times. More importantly, the Ersan (2016) factorization is
easily generalized for the MPIN model. In line with previous efforts, Ersan and Ghachem (2022b) have
suggested a factorization of the likelihood function of the AdjPIN model.

Second issue related to the estimation of PIN, MPIN, and AdjPIN models is that the estimation
procedure may not reach the global maximum of the (factorized) likelihood function. Several papers
document that the ML estimation of the PIN model frequently yields boundary solutions, not the
global maxima (Yan and Zhang, 2012; Gan et al., 2015; Ersan and Alıcı, 2016). As a remedial solution,
Gan et al. (2015) suggests the use of a single strategic parameter set generated by their hierarchical
clustering algorithm. In contrast, Yan and Zhang (2012) recommend that the MLE procedure is started
up to 125 (5 × 5 × 5) times using the initial parameter sets from their grid search algorithm and that
the highest likelihood estimates are picked. Similarly, Ersan and Alıcı (2016) settle for multiple MLE
runs, but recommend five sets of parameters determined by their clustering algorithm, and show them
to be sufficient to reach the global maxima. When compared to PIN model, achieving global maxima
in MPIN model is harder given the larger dimension of the parameter set (3J + 2 parameters). The
generalization of Yan and Zhang (2012) grid search algorithm would require up to 59 runs of MLE. In
contrast, the clustering algorithm of Ersan and Alıcı (2016) is easily generalized, and in its basic setting,
produces (J+5

J ) initial parameter sets. As for the AdjPIN model, generating initial parameter sets
turned out to be challenging, given its large parameter set, and that preexisting generation algorithms
do not allow a straightforward adaptation to the model. Therefore, a large number of studies relied
on a limited number of randomly generated initial parameter sets (see e.g. Duarte and Young, 2009).
Recently, Cheng and Lai (2021) suggested an extension of the grid-search algorithm of Yan and Zhang
(2012), while Ersan and Ghachem (2022b) suggested a novel method loosely based on the algorithm of
Ersan and Alıcı (2016).

2.5 The expectation-maximization algorithm

The estimation of PIN models has typically been performed through a direct maximization of the
corresponding factorization of the likelihood function. The use of alternative estimation methods
such as the Gibbs sampler has also been recently suggested (Griffin et al., 2021). More recently,
Ghachem and Ersan (2022) have suggested the use of a variant of the expectation-maximization (EM)
algorithm to estimate PIN models. In statistics, the EM algorithm is an iterative method for finding
maximum likelihood estimates of parameters in finite-mixture models, where the model may depend
on unobserved latent variables (Ng et al., 2012). In finite mixture models, each data observation is

3Statistical software make calculations in limited ranges. R calculates, e.g., between exp(−745) and exp(709).
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associated with an unobserved cluster label, i.e. a reference to the cluster it belongs to. In this respect,
PIN models can be considered as a Poisson mixture model with a finite number of clusters (Lin and
Lee, 2015; Ghachem and Ersan, 2022). Ghachem and Ersan (2022) considered a variant of the EM
algorithm, the Expectation-Conditional Maximization algorithm (ECM algorithm), for the estimation
of the PIN models, and provided a detailed implementation and an empirical assessment of it. They
show that the ECM algorithm yields faster and more accurate estimates than alternative methods.

2.6 VPIN measure

Volume-synchronized probability of informed trading (VPIN) metric is introduced by Easley et al.
(2011), and Easley et al. (2012). VPIN aims at detecting order flow toxicity in high-frequency financial
markets. As Easley et al. (2012) define, “order flow is toxic when it adversely selects market makers, who
may be unaware they are providing liquidity at a loss". It is shown that order flow becomes toxic prior
to intraday shocks, such as the 2010 Flash Crash (Easley et al., 2011). VPIN metric proceeds with
the volume of trades that arrive to the market, rather than number of trades. In a high-frequency
framework, VPIN uses volume clock rather than time clock, forming equal sized volume buckets
intraday. A new trade classification algorithm - bulk volume classification - is suggested by the authors.
Accordingly, trades are aggregated in short time intervals (e.g., 1 minute) and standardized price
changes are used in distributing trades into buys and sells. As shown in Easley et al. (2008), informed
trading probability from the PIN model can be proxied by the ratio of expected trade imbalance to the
expected total volume of trades. In line with that, VPIN is calculated as follows:

VPIN =
E
[∣∣∣VSell

τ − VBuy
τ

∣∣∣]
E
[
VSell

τ + VBuy
τ

] =
∑n

τ=1 OIτ

n × V
(7)

where V is the predetermined volume bucket size and equals to VSell
τ + VBuy

τ in that bucket. OI is the
order imbalance. In Easley et al. (2012), volume bucket size is determined by dividing the average
daily volume by 50. Each volume is filled by aggregating the short time bars. In addition to the time
bar (t) and volume bucket size (V), third parameter in VPIN calculation is the sample length (n) that
determines how many volume buckets to be included. Thus, VPIN at any time is calculated based on
the last n volume buckets. It is updated with each new volume bucket in a rolling window process.

3 The PINstimation package

The R package PINstimation provides utilities for the estimation of PIN models, partitioned into six
categories:

• The standard PIN model (Easley and O’Hara, 1992; Easley et al., 1996), including various tools
that remedy to floating-point exception, provide efficient algorithms for initial parameter sets
and treat boundary solutions (Lin and Ke, 2011; Yan and Zhang, 2012; Gan et al., 2015; Ersan
and Alıcı, 2016; Ke et al., 2019);

• Multilayer probability of informed trading or MPIN (Ersan, 2016) and tools for respective
computational issues;

• Adjusted probability of informed trading or AdjPIN (Duarte and Young, 2009) and tools for
respective computational issues;

• Volume-synchronized probability of informed trading or VPIN (Easley et al., 2011, 2012);

• Simulation utilities that generate datasets for testing and benchmarking the different PIN model
estimation methods;

• Trade classification via commonly used algorithms and daily aggregation of buyer-initiated and
seller-initiated trades.

3.1 Standard PIN model functions

The different factorizations of the likelihood function can be specified using the family of functions
of the form fact_pin_*, where the suffix (*) can be one of ("eho","lk","e"), corresponding to the
factorization of Easley et al. (2010), Lin and Ke (2011), and Ersan (2016) respectively. The different
algorithms for the generation of initial parameter sets are implemented in the family of functions
of the form initials_pin_*, where the suffix (*) can be one of ("yz","gwj","ea"), corresponding
to the algorithm of Yan and Zhang (2012), Gan et al. (2015), and Ersan and Alıcı (2016) respectively.
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The family of functions of the form pin_* allows the estimation of the PIN model using the afore-
mentioned algorithms for the generation of initial parameter sets, where the suffix (*) can be one of
("yz","gwj","ea"). The function pin() estimates the PIN model using custom initial parameter sets.

These functions take the two arguments: data, and factorization. The data argument is a data
frame that contains daily data of buyer-initiated trades or buys in the first column, and seller-initiated
trades or sells in the second column. The argument data is usually a dataset with around 60 (250)
rows as representative of a quarterly (yearly) data while any custom length can be determined by
the user. The factorization argument referring to the likelihood function factorization used for the
maximum likelihood maximization. It can be one of ("none","EHO","LK","E").

Estimation output

The output of the estimation functions pin(), pin_yz(), pin_gwj() and pin_ea() is an S4 object of class
estimate.pin. The slots of this object are presented in Table S1.

Examples

We estimate the PIN model using a preloaded dataset called dailytrades.

# [1] Estimate the PIN model using the function pin_ea()

library("PINstimation")
model_ea <- pin_ea(dailytrades)
show(model_ea)
## ----------------------------------
## PIN estimation completed successfully
## ----------------------------------
## Initial parameter sets : Ersan and Alici (2016)
## Likelihood factorization : Ersan (2016)
## ----------------------------------
## 5 initial set(s) are used for estimation
## Type object@initialsets to see the initial parameter sets used
##
## PIN model
##
## ========== ===========
## Variables Estimates
## ========== ===========
## alpha 0.749997
## delta 0.133334
## mu 1193.52
## eps.b 357.27
## eps.s 328.63
## ----
## Likelihood (3226.469)
## PIN 0.566172
## ========== ===========

# [2] Display the optimal parameter estimates and the PIN value

model_ea@parameters
## alpha delta mu eps.b eps.s
## 0.7499975 0.1333342 1193.5179655 357.2659099 328.6291793

model_ea@pin
## [1] 0.5661721

3.2 MPIN model functions

The factorization of the likelihood function of the MPIN model can be evaluated using the function
fact_mpin(). The initial sets of parameters can be obtained using a generalization of the clustering
algorithm developed by Ersan (2016) via the function initials_mpin(). The number of layers in
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datasets can be detected using the family of functions of the form detectlayers_*, where the suffix
(*) can be one of ("e","eg","ecm"), corresponding to the layer detection algorithm of Ersan (2016),
Ersan and Ghachem (2022a), and Ghachem and Ersan (2022) respectively.

The function mpin_ml() estimates this probability using the standard maximum likelihood esti-
mation method, the factorization of Ersan (2016), and the initial parameter sets in Ersan and Alıcı
(2016). The function mpin_ml() takes as an argument layers that specifies the number of information
layers assumed to be present in the data. If the user omits this argument, the number of layers is
detected using the algorithm referred to in the argument detectlayers. This number is then used to
generate the initial parameter sets, before proceeding to compute the maximum likelihood estimates
of the MPIN model. The function mpin_ecm() estimates the MPIN model via the ECM algorithm.
The function mpin_ecm() takes as an argument the number of information layers layers assumed
to be present in the data. If this number is provided by the user, the function finds the optimal
estimates for each of the initial parameter sets, and then selects the parameter estimates that give the
highest likelihood. If the argument layers is omitted, then the function performs the aforementioned
estimation for each number of layers in the integer set from 1 to 8, and then select the optimal model
having the lowest model selection criterion. The default criterion is the Bayesian Information Criterion
or BIC. The function selectModel() allows to change the selection criterion.

Estimation output

The outputs of the functions mpin_ml() and mpin_ecm() are two S4 objects of class estimate.mpin, and
estimate.mpin.ecm respectively. The latter object inherits all slots of the former, with a few additional
slots: Three slots for information criteria (@AIC, @BIC, and @AWE), one slot for the hyperparameters
(@hyperparams), one slot stating whether the information criterion is used (@optimal), and one slot for
the active information criterion (@criterion). Common slots of both objects are presented in Table S2.
Additional slots of estimate.mpin.ecm objects are described in Table S3.

Examples

We estimate the MPIN model using the preloaded dataset dailytrades.

# [1] Estimate the MPIN model using the function 'mpin_ml()'

model_mpin <- mpin_ml(dailytrades, verbose = FALSE)
show(model_mpin)
## ----------------------------------
## MPIN estimation completed successfully
## ----------------------------------
## Likelihood factorization : Ersan (2016)
## Estimation Algorithm : Maximum Likelihood Estimation
## Initial parameter sets : Ersan (2016), Ersan and Alici (2016)
## Info. layers detected : using Ersan and Ghachem (2022a)
## ----------------------------------
## 35 initial set(s) are used in the estimation
##
## ========== ============================
## Variables Estimates
## ========== ============================
## alpha 0.216664, 0.050001, 0.483339
## delta 0.230769, 0.666673, 0.034481
## mu 602.86, 986.44, 1506.81
## eps.b 336.91
## eps.s 335.89
## ----
## Likelihood (643.458)
## mpin(j) 0.082615, 0.031196, 0.460647
## mpin 0.574458
## ========== ============================

# [2] Estimate the MPIN model using the function 'mpin_ecm()'

model_empin <- mpin_ecm(dailytrades, verbose = FALSE)
show(model_empin)
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## ----------------------------------
## MPIN estimation completed successfully
## ----------------------------------
## Likelihood factorization : Ersan (2016)
## Estimation Algorithm : Expectation Conditional Maximization
## Initial parameter sets : Ersan (2016), Ersan and Alici (2016)
## Info. layers detected : using Ghachem and Ersan (2022) [ECM]
## Selection criterion : Bayes Information Criterion (BIC)
## ----------------------------------
## 525 initial set(s) are used for all 8 estimations
##
## =============== ============================
## Variables Estimates
## =============== ============================
## alpha 0.216667, 0.050000, 0.483333
## delta 0.230769, 0.666667, 0.034483
## mu 602.88, 986.45, 1506.84
## eps.b 336.91
## eps.s 335.89
## ----
## Likelihood (643.458)
## mpin(j) 0.082619, 0.031196, 0.460648
## mpin 0.574463
## ----
## AIC | BIC | AWE 1308.92, 1331.95, 1409.99
## =============== ============================
##
## Table: Summary of 8 MPIN estimations by ECM algorithm
##
## BIC AIC AWE layers #Sets time
## --------- ------- ------- ------- ------ ----- ----
## model.1 6473.41 6462.94 6508.88 1 5 0.06
## model.2 1633.51 1616.76 1690.27 2 15 0.49
## model.3 1331.95 1308.92 1409.99 3 35 0.98
## model.4** 1331.95 1308.92 1409.99 3 70 1.78
## model.5 1331.95 1308.92 1409.99 3 100 2.55
## model.6 1331.95 1308.92 1409.99 3 100 2.62
## model.7 1342.58 1313.26 1441.9 4 100 3.31
## model.8 1342.58 1313.26 1441.9 4 100 2.83

model_empin@mpinJ
## layer.1 layer.2 layer.3
## 0.08261897 0.03119604 0.46064817

model_empin@parameters\$alpha
## layer.1 layer.2 layer.3
## 0.2166667 0.0500000 0.4833333

3.3 AdjPIN model functions

The factorization of the likelihood function of the AdjPIN model can be specified using the function
fact_adjpin(). Three functions are provided to generate initial parameter sets for the estimation
of the AdjPIN model. First, initials_adjpin() implements the algorithm suggested in Ersan and
Ghachem (2022b). Second, initials_adjpin_rnd() randomly generates initial parameter sets as
follows: The buy rate parameters {εb, µb, ∆b} are randomly generated from the interval (minB,maxB),
where minB (maxB) is the smallest (largest) value of buys in the dataset, under the condition that
εb + µb + ∆b < maxB. Analogously, the sell rate parameters {εs, µs, ∆s}are randomly generated from
the interval (minS,maxS), where minS (maxS) is the smallest(largest) value of sells in the dataset, under
the condition that εs + µs + ∆s < maxS. Third, initials_adjpin_cl() generates initial parameter sets
using an extension of the algorithm derived in Cheng and Lai (2021). In their paper, the authors
assume that the probability of liquidity shock is the same in no-information, and information days, i.e.,
θ = θ′, and use a procedure similar to that of Yan and Zhang (2012) to generate 64 initial parameter
sets. The function implements an extension of their algorithm, by relaxing the assumption of equality
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of liquidity shock probabilities, and generates thereby 256 initial parameter sets for the unrestricted
AdjPIN model.

The estimation of the AdjPIN model is performed using the function adjpin(). The argument
method specifies the estimation method used: "ML" for the standard maximum-likelihood estimation,
and "ECM" for the ECM algorithm. The standard maximum-likelihood method writes a factorization of
the likelihood function and find its maxima using Nelder–Mead method. The expectation-conditional
maximization (ECM) algorithm is suggested and detailed in Ghachem and Ersan (2022). The function
allows for the estimation of the AdjPIN model (Duarte and Young, 2009), as well as related restricted
models. Restricted models are models where pairs of parameters are assumed to be equal. The
choice of a restricted model can be specified via the argument restricted. For instance, calling the
function adjpin() with the argument restricted = list(mu = TRUE) correspond the estimation of
the restricted AdjPIN model where µb = µs.

Estimation output

The output of the estimation function adjpin() is an S4 object of class estimate.adjpin. The slots of
the estimate.adjpin object are presented in Table S4.

Examples

We estimate unrestricted, and restricted AdjPIN models using a preloaded dataset called dailytrades.

# [1] Generate initial parameter sets for the estimation of the AdjPIN model and use it
# to estimate the model using the ECM algorithm (default)

init.sets <- initials_adjpin(dailytrades)
model <- adjpin(data = dailytrades, initialsets = init.sets)
show(model)
## ----------------------------------
## AdjPIN estimation completed successfully
## ----------------------------------
## Likelihood factorization : Ersan and Ghachem (2022b)
## Estimation Algorithm : Expectation-Conditional Maximization
## Initial parameter sets : Custom initial sets
## Model Restrictions : Unrestricted model
## ----------------------------------
## 49 initial set(s) are used in the estimation
## Type object@initialsets to see the initial parameter sets used
##
## AdjPIN model
##
## =========== ==============
## Variables Estimates
## =========== ==============
## alpha 0.733333
## delta 0.136364
## theta 0.0625
## theta' 0.636364
## ----
## eps.b 337.17
## eps.s 336.19
## mu.b 599.12
## mu.s 870.98
## d.b 912.75
## d.s 0
## ----
## Likelihood (893.025)
## adjPIN 0.295083
## PSOS 0.27903
## =========== ==============

# [2] Display probability estimates, trading intensity estimates, adjpin, and psos.
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model@parameters[1:4]
## alpha delta theta thetap
## 0.7333333 0.1363636 0.0625000 0.6363636

model@parameters[5:10]
## eps.b eps.s mu.b mu.s d.b d.s
## 337.161195 334.770146 599.144502 872.396521 912.749207 2.671429

model@adjpin
## [1] 0.2951761

model@psos
## [1] 0.279842

# [3] Estimate a restricted AdjPIN model where the liquidity shock rates are assumed equal on
# the buy and sell side, i.e., d.b = d.s.

model <- adjpin(data = dailytrades, method = "ML", restricted = list(d = TRUE))

3.4 Volume-synchronized probability of informed trading - VPIN

The Volume-Synchronized Probability of Informed Trading or VPIN is developed by Easley et al. (2011)
and Easley et al. (2012), and refers to the adaptation of the original PIN model to the high frequency
environment.

The function vpin()

The package provides the function vpin() that computes VPIN using a dataset of high-frequency
transactions containing three variables timestamp, price, volume. The three essential arguments of the
function are: (1) timebarsize, the size of timebars in seconds with a default value of 60, (2) buckets,
the number of buckets per volume of bucket size (VBS) with a default value of 50, (3) samplength, the
sample length or window of buckets to calculate VPIN, with a default value of 50. Following Easley
et al. (2011, 2012), the default value for the argument timebarsize is 1 minute (60 seconds). Recall that
the unit of the argument timebarsize is in seconds, enabling the user to use shorter time bar sizes as
well.

Estimation output

The output of the estimation function vpin() is an S4 object of class estimate.vpin. The slots of the
estimate.vpin object are presented in Table S5.

Examples

We use a dataset called hfdata included in the package, which is a simulated dataset containing
sample timestamp, price, volume, bid and ask for 100.000 high-frequency transactions. The function
automatically selects the first 3 columns of the provided data, thus ignores the last two columns (bid
and ask). When the function vpin() is run without arguments, it uses the default parameters: a time
bar size of 60 seconds, 50 buckets per daily average volume, and a sample length of 50 buckets.

# [1] Estimate the volume-synchronized probability of informed trading (vpin)

model_vpin <- vpin(hfdata)

# [2] Show selected information details about buckets

tail(model_vpin@bucketdata[, c(1,4:7)], 3)
## bucket aoi starttime endtime vpin
## 3596 3596 2240.3600 2019-01-11 05:11:33 2019-01-11 05:14:33 0.2512113
## 3597 3597 1386.5201 2019-01-11 05:14:33 2019-01-11 05:17:33 0.2521648
## 3598 3598 655.7131 2019-01-11 05:17:33 2019-01-11 05:21:33 0.2554926
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# [3] Display summary statistics of and plot the daily vpin vector

summary(model_vpin@dailyvpin$dvpin)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1364 0.1776 0.1952 0.2050 0.2336 0.4041

3.5 Data simulation functions

We provide utilities to generate simulated data for the PIN, MPIN and AdjPIN models, via the
functions generatedata_mpin() and generatedata_adjpin().

The function generatedata_mpin() generates datasets according to the assumptions of the gener-
alized PIN model of Easley and O’Hara (1992), and Easley et al. (1996) as derived by Ersan (2016). The
main arguments of the function are as follows: series, which represents the number of datasets to
be generated; days, specifying the number of days in each dataset; layers, denoting the number of
information layers to be generated in the data; parameters, defining the parameters Θ = (α, δ, µ, εb, εs)
used in data generation; ranges, a list containing the ranges for some or all parameters; and maxlayers,
representing the maximum number of layers in the generated datasets. If the user omits the argument
parameters, the function checks the ranges of simulation parameters as present in the argument
ranges. If the user provides a range for a given parameter, it is used in simulating the parameter
value. Otherwise, a default range is used. The function generatedata_mpin() has three additional
arguments that control the relationship between the theoretical values of the simulation parameters:
eps_ratio, mu_ratio, and confidence. For more information about these arguments, and default
parameter ranges, we refer the reader to the package documentation.

The function generatedata_adjpin() generates datasets according to the assumptions of the
Adjusted PIN model (Duarte and Young, 2009). The arguments of the function are as follows: series,
representing the number of datasets; days, specifying the number of days in each dataset; parameters,
defining the parameters Θ = (α, δ, θ, θ′, εb, εs, µb, µs, ∆b, ∆s) used in data generation; restricted, a
list of binary variables specifying whether two analogous model parameters are assumed equal;
and ranges, an alternative to parameters, determining the range for each parameter. The argument
restricted can be specified as a vector with four elements: (theta,eps,mu,d). Each of the four
elements, when set to TRUE, corresponds to a given restriction on the AdjPIN model. For instance,
theta = TRUE corresponds to the AdjPIN model where θ = θ′. If the user omits the argument
restricted, then no restrictions are applied, and the simulated data is generated to fit the unrestricted
model. If the user omits the argument parameters, the function checks the ranges of the different
simulation parameters contained in the argument ranges. If the user provides a range for a given
parameter, it is considered in simulating the value of that parameter. Otherwise, a default range is
used. For more information about the function, and the default parameter ranges, we refer the reader
to the package documentation.

Simulation output

The output of the data generation functions generatedata_∗(), where the suffix (*) can be one of
("mpin","adjpin"), depends on the value of the argument series. If series=1, the output is of class
dataset; otherwise the output is of class dataseries. The slot @datasets of the latter object contains
the simulated data in the form of a list of dataset objects. The slots of the objects dataset, and
dataseries are presented in Table S6, and Table S7 respectively.

Examples

We generate several data series using the functions generatedata_mpin() and generatedata_adjpin()
by using different values for the arguments. Note that your results might differ from ours as the data
is randomly generated.

# [1] Generate a series of 100 simulated semi-annually datasets, having 3 layers
# and 125 days each

dataseries <- generatedata_mpin(series = 100, days = 125, layers = 3)

# [2] Generate, in two ways, a single MPIN dataset with one information layer and the
# simulation parameters (alpha ,delta ,mu ,eb, es) = (0.3, 0.7, 8000, 1500, 2000).
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# (1) Using the argument 'parameters'
sdata <- generatedata_mpin(parameters = c(0.3,0.7,8000,1500,2000))

# (2) Using the argument 'ranges'
sdata <- generatedata_mpin(layers = 1,
ranges = list(alpha=0.3, delta=0.7, eps.b=1500, eps.s=1800, mu=8000))

# [3] Generate a series of 500 datasets with 2 layers where each layer has a minimum
# share of 0.1, eps.b is equal to 5000; and mu is between 5000 and 25000.

dataseries <- generatedata_mpin(series = 500, layers = 2,
ranges = list(alpha = c(0.1,1), eps.b = 5000, mu = c(5000, 25000)))

# [4] Generate a collection of 100 datasets, whose data sequences span 60 days, and
# contain 3 layers, and use it to check the accuracy of the MPIN estimation.

collection <- generatedata_mpin(series = 100, layers = 3)
accuracy <- devmpin <- 0
for (i in 1:100) {

sdata <- collection@datasets[[i]]
model <- mpin_ml(sdata@data, xtraclusters = 3, verbose=FALSE)
accuracy <- accuracy + (sdata@layers == model@layers)
devmpin <- devmpin + abs(sdata@emp.pin - model@mpin)

}
cat("The accuracy of layer detection: ”, paste0(accuracy,"%.\n"), sep="")
cat("The average error in MPIN estimates: ", devmpin/100, ".\n", sep="")

## The accuracy of layer detection: 96%.
## The average error in MPIN estimates: 0.00234024.

# [5] Generate a dataset of 60 days for the adjusted PIN model (default settings).

sdata <- generatedata_adjpin()

# [6] Using a dataset of 10 000 000 days, check that the empirical parameters indeed
# converge to the theoretical parameters – in virtue of the weak law of large numbers.

simdata <- generatedata_mpin(days = 10000000, layers = 1)
## ...
## =========== ============== =============== ===============
## Variables Theoretical. Empirical. Aggregates.
## =========== ============== =============== ===============
## alpha 0.750919 0.750961 0.750961
## delta 0.730749 0.730886 0.730886
## mu 215 214.99 214.99
## eps.b 446 446 446
## eps.s 461 460.99 460.99
## ----
## Likelihood - (100973934.705) (100973934.705)
## mpin - 0.151106 0.151106
## =========== ============== =============== ===============

3.6 Trade aggregation function

The PIN model and its extensions use daily numbers of buyer-initiated and seller-initiated trades.
Thus, the estimation of the probability of informed trading requires two initial tasks. First is the
determination of trade initiator in each trade (trade classification), and second is the aggregation of
buys and sells on daily basis.4 The function aggregate_trades() performs both tasks. Among the
trade classification algorithms, PINstimation implements four algorithms, which are "Tick", "Quote",

4In case the data already attaches buy, and sell labels to the individual trades, there is no need to use the
algorithms. Besides, when the detailed order book reflecting the arrival times of each electronic message is
accessible, high-precision Odders-White (2000) chronological method is preferred. For other kinds of data, trade
classification algorithms remain in use, despite non-negligible errors (see e.g., Lee and Ready, 1991; Piwowar and
Wei, 2006; Aktas and Kryzanowski, 2014).
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"LR", and "EMO". Table 1 gives the definition of each of these algorithms, as taken from Aktas and
Kryzanowski (2014). "LR" refers to the Lee and Ready (1991) algorithm, and "EMO" refers to the Ellis
et al. (2000) algorithm.

The trade classification algorithms are implemented in a single function aggregate_trades() that
takes four main arguments: (1) data, a dataframe with four variables in the following order (timestamp,
price, bid, ask), (2) algorithm, specifying the algorithm used to determine the trade initiator, accepting
one of four possible values: ("Tick","Quote","LR","EMO"), (3) timelag, representing the time lag in
milliseconds used to calculate the lagged mid-quote for the methods "Quote", "EMO", and "LR", with a
default value of 0 milliseconds, and (4) fullreport, determining whether the day variable is returned.
The default value is FALSE. The default value for the time lag to be used in the algorithms is set to 0
– chosen mainly for speed considerations. There are studies also suggesting the better performance
of 5-seconds time-lag (Lee and Ready, 1991) and 1-second time-lag (Piwowar and Wei, 2006; Aktas
and Kryzanowski, 2014). Given today’s high-speed financial markets, a much shorter time-lag of, for
example, 100 milliseconds can also be considered.

Table 1: Definition of trade classification algorithms

Tick A trade is classified as a buy (sell) if the price of the trade to be classified is above
(below) the closest different price of a previous trade

Quote Classifies a trade as a buy (sell) if the trade price of the trade to be classified is above
(below) the mid-point of the bid and ask spread. Trades executed at the mid –spread
are not classified.

LR Classifies a trade as a buy (sell) if its price is above (below) the mid-spread (quote
algorithm), and uses the tick algorithm if the trade price is at the mid-spread.

EMO Classifies trades at the bid (ask) as sells (buys) and uses the tick algorithm to classify
trades within the then prevailing bid-ask spread.

Estimation output

The output of the function aggregate_trades() is a dataframe of two (or three) variables. If the
argument fullreport is omitted, or set to FALSE, the output is a dataframe composed of two variables
(b,s). Otherwise, the dataframe consists of 3 variables (day,b,s).

Examples

We use the preloaded dataset hfdata to create a raw high-frequency dataset to aggregate.

# [1] Create a high-frequency dataset 'xdata'
xdata <- hfdata
xdata[, "volume"] <- NULL

# [2] Aggregate data using the EMO algorithm with 'timelag' of 50 milliseconds.

aggtrades <- aggregate_trades(xdata, algorithm = "EMO", timelag = 50)

# [3] Aggregate all observations using the 'LR' algorithm with timelag set to 1 second

aggtrades <- aggregate_trades(xdata, algorithm = "LR", timelag = 1000)

3.7 More on the PINstimation package

Optimization algorithms: The maximum-likelihood estimation relies on the maximization of the fac-
torized likelihood function over a feasible parameter space. For all instances of MLE throughout
the package, this constrained maximization is performed using the Nelder-Mead Simplex algorithm
(Nelder and Mead, 1965), as implemented in the function neldermead() of the package nloptr (John-
son, 2022). In contrast, the expectation-conditional maximization (ECM) algorithm does not require
multi-dimensional non-linear optimization. Thanks to the use of conditional maximization in the max-
imization step, the search for the optimal parameters in the maximization step of the complete-data
log-likelihood is reduced to the search for the roots of polynomials using the algorithm of Jenkins
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and Traub (1972), which can be implemented, for example, via the function polyroot(). In the docu-
mentation of the function, it is stated that "numerical stability may be an issue for all but low-degree
polynomials." Luckily, the highest degree of maximands (polynomials) for the AdjPIN (MPIN) model
estimation via the ECM algorithm is 4 (J + 1), where J — the number of information layers in the
MPIN model — often takes a low value, usually less than 5 (Ersan, 2016).

Parallel processing: The search for global maxima of the log-likelihood function, either through standard
MLE, or via ECM algorithm, is performed through running the method for several initial parameter
sets to obtain, for each dataset, an optimal estimate, then out of these estimates, the one with the
highest log-likelihood is selected. Since the search for local optimum for any given initial set is
independent of the search for other initial sets, then parallel processing can be used to speed up the
execution. Similarly, the trade aggregation — as implemented in the function aggregate_trades() —
takes an argument timelag, and if this argument is positive, it assigns for each high-frequency trade
a lagged mid-quote computed using bid and ask registered a timelag earlier. The computation of
lagged midquote can be independently performed for all trades, and therefore can be parallelized.
Consequently, the package supports parallel processing for these two main tasks, in particular when
these tasks take considerably long time. This concerns namely: (1) estimation of the MPIN model
when the number of initial parameter sets is large, (2) data aggregation of high-frequency data when
a time-lag is used. The parallel processing is enabled using the argument is_parallel available for
the functions mpin_ml(), mpin_ecm(), and aggregate_trades(). The default value for this argument
is TRUE for the data aggregation, and FALSE for the MPIN model estimation. The parallel processing
depends on two additional options: (1) the number of cores used by the functions, (2) the threshold
of initial parameter sets needed to activate parallel processing for MPIN estimations. By default, the
number of CPU cores used in the parallel processing is 2. The option is stored in, and accessed through
the R option pinstimation.parallel.cores. As for the MPIN estimation, parallel processing will not
be activated unless the number of initial sets exceeds a threshold, by default 100 sets. The option
is stored in, and accessed through the R option pinstimation.parallel.threshold. Information on
how to change these options are available on the package website or the package vignette "parallel
processing". The parallel processing feature in the package relies on the future framework available
through the R package future (Bengtsson, 2021). The actual mapping of functions via futures is
performed through the function future_map() of the package furrr (Vaughan and Dancho, 2022).

Empirical time complexity We have performed an empirical investigation into the time complexity of
the algorithms associated with the PIN, MPIN, and ADJPIN models, but chose not to report the
results. This decision is motivated by theoretical considerations, as these algorithms are designed to
be used with small datasets, typically consisting of 60 to 250 observations5. For such small datasets,
the algorithms typically execute quite efficiently on a fairly average computer. In contrast, the package
contains two functions that can be used with larger datasets, namely the data aggregation function
aggregate_trades() and the function vpin(). To inspect the empirical time complexity of these
functions, we obtain a real dataset containing two millions high-frequency trades (sampledata), run the
functions on subsets of increasing size and inspect at what rate the execution time grows with the size.
For the function aggregate_trades(), we perform the procedure for both the sequential and parallel
processing. For each value of size in the set (100000,200000,. . . ,2000000), we run the following
lines of code (1) aggregate_trades(sampledata[1:size,],algorithm = "LR",timelag = 1000) , (2)
aggregate_trades(sampledata[1:size,],algorithm = "LR",timelag = 1000,is_parallel=FALSE),
and (3) vpin(sampledata[1:size,]). For each run, we record the pair consisting of the dataset size,
and the execution time. Figure S1 displays the behavior of execution time as a function of the number
of high-frequency trades in the dataset for the functions aggregate_trades() and vpin() respectively.
Figure S1(a) shows clearly that the function aggregate_trades() displays a linear time complexity,
both for sequential, and parallel processing. Similarly, Figure S1(b) shows that the function vpin()
does also have a linear time complexity.

Convergence of the ECM algorithm: In theory, the ECM algorithm may fail to converge, and if it does, it
may do so slowly (large number of iterations), or converge to a local optimum. To avoid long running
times due to non-convergence, Ghachem and Ersan (2022) set an upper bound of 100 iterations per
initial set, and report that between 93% and 99% of initial sets lead to convergence in fewer than 100
iterations. To avoid local optima, they use limited number of strategic initial sets, and show that the
average bias of AdjPIN(PSOS) is as low as of 0.07% (0.101%); while it is roughly 0.01% for MPIN. Raising
the bound on iterations and/or the number of initial sets may further enhance convergence and reduce
estimation bias, while keeping running times reasonably low thanks to the fast ECM estimation. Users

5A 60-day dataset corresponds to approximately three months of trading days, and typically captures the
quarterly information flow, such as earnings announcements and other periodic disclosures. A 250-day dataset
approximates a year of trading days, and captures annual cycles of information flow, including yearly financial
disclosures and seasonal market variations. Using datasets with more than 250 daily observations in the PIN model
estimation risks (1) overfitting, (2) incorporating outdated or less relevant information, and (3) compromising
model accuracy due to the influence of multiple seasonal and cyclical factors.
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may adjust these parameters using the arguments hyperparams and xtraclusters of mpin_ecm(), or
hyperparams and num_init of adjpin(...,method = "ECM").

Sample datasets: The functions included in the package accept datasets in two different formats.
Therefore, and for the sake of compactness, we have only included two sample datasets. This is
justified by the fact that package enables users to easily generate simulated datasets that fit their
preferences and needs (e.g. number of days, any feasible combination of model parameters) using the
functions generatedata_mpin(), and generatedata_adjpin(). More information on these functions,
and their arguments can be found in the package documentation.

Clustering algorithm: A large number of algorithms implemented in the package, namely those for
layer detection (Ersan, 2016; Ersan and Ghachem, 2022a), or for generating initial parameter sets (Gan
et al., 2015; Ersan and Alıcı, 2016; Ersan, 2016; Ersan and Ghachem, 2022b), rely on the hierarchical
agglomerative clustering (HAC) in one or more of its steps. The function used in the implementation
of HAC throughout the package is hclust().

Custom initial parameter sets: The package provides several functions for generating initial parameter
sets for the different PIN models, to be fed in the different estimation functions. These latter functions
also allow for the use of custom initial parameter sets. This enables researchers to develop, and
experiment with eventually more efficient algorithms for generating initial parameter sets. There-
fore, an argument initialsets is included in the estimation functions of the PIN models (pin(),
mpin_ml(), mpin_ecm(), and adjpin()) that allows researchers/users to use the estimation method
while providing their own initial parameter sets.

4 Applications

In this section, we showcase the different capabilities of the package by describing in sufficient detail
two usage examples analyzing real-world datasets. The purpose of these examples is to show that
the package can be used to answer typical research questions, and also to serve as a complementary
check – our empirical results corroborate well-established findings in the literature, mainly that small
stocks have higher informed trading than large stocks, and VPIN values vary around firm-specific
announcements.

In the first example, we use different measures of informed trading (implemented in the package)
to conduct descriptive and comparative analyses of informed trading activity in large and small stocks.
More specifically, we collect and compare the probability of informed trading obtained by estimating
the three major models using a sequence of daily buyer-initiated and seller-initiated trades. These
models are PIN (Easley and O’Hara, 1992; Easley et al., 1996), MPIN (Ersan, 2016), and AdjPIN (Duarte
and Young, 2009). The research strategy consists of three steps. First, we aggregate the high-frequency
transaction datasets into datasets of daily trades using the function aggregate_trades() using Lee
and Ready (1991) algorithm (algorithm="LR") with zero-second time lag (timelag=0). Second, we
estimate each of the three models with various methods and specifications suggested in the literature.
Finally, we compare the estimates of informed trading in large and small cap stocks, and test the
well-established hypothesis that small stocks experience larger probability of informed trading (see
e.g. Easley et al., 2002; Aslan et al., 2011).

In the second example, we conduct an intraday analysis of informed trading, using the same
dataset, but different variations of the volume-synchronized probability of informed trading or VPIN
(Easley et al., 2011, 2012). First, we provide summary statistics for the different VPIN estimates. Next,
we provide modified versions of the two tables in Easley et al. (2011) showing the distribution of VPIN
and absolute post-returns conditional on each other. Additionally, we investigate the distributions of
positive and negative returns separately. Finally, we examine whether order-flow toxicity changes
around firm-specific announcements for the examined stocks and during the study period.6

4.1 Data

Our main dataset is a stock-level intraday dataset, consisting of all trading transactions for 58 Swedish
stocks listed in NASDAQ Stockholm, which took place within the last quarter of 2020 (59 days).
The data is a collection of reconstructed order books, based on the NASDAQ OMX Historical ITCH
files, and obtained from the website of Swedish House of Finance, National Research Data Center.
Reconstructed order books contain extensive information about the different order book entries, such
as the instrument symbol, date and timestamp in nanoseconds, first and second-best prices and

6Few studies examine VPIN around announcements. For example, Bjursell et al. (2017) examine VPIN around
inventory announcements and price jumps in crude oil and natural gas futures markets. Bugeja et al. (2015) study
VPIN around takeover announcements.
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associated volume at both bid and ask sides, transaction price and volume. The main motivation
behind the selection of 58 stocks in the sample is to conduct comparative analyses of informed trading
between large and small stocks. The 29 large cap stocks are selected in a straightforward manner
from among the 30 large-cap stocks listed in OMX Stockholm 30 Index (OMXS30). Of these 30 stocks,
one stock (ATCO A) is excluded because of data unavailability. As for the 30 small-cap stocks, we
consider the stocks listed in NASDAQ OMX Small Cap Sweden GI (NOMXSCSEGI), which are not
listed in neither the mid-cap, nor the large-cap indices (OMXSMCGI, OMXSLCGI). At the time of the
study, 219 stocks are listed in the Small Cap index, among which, 39 are not listed in neither of the
aforementioned indices. We select the first 30 stocks of these 39 stocks, chronologically. Of these 30
stocks, one small stock (EGTX) is excluded as it only has six days with any trading records. In sum,
we have 29 large and 29 small stocks with 5, 410, 411 associated transactions.

Our second dataset consists of firm-level announcements pertaining to the selected 58 stocks and
occurring within the 59 trading days of the first dataset. The announcements’ data were manually
collected from company news, available on the website of NASDAQ NORDIC and amount to a total
of 546 announcements. We apply several filtering steps on the collected raw data before obtaining the
final sample of announcements. For instance, we exclude 353 announcements occurring outside of
the trading hours, or within the first and last 10 minutes of the trading day. To avoid ambiguity from
combined effects of multiple announcements, we exclude all announcements for any stock-day pair
having more than one announcement. The final sample consists of 96 announcements, out of which 41
concern large stocks and 55 concern small stocks.

4.2 Example 1 – PIN estimation

We estimate the standard PIN model (Easley et al., 1996), the MPIN model (Ersan, 2016), and the
AdjPIN model, (Duarte and Young, 2009) using a dataset of high frequency trades on a sample of
58 stocks (29 large and 29 small stocks) during the last quarter of 2020. We perform a comparative
study of the estimates of different specifications for each of these models, and provide evidence for the
existence of significant differences in informed trading between small and large stocks. Technically, we
estimate the original PIN model using 8 different specifications, MPIN model using 5 specifications,
and ADJPIN model and its restricted versions using 7 specifications. We, however, report a selection
of these specifications. Unreported specifications are variations of the reported models with different
factorizations, initial sets, and/or restrictions on parameters. Table 2 defines the ten specifications we
report and provides the corresponding code to implement each of them.

Table 2: Definition, and implementation code for a selection of model specifications

The factorization, and initial sets for MPIN and AdjPIN models are presented in Ersan (2016), and Ersan and
Ghachem (2022b) respectively. Estimations using the ECM algorithm are detailed in Ghachem and Ersan (2022).

Models Name Code

PIN
Models

PIN_EA pin_ea(data)
EA initial sets (Ersan and Alıcı, 2016) and E factorization (Ersan, 2016)

PIN_GWJ pin_gwj(data)
GWJ initial sets (Gan et al., 2015) and E factorization (Ersan, 2016)

PIN_YZ pin_yz(data)
YZ initial sets (Yan and Zhang, 2012), and E factorization (Ersan, 2016)

MPIN
Models

MPIN.ML_EG mpin_ml(data)
ML estimation method, Layer detection algorithm in Ersan and Ghachem (2022a).

MPIN.ML_E mpin_ml(data,detectlayers = "E")
ML estimation method, Layer detection algorithm in Ersan (2016).

MPIN.ECM mpin_ecm(data,hyperparams = list(maxinit=100))
ECM algorithm with up to 100 initial sets per model.

ADJPIN
Models

ADJPIN_GE adjpin(data,method = "ML")
ML estimation method with GE initial sets (Ersan and Ghachem, 2022b)

ADJPIN_RND adjpin(data,method = "ML",initialsets = "random")
ML estimation method with random initial sets.

ADJPIN.ECM_GE adjpin(data,method = "ECM")
ECM algorithm with GE initial sets (Ersan and Ghachem, 2022b).

ADJPIN.ECM_RND adjpin(data,method = "ECM",initialsets = "random")
ECM algorithm with random initial sets.
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Table 3 presents the mean estimates of the probability of informed trading (PIN) as well as five
parameters for the 58 examined stocks. In summary, Table 3 suggest that variation of estimates from
different specifications of the same model is of limited scope, while the variation of estimates across
models might be quite significant. The MPIN model yields the highest PIN estimates, mainly due to
higher probability of information events. Interestingly, the PIN and ADJPIN models produce very
similar PIN estimates, even though all their model parameters differ significantly from each other.
These results are in line with the assumptions of the different models.

Table 3: Mean estimates of PIN and five parameters in PIN, MPIN, and ADJPIN models

Probability terms, PIN, α, and δ are in percentage. The average running time (Time) is in seconds.

Models Name PIN α δ µ εb εs Time

PIN
Models

PIN_EA 13.316 17.871 29.45 984.833 727.163 709.545 1.344
PIN_GWJ 13.385 18.352 30.171 960.139 731.366 706.103 0.291
PIN_YZ 13.316 17.871 29.45 984.833 727.163 709.545 25.098

MPIN
Models

MPIN.ML_EG 23.910 58.537 23.081 534.789 581.911 684.098 49.641
MPIN.ML_E 20.972 47.633 21.701 528.856 619.009 695.322 23.84
MPIN.ECM 22.461 54.513 24.563 515.325 665.626 689.832 67.179

ADJPIN
Models

ADJPIN_GE 12.658 40.836 48.91 642.788 610.051 554.048 12.449
ADJPIN_RND 13.484 42.805 50.232 661.256 610.924 549.872 12.49
ADJPIN.ECM_GE 12.282 40.641 47.496 627.301 632.203 564.216 2.589
ADJPIN.ECM_RND 12.506 41.023 51.562 601.549 636.203 555.151 2.836

Table 4 reports the mean estimates on the probability of informed trading for large and small stocks
separately, their difference, and its statistical significance. For all specifications, the mean PIN estimate
is significantly larger for small stocks in comparison to large stocks. For instance, the PIN model mean
estimate is around 8.7% for large stocks, while it is almost 18% for small stocks. Similarly, MPIN mean
model estimates are larger than those of the PIN model, both for large and small stocks, and can reach
up to 30% for small stocks. This finding is in line with previous findings in the market microstructure
literature that document larger probabilities of informed trading for small stocks (Easley et al., 2002;
Aslan et al., 2011; Chen and Zhao, 2012). In the bottom row of Table 4, mean number of layers detected
using the different specifications of the MPIN model are reported. The average number of layers for
large stocks is consistently higher than that for small stocks. For instance, for the MPIN.ML_EG, mean
number of layers detected in the 2020 last-quarter datasets of large stocks is 4.172. This number is
significantly higher than its counterpart for small stocks (around 2.9) for the same period, suggesting
that large stocks are more likely to witness different types of information events.

Table 4: Mean PIN estimates and number of layers for large and small stocks

∗∗∗, ∗∗, and ∗ represent significance from a one-sided t-test at 1%, 5% and 10% levels, respectively. PIN values
and their differences are in percentages.

Models Name PIN - Large PIN - Small Difference

PIN
Models

PIN_EA 8.658 17.975 9.317***
PIN_GWJ 8.679 18.091 9.412***
PIN_YZ 8.658 17.975 9.317***

MPIN
Models

MPIN.ML_EG 19.931 27.889 7.958***
MPIN.ML_E 16.749 25.196 8.447***
MPIN.ECM 14.574 30.348 15.775***

ADJPIN
Models

ADJPIN_GE 10.211 15.105 4.894***
ADJPIN_RND 10.35 16.618 6.269***
ADJPIN.ECM_GE 9.591 14.973 5.381***
ADJPIN.ECM_RND 9.637 15.375 5.737***

Layers (MPIN)
MPIN.ML_EG_layer 4.172 2.931 -1.241***
MPIN.ML_E_layer 2.897 2.207 -0.69***
MPIN.ECM_layer 4.207 3.724 -0.483
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Next, we focus on one selected implementation for each of three models (PIN_EA, MPIN_ML_EG,
ADJPIN_GE). Figure 1 shows stock-level PIN and alpha estimates for each of the three selected specifi-
cations. Left (right) hand side of each panel reports estimates for 29 large (small) stocks. Figure 1a
displays the PIN estimates for each of the PIN, MPIN and ADJPIN models. While PIN and ADJPIN
models produce relatively close PIN estimates, MPIN model estimates are consistently higher. In
particular, the difference between MPIN, and PIN estimates is positive, and can reach up to 25%. In
contrast, the difference between the estimates from ADJPIN and PIN models does not have a stable
sign, and tends to fluctuate around 0.

(a) PIN for large and small stocks (b) Alpha for large and small stocks

Figure 1: Stock-level model comparisons for PIN and Alpha for the different models: PIN (red), MPIN
(green), ADJPIN (blue)

Figure 1a also shows relatively higher estimates in the right side of the panel (small stocks), as well
as high stock-based variations, e.g., for the MPIN model PIN estimates range from 10% to around 40%
for the examined stocks. Figure 1b replicates Figure 1a for alpha parameter estimates (information
event occurrence probability). It shows that PIN model consistently has lower alpha estimates than
MPIN and ADJPIN models, but with higher variability, ranging from 2% to 42%. Significant differences
in alpha estimates are observed among the three models and across stocks. Therefore, a careful analysis
of each model’s assumptions is necessary to draw any conclusions.

4.3 Example 2 – VPIN and announcements

Using over 5.4 million trades on 58 Swedish stocks spanning 59 trading days during the last quarter of
2020, we estimate VPIN with three different parameter sets, i.e., 1-50-50, 1-1-5, and 5-1-5 7.

In each parameter set ‘a-b-c’, a represents the length of time bars in minutes, b stands for the
number of buckets per a day with average trading volume, c is the number of previous buckets used
in the calculation of VPIN at any bucket. In line with Easley et al. (2011, 2012), we select the parameter
set 1-50-50 as our main setting.

Table 5 presents the summary statistics for VPIN estimates for the three settings, and this for both
the whole sample, and for the large and small stocks separately. Mean (median) VPIN with 1-50-50
is 27.6% (25.3%) for the whole sample. Number of VPIN observations is 166, 875, almost equally
composed of observations on small and large cap stocks. Mean VPIN is slightly larger for the small
stocks (28.1% and 27.2%, respectively).

Under the basic setting, the difference between mean VPIN measures of small and large stocks,
while in line with our expectations, it is not as large as previous studies suggest. For instance, Abad
and Yagüe (2012) report mean VPIN values of 25% and 53% for the Spanish large and small stocks,
respectively. We too obtain positive difference between the mean VPIN values for small and large
stocks for all parameter sets. The VPIN value for small stocks is substantially larger than for large
stocks (almost twofold) for settings, for which an average trading day contains a single bucket, and
five buckets are used in calculating the VPIN (parameter sets 1-1-5 and 5-1-5). The excess informed
trading of small stocks is not restricted to average values. For instance, under our basic setting, first
and third quartiles of VPIN for the whole sample are around 20% and 34%. This range as well as the
standard deviation for small stocks are relatively larger than those of large stocks.

7The first parameter set 1-50-50 is the main setting used in several studies (see e.g. Easley et al., 2011, 2012;
Abad and Yagüe, 2012). The parameter sets 1-1-5, and 5-1-5 are two of the several sets previously used for
comparative purposes (see e.g. Abad and Yagüe, 2012).
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Table 5: Descriptive statistics for three settings of VPIN - for large, small, and all stocks.

N refers to the number of observations; min and max refer to the minimum, and maximum values respectively. SD
corresponds to the standard deviation, while Qx is the xth quantile.

Setting Sample N mean min Q25 Q50 Q75 max SD
1-50-50 Large 84131 27.2 10.7 21.4 25.1 30 92.9 9.2
1-50-50 Small 82744 28.1 0 14.1 25.8 39 100 18.2
1-50-50 All 166875 27.6 0 19.5 25.3 33.6 100 14.4
1-1-5 Large 1595 6.9 1.2 4.7 6.3 8.5 22.8 3.1
1-1-5 Small 1568 13.5 0.7 8.2 12.5 17.1 62.5 7.5
1-1-5 All 3163 10.1 0.7 5.6 8.3 13 62.5 6.6
5-1-5 Large 1595 9 1.2 6.2 8.2 10.6 33.2 4.3
5-1-5 Small 1568 18.3 0.6 11.3 16.2 23.2 89.1 10.3
5-1-5 All 3163 13.6 0.6 7.5 10.8 17.2 89.1 9.1

We turn now to investigate whether the correlation observed between the VPIN distribution and
the absolute post returns distribution for the S&P 500 E-mini index, as reported by Easley et al. (2011),
can be generalized to (1) individual stocks, (2) another (non-US) market, i.e. NASDAQ Stockholm,
(3) more recent data, (4) positive and negative post-returns. To do this, we replicate the two tables
(Exhibit 7 and 8) as they appear in Easley et al. (2011) for individual stocks, for absolute post-returns
initially, before differentiating between positive and negative post-returns. Table 6 reports, in Panel
A, the distribution of the absolute post-returns conditional on VPIN. Each of the 3 rows represents
the distribution in percentage for the 0 − 5th, 45th − 50th, 95th − 100th quantiles of the VPIN values.
Respective quantile values are given in the first column (e.g., 0.062 is the 5th quantile of VPINs in our
data).

The results in Table 6 (Panel A) are significantly similar to the results in Easley et al. (2011), both
qualitatively, and even quantitatively. For instance, the share of large absolute post-returns is highest
in the highest VPIN quantile, and substantially higher than the same share in other quantiles. The
share of large absolute post-returns (exceeding 2%) associated with the highest VPIN quantile is
2.16%, while it is below 0.44% for the 45th to 50th VPIN quantiles. The highest levels of VPIN (in the
highest quantile) have 4.5 times higher likelihood to be followed by large absolute post-returns than
intermediate levels of VPIN (in the median quantile) (2.16% and 0.44%). This ratio is strikingly similar
to the one found in the referenced paper (0.22% and 0.05%). However, the likelihood of large absolute
post-returns is higher in our study (2.16% vs 0.22%), which is likely due to our use of individual stocks
rather than an index. For each of the absolute return intervals larger than 0.5%, the share of VPIN
values in the highest quantile is at least twice as large as the ones in lower quantiles. The share of
VPINs within the highest quantile (last row of Table 6 - Panel B) is noteworthy: Absolute returns larger
than 1% are highly likely to be preceded by a high VPIN value. In our unreported results, for over
40% of intraday periods with absolute returns larger than 2%, the (preceding) VPIN is at its highest
quantile.

Table 6: Conditional distributions of VPIN and absolute post-returns

Panel A provides the distribution of absolute post returns (leading VPIN bucket return) conditional on VPIN
values, while Panel B provides the distribution of VPIN values conditional on the absolute post returns. For brevity,
only the 5th, 50th and 100th quantiles are reported in each panel. Numbers are given in percentages.

Panel A: Absolute post-returns conditional on VPIN

0.25 0.5 0.75 1 1.25 1.5 1.75 2 >2.00
0.062 80.67 10.1 4.68 2.33 0.97 0.53 0.2 0.2 0.32
0.253 80.65 13.11 3.15 1.14 0.71 0.43 0.25 0.12 0.44
1 74.94 10.09 5.03 2.7 1.82 1.5 1.08 0.68 2.16

Panel B: VPIN conditional on absolute post-returns

0.25 0.5 0.75 1 1.25 1.5 1.75 2 >2.00
0.062 5.19 3.83 5.54 6.21 4.82 4.11 2.62 4.06 2.28
0.253 5.19 4.97 3.74 3.04 3.51 3.36 3.24 2.39 3.12
1 4.82 3.83 5.97 7.2 9.05 11.68 13.87 13.6 15.19
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We now turn to investigate whether the distribution patterns for absolute returns hold true when
returns are split into positive and negative and analyzed separately. Table S8 summarizes the results
across four panels showing only the lowest, median, and highest 5th VPIN quantiles. The distribution
patterns of preceding VPINs remain consistent for positive and negative returns, except for the return
interval (−0.5%, 0.5%). When VPIN values are within the highest quantile and post return is positive
(negative), the likelihood of return in the next volume bucket exceeding 2% (−2%) is as high as 3.87%
(4.31%). These probabilities are more than seven times that of the median quantile. Note that we
excluded zero-return observations before analyzing positive and negative returns separately. This
might explain why the findings in Table S8 are more pronounced than those in Table 6.

Finally, we investigate VPIN around firm-specific announcements. Using 96 firm-specific an-
nouncements taking place within the last quarter of 2020, and pertaining to the selected stocks, we
investigate whether VPIN values change prior to, and following the announcements, and whether
the behavior of VPIN around announcements is similar for the large and smalls stocks. Figure 2 plot
the mean VPIN for the (−100,+100) volume buckets where 0 refers to the announcement bucket, i.e.,
the bucket, during which the announcement took place. It represents VPIN values around announce-
ments for the whole sample, and for both large, and small stocks separately. The main finding of our
analysis on the whole sample is that, mean VPIN starts to increase shortly prior to announcements,
and continues to increase post-announcement, reaches a maximum, before starting to decrease to
pre-announcement levels.

As shown in Figure 2a, mean VPIN starts to increase at bucket (−13) from a level 25.7%, monoton-
ically increases for around 50 buckets, reaching a level of 30.81%, before reverting gradually to around
its pre-announcement levels. Mean VPIN of small stocks, in Figure 2b, starts rising at bucket (−13)
from a level of 25.6%, and keeps increasing until bucket (+29) reaching a level of 32.4% before starting
to gradually decrease. It, then, reaches its lowest post-announcement level at bucket (+81), before
starting to rise again. As for large stocks in Figure 2b, mean VPIN starts rising at bucket (−7) from a
level of 25.2%, and keep increasing until reaching a level of 30.3% at bucket (+50), before gradually
decreasing afterwards.

(a) Whole sample of stocks (b) Large and small stocks

Figure 2: Average VPIN around announcements for small, large, and all stocks

Interestingly, VPIN starts to react relatively earlier for small stocks than for large stocks. Never-
theless, the presence of early warning property of VPIN is evident for both small and large Swedish
stocks. This corroborates with the findings of Easley et al. (2011, 2012), where they suggest VPIN
as a metric providing an early warning signal for intraday events, such as crashes. Bjursell et al.
(2017) document an increase in VPIN prior to news events, and price jumps in the crude oil market.
Similarly, Bugeja et al. (2015) examining takeover announcements in the Australian markets, find out
that VPIN significantly increases for target firms in the four days prior to the takeover announcements.
Our findings suggest the potential of VPIN as an early warning signal might well extend to regular
firm-specific events. These VPIN patterns could be further investigated, in light of recent findings
on price discovery around announcements in today’s financial markets with large HFT prevalence
(Beschwitz et al., 2020; Ersan et al., 2021).

5 Conclusion

PINstimation is an attempt to centralize, and implement in a rigorous manner, the main estimation
methods suggested in the literature. In addition to efficiency, we aim that PINstimation be (1) all-
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encompassing, i.e. it includes the main model treating the probability of informed trading and its most
relevant extensions, (2) complete, i.e it includes not only the tools required to estimate PIN models,
but also algorithms to generate initial parameter sets, tools to simulate datasets, and algorithms to
aggregate high-frequency trades into daily trading data, and (3) up-to-date, as the current version of
PINstimation package is highly up to date including several methods suggested in 2020-2022.

Future work on the package aims at continuous extension of the package with the most up-to-date
estimation methods available. For instance, we have recently added function pin_bayes() which
implements a Bayesian approach for the estimation of the original PIN model as suggested by Griffin
et al. (2021). Even though the PINstimation package aims to be all-encompassing, it remains primarily
dedicated to the estimation of probability of informed trading (PIN) models. Thus, other informed
trading measures suggested in the literature are, and shall remain, beyond the scope of the package.
By the introduction of the package, we hope to contribute to widen the user base of PIN models both
in academic circles, and among practitioners; as well as improve the validity, and the comparability of
scientific findings within the field.
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EviewsR: An R Package for Dynamic and
Reproducible Research Using EViews, R,
R Markdown and Quarto
by Sagiru Mati, Irfan Civcir, and S. I. Abba

Abstract EViews is a software designed for conducting econometric data analysis. There exists a
one-way communication between EViews and R, as the former can run the code of the latter, but the
reverse is not the case. We describe EviewsR, an R package which allows users of R, R Markdown
and Quarto to execute EViews code. In essence, EviewsR does not only provide functions for base
R, but also adds EViews to the existing knitr’s knit-engines. We also show how EViews equation,
graph, series, and table objects can be imported and customised dynamically and reproducibly in R, R
Markdown and Quarto document. Therefore, EviewsR seeks to improve the accuracy, transparency
and reproducibility of research conducted with EViews and R.

1 Introduction

EViews, which stands for Econometric Views, is software designed for econometric analysis. EViews
provides powerful statistical, time series, forecasting, and modelling tools through an innovative,
easy-to-use object-oriented interface (Startz 2019). The software can be operated via its built-in menu,
code or scripts saved in a file with the .prg extension. Although EViews is programmable, it lacks
some routines to estimate new econometric techniques. For this reason, the users of EViews have to
resort to using R for routines that are available in R but not yet implemented in EViews. This process
involves having to switch between R and EViews, which hinders reproducibility and can lead to
errors. EViews can open and run R code, but the converse is not true. An R package hexView (Murrell
2019) has been created to facilitate importing EViews workfile data to R. The package is limited as it
cannot run EViews code from within the R environment. Another R package gets (Pretis, Reade, and
Sucarrat 2018) allows exporting R object to EViews program via the package’s function eviews(object,
file=NULL, print=TRUE, return=FALSE). Still, gets package does not allow embedding EViews code
in R Markdown and Quarto. Xie (2019) had created the R package knitr, which allows communication
between R and other statistical applications such as Stata and Octave, or programming languages such
as Julia and Python. The statistical application and programming languages supported by the knitr
package are called knit-engines, and EViews is not one of them. Users can view the existing knitr
languages by running the following code in R console: names(knitr::knit_engines$get()). Another
major challenge is that EViews does not support markdown syntax. To address these problems, we
created an R package EviewsR (Mati 2019b) which integrates EViews and R. Basically, EviewsR
provides base R functions and additional knitr’s knit-engine for EViews.

The EviewsR package is designed to be useful for all users of EViews, R, R Markdown and Quarto.
The package allows EViews users to comfortably work in R, R Markdown or Quarto and have access
to the ecosystems of all the applications. For example, they can make their document dynamic. On the
other hand, the users of R, R Markdown and Quarto can easily benefit from the unique EViews’s sta-
tistical or econometric routines and appealing graphics. For example, they can easily plot a line graph
from an undated R dataframe (dataFrame) by EviewsR::eviews_graph(dataFrame,start_date=1990),
which may need several lines of code in base R. EViews has some advantages over R: 1. code stability.
EViews has standard syntax and documentation and offers backward compatibility of code so that
code does not break; 2. it also generates corresponding code for each menu action; 3. better support for
econometric models; 4. easier to customise graphs. EViews graphs can be edited using the graphical
user interface (GUI) and get the corresponding code generated by EViews; 5. stronger support for
timeseries and panel data. Thus, teachers of Econometrics can spend more time on teaching Economet-
rics than on teaching software. EviewsR package helps EViews users to use R Markdown or Quarto
without having to learn R functions for estimation and graphing.

Research is reproducible if its scientific computations can be replicated by an independent re-
searcher (Stodden, Leisch, and Peng 2014). On the other hand, interactive reports entail the ability of a
computational output to reactively change with the changes in input(s). For example, the output of an
input 2+2 is 4. This output is expected to change automatically to 8 when the input changes to 3+5.
Modification of figures, tables, bibliography, captions and other objects becomes very easy in dynamic
documents. Xie (2014) provides a detailed explanation and implementation of dynamic documents
with R.

Sandve (2013) discuss ten simple rules that will ensure reproducibility of computational research.
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Some of these rules include avoiding manual data manipulation steps, use of version control and pro-
viding public access to scripts and results. Christensen and Miguel (2018) examines the transparency,
reproducibility, and credibility of Economics research, revealing evidence of result non-replicability
within the field. The interest in reproducibility of research has traversed various fields of STEM
and social sciences (see for example Franco, Malhotra, and Simonovits 2014; Simmons, Nelson, and
Simonsohn 2011; Gerber et al. 2014; Harvey, Liu, and Zhu 2015; Ioannidis 2005). The aforementioned
studies emphasise on the need for guidelines and solid criteria to ensure reproducibility of research.
Therefore this article can help ensure replicability and reproducibility of research in the fields that
employ EViews and R for their computations.

We categorise the reproducibility of research into three: 1. sharing the data and providing an easy
guide on how to implement the computations 2. sharing the data, text and software code in separate
files 3. sharing the data, the text and code in a single file. This paper aims to implement the third
aspect of reproducibility using EViews, R, R Markdown and Quarto.

We intend to contribute to the current theme of dynamic and reproducible research as follows.
We have created an R package EviewsR, which does not only integrate EViews and R, but also adds
eviews as a new knit-engine for the knitr package. We also show how to create and modify EViews
equation, graph, series and table objects dynamically and reproducibly. EViews code can now be
embedded in R Markdown and Quarto documents so that both R and EViews users can collaborate
on a single document. The package also provides R functions that could be used to 1. graph EViews
series objects 2. graph an R dataframe using EViews 3. import data from external sources such as csv,
xlsx as a new EViews workfile or into an existing workfile 4. create an EViews workfile from an R
dataframe 5. save an EViews workfile or page as a workfile or another file format 6. execute EViews
code 7. export an R dataframe as a new EViews workfile or to an existing EViews workfile 8. import
EViews table object as kable 9. import EViews series objects as a dataframe or xts object 10. import
EViews equation data members, graph, series and table objects 11. simulate a random walk process
using EViews. We finally show how to use existing EViews workfiles in a dynamic document in order
to avoid repeating time-consuming computations.

The rest of the article is structured as follows. We provide an overview of EViews, R, R Markdown
and Quarto in Section 2.2. The description of the EviewsR package is in Section 2.3. We briefly explain
how to use the package along with R, R Markdown and Quarto in Sections 2.4 and 2.6. Section 2.5 is
dedicated to the implementation of dynamic document, Section 2.7 to the package implementation,
while Section 2.8 covers the summary and conclusion.

2 EViews, R, R Markdown and Quarto

EViews (Econometric Views) is a statistical tool that facilitates both time-series and panel data analyses1.
It can be operated using GUI, command or a program containing a set of commands.

R, on the other hand, is a free and open-source statistical programming language developed and
maintained by R Core Team (2019)2. Unlike the EViews, the R software is command-based, implying
that every output is generated by executing a command or a set of commands. Thus, reproducing
any outputs is as easy as running the code in the R console. Base R’s functionality can be extended
via custom-made functions and objects, that can be organized into R packages. The R packages are
available for free to download at Comprehensive R Archive Network (CRAN)3.

RStudio is an Integrated Development Environment (IDE) for the R. It simplifies the use of the
R as some of the R code can be executed via the GUI drop-down menus in RStudio4. In addition to
that, RStudio works as an efficient plain text editor; it is easy and straightforward to edit text files with
extensions such as bib, tex, Rmd, Rmarkdown, md, yaml and several other extensions.

R Markdown provides an easy way to write a markdown document (Allaire et al. 2020). It is
available in RStudio with two alternative extensions: Rmd and Rmarkdown. It facilitates the ability to
combine Markdown syntax with the syntax of R and other programming languages supported by the
knitr package. Users can easily create R Markdown documents in RStudio by clicking File-> New
File-> R Markdown. R Markdown documents consist of three components: metadata, text and code
(Xie 2015). Metadata, also known as YAML metadata or YAML frontmatter, is written in-between a
pair of three dashes. It can contain the author name, output format, title and so on (see Xie 2014, 2015,
2019)

1Please visit https://eviews.com for details
2Please visit https://www.r-project.org/ for details.
3The CRAN’s homepage is https://cran.r-project.org/. The R software and its packages can be downloaded

from the homepage.
4RStudio can be downloaded for free from https://rstudio.com/
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---
title: 'An Example of YAML metadata'
author: "Author Name"
output: bookdown::pdf_document2
---

After the above YAML metadata, text and code follow until the end of the R Markdown document.
Text syntax is just like plain Markdown syntax, but code has to be placed inside blocks delimited
by backticks. Note that we use bookdown::pdf_document2 as the output because it allows for cross-
reference in an R Markdown document.

Quarto is the “next generation version of R Markdown” developed by RStudio team. It is an
open-source scientific and technical publishing system built on Pandoc. Unlike R Markdown, Quarto
can be used to create dynamic content with Python, R, Julia, and Observable and work with IDEs such
as VS code, RStudio, Jupyter and Text Editor5. The extension of Quarto file is .qmd.

2.1 Code chunks

The ability to embed R code is the major difference between an R Markdown/Quarto document and
a Markdown document. R code can easily be embedded in R Markdown and Quarto documents.
The R knitr package extends this capability to allow users to embed the code of other programming
languages such as Python and Go, or other statistical packages such as Stata and Octave. A minimal
example of R code chunk looks like the following

```{r chunkLabel,eval=TRUE,echo=FALSE}
y=runif(100)
```

Or in YAML format:

```{r}
#| label: chunkLabel
#| eval: true
#| echo: false
y=runif(100)
```

R chunk starts with three back-ticks, followed by curly braces containing the knit-engine, chunk
label, chunk options, R code and ends with three back-ticks. In the chunk above, r is the engine name
(knit-engine), chunkLabel is an arbitrary but unique text that gives the chunk a name, eval=TRUE and
echo=FALSE are some examples of chunk options, y=runif(100) is a typical R code. If r is replaced
with eviews in the chunk above, we will refer to the chunk as an EViews code chunk, not an R code
chunk. We will continue to use the YAML format since both R Markdown and Quarto accept it.

We use prompts like "EViews >" and "R >" to represent code written in EViews and R respectively.
We use "-" and "+" to signify continuation of EViews and R code respectively. Therefore "+ -" stands
for continuation of EViews code written within R function. Code chunk indicates code written in an R
Markdown or Quarto document.

3 About EviewsR

EviewsR is an R package to integrate EViews and base R, and also built on top of knitr package (Xie
2014, 2015, 2019) to add new knit-engine. It allows users of base R to communicate with EViews via R
functions and users of R Markdown to embed EViews code chunks in an R Markdown document.

3.1 How to configure EViews before using EviewsR

To run the package successfully, users need to do one of the following:

1. Do not change anything if the name of the EViews executable is one of the following: EViews12_x64,
EViews12_x86, EViews11_x64, EViews11_x86, EViews10_x64, EViews10_x86, EViews9_x64, EViews9_x86.
The package will find the executable automatically.

5Please visit https://quarto.org/ for details
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Figure 1: Setting up EviewsR, EViews, R, R Markdown and Quarto

2. Rename the EViews executable to eviews or one of the names above.

3. Alternatively, you can use set_eviews_path() function to set the path to the EViews executable
as follows:

R> set_eviews_path("C:/Program Files (x86)/EViews 10/EViews10.exe")

Or

R> set_eviews_path("C:\\Program Files (x86)\\EViews 10\\EViews10.exe")

The backslash symbol (\) is used as a special escape symbol in R strings, so in order to write a
literal backslash we need to precede it with another backslash.

3.2 How to use EviewsR

The package EviewsR can be used along with base R, R Markdown or Quarto document. Users should
start by loading the EviewsR package via R console or by creating an R chunk in an R Markdown or
Quarto document as shown below:

```{r EviewsRPackage,echo=FALSE}
if(!require("EviewsR")) install.packages("EviewsR")
library(EviewsR)
```

Figure 1 presents a chart showing the steps and requirements to use EviewsR package.

4 EviewsR: R Markdown and Quarto document

As mentioned earlier, the EviewsR package adds eviews as a knit-engine to knitr package. Therefore,
it allows users to embed EViews code in an R Markdown or Quarto document. After loading the
package, then create an EViews chunk as shown below:

```{eviews}
#| label: fig-EviewsR
#| graph: ""
#| eval: true
#| echo: false
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'This is some comment in EViews program, feel free to write anything

wfcreate(wf=EviewsR,page=EviewsR) m 2000 2022

for %y EviewsR1 EviewsR2
pagecreate(page={%y}) m 2000 2022
next

for %y EviewsR EviewsR1 EviewsR2

pageselect {%y}

genr y=@cumsum(nrnd)
genr x=@cumsum(nrnd)

graph x_graph.line(o=eviews5) x
graph y_graph.dot(o=bokeh) y

table EviewsRTable

for !j=1 to 7
EviewsRTable(1,{!j})="Header"+" "+@str({!j})
next

for !i=1 to 10
for !j=1 to 7
EviewsRTable({!i}+1,{!j})=@str({!i})+","+@str({!j})
next
next

next

wfsave EviewsR_files/EviewsR
```

The above EViews chunk creates an EViews program with the chunk’s content, then automatically
opens EViews and runs the program, which will create an EViews workfile with pages (EviewsR,
EviewsR1, and EviewsR2) each containing random walk series x and y from January, 2000 to December,
2022. The program will also save an EViews workfile named EviewsR.wf1 in the current directory.
We believe that elaboration on the chunk header and options is in order. The word eviews tells the
chunk to execute using EViews code, fig-EviewsR is the chunk’s label, "eval: true" asks the chunk
to evaluate the content (code) of the chunk, "echo: true" allows the content of the chunk to appear in
the final document output, comment: NULL eliminates the comment prefix in the chunk output. We set
'graph: ""' in order not show any EViews graph objects. Please refer to knitr’s documentation for
details. Table 1 lists the specific chunk options for EviewsR package:

5 EviewsR: Dynamic Document

This section is about working with EViews’s equation, graph, series and table objects dynamically in
an R Markdown or Quarto document.

5.1 Accessing EViews objects from EViews chunk

The EViews chunk below (label: fig-EviewsR1) contains EViews code which generates a workfile
named EviewsR_workfile along with a page EviewsR_page with monthly frequency from 2000 2022.
The chunk also creates additional three EViews pages (page1, page2, and EviewsR) and generates three
series objects x, y and z. It then runs the ordinary least square (OLS) method with y as the dependent
variable and the rest as independent variables on each of the new pages. On each of the new pages, an
equation, a table and three graph objects are created. The equation object is defined as OLS, the table
object as OLS_TABLE and three graph objects as graph1, graph2 and graph3.
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Table 1: The chunk options available for EviewsR package in R Markdown and Quarto documents

Chunk option Default value Possible values Example Meaning

equation * Any valid name pattern
for EViews @wlookup
function

eq*, ??e, *e* EViews equation object

graph * asis, first, last, asc, desc,
or any valid name pattern
for EViews @wlookup
function

gr*, g??, *t* EViews graph object

series * Any valid name pattern
for EViews ‘@wlookup‘
function

se*, ?e?, *y* EViews series object

table * Any valid name pattern
for EViews @wlookup
function

ta*, ?t, *s* EViews table object

page * Any valid name pattern
for EViews @wlookup
function

page1, page2, page3,
page4, page5

EViews page

graph_procs Any valid EViews graph’s
procedure

align(2,1,1) EViews graph’s
procedure

save_options Any valid options for
EViews save command

t=pdf, -c EViews options for graph
save command

class df xts Class of R’s object for
imported EViews series
objects

save_path Any valid path C:/Users/EviewsR Path to save EViews
graphs

The chunk automatically creates a new environment with the chunk’s label as the environment’s
name, then returns all the EViews’s equation, series and table objects into R as a dataframe saved
within the new environment. Note that the chunk label (fig-EviewsR1) is not a valid R object, so
EviewsR removes the prefix fig- before creating the new environment as EviewsR1. The prefix (fig-)
is added to the chunk label because it is the Quarto’s default way to wrap plots contained in a chunk
in a figure environment for cross-reference. If you are working with R Markdown or the chunk does
not contain EViews graph objects, you do not need to add the prefix.

The contents of the EViews table objects are imported into R exactly as they are on the EViews
workfile, but the table name is changed to small letters. You can use the following format to get the
imported table:

• chunkLabel$pageName_tableName

The chunkLabel stands for the chunk label and is the new environment, pageName for the EViews
page name and tableName for the EViews table object. Therefore, EviewsR1$eviewsr_ols_table
accesses the table ols_table, which is imported from EviewsR page of chunk EviewsR1 into R as a
dataframe.

```{eviews}
#| label: fig-EviewsR1
#| fig.cap: EViews graphs automatically imported by EViews chunk (fig-EviewsR1: default chunk options)
#| out.width: 32%
#| out.height: 15%
#| fig.ncol: 3
#| echo: false
#| eval: true

'This is some comment in EViews program, feel free to write anything

wfcreate(page=EviewsR_page,wf=EviewsR_workfile) m 2000 2022

!n=123

for %y page2 EviewsR page1
pagecreate(page={%y}) q 2000 2022
pageselect {%y}
rndseed !n
!n=!n+100
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Figure 2: EViews graphs automatically imported by EViews chunk (fig-EviewsR1: default chunk
options)

genr x=@cumsum(nrnd)
genr y=@cumsum(nrnd)
genr z=@cumsum(nrnd)
equation OLS.ls y c x z
freeze(OLS_TABLE,mode=overwrite) OLS
delete(noerr) GRAPH*
freeze(GRAPH3,mode=overwrite) z.line
graph GRAPH2.dot y
graph GRAPH1.area x
graph3.addtext(ar) %y
graph2.addtext(ar) %y
graph1.addtext(ar) %y
next
```

On the other hand, some data members of the EViews equation objects are extracted and imported
into the new environment as a dataframe. Data member’ is an EViews term for statistics, summaries,
and information criteria related to EViews equation objects. The code below shows the general way
to access the imported equation object, where equationName is the EViews equation object. The page
and equation names are separated by underscore (_). The data members of the equation objects can be
accessed via standard list element access syntax:

• chunkLabel$pageName_equationName$dataMember

For example, the R2 value of the OLS equation object on EviewsR page is 0.402377, which can be
accessed using the inline expression `r EviewsR1$eviewsr_ols$r2`.

Note that @coefs, @pval, @stderrs and @tstats return vectors with length equal to the number of
estimated coefficients. The second value of each of these vectors can be accessed with typical square
bracket notation, i.e. by appending [2]. The rest of the data members return scalar values. The number
of data members reported by the EviewsR package is greater than that provided by lm(), glm() and
summary() R functions. For example, R users need to use more functions or lines of code to get the
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values of Schwarz and Hannan-Quinn Information Criteria of an estimated model. These values are
automatically imported into R, R Markdown or Quarto environment by the EviewsR package.

The graph objects are saved on disk to the path defined by the chunk option fig.path and can be
captioned and sub-captioned via the chunk options fig.cap (fig-cap) and fig.subcap (fig-subcap)
in an R Markdown (Quarto) document. The graph file on the disk are named in the following format:

• chunkLabel-pageName-graphName

For example, eviewsr1-page2-graph1 is the name of graph1 object of page2 created in fig-EviewsR1
chunk.

The series objects of each page can be fetched through

• chunkLabel$pageName.

For example, EviewsR1$page2 provides the dataframe of all the series objects on page2. Even if the
page is not defined in the created or imported workfile, EViews names both the workfile and page
as untitled by default. So EviewsR1$untitled is the right way to access the series object, if no page
name is defined in the fig-EviewsR1 chunk.

By default, EviewsR imports the series objects as a dataframe with date column formatted as
POSIXct . We can import the series objects as xts object by setting chunk option class="xts".

Note that the chunk label is case-sensitive, while the EViews equation, series and table objects
are not. They can be in capital letters in the chunk, but they are in lowercase in the R object. This is
because R variable names are case-sensitive, while EViews objects are not. For consistency, EviewsR is
designed to convert EViews object names to lowercase. Therefore, we recommend naming EViews
objects with lowercase names.

The graph objects in Figure 2 are imported with the default chunk options. We can use chunk
options page, graph and graph_procs to change the behaviour of the graphical outputs. The chunk
option page can take page="*", or a space-delimited (or a vector of) string wtih the names of EViews
pages. Note that we ask EViews to write the page name on the top right corner of each graph. The
chunk option graph can have the values such as *, first, last, asis, asc, desc or a numeric vector.

5.2 Importing EViews graph asis

We set these chunk options to get Figure 3.

• graph: "@asis"

• graph_procs: template newspaper

The option graph: "@asis" makes sure that the graph objects are imported in the order they
appear in the EViews chunk, that is graph3 followed by graph2 and graph1. This option is only useful
in an R Markdown or Quarto document:

5.3 Use of graph_procs chunk option

To plot Figure 4, include the following arguments in the chunk options:

• graph_procs: [template bokeh, setelem(1) lcolor(green) fillcolor(green)]

• graph: "@asis"

• page: eviewsr page1

Note that only the graph objects from pages EviewsR and page1 are included.

5.4 Importing only the first graph

To plot only the first graph object from each of the EViews pages, after all the graph objects on each
page are arranged in ascending order. Therefore only a combination of graph1 object from each of the
pages is plotted as shown in Figure 5:

• graph_procs: [template modern,datelabel format("YYYY"),setelem(1) fillcolor(red)]

• graph: "@first"
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Figure 3: EViews graphs automatically imported by EViews chunk (fig-EviewsR2)

-6

-4

-2

0

2

4

6

8

2000 2005 2010 2015 2020

Z EviewsR

-2

0

2

4

6

8

10

2000 2005 2010 2015 2020

Y EviewsR

-2

0

2

4

6

8

10

2000 2005 2010 2015 2020

X EviewsR

-6

-4

-2

0

2

4

6

8

10

2000 2005 2010 2015 2020

Z page1

-10

-8

-6

-4

-2

0

2

4

2000 2005 2010 2015 2020

Y page1

-16

-14

-12

-10

-8

-6

-4

-2

0

2000 2005 2010 2015 2020

X page1

Figure 4: EViews graphs automatically imported by EViews chunk (fig-EviewsR3)
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Figure 5: Importing only the first EViews graphs by EViews chunk (fig-EviewsR4)

5.5 Importing only the last graph

The chunk option graph: "@last" is the direct opposite of the graph: " @first" as it considers the
last graph object only.

• graph: "@last"

5.6 Importing only graphs selected by index

We modify the chunk options as follows to ensure that only the second, fifth and eighth graph objects
across all pages, are included in the output. Therefore only graph2 object from each of the pages is
considered.

• graph: [2,5,8]

5.7 Importing graphs in ascending/descending order

We arranges all the graph objects across all the pages in ascending order by setting:

• graph: "@asc"

We can also import the graphs in descending order by:

• graph: "@desc"

6 EviewsR: base R functions

We understand that not everyone uses R Markdown or Quarto. Moreover, some EViews computations
may take long time to complete, in which case it will be better to work with the existing workfile. For
these reasons, we create a number of R functions that can be used to communicate with EViews from
R. The functions include:

To work with EViews, a workfile and a workfile page are required, therefore we add wf (workfile)
and page (workfile page) arguments for each function. These functions are explained as follows:

6.1 The create_object() function.

The function create_object() can be used to create an EViews object in the existing EViews workfile.
We can use the EViews workfile (EviewsR.wf1) created by the EViews chunk in Section 2.4. The
complete EViews syntax for an object command has the form:

EViews> action(action_opt) object_name.view_or_proc(options_list) arg_list

EViews> object_type(options) object_name[=expression]

Where action can be one of the four EViews commands (do, freeze, print, show); action_opt
modifies the default behaviour of the action; object_name is any arbitrary character string to represent
the name of the EViews object to be acted upon; view_or_proc stands for the EViews object’s view or
procedure to be performed; options_list is the option for the view_or_proc; arg_list stands for the
EViews view or procedure arguments.
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To create an equation object eviews_equation as an ar(1) process on EviewR1 page of EviewsR.wf1
workfile, we can use the following EViews code:

EViews> wfopen EviewsR_files/EviewsR
EViews> pageselect EviewsR1
EViews> equation eviews_equation.ls y ar(1)
EViews> wfsave EviewsR_files/EviewsR

The above can be translated into base R function as:

R> create_object(wf = "EviewsR_files/EviewsR", page = "EviewsR1",
+ action = "equation", object_name = "eviews_equation", view_or_proc = "ls",
+ arg_list = "y ar(1)")

To create a series object series1 and assign it to the square of y series on EviewsR2 page of
EviewsR.wf1 workfile:

EViews> wfopen EviewsR_files/EviewsR
EViews> pageselect EviewsR2
EViews> series series1=y^2
EViews> wfsave EviewsR_files/EviewsR

R> create_object(wf = "EviewsR_files/EviewsR", page = "EviewsR2",
+ object_type = "series", object_name = "series1", expression = "y^2")

6.2 The eviews_graph() function

EViews graph can be included in an R Markdown or Quarto document by eviews_graph() function.
This function is a blend of EViews freeze, graph and save commands. The following are the EViews
syntaxes:

EViews> freeze(options, name) object_name.view_command
EViews> graph graph_name.graph_command(options) arg1 [arg2 arg3 ...]
EViews> graph_name.save(options) [path\]file_name

The first and second syntaxes can be merged to produce another syntax which we use to create the
eviews_graph() function. So the new syntax is:

EViews> freeze(options, name) object_name.graph_command(options)

Each of the freeze, graph_command and save commands has an options keyword. We use mode for
freeze command options, graph_options for graph_command command options, and save_options
for save command options. Check EViews manual for all the available options for these commands.

The series argument can be the names of EViews series objects or an R dataframe. If series is a
set of EViews series objects, wf and page need to be specified. If series is an R dataframe, wf and page
are optional.

To create figures of series objects x and y saved on EviewsR page of the EviewsR.wf1 workfile:

EViews> wfopen EviewsR_files/eviewsr
EViews> pageselect eviewsr
EViews> freeze(eviewsGraph_x,mode=overwrite) x.line
EViews> freeze(eviewsGraph_y,mode=overwrite) y.line
EViews> for %y eviewsGraph_x eviewsGraph_y
EViews> {%y}.axis(l) font(Calibri,14,-b,-i,-u,-s)
EViews> {%y}.axis(r) font(Calibri,14,-b,-i,-u,-s)
EViews> {%y}.axis(b) font(Calibri,14,-b,-i,-u,-s)
EViews> {%y}.axis(t) font(Calibri,14,-b,-i,-u,-s)
EViews> {%y}.legend columns(5) inbox position(BOTCENTER) font(Calibri,12,-b,-i,-u,-s)
EViews> {%y}.options antialias(on)
EViews> {%y}.options size(6,3)
EViews> {%y}.options -background frameaxes(all) framewidth(0.5)
EViews> {%y}.setelem(1) linecolor(@rgb(57,106,177)) linewidth(1.5)
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Figure 6: EviewsR example figure using LATEX subfig package

EViews> {%y}.setfont legend(Calibri,12,-b,-i,-u,-s) text(Calibri,14,-b,-i,-u,-s)
EViews> {%y}.setfont obs(Calibri,14,-b,-i,-u,-s)
EViews> {%y}.textdefault font(Calibri,14,-b,-i,-u,-s)
EViews> {%y}.save(t=pdf) {%y}
EViews> next

Note that the EViews for loop in the code above contains the default values of EViews graph
procedures provided by EviewsR package. It can be found in the eviews_graph() function’s skeleton
defined as graphicsDefault. We will avoid repeating the default values and use ‘insert default values’
instead. These default values can be modified or replaced entirely by using graph_procs argument.
For example the line colour of the first graph element is blue by default. This can be changed to red
by setting graph_procs="setelem(1) linecolor(red)", which overwrites the default “setelem(1)
linecolor(@rgb(57,106,177))”. We can also overwrite the default behaviour by setting any available
EViews templates, for example graph_grocs="template defaults", which resets the graph objects to
EViews global graphics defaults.

The EViews code above can be easily written as an R chunk to produce Figure 6 as follows:

```{r}
#| label: fig-eviewsGraph
#| fig.cap: EviewsR example figure using \LaTeX{} subfig package
#| fig.show: hold
#| out.width: 45%
#| out.height: 15%
#| eval: TRUE

eviews_graph(series="x y",wf="EviewsR_files/EviewsR",page = "EviewsR",save_options="t=pdf")

```

To produce EViews graphs aligned in two columns, as in Figure 7, from an R dataframe named
EviewsRDataFrame:

• Use R’s write.csv() function to write the dataframe as a CSV file.

R> write.csv(EviewsRDataFrame, "csvFile.csv", row.names = FALSE)

• Use EViews to import the csvFile.csv, then create and save the graphs on disk:

EViews> import csvFile.csv @freq m start_date=1990
EViews> group some_group x y
EViews> freeze(eviewsGraph1_xy,mode=overwrite) some_group.line(m)

insert default values
EViews> eviewsGraph1_xy.axis(b) angle(45) font(b)
EViews> eviewsGraph1_xy.save(t=png,d=300) eviewsGraph1_xy

• Use knitr’s include_graphics() function to import the graph into the R Markdown or Quarto
document.

The values provided by graph_procs argument are appended to the graph’s default values. There-
fore, graph_procs overwrites the existing default value of the EViews graph procedures.

We use the following options to modify the figure:
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Figure 7: EViews graph from dataframe (chunk: fig-eviewsGraph1)

• group=TRUE
• graph_options="m"
• graph_procs="axis(b) angle(45) font(b)"

```{r}
#| label: fig-eviewsGraph1
#| fig.cap: "EViews graph from dataframe (chunk: fig-eviewsGraph1)"
#| out.width: 90%
#| out.height: 15%
#| eval: true

eviews_graph(series=EviewsRDataFrame,start_date = "1990",group=TRUE,
graph_options="m",graph_procs="axis(b) angle(45) font(b)")
```

To create a scatterplot along with histogram on each axis border using green colour (#008753 hex
code):

EViews> wfopen EviewsR_files/eviewsr
EViews> pageselect eviewsr
EViews> group some_group x y
EViews> freeze(eviewsGraph2_xy,mode=overwrite) some_group.scat(ab=histogram) linefit()

insert default values
EViews> eviewsGraph2_xy.setelem(1) lcolor(@hex(008753))
EViews> eviewsGraph2_xy.save(t=png,d=300) eviewsGraph2_xy

The equivalent R chunk to produce Figure 8:

```{r}
#| label: fig-eviewsGraph2
#| fig.cap: EViews graph from dataframe
#| out.width: 90%
#| out.height: 40%
#| eval: TRUE

eviews_graph(series="x y",wf="EviewsR_files/EviewsR",page="EviewsR",
graph_command="scat(ab=histogram) linefit()",group=TRUE,
graph_procs='setelem(1) lcolor(@hex(008753))')
```

If we want to plot all the series objects contained in EviewsR2 page of EviewsR.wf1 workfile that
lives in EviewsR_files/ folder, we can simply use:

R> eviews_graph(wf = "EviewsR_files/EviewsR", page = "EviewsR2")

Note that we have not specified the series argument as eviews_graph() function is designed to
plot all series objects by default. Similarly, we do not need to provide the page argument if we intend
to include the graphs of all the series objects from all the pages of the workfile. We can also use any
valid EViews wildcard expressions or pattern, such as series="x*", series="???x" and so on.

To plot two or more line graphs with daily frequency on one frame from a dataframe:
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Figure 8: EViews graph from dataframe (chunk: fig-eviewsGraph2)

EViews> import csvFile.csv @freq 7 start_date=2000
EViews> group some_group x y
EViews> freeze(eviewsGraph3_xy,mode=overwrite) some_group.line

insert default values
EViews> eviewsGraph3_xy.datelabel format("dd Mon, yyyy") interval(month,1)
EViews> eviewsGraph3_xy.save(t=png,d=300) eviewsGraph3_xy

Figure 9 uses the R equivalent of the above EViews code as follows:

```{r}
#| label: fig-eviewsGraph3
#| fig.cap: "EViews graph from dataframe (chunk: fig-eviewsGraph3)"
#| out.width: 90%
#| out.height: 40%
#| eval: TRUE

eviews_graph(series=EviewsRDataFrame,frequency="7",start_date = "2000",group = TRUE,
graph_procs='datelabel format("dd Mon, yyyy") interval(month,1)')
```

To import EViews line graph of stacked values of the series objects as in Figure 10:

EViews> import csvFile.csv @freq a start_date=2010
EViews> group some_group x y
EViews> freeze(eviewsGraph4_xy,mode=overwrite) some_group.line(s)

insert default values
EViews> eviewsGraph4_xy.save(t=png,d=300) eviewsGraph4_xy

The R’s syntax:

```{r}
#| label: fig-eviewsGraph4
#| fig.cap: "EViews graph from dataframe (chunk: fig-eviewsGraph4)"
#| out.width: 90%
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Figure 9: EViews graph from dataframe (chunk: fig-eviewsGraph3)

#| out.height: 40%
#| eval: TRUE
#| graph_procs: [template magazine, datelabel format("YYYY")]

eviews_graph(series=EviewsRDataFrame,frequency="m",start_date = "2010",
group = TRUE,graph_options="s")
```

Some journals require contributors to submit figures in black-and-white (see for example Mati, Civ-
cir, and Ozdeser 2023; Mati, Civcir, and Ozdeser 2019). Setting graph_procs='template monochrome'
or save_options="t=png,-c" gives the greyscale image as in Figure 11. The difference is that the
former overwrites all the graph modifications to match the monochrome template, while the latter
only saves the graphs without any modifications.

6.3 The eviews_import() function

Data can be imported from external sources by eviews_import() function. This function is a wrapper
for EViews’s import command. The EViews syntax is:

EViews> import([type=], options) source_description import_specification [@smpl smpl_string]
+ [@genr genr_string] [@rename rename_string]

To create a new workfile eviews_import.wf1 from eviews_import.csv, which contains columns
of x and y variables, using monthly series starting from 1990:

EViews> import EviewsR_files/eviews_import.csv @freq m 1990
EViews> wfsave EviewsR_files/eviews_import

The R’s syntax:

R> eviews_import(source_description = "EviewsR_Files/eviews_import.csv",
+ frequency = "m", start_date = "1990")

To import x and y, with the former renamed to x2, from eviews_import.csv into existing workfile
eviews_import.wf1 within the sample of 1990m10 to 1992m11
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Figure 11: EViews greyscale figure (chunk: fig-eviewsGraph5)
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EViews> wfopen EviewsR_files/eviews_import.wf1
EViews> import EviewsR_files/eviews_import.csv @smpl 1990m10 1992m11 @rename x x2
EViews> wfsave EviewsR_files/eviews_import

R> eviews_import(source_description = "EviewsR_files/eviews_import.csv",
+ wf = "EviewsR_files/eviews_import", smpl_string = "1990m10 1992m11",
+ rename_string = "x x2")

To import an R dataframe EviewsRDataFrame into eviews_import.wf1 workfile and simultaneously
generate another series object z as the sum of x and y:

The dataframe needs to be written as eviews_import.csv file using write.csv() function before
executing the following code.

EViews> wfopen EviewsR_files/eviews_import.wf1
EViews> import EviewsR_files/eviews_import.csv @smpl 1990m10 1992m11 @genr z=x+y
EViews> wfsave EviewsR_files/eviews_import

The R’s syntax below makes the process easier:

R> eviews_import(source_description = EviewsRDataFrame, wf = "EviewsR_files/eviews_import",
+ genr_string = "z =x+y")

To create a new workfile eviews_import1.wf1 from an R dataframe EviewsRDataFrame with a
quarterly series starting from September, 2000:

R> eviews_import(source_description = EviewsRDataFrame, wf = "EviewsR_Files/eviews_import1",
+ frequency = "m", start_date = "2000m9")

It is easier to plot a line graph of an undated dataframe with EviewsR than with the base R.
For example, eviews_graph(dataFrame,start_date=1990) will graph a line plot labelled with dates
starting from January 1990 on the x-axis. In base R, this requires creating a column for date in the
dataframe or converting the dataframe to a timeseries object before plotting.

6.4 The eviews_pagesave() function

An EViews page can be saved in various formats by eviews_pagesave() function.

EViews> pagesave(options) source_description table_description [@keep keep_list] [@drop drop_list]
+ [@keepmap keepmap_list] [@dropmap dropmap_list] [@smpl smpl_spec]

To save EviewsR page from EviewsR.wf1 workfile as a workfile named eviews_pagesave.wf1:

EViews> wfopen EviewsR_files/EviewsR
EViews> pageselect eviewsr
EViews> pagesave eviews_pagesave

The R’s syntax:

R> eviews_pagesave(wf = "EviewsR_files/EviewsR", page = "EviewsR",
+ source_description = "EviewsR_files/eviews_pagesave")

To save the first ten observations of series x only from EviewsR page of EviewsR.wf1 workfile in a
CSV file named eviews_pagesave.csv:

EViews> wfopen EviewsR_files/EviewsR
EViews> pageselect eviewsr
EViews> pagesave eviews_pagesave.csv @keep x @smpl @first @first+9

R> eviews_pagesave(wf = "EviewsR_files/EviewsR", page = "EviewsR",
+ source_description = "EviewsR_files/eviews_pagesave.csv",
+ keep_list = "x", smpl_spec = "@first @first+9")

Similarly, the values of keepmap_list and dropmap_list can be set as keepmap_list="y*" and
dropmap_list="x?" respectively.
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6.5 The eviews_wfcreate() function

An EViews workfile can be created using eviews_wfcreate() function in R.

EViews> wfcreate(options) frequency[(subperiod_opts)] start_date end_date [num_cross_sections]

EViews> wfcreate(options) frequency[(subperiod_opts)] start_date +num_observations

EViews> wfcreate(options) u num_observations

To create an EViews workfile eviews_wfcreate.wf1 along with a page named EviewsR_page in
EviewsR_files/ folder:

EViews> cd EviewsR_files
EViews> wfcreate(wf=eviews_wfcreate,page=EviewsR_page) m 2000 2022
EViews> wfsave eviews_wfcreate

The R’s syntax:

R> eviews_wfcreate(wf = "eviews_wfcreate", page = "EviewsR_page",
+ frequency = "m", start_date = "2000", end_date = "2022",
+ save_path = "EviewsR_files")

6.6 The eviews_wfsave() function

An EViews workfile can be saved in various output formats using eviews_wfsave() function in R.

EViews> wfsave(options) [path\]filename

EViews> wfsave(options) source_description [@keep keep_list] [@drop drop_list]
+ [@keepmap keepmap_list] [@dropmap dropmap_list] [@smpl smpl_spec]

EViews> wfsave(options) source_description table_description [@keep keep_list]
+ [@drop drop_list] [@keepmap keepmap_list] [@dropmap dropmap_list] [@smpl smpl_spec]

To save all series objects in EviewsR page of EviewsR.wf1 workfile except x in eviews_wfsave.csv
file:

EViews> wfopen EviewsR_files/eviewsr
EViews> pageselect eviewsr
EViews> wfsave eviews_wfsave.csv @drop x

R> eviews_wfsave(wf = "EviewsR_files/EviewsR", page = "eviewsr",
+ source_description = "EviewsR_files/eviews_wfsave.csv", drop_list = "x")

6.7 The exec_commands() function

A set of EViews commands can be executed with the help of exec_commands() function in R.

The EViews chunk in Section 2.4 can be translated using this function as follows:

R> exec_commands(c("'This is some comment in EViews program, feel free to write anything",
+
+ 'wfcreate(wf=EviewsR,page=EviewsR) m 2000 2022',
+
+ 'for %y EviewsR1 EviewsR2',
+ 'pagecreate(page={%y}) m 2000 2022',
+ 'next',
+
+ 'for %y EviewsR EviewsR1 EviewsR2',
+
+ 'pageselect {%y}',
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+
+ 'genr y=@cumsum(nrnd)',
+ 'genr x=@cumsum(nrnd)',
+
+ 'graph x_graph.line(o=eviews5) x',
+ 'graph y_graph.dot(o=bokeh) y',
+
+ 'table EviewsRTable',
+
+ 'for !j=1 to 7',
+ 'EviewsRTable(1,{!j})="Header"+" "+@str({!j})',
+ 'next',
+
+ 'for !i=1 to 10',
+ 'for !j=1 to 7',
+ 'EviewsRTable({!i}+1,{!j})=@str({!i})+","+@str({!j})',
+ 'next',
+ 'next ',
+
+ 'next',
+
+ 'wfsave EviewsR_files/EviewsR'))

Alternatively, we can assign the EViews commands to an object before calling the function:

R> commands=r'('This is some comment in EViews program, feel free to write anything
+
+ wfcreate(wf=EviewsR,page=EviewsR) m 2000 2022
+
+ for %y EviewsR1 EviewsR2
+ pagecreate(page={%y}) m 2000 2022
+ next
+
+ for %y EviewsR EviewsR1 EviewsR2
+
+ pageselect {%y}
+
+ genr y=@cumsum(nrnd)
+ genr x=@cumsum(nrnd)
+
+ graph x_graph.line(o=eviews5) x
+ graph y_graph.dot(o=bokeh) y
+
+ table EviewsRTable
+
+ for !j=1 to 7
+ EviewsRTable(1,{!j})="Header"+" "+@str({!j})
+ next
+
+ for !i=1 to 10
+ for !j=1 to 7
+ EviewsRTable({!i}+1,{!j})=@str({!i})+","+@str({!j})
+ next
+ next
+
+ next
+
+ wfsave EviewsR_files/EviewsR)'
R> exec_commands(commands)

To create a workfile exec_commands1.wf1 using a monthly frequency from November, 2000 to
January 2022:

EViews> cd EviewsR_files
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EViews> wfcreate(wf=exec_commands1,page=Page) m 2000m11 2022m1
EViews> %wf=@wfname
EViews> wfsave {%wf}
EViews> exit

The base R’s syntax:

R> exec_commands(c("cd EviewsR_files", "wfcreate(wf=exec_commands1,page=Page) m 2000m11 2022m1"))

To execute EViews commands on an existing EViews workfile like the one created above:

EViews> wfopen EviewsR_files/exec_commands1
EViews> pageselect EviewsR
EViews> genr x=@cumsum(nrnd)
EViews> genr y=@cumsum(nrnd)
EViews> genr z=x+y
EViews> delete(noerr) grap
EViews> graph grap.line x y z
EViews> %wf=@wfname
EViews> wfsave {%wf}
EViews> exit

The R’s syntax:

R> exec_commands(commands = c("genr x=@cumsum(nrnd)", "genr y=@cumsum(nrnd)",
+ "genr z=x+y", "delete(noerr) grap", "graph grap.line x y z"),
+ wf = "EviewsR_files/exec_commands1", page = "page")

6.8 The export_dataframe() function

Use export_dataframe() function to export dataframe object to EViews as a workfile.

To export the dataframe EviewsRDataFrame as a workfile export_dataframe.wf1 with monthly
frequency starting from January 1990:

R> export_dataframe(source_description = EviewsRDataFrame, wf = "EviewsR_files/export_dataframe",
+ start_date = "1990", frequency = "m")

To export the dataframe as a workfile export_dataframe1.wf1 with undated frequency. However,
if the dataframe contains a column with a regular dated frequency, EViews will automatically detect
the date series and create a dated workfile.

R> export_dataframe(source_description = EviewsRDataFrame, wf = "EviewsR_files/export_dataframe1")

6.9 The import_equation() function

The data members of the EViews equation objects are imported in R as a dataframe.

The data members are accessible via:

• eviews$pageName_equationName$dataMember in base R or

• chunkLabel$pageName_equationName$dataMember in an R Markdown or Quarto document.

To get the value of Akaike Information Criterion (AIC) of an equation object named OLS on page
EviewsR into base R:

R> eviews$eviewsr_ols$aic

To obtain the same value from the same equation object in an R Markdown or Quarto document, if
the import_equation() function is called from a chunk label importEquation:

R> importEquation$eviewsr_ols$aic

Note that the equation, graph, series and table objects do not need the chunk label in base R.
However, where an R environment is required, we use eviews instead of the chunk label.
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Figure 12: Existing EViews graph imported (chunk: fig-importGraph)

Table 2: EViews table imported as kable

Header 1 Header 2 Header 3 Header 4 Header 5 Header 6 Header 7
1,1 1,2 1,3 1,4 1,5 1,6 1,7
2,1 2,2 2,3 2,4 2,5 2,6 2,7
3,1 3,2 3,3 3,4 3,5 3,6 3,7
4,1 4,2 4,3 4,4 4,5 4,6 4,7
5,1 5,2 5,3 5,4 5,5 5,6 5,7
6,1 6,2 6,3 6,4 6,5 6,6 6,7
7,1 7,2 7,3 7,4 7,5 7,6 7,7
8,1 8,2 8,3 8,4 8,5 8,6 8,7
9,1 9,2 9,3 9,4 9,5 9,6 9,7
10,1 10,2 10,3 10,4 10,5 10,6 10,7

6.10 The import_graph() function

Importing existing graph objects from EViews workfile is easy with import_graph() function.

The R chunk below imports EViews graph objects x_graph and y_graph into an R Markdown or
Quarto document as Figure 12. Use graph="*" and page="*" to import all EViews graph objects across
all the workfile pages. The graph argument accepts any valid EViews pattern or wildcard expressions,
such as graph="x_*", graph="?_graph"}. Both the graph and page arguments can be used to choose
specific graph object(s) and workfile page(s) respectively.

To import all graph objects from EviewsR2 of EviewsR.wf1 workfile that lives in EviewsR_files/
folder:

```{r}
#| label: fig-importGraph
#| fig.cap: "Existing EViews graph imported (chunk: fig-importGraph)"
#| out.width: 45%
#| out.height: 15%

import_graph(wf="EviewsR_files/EviewsR",page="eviewsr2")
```

6.11 The import_kable() function

EViews table objects can be imported as kable object by import_kable() function.

To import the entire table object EviewsRTable from EviewsR page of EviewsR.wf1 workfile as
Table 2:

R> import_kable(wf = "EviewsR_files/EviewsR", page = "EviewsR",
+ table = "EviewsRTable", caption = "EViews table imported as kable",
+ format = ifelse(is_html_output(), "html", "latex"), linesep = "")

To import certain range of the table object EviewsRTable as Table 3:

R> import_kable(wf = "EviewsR_files/EviewsR", page = "EviewsR",
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Table 3: Selected cells of EViews table imported as kable

Header 2 Header 3 Header 4 Header 5 Header 6
1,2 1,3 1,4 1,5 1,6
2,2 2,3 2,4 2,5 2,6
3,2 3,3 3,4 3,5 3,6
4,2 4,3 4,4 4,5 4,6
5,2 5,3 5,4 5,5 5,6

+ table = "EviewsRTable", range = "r1c2:r5c6", digits = 3,
+ caption = "Selected cells of EViews table imported as kable",
+ format = ifelse(is_html_output(), "html", "latex"))

6.12 The import_series() function

Use import_series() function to import EViews series objects into R as a dataframe or xts object. The
function creates a new environment eviews, whose objects can be accessed via eviews$pageName in
base R or chunkLabel$pageName in R Markdown or Quarto.

To import EViews series objects from EviewsR page of EviewsR.wf1 workfile into R as a dataframe:

R> import_series(wf = "EviewsR_files/EviewsR", page = "EviewsR")

To access the imported series of EviewsR page in base R:

R> eviews$eviewsr

To access the imported series of EviewsR page in an R Markdown or Quarto document, if the chunk
label is importSeries:

R> importSeries$eviewsr

The series argument can take any valid EViews wildcard expressions. The series objects are
imported to EViews as a dataframe with date column as POSIXct by default. We can import the series
as xts object by setting class="xts".

R> import_series(wf = "EviewsR_files/EviewsR", page = "EviewsR",
+ class = "xts")

6.13 The import_table() function

Use import_table() function to import EViews table objects into R as a dataframe. The imported
table objects can be accessed via eviews$pageName_tableName.

R> import_table(wf = "", page = "*", table = "*")

The table argument accepts valid EViews wildcard expressions.

To import all the table objects in EviewsR.wf1:

R> import_table(wf = "EviewsR_files/EviewsR")

To import eviewsrtable from the same workfile but from a page named EviewsR only:

R> import_table(wf = "EviewsR_files/EviewsR", page = "EviewsR",
+ table = "eviewsrtable")

To get the table imported from EviewsR in an R Markdown or Quarto document, if the chunk label
is importTable1:

R> importTable1$eviewsr_eviewsrtable
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6.14 The import_workfile() function

To import EViews equation, graph, series and table objects at once from an existing workfile, use the
import_workfile() function. This function is a combination of import_equation(), import_graph(),
import_series() and import_table() functions.

To import all the EViews equation, graph, series and table objects from the EviewsR.wf1 workfile.

```{r}
#| label: fig-importWorkfile
#| fig.cap: Graphs imported by EViews chunk (fig-importWorkfile)
#| out.width: 45%
#| out.height: 15%

import_workfile("EviewsR_files/EviewsR")
```

We can also obtain the imported EViews equation, series and table objects in the same way as
import_equation(), import_series() and import_table().

6.15 The rwalk() function

A set of random walk series can be simulated in R using EViews engine, thanks to rwalk() func-
tion. The random walk series objects are returned as R dataframe, which can be accessed as
eviews$seriesNames in base R and as chunkLabel$seriesNames in an R Markdown or Quarto docu-
ment. Removing space from the value(s) of the series argument provides the seriesNames. Setting
argument class="xts" returns xts object instead of dataframe. This function can be used to replicate
examples provided in Econometrics textbooks that use EViews, as random numbers generated in R
and EViews differ.

To generate random walk series X Y and Z using EViews and imports them into R as a dataframe
eviews$XYZ}:

R> rwalk(series = "X Y Z", rndseed = 12345, start_date = "1990",
+ frequency = "M", num_observations = 276)

To generate random series rw1, rw2 and rw3 each with a drift of 10, on the existing workfile
EviewsR.wf1:

R> rwalk(wf = "EviewsR_files/EviewsR", series = "rw1 rw2 rw3", rndseed = 12345,
+ drift = 10)

To obtain the head in base R:

R> head(eviews$rw1rw2rw3)

To get the head in an R Markdown or Quarto document, if the chunk label is rwalk1:

R> head(rwalk1$rw1rw2rw3)

To plot the random walk dataframe with both ggplot2 package (Wickham 2016) and eviews_graph()
function as shown in Figure 13:

```{r}
#| label: fig-rwalk
#| out.width: 45%
#| out.height: 15%
#| dim: [7,4]
#| fig.cap: "Random walk generated by EViews"
#| fig.subcap: ["Graph from ggplot package","Graph from EviewsR package"]

ggplot(rwalk$XYZ,aes(x=date)) +
geom_line(aes(y=x,color="x"))+ geom_line(aes(y=y,color="y"))+
geom_line(aes(y=z,color="z"))+
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Figure 13: Random walk generated by EViews

xlab('')+ylab('')+
labs(colour = "")+
scale_color_manual(values=c(x="blue",y="red",z="#008753"))

eviews_graph(series=rwalk$XYZ,group = TRUE,graph_procs=c('template reverse','legend position(right)'))

```

6.16 The Set_eviews_path() function

In case of non-standard EViews installation or presence of more than one EViews executable and we
do not want to use the latest, we can use this function to set the path to the EViews executable:

To use EViews executable EViews10:

R> set_eviews_path("C:/Program Files (x86)/EViews 10/EViews10.exe")

or

R> set_eviews_path("EViews10")

7 Package implementation

The purpose of this section to explain how the package is implemented, so that contributions for
further development of the package can be easy and straightforward. We show how the eviews
knit-engine is added and how the base R functions are created.

7.1 Adding eviews as knit-engine

As mentioned earlier, EviewsR (Mati 2019b) package adds a knit-engine for Econometric Views
(EViews), which is a proprietary econometric software package. The behaviour of EViews is listed
below:

1. The file extension of eviews code file is .prg.

2. The command line execution of the eviews code file requires running "eviewsExecutable exec
EviewsFileName.prg" or opening the .prg file.

3. The eviews code file can be opened by quoting the path to the EViews program file. If the EViews
code file lives in the current working directory (CWD), writing its full file name (together with
the .prg extension), with or without the quotes, will run the eviews code file.

The first step is to create a character string with the EViews’s .prg file extension. For ex-
ample, a character string "MyEviewsFile.prg" can be assigned to an object fileName using the
code fileName <-"MyEviewsFile.prg". The second step is to create another R object (eviewsCode)
and use writeLines() function to write the EViews code to the file name object created in step
1. The code writeLines(eviewsCode,fileName) creates a file in the EViews’s CWD and names it
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Figure 14: Architecture of EviewsR

MyEviewsFile.prg. The third step is to execute the file MyEviewsFile.prg using system2() function.
The code system2('EViewsExecutable','exec path/to/EViewsFileName.prg') opens and executes
the EViews code file MyEviewsFile.prg. The last step is to use .onLoad() function along with a func-
tion from knitr package knit_engines$set(eviews=eng_eviews) to set eviews as the knit-engine for
EViews. Figure 14 presents four easy steps for adding eviews to the existing knitr engines and creating
the R functions.

7.2 Creating base R functions

The base R functions are created in a way similar to adding the knit-engine, but they do not depend on
knitr package. For the sake of demonstration, we use eviews_wfsave() function, which saves EViews
workfile in various formats. The EViews syntax for wfsave command is as follows:

EViews> wfsave(options) [path\]filename

EViews> wfsave(options) source_description [@keep keep_list] [@drop drop_list]
+ [@keepmap keepmap_list] [@dropmap dropmap_list] [@smpl smpl_spec]

EViews> wfsave(options) source_description table_description [@keep keep_list]
+[@drop drop_list] [@keepmap keepmap_list] [@dropmap dropmap_list] [@smpl smpl_spec]

The last line of the code provides a more general syntax than the first two. Therefore, we use
it to create the equivalent base R function. The syntax contains optional arguments such as @keep
keep_list, @drop drop_list, @drop drop_list, @dropmap dropmap_list, @smpl smpl_spec, which are
enclosed in square brackets. The arguments options, source_description and table_description
are essential. In addition to this, we need to distinguish constant arguments from variable argu-
ments. The constants include wfsave, @keep, @drop, @keepmap and @dropmap. On the other hand,
the variables, which users can change, include options, source_description, table_description,
keep_list, drop_list, drop_list, dropmap_list, smpl_spec. So, we include these variables as the
function arguments for the base R function eviews_wfsave(). The suffix eviews_ indicates that the
function is based on the EViews command. For details on wfsave command, please visit https:
//eviews.com/help/helpintro.html#page/content%2Fcommandcmd-pagesave.html.

Since we need a workfile and a workfile page to work with wfsave command, the base R function
arguments also include wf and page for workfile and workfile page respectively. The wf argument
is necessary, but the page is not, due to the fact that active EViews page can be used to execute the
function.
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8 Summary and Conclusion

We have provided an overview of the EviewsR package, which allows users to run EViews code in
R, R Markdown, and Quarto via R functions or knit-engine. The package provides a convenient and
efficient way to integrate EViews and R, two of the most popular software packages for econometrics
and statistics. The package offers the ability to run EViews code directly from within R, R Markdown,
and Quarto, without having to switch between software packages. It also allows users to access and
manipulate EViews objects from within R, making it easy to combine EViews analysis with other
R-based workflows. In addition, it can be used to generate high-quality reports and presentations
using R Markdown and Quarto, with EViews results seamlessly embedded. The package is a valuable
tool for economists, statisticians, and other researchers who need to use both software packages.

The EviewsR package is still under development, and there are a number of potential future
directions. One possibility is to incorporate graph templates similar to ggplot2’s themes.

We encourage users to provide feedback and suggestions for the EviewsR package, so that it can
continue to be improved and meet the needs of the community.

Similar packages include URooTab (Mati 2023) , DynareR (Mati 2019a) and gretlR (Mati 2019c).
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APPENDIX

1 EViews examples using base R functions

We provide the base R equivalent operations of examples provided by EViews user manual (https:
//www.eviews.com/help/helpintro.html).

1.1 EViews graph command

https://eviews.com/help/helpintro.html#page/content%2Fcgraphs-Creating_a_Graph.html

Example 1

EViews> line income

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "income")

Example 2

EViews> bar cons

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "income",
+ graph_command = "bar")

Example 3

EViews> scat x y z

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "x y z",
+ group = TRUE, graph_command = "scat")

Example 4

EViews> bar(rotate) cons

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "cons", graph_command = "bar",
+ graph_options = "rotate")

Or

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "cons", graph_command = "bar(rotate)")

Example 5

EViews> scat(ab=boxplot) x y z

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "x y z",
+ group = TRUE, graph_command = "scat", graph_options = "ab=boxplot")

Or

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "x y z",
+ group = TRUE, graph_command = "scat(ab=boxplot)")
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Example 6

EViews> ser2.area(n)

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "ser2", graph_command = "area",
+ graph_options = "n")

Or

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "ser2", graph_command = "area(n)")

Example 7

EViews> grp6.xypair

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "series1 series2",
+ group = TRUE, graph_command = "xypair")

Example 8

EViews> group g1 x y z
EViews> g1.scat

R> eviews_graph(wf = "EviewsR_files/EviewsR", series = "x y z",
+ group = TRUE, graph_command = "scat")

Example 9

Since EViews graph and freeze commands create a graph object on the current EViews workfile,
we have use exec_commands() function instead of eviews_graph() function. However, if we want to
include the graph in an R Markdown or Quarto document, we have to use import_graph() function.

EViews> freeze grp6.xypair(m)

R> exec_commands(commands = "freeze grp6.xypair(m)", wf = "EviewsR_files/EviewsR")

Example 10

EViews> freeze(graph1) grp6.line

R> exec_commands(commands = "freeze(graph1) grp6.line", wf = "EviewsR_files/EviewsR")

Example 11

EViews> graph gr1 ser1 ser2

R> exec_commands(commands = "graph gr1 ser1 ser2", wf = "EviewsR_files/EviewsR")

Example 12

EViews> graph gr2.line ser1 ser2

R> exec_commands(commands = "graph gr2.line ser1 ser2", wf = "EviewsR_files/EviewsR")

Example 13

EViews> graph gr3.xyline group3

R> exec_commands(commands = "graph gr3.xyline group3", wf = "EviewsR_files/EviewsR")
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Example 14

EViews> graph g1.xyline(d) unemp gdp inv

R> exec_commands(commands = "graph g1.xyline(d) unemp gdp inv",
+ wf = "EviewsR_files/EviewsR")

Example 15

EViews> group grp1 sales1 sales2
EViews> graph grsales.bar(s) grp1
EViews> show grsales

R> commands = "
+ group grp1 sales1 sales2
+ graph grsales.bar(s) grp1
+ show grsales
+ "
R>
R> exec_commands(commands = commands, wf = "EviewsR_files/EviewsR")

Example 16

EViews> graph gr2.merge gr1 grsales

R> exec_commands(commands = "graph gr2.merge gr1 grsales", wf = "EviewsR_files/EviewsR")

1.2 EViews import command

https://www.eviews.com/help/helpintro.html#page/content%2Fcommandcmd-import.html

Example 1

EViews> import c:\temp\quarterly.xls @freq q 1990

R> eviews_import(source_description = "c:\\temp\\quarterly.xls",
+ frequency = "q", start_date = 1990)

Example 2

EViews> import(c=s) c:\temp\quarterly.xls range="GDP_SHEET" @freq q 1990 @rename gdp_per_capita gdp

R> eviews_import(source_description = "c:\\temp\\quarterly.xls range=\"GDP_SHEET\"",
+ options = "c=s", frequency = "q", start_date = 1990, rename_string = "gdp_per_capita gdp")

Example 3

EViews> import(mode=p) c:\temp\annual.txt @freq a 1990 @smpl 1994 1996

R> eviews_import(source_description = "c:\\temp\\annual.txt", options = "mode=p",
+ frequency = "a", start_date = 1990, smpl_string = "1994 1996")

Example 4

EViews> import(c=max, type=excel) c:\data\stateunemp.xls @id states @destid states

R> eviews_import(source_description = "c:\\data\\stateunemp.xls",
+ type = "excel", options = "c=max", id = "states", destid = "states")
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Example 5

EViews> import c:\data\stategdp.txt colhead=3 delim=comma @id states @date(year) @destid states @date

R> eviews_import(source_description = "c:\\data\\stategdp.txt colhead=3 delim=comma",
+ id = "states @date(year)", destid = "states @date")

Example 6

EViews> import c:\data\cagdp.xls @id states @date(year) @destid states @date @genr states="CA"

R> eviews_import(source_description = " c:\\data\\cagdp.xls", id = "states @date(year)",
+ destid = "states @date", genr_string = "states=\"CA\"")

Example 7

EViews> import(resize) sales.dta @smpl @all

R> eviews_import(wf = "EviewsR_files/EviewsR", source_description = "sale.dta")

Example 8

EViews> import(page=demand) demand.txt @append

R> eviews_import(wf = "EviewsR_files/EviewsR", source_description = "demand.txt",
+ options = "page=demand", append = TRUE)

1.3 EViews wfcreate command

https://www.eviews.com/help/helpintro.html#page/content%2Fcommandcmd-wfcreate.html

Example 1

EViews> wfcreate(wf=storehours) 30MIN(1-6, 8:00-17:00) 1/3/2000 12/30/2000

R> eviews_wfcreate(wf = "storehours", frequency = "30MIN", subperiod_opts = "1-6, 8:00-17:00",
+ start_date = "1/3/2000", end_date = "12/30/2000")

Or

R> eviews_wfcreate(wf = "storehours", frequency = "30MIN(1-6, 8:00-17:00)",
+ start_date = "1/3/2000", end_date = "12/30/2000")

Example 2

EViews> wfcreate(wf=storehours) 30MIN(1-6, 8AM-5PM) 1/3/2000 12/30/2000

R> eviews_wfcreate(wf = "storehours", frequency = "30MIN", subperiod_opts = "1-6, 8AM-5PM",
+ start_date = "1/3/2000", end_date = "12/30/2000")

Or

R> eviews_wfcreate(wf = "storehours", frequency = "30MIN(1-6, 8AM-5PM)",
+ start_date = "1/3/2000", end_date = "12/30/2000")
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Example 3

EViews> wfcreate(wf=storehours) 30MIN(1-7, 10AM-3PM) 1/3/2000 12/30/2000

R> eviews_wfcreate(wf = "storehours", frequency = "30MIN", subperiod_opts = "1-7, 10AM-3PM",
+ start_date = "1/3/2000", end_date = "12/30/2000")

Or

R> eviews_wfcreate(wf = "storehours", frequency = "30MIN(1-7, 10AM-3PM)",
+ start_date = "1/3/2000", end_date = "12/30/2000")

Example 4

EViews> wfcreate(wf=storehours) 30MIN(1-6, 8AM-5PM) 1/3/2000 10AM 12/30/2000 2PM

R> eviews_wfcreate(wf = "storehours", frequency = "30MIN", subperiod_opts = "1-6, 8AM-5PM",
+ start_date = "1/3/2000 10AM", end_date = "12/30/2000 2PM")

Or

R> eviews_wfcreate(wf = "storehours", frequency = "30MIN(1-6, 8AM-5PM)",
+ start_date = "1/3/2000 10AM", end_date = "12/30/2000 2PM")

Example 5

EViews> wfcreate w(monday) 2000 2010

R> eviews_wfcreate(frequency = "W", subperiod_opts = "monday", start_date = "2000",
+ end_date = "2010")

Or

R> eviews_wfcreate(frequency = "W(monday)", start_date = "2000",
+ end_date = "2010")

Example 6

EViews> wfcreate a(july) 2001 2007

R> eviews_wfcreate(frequency = "a", subperiod_opts = "july", start_date = "2001",
+ end_date = "2007")

Or

R> eviews_wfcreate(frequency = "a(july)", start_date = "2001", end_date = "2007")

Example 7

EViews> wfcreate w 2000 2010

R> eviews_wfcreate(frequency = "W", start_date = "2000", end_date = "2010")

Example 8

EViews> wfcreate(wf=annual, page=myproject) a 1950 2005

R> eviews_wfcreate(wf = "annual", page = "myproject", frequency = "a",
+ start_date = "1950", end_date = "2005")
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Example 9

EViews> wfcreate(wf=unstruct, page=undated) u 1000

R> eviews_wfcreate(wf = "unstruct", page = "undated", frequency = "u",
+ num_observations = 1000)

Example 10

EViews> wfcreate(wf=griliches_grunfeld, page=annual) a 1935 1954 10

R> eviews_wfcreate(wf = "griliches_grunfeld", page = "annual", frequency = "a",
+ start_date = 1935, end_date = 1954, num_cross_sections = 10)

Example 11

EViews> wfcreate(wf=fourday) D(1,4) 1/3/2000 12/31/2000

R> eviews_wfcreate(wf = "fourday", frequency = "D", subperiod_opts = "1,4",
+ start_date = "1/3/2000", end_date = "12/31/2000")

Or

R> eviews_wfcreate(wf = "fourday", frequency = "D(1,4)", start_date = "1/3/2000",
+ end_date = "12/31/2000")

Example 12

EViews> wfcreate(wf=fourday) D(1-4) 1/3/2000 12/31/2000

R> eviews_wfcreate(wf = "fourday", frequency = "D", subperiod_opts = "1-4",
+ start_date = "1/3/2000", end_date = "12/31/2000")

Or

R> eviews_wfcreate(wf = "fourday", frequency = "D(1-4)", start_date = "1/3/2000",
+ end_date = "12/31/2000")

Example 13

EViews> wfcreate(wf=captimes) 15SEC(2-4) 1/3/2000 12/30/2000

R> eviews_wfcreate(wf = "captimes", frequency = "15SEC", subperiod_opts = "2-4",
+ start_date = "1/3/2000", end_date = "12/31/2000")

Or

R> eviews_wfcreate(wf = "captimes", frequency = "15SEC(2-4)", start_date = "1/3/2000",
+ end_date = "12/31/2000")

Example 14

EViews> wfcreate m 1995 +30

R> eviews_wfcreate(frequency = "m", start_date = "1995", end_date = "+30")

1.4 EViews pagesave command

https://eviews.com/help/helpintro.html#page/content%2Fcommandcmd-pagesave.html
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Example 1

EViews> pagesave new_wf

R> eviews_pagesave(wf = "EviewsR_files/EviewsR", source_description = "new_wf")

Example 2

EViews> pagesave "c:\documents and settings\my data\consump"

R> eviews_pagesave(wf="EviewsR_files/EviewsR",
+ source_description = "c:\\documents and settings\\my data\\consump")

Example 3

EViews> pagesave macro @keep gdp unemp

R> eviews_pagesave(wf = "EviewsR_files/EviewsR", source_description = "macro",
+ keep_list = "gdp unemp")

Example 4

EViews> pagesave macro @dropmap gdp*

R> eviews_pagesave(wf = "EviewsR_files/EviewsR", source_description = "macro",
+ dropmap_list = "gdp*")

Example 5

EViews> pagesave(type=excelxml, mode=update) macro.xlsx

R> eviews_pagesave(wf = "EviewsR_files/EviewsR", options = "type=excelxml,mode=update",
+ source_description = "macro.xlsx")

Example 6

EViews> pagesave(type=excelxml, mode=update) macro.xlsx range="Sheet2!a1" byrow @keep gdp unemp

R> eviews_pagesave(wf = "EviewsR_files/EviewsR", options = "type=excelxml,mode=update",
+ source_description = "macro.xlsx", table_description = "range=\"sheet2!a1\" byrow",
+ keep_list = "gdp unemp")

Example 7

EViews> pagesave(type=excelxml, mode=update) macro.xlsm range="Sheet2!a1" byrow @keep gdp unemp

R> eviews_pagesave(wf = "EviewsR_files/EviewsR", options = "type=excelxml,mode=update",
+ source_description = "macro.xlsm", table_description = "range=\"sheet2!a1\"",
+ keep_list = "gdp unemp")

Example 8

EViews> pagesave(type=excelxml, noid) macro.xlsx range="Sheet2!a1"

R> eviews_pagesave(wf = "EviewsR_files/EviewsR", options = "type=excelxml,noid",
+ source_description = "macro.xlsx", table_description = "range=\"sheet2!a1\"")

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 202

1.5 EViews wfsave command

https://eviews.com/help/helpintro.html#page/content%2Fcommandcmd-wfsave.html

The EViews commands pagesave and wfsave are similar. Therefore, the above examples about
pagesave can be adopted by replacing pagesave with wfsave.

2 Notes for EViews users

This section explains some peculiarities of R’s syntax. It is important for working with EviewsR’s
functions.

Each of the following is valid way to write a character string containing double quote ("). All of
them assign the same string (range="sheet2!a1" byrow) to table_description.

R> table_description='range="sheet2!a1" byrow'
R> table_descriptione="range=\"sheet2!a1\" byrow"
R> table_description=r'(range="sheet2!a1" byrow)'
R> table_description=r"(range="sheet2!a1" byrow)"

Similarly, we can write string with single quote (') as follows:

R> table_description='range=\'sheet2!a1\' byrow'
R> table_descriptione="range='sheet2!a1' byrow"
R> table_description=r'(range='sheet2!a1' byrow)'
R> table_description=r"(range='sheet2!a1' byrow)"

R> set_eviews_path("C:/Program Files (x86)/EViews 10/EViews10.exe")
R> set_eviews_path("C:\\Program Files (x86)\\EViews 10\\EViews10.exe")
R> set_eviews_path(r'(C:\Program Files (x86)\EViews 10\EViews10.exe)')
R> set_eviews_path(r"(C:\Program Files (x86)\EViews 10\EViews10.exe)")

Therefore, we recommend using r'()' or r"()" to write complex strings, as both return the strings
written between the braces exactly as they are.

3 Current knitr knit-engines

This section provides the list of knit-engines that are currently available as of November 10, 2023.
Please note that eviews is included among the list because EviewsR has added it as a knit-engine.

#> [1] "awk" "bash" "coffee" "gawk" "groovy"
#> [6] "haskell" "lein" "mysql" "node" "octave"
#> [11] "perl" "php" "psql" "Rscript" "ruby"
#> [16] "sas" "scala" "sed" "sh" "stata"
#> [21] "zsh" "asis" "asy" "block" "block2"
#> [26] "bslib" "c" "cat" "cc" "comment"
#> [31] "css" "ditaa" "dot" "embed" "eviews"
#> [36] "exec" "fortran" "fortran95" "go" "highlight"
#> [41] "js" "julia" "python" "R" "Rcpp"
#> [46] "sass" "scss" "sql" "stan" "targets"
#> [51] "tikz" "verbatim" "glue" "glue_sql" "gluesql"
#> [56] "theorem" "lemma" "corollary" "proposition" "conjecture"
#> [61] "definition" "example" "exercise" "hypothesis" "proof"
#> [66] "remark" "solution"

4 Session information

This section provides detailed information on the Operating System, R packages and their versions
used in this document.
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#> R version 4.2.2 (2022-10-31)
#> Platform: aarch64-apple-darwin20 (64-bit)
#> Running under: macOS 14.0
#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
#>
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> attached base packages:
#> [1] grid stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] magrittr_2.0.3 ggplot2_3.4.3 Gmisc_3.0.3 htmlTable_2.4.1
#> [5] Rcpp_1.0.11 kableExtra_1.3.4 knitr_1.45 EviewsR_0.1.5
#>
#> loaded via a namespace (and not attached):
#> [1] lubridate_1.9.3 svglite_2.1.1 lattice_0.21-9
#> [4] zoo_1.8-12 digest_0.6.33 utf8_1.2.3
#> [7] R6_2.5.1 backports_1.4.1 evaluate_0.22
#> [10] httr_1.4.7 pillar_1.9.0 rlang_1.1.1
#> [13] data.table_1.14.8 rstudioapi_0.15.0 rpart_4.1.19
#> [16] checkmate_2.2.0 rmarkdown_2.25 webshot_0.5.5
#> [19] stringr_1.5.0 foreign_0.8-85 htmlwidgets_1.6.2
#> [22] tinytex_0.47 munsell_0.5.0 hunspell_3.0.3
#> [25] compiler_4.2.2 xfun_0.40 pkgconfig_2.0.3
#> [28] systemfonts_1.0.4 base64enc_0.1-3 htmltools_0.5.6.1
#> [31] nnet_7.3-19 forestplot_3.1.3 tidyselect_1.2.0
#> [34] gridExtra_2.3 tibble_3.2.1 bookdown_0.35
#> [37] rjtools_1.0.12 Hmisc_5.1-1 XML_3.99-0.14
#> [40] fansi_1.0.5 viridisLite_0.4.2 withr_2.5.1
#> [43] dplyr_1.1.3 gtable_0.3.4 lifecycle_1.0.3
#> [46] formatR_1.14 scales_1.2.1 cli_3.6.1
#> [49] stringi_1.7.12 fs_1.6.3 xml2_1.3.5
#> [52] xts_0.13.1 yesno_0.1.2 vctrs_0.6.3
#> [55] generics_0.1.3 Formula_1.2-5 tools_4.2.2
#> [58] glue_1.6.2 purrr_1.0.2 abind_1.4-5
#> [61] fastmap_1.1.1 yaml_2.3.7 timechange_0.2.0
#> [64] colorspace_2.1-0 cluster_2.1.4 BiocManager_1.30.22
#> [67] rvest_1.0.3
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langevitour: Smooth Interactive Touring of
High Dimensions, Demonstrated with
scRNA-Seq Data
by Paul Harrison

Abstract langevitour displays interactive animated 2D projections of high-dimensional datasets.
Langevin Dynamics is used to produce a smooth path of projections. Projections are initially explored
at random. A “guide” can be activated to look for an informative projection, or variables can be
manually positioned. After a projection of particular interest has been found, continuing small
motions provide a channel of visual information not present in a static scatter plot. langevitour is
implemented in Javascript, allowing for a high frame rate and responsive interaction, and can be used
directly from the R environment or embedded in HTML documents produced using R. Single cell
RNA-sequencing (scRNA-Seq) data is used to demonstrate the widget. langevitour’s linear projections
provide a less distorted view of this data than commonly used non-linear dimensionality reductions
such as UMAP.

1 Introduction

Understanding high-dimensional data is difficult. High-dimensional data is data where many variables
have been measured at once. There may be complex relationships between variables, and the data
may contain clusters and other features with complex shapes. This article introduces a new interactive
tool that may be helpful for visualizing and understanding high-dimensional data using animated 2D
projections.

High-dimensional data is produced in fields across the breadth of science. This article will focus on
a motivating example from biology. Single cell RNA-sequencing (scRNA-Seq) typically measures the
expression levels of thousands of genes in tens of thousands of biological cells. We can think of cells as
points in a gene-expression space with thousands of dimensions. There is a complex high-dimensional
geometry due to differences between biological cell types, variation in expression within cell types,
cell developmental trajectories, and treatment responses. Principal Components Analysis (PCA) can
find a set of directions in which the data is most variable, allowing scRNA-Seq data to be summarized
down to perhaps tens of dimensions while still capturing most of the important geometry. However
even a ten-dimensional space is difficult to comprehend.

One way to explore high-dimensional data is using a “tour.” A tour is a sequence of projections
of the dataset, most commonly into two dimensions. A Grand Tour (Asimov 1985) is a tour that will
eventually visit as close as we like to every possible projection of the data, typically using a sequence
of random projections. A Guided Tour, on the other hand, seeks an “interesting” projection by moving
toward the maximum of some index function (Cook et al. 1995). The sequence of projections is
animated, with smooth interpolation between each successive pair of projections. The software XGobi
and GGobi (Swayne, Cook, and Buja 1998) provide an interactive graphical application incorporating
tours for exploring high-dimensional data. The more recent R package tourr (Wickham et al. 2011)
provides a framework for creating and displaying tours in the R language. Displaying animations
directly in R usually does not achieve a high frame rate. It is also not possible to interact with the
display as with GGobi. To get around these problems, a recent R package called detourr (Hart and
Wang 2022) computes a tour path in R using tourr and then displays it using a Javascript widget (using
htmlwidgets) (Vaidyanathan et al. 2021). The widget then provides a high frame rate display and
interactive features. However, the projection path itself can not be modified interactively.

This article introduces a new R package, langevitour, that differs from previous tour software
by using Langevin Dynamics, a method from physics, to produce a continuous path of projections.
This path can be directly used for animation, eliminating the need to interpolate between distinct
projections to animate the tour. The package is htmlwidgets-based, with interaction, calculations, and
animation performed in Javascript. The projection can be controlled interactively, with the user able to
switch between Grand and Guided Tours while also interactively focusing in on particular dimensions
of interest.

The methods section describes Langevin Dynamics mathematically, but I will outline its important
features here using two physical examples. First, consider modelling the position and velocity of a
large particle over time. Many small particles continuously jostle the large particle. This is the original
Brownian motion scenario studied by Langevin in 1908 (see translation by Lemons and Gythiel 1997).
Rather than modelling every particle, Langevin Dynamics simulates the jostling as small random
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forces. Langevin’s model includes these random forces and damping of momentum, and we can also
add a force field acting on the particle. The particle explores the space it is in, and the force field may
cause the particle to spend more time near certain locations.

langevitour applies Langevin Dynamics to an orthonormal projection matrix rather than to
a particle’s position. As a second physical example, imagine a two-dimensional disk in a high-
dimensional space. The disk represents a projection plane for a high-dimensional dataset. It has a
fixed center but can rotate freely. Tiny unseen particles continuously jostle the disk, causing it to spin
first one way and then another. The motion of the disk provides the path for a Grand Tour of the
dataset. A force field may also draw it toward particular orientations. The force field is specified
using a potential energy function. It is used to seek interesting data projections, similar to the index
functions used in previous tour software, providing a Guided Tour.

This article begins by demonstrating the widget using data from the palmerpenguins package.
The method and implementation are then described in detail. Finally, an extended demonstration
using scRNA-Seq data is presented.

2 Palmer Penguins example

The R data package palmerpenguins (Horst, Hill, and Gorman 2020) provides body measurements of
penguins of three different species from the Palmer Archipelago, Antarctica. The langevitour based
visualization is shown in Figure 2. R code to produce this figure is:

library(langevitour)
library(palmerpenguins)

completePenguins <- na.omit(penguins[,c(1,3,4,5,6)])
scale <- apply(completePenguins[,-1], 2, sd)*4

langevitour(completePenguins[,-1], completePenguins$species,
scale=scale, pointSize=2)

The widget displays a moving projection of high-dimensional points onto a two-dimensional
plane. The current projection is indicated using a collection of axis lines, with the axes labelled by their
respective variable names. A second set of variable and group labels appear to the right of the plot
area when interacting with the plot. These can be dragged on to the plot to control the projection. Let
us now step through some manipulations the langevitour widget allows.

• Setting a “guide” using the drop-down list. This causes langevitour to pursue projections near
the minimum of an energy function. For example, the PCA guide seeks projections with large
variance in both the x and y directions.

• Hiding particular groups by unchecking their checkbox in order to focus on other groups.
For example by hiding Gentoo penguins, we can focus on the difference between Adelie and
Chinstrap penguins. The guide is also only applied to the visible groups.

• Hiding particular axes by unchecking their checkbox. For example, without bill length Adelie
and Chinstrap penguins can no longer be distinguished.

• Dragging labels onto the plot to concentrate on particular axes or try to separate a partic-
ular group. The projection may not exactly match the label positions since it must still be
orthonormal.

• Adjusting the damping slider. High damping produces jerky Brownian motion. Less damping
produces smoother, less random motion. An intermediate damping level is the fastest way to
explore the space of projections thoroughly.

• Adjusting the heat slider. More heat makes the projection move faster, and stray further from
the optimum projection defined by a guide or any labels dragged onto the plot.

• When the mouse is over a group label the group is highlighted.

• When the mouse is over an axis label a scale and rug are displayed, and points are colored
according to their position on that axis.

Unchecking all but two or three axes can make the relationship between those particular axes clear.
With three axes checked, the eye interprets the display as three-dimensional. A systematic way to
examine a dataset is to proceed through all possible combinations of two or three axes.
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A B

C D

Figure 1: palmerpenguins data visualized using langevitour. Each dot is a penguin, and the axes
are four different penguin measurements. An interactive version of this figure is available in the
supplemental file figures-page.html. (A) The widget initially spins at random. (B) The user has
selected the PCA guide, and the widget has rotated to an informative projection using this guide. (C)
The user has moused over a label, causing points to be colored by that variable. (D) The user has
dragged a label onto the plot to concentrate on a particular variable.
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If a particular interesting projection is found using langevitour it can be brought back into R by
pressing the “?” button and copying and pasting R code that is shown. The “?” button also shows
a JSON record of the current settings of the widget, including form inputs and label positions. All
or some of these settings can be specified to a future call to langevitour(), or applied to a running
widget using Javascript code. Example code to control the widget using HTML buttons and Javascript
is given in the supplemental file figures-page.Rmd.

3 Method

Say we have a set of n p-dimensional data points. A 2 × p projection matrix from p to 2 dimensions
will be denoted X. The two rows of X are called a 2-frame. These rows must be unit vectors and
orthogonal to each other. The set of all 2-frames in p dimensions is a Stiefel manifold.

It will often be necessary to consider all of the elements of the projection matrix concatenated
together into a single vector (“melted”), which will be denoted x. We will think of x as a simulated
physical system’s “position” vector. With x in use as the position of the system, the data points will
be called the vectors yi. The projection of point i into two dimensions is calculated with the matrix
product Xyi.

3.1 Langevin Dynamics overview

Projections are generated using a numerical simulation of Langevin Dynamics but with projections
constrained to lie on the Stiefel manifold. This section briefly summarizes Langevin Dynamics. The
next section will describe the numerical simulation method and how the constraint is applied.

The description of Langevin Dynamics given here follows Leimkuhler and Matthews (2015), but
for simplicity I set the Boltzmann constant to 1 and all masses to 1. We define a system with a position
vector x and a velocity vector v. We must specify a temperature T, a damping rate γ, and a potential
energy function U(x). The behavior of the system is then defined by a pair of Stochastic Differential
Equations (SDEs):

dv = −γvdt +
√

2γTdW −∇U(x)dt (1)

dx = vdt (2)

Here W is a vector of Wiener processes. For any positive time-step ∆t:

W(t + ∆t)− W(t) ∼
√

∆tN (0, I)

The total energy of the system, kinetic energy plus potential energy, is called the Hamiltonian:

H(x, v) =
1
2
|v|2 + U(x)

In Equation (1) in a physical system, the first two terms would describe the exchange of kinetic
energy with the surrounding environment. In the first term, kinetic energy is lost (damping), while
the second term adds randomness to the velocity, increasing the kinetic energy again. The third term
applies acceleration according to the gradient of the potential energy function.

If we were to set γ = 0, we would be doing Hamiltonian Dynamics, and the system’s total
energy would remain constant. If γ > 0 the total energy can fluctuate, and in the long run the
process is ergodic (Leimkuhler and Matthews 2015 in section 6.4.4), producing samples with the
Gibbs-Boltzmann probability density:

ρ(x, v) ∝ e−H(x,v)/T

From this density, it can be seen that each component of the velocity is normally distributed with
variance T and that the position has probability density

ρ(x) ∝ e−U(x)/T

The potential energy function completely controls the distribution of positions being produced,
providing a great deal of freedom. Here, we will use this to craft suitable potential energy functions to
allow the user to control the explored projections.
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3.2 Langevin Tour numerical simulation

We are to generate a sequence of animation frames i = 1, 2, ..., each with a projection matrix Xi (written
xi when viewed as a vector). Each frame will also have a velocity vector vi. The time-step between
frames can vary depending on the computational load from langevitour and other things happening
in the web browser. Call the time-step from frame i − 1 to frame i ∆ti.

The Position Based Dynamics method (PBD, Müller et al. 2007) is used to perform the numerical
simulation while constraining the system to produce orthonormal projection matrices. PBD is simple
to implement and emphasizes stability over accuracy when enforcing constraints, which is appropriate
and adequate for this application. Using PBD, in each iteration we will:

1. Update the velocity.
2. Update the position based on the velocity.
3. Fix the updated position to be an orthonormal projection matrix.
4. Fix the velocity to be consistent with the fixed position.

Step 1. Update the velocity

We will write v′
i and x′i for the initially proposed velocity and position of the current frame. These will

be adjusted in steps 3 and 4 to produce the final position and velocity, xi and vi. The first step is to
calculate

v′
i = e−γ∆ti vi−1 +

√
T
(
1 − e−2γ∆ti

)
ri − ∆ti ∇U(xi−1) (3)

where the components of ri follow a standard normal distribution.

In the limit for ∆ti → 0, Equation (3) matches the rate of change of the mean and rate of added
variance in equation (1). Equation (3) has also been carefully chosen to have stable behavior for large
∆t or γ or both. The first term decays the existing velocity by a factor of e−γ∆ti . If Equation (1) only
contained the first term, this would be the exact solution. This decay reduces the variance of the

velocity by a factor of
(
e−γ∆ti

)2. The second term re-injects variance sufficient to restore the variance
of the velocity in every direction (orthogonal to constraints) as T.

A small refinement is made to avoid random rotation in the plane of projection, as this can be
unsettling to view. Any part of the random noise ri within the plane of the projection is subtracted out
before the noise is added to the velocity. More precisely, considering the noise in matrix form Ri in
the same way as the projection matrix Xi−1, the projection of each row of Ri onto each row of Xi−1 is
subtracted from that row of Ri. Previous tour software has also avoided this type of rotation, but in a
different way, by using a “geodesic interpolation” method that operates between planes rather than
frames (see Buja et al. 2005).

Step 2. Update the position based on the velocity

The position is advanced according to the velocity and the size of the time-step.

x′i = xi−1 + ∆tiv
′
i

Step 3. Fix the updated position to be an orthonormal projection matrix

Position Based Dynamics requires the proposed position x′i be projected back to a constraint-satisfying
position xi. Here, the constraint is xi represents an orthonormal projection matrix. Doing this arbitrarily
might cause unexpected spinning in the projection plane. We must find the nearest valid xi to x′i .

Considering the proposed position vector as a projection matrix, we take the singular value
decomposition and set the singular values to 1.

USV⊤ = X′
i (4)

Xi = UV⊤ (5)

Here, U is a 2 × 2 orthonormal matrix, S is a 2 × 2 diagonal matrix, and V is a p × 2 matrix with
orthonormal columns. Let sj be the values along the diagonal of S, the singular values, all of which
are non-negative.
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Equation (5) chooses the closest orthonormal projection matrix in terms of Euclidean distance
to x′ i. Stated another way, this is the matrix X that minimizes the Frobenius norm ∥X′ − X∥ with
the proposed projection matrix X′. To see this, consider first the problem of finding the nearest
orthonormal projection matrix to U⊤X′.

U⊤X′ = U⊤USV⊤ = SV⊤

For each row in U⊤X′,
(

U⊤X′
)

j,·
= sjV⊤

j,·, the nearest unit vector will be parallel to this vector,

namely V⊤
j,·. We know that the rows of V⊤ are orthogonal, so V⊤ is the nearest orthonormal projection

matrix to U⊤X′. Multiplying both matrices by an orthonormal matrix does not change the Frobenius
norm of their difference, so the nearest orthonormal projection matrix to UU⊤X′ = X′ is UV⊤.

Step 4. Fix the velocity to be consistent with the fixed position

Position Based Dynamics requires the velocity to match the actual update made to the position, rather
than the initially proposed update.

vi =
xi − xi−1

∆ti

3.3 Guiding projections using the potential energy function

We can use any function we like for the potential energy U(x), so long as we can calculate its gradient.
This is used in langevitour to provide a set of automatic guides and also as a method of interaction.

When an energy function is being used, the temperature T plays a role analogous to variance in
the normal distribution. When the temperature is very low, the system seeks the minimum of the
energy function. As the temperature is raised, projections further and further from the minimum are
produced.

Linear energy function for interaction

For some choice of vector a, we can set the energy function to be the dot product

U(x) = −ax

This encourages the projection to have a large component parallel to a. In langevitour this is
used when labels are dragged onto the plot area to control the placement of particular axes of the
high-dimensional space or to control the position of the mean of a group of points.

Central force energy function

The Box-Cox power transformation (Box and Cox 1964) provides a useful building block for energy
functions.

f (x; λ1, λ2) =


(x + λ2)

λ1 − 1
λ1

if λ1 ̸= 0,

ln(x + λ2) if λ1 = 0

An energy function creating forces away from or toward the center can be defined using:

Ucentral(x; c, λ1, λ2) =
c
n

n

∑
i=1

f
(
|Xyi|2; λ1, λ2

)
langevitour offers a central “push” guide (c < 0, λ1 = 0.5, λ2 = 0.0001) and a central “pull”

guide (c > 0, λ1 = 0.5, λ2 = 0.0001). These cone-shaped energy functions result in a nearly constant
magnitude outward or inward force on points, except for a small region close to the center.
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Layout by point-point repulsion

It was found that repulsion forces between pairs of points can be used to produce an informative
layout. Let S be a set of pairs of points (i, j). Ideally we would make this the set of all possible pairs of
points but, for computational efficiency, langevitour uses a random mini-batch of 5,000 pairs of points
per iteration, with a different mini-batch used each time. Using random mini-batches to approximate
the gradient injects extra noise into the system (see Mandt, Hoffman, and Blei 2017). The effect is
similar to increasing the temperature slightly.

Ulayout(x; λ1, λ2) =
c
|S| ∑

(i,j)∈S
f
(
|Xyj − Xyi|2; λ1, λ2

)
The power parameter λ1 determines whether the layout is governed by long-range or short-range

forces. langevitour offers “ultra-local” (c < 0, λ1 = −1, λ2 = 0.0025), “local” (c < 0, λ1 = 0, λ2 =
0.0001), “PCA” (c < 0, λ1 = 1, λ2 = 0), and “outlier” (c < 0, λ1 = 2, λ2 = 0) guides. The “local” guide
is the preferred default. With this guide, pairs of points that are near to each other exert more force
than pairs of points that are far apart. The “ultra-local” guide potentially produces better layouts but
is somewhat unstable. The “PCA” guide is equivalent to PCA. The “outlier” guide seeks projections
where there are some points that are very far from other points.

Blending energy functions

A sum of energy functions such as the above can be used to produce behavior that blends the behaviors
from the individual functions. For example, there could be an active guide and also one or more labels
dragged onto the plot.

4 Implementation

langevitour uses the htmlwidgets framework. It was an important design goal that using langevitour
be no more difficult than any other plotting function in R. htmlwidgets allows Javascript widgets to be
used in most places that conventional R graphical output can be used. The widget may be displayed
during an interactive R session or included in a knitted document with a call to the langevitour
function. The only required argument is a matrix (or data frame) of numerical data. A grouping
of rows is often also given, allowing points to be distinguished by color. There are further optional
arguments providing adjustments to the scaling, appearance, and further optional features.

The htmlwidgets scaffoldWidget function was used to scaffold the package, including functions
to create the widget (langevitour) and to use the widget in shiny applications (langevitourOutput,
renderLangevitour).

langevitour operates without a server, so the R portion of langevitour is limited to sanity-checking
all the inputs and ensuring htmlwidgets will translate the data to JSON consistently. In particular,
vectors convert to lists, which ensures vectors of length 1 are not unboxed. A Javascript class performs
calculation, plotting, and interaction. The D3 Javascript package is used to perform drag-and-drop
interaction, color operations, scale operations, and some DOM element manipulation. The SVD-JS
Javascript package is used for the singular value decomposition calculation. The jStat Javascript pack-
age is used to produce normally distributed random numbers. Besides these packages, calculations
are performed using plain Javascript code, following the steps in the previous section.

Gradients need to be calculated in order to use potential energy functions as a guides or for
interaction. The necessary partial derivatives were found by hand, and used to implement a collection
of gradient functions. To add a new guide, a function to calculate the required gradient can be written,
and the source code edited to make it available in the widget interface.

In Javascript, animation frames are scheduled using requestAnimationFrame, allowing the browser
to manage the frame rate, co-ordinate multiple animations within a document, and pause animation
when the document is not on screen. A typical frame rate for the browser to aim for is 60 frames per
second. The frame rate may drop if there is too much calculation and drawing required, such as when
there are many points to display. Multiple widgets may be active in a document at once, and even
if the document is visible, not all widgets may be visible. To minimize CPU usage the animation is
paused if a widget scrolls off-screen or is otherwise hidden. Canvas-based rendering was used.
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5 scRNA-Seq example

A dataset by Kang et al. (2018) demonstrates many of the complex high-dimensional features that are
found in scRNA-Seq data. In this dataset, peripheral blood mononuclear cells (PBMCs) from eight
patients with lupus were pooled. PBMCs are cells from the immune system that circulate in blood,
including monocytes, B cells, T cells, and natural killer (NK) cells. These cells were then stimulated
with a cytokine, recombinant interferon beta, causing a change in the gene expression of the cells. The
dataset contains a sample of unstimulated cells (U), and a separate sample of stimulated cells (S).

Single cell sequencing produces a small proportion of doublets, where two cells end up in a
single micro-droplet and appear in the final data as a single cell. A nice feature of this dataset is that
doublets containing cells from two different individuals can be identified with certainty due to genetic
differences between the individuals.

5.1 Processing steps

Sequencing data was produced using a 10x Chromium Single Cell instrument and an Illumina HiSeq
2500 sequencer. Kang et al. (2018) then processed sequencing reads using the 10x Genomics CellRanger
software and provided the resulting RNA molecule count data in the Gene Expression Omnibus (GEO)
database as accession number GSE96583. They also provided their annotation of the cells into different
types, and doublet detection based on genetic differences between individuals. Slightly simplified
annotations are shown in this article. There are 29,065 cells in total. 3,169 of these are identified as
doublets.

In the processed data for each of the two samples, there is a matrix giving the number of molecules
of RNA associated with each gene within each cell. Normalization by total count per cell, log
transformation, and PCA were carried out using the Seurat package (Hoffman 2022). As per Seurat
defaults, only the top 2,000 highly variable genes are used. Each resulting Principal Component (PC)
has a score for each cell and a loading for each gene.

The top PCs capture as much variation in the data as possible but are not necessarily individually
interpretable. To aid biological interpretation, it would be better if each component represented
changes in the expression of a distinct set of genes. Each differentially expressed gene should have
loadings that are mostly concentrated in a single component, and we prefer the loadings to be positive
if possible. With these goals in mind, the varimax rotation of the gene loadings was found using the
varimax() function in the built-in stats package, with Kaiser normalization disabled. Both the gene
loadings and the cell scores are rotated. Then, for each component, if the loadings have negative skew
both the loadings and scores are negated.

Genetic differences can not identify doublets containing cells from the same individual, so Bio-
conductor package scDblFinder (Germain et al. 2022) was used to impute further doublets using the
recoverDoublets() function. This only works between cells of different types, but doublets containing
cells of the same type are not a problem. A further 595 doublets were identified this way.

The dataset was sub-sampled down to 10,000 cells to allow a smooth frame rate in langevitour,

The R code used to process the scRNA-Seq data is given in the supplemental file processing.R.
Code for figure generation from the processed data is given in figures.R.

5.2 Cell scores

Results from analysis with Seurat are shown in Figure 2. The scree plot has a fat tail with no clear
elbow. A large number of PCs potentially contain useful information. The top 10 PCs will be used
simply as a manageable number with which to interact. Common practice is to visualize cells using a
2D UMAP layout computed from the PCs, as shown in Figure 2B, to see what clusters exist in the data
and try to understand their relationships.

UMAP (McInnes, Healy, and Melville 2018) is a non-linear dimensionality reduction technique.
Ironically, UMAP may give a curvy biological appearance to linear structures in the original data!
Problems with UMAP are discussed by Coenen and Pearce (2019). They are similar to the problems
with t-SNE (Wattenberg, Viégas, and Johnson 2016), an earlier method that UMAP has largely sup-
planted for scRNA-Seq analysis. Problems include that UMAP may arbitrarily change the distances
between clusters and that UMAP will hide whether clusters are more or less spread-out by design.

Figure 3 shows the langevitour visualization of the cell scores. Components have been varimax
rotated to improve interpretability (see previous section). With langevitour, we only ever see linear
projections of the data. Straight lines remain straight, and parallelograms remain parallelograms.
Distances may be decreased but will not be increased by the projection.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=Seurat
https://www.bioconductor.org/packages/release/bioc/html/scDblFinder.html
https://CRAN.R-project.org/package=langevitour
https://CRAN.R-project.org/package=Seurat
https://CRAN.R-project.org/package=langevitour
https://CRAN.R-project.org/package=langevitour


CONTRIBUTED RESEARCH ARTICLE 214

1

40

80

5 10 15 20 25
PCA component

V
ar

ia
nc

e 
of

 c
om

po
ne

nt

A

U Doublet

S Doublet

U CD4 T cell

S CD4 T cell

U CD8 T cell

S CD8 T cell

U NK cell

S NK cell

U B cell

S B cell

U Monocyte

S Monocyte

U Other

S Other

B

Figure 2: scRNA-Seq analysis using Seurat. (A) A scree plot showing variance accounted for by each
PC. The scree plot has a fat tail, indicating that variation in the data can not be summarized with only
a few PCs. (B) UMAP layout based on the cell scores of the first 10 PCs. U are unstimulated and S are
stimulated cells.
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Figure 3: scRNA-Seq cell scores visualized using langevitour. An interactive version of this figure is
available in the supplemental file figures-page.html. The “local” guide is active. (A) Unstimulated
cells. (B) All cells. (C) Colored by component 3. (D) Doublets hidden.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 215

Figure 4: Noise reduction of scRNA-Seq cell scores. Original and denoised positions of 1,000 cells
are shown, joined by lines. An interactive version of this figure is available in the supplemental file
figures-page.html.

This is a moderately complex dataset. We will step through some manipulations of the widget in
Figure 3 to try to understand it better.

• To simplify the dataset, hide the stimulated cells by unticking the checkbox on all the “S” labels.

• To find a projection giving a good overview of the relationships between unstimulated PBMC
cells, activate the “local” guide from the drop-down list. The guided layout may not be able to
perfectly separate all the clusters as UMAP can. However, small relative motions make clear
where clusters are overlapping by accident rather than real proximity. For example, B cells and
T cells are distinct.

• Examine the scale by mousing over the labels for particular axes. The scale for each component
is meaningful, representing distance along a certain direction in scaled gene expression space.
The direction is specified by the gene loadings, which are examined in a section below.

• Mouse over the “U Doublet” and “S Doublet” labels to highlight doublets. Doublets located
between two clusters may be interpreted as a mixture of a pair of cells with different cell types.
Hiding the doublets by unchecking their checkboxes makes the clusters more distinct.

Let us compare this data view to the UMAP layout (Figure 2B). In the linear view provided by
langevitour, the monocytes are more spread out than other cell clusters. This isn’t visible in UMAP
which, as a deliberate feature, erases differences in scale. The whiskers extending from various clusters
in the UMAP correspond to components at right angles to other components in the data, i.e., a subset of
cells in which certain genes are active. For example, the thin whiskers extending from the unstimulated
and stimulated monocytes extend in the same direction, along C7, but in the UMAP they extend in
different directions. Doublets in the UMAP tend to form clumps near the edges of clusters or between
clusters. In the linear data view, they are spread out between clusters.

k-nearest neighbor denoising

The fuzziness of the clusters in Figure 3 is an honest depiction of the data. However, to interpret the
geometry of the data, it may be helpful to reduce the amount of noise. We want to do so with minimal
distortion. A suggested method is implemented in langevitour in the function knnDenoise(), based
on the k-nearest neighbor graph. The k-nearest neighbors to each point are first found. Then, each
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Figure 5: Noise reduced scRNA-Seq cell scores.

point is updated to be the average of the set of points reachable within a certain number of steps along
the directed k-nearest neighbors graph. Here k = 30 and two steps were used. This method is loosely
inspired by the k-nearest neighbors smoothing method of Wagner, Yan, and Yanai (2018) and the use
of the nearest neighbor graph in UMAP.

A comparison of the original and denoised cell positions is shown in Figure 4 for a sample of 1,000
cells. The effect has been to make clusters thinner and smaller but not to move them in space. The full
result is shown in Figure 5.

We will again step through some widget manipulations, to understand the relationships between
clusters and components.

• To provide an overview of the data, the “local” guide has already been activated.

• Doublets still lie between clusters in this denoised version. Compare this to the UMAP layout,
where the doublets tend to be attached to one or other clusters. To make the clusters cleaner,
hide the doublets by unticking the checkboxes on the doublet labels.

• To examine component C1, drag the C1 label on to the plot. This pulls out the monocyte cluster.
It appears monocytes are associated with C1.

• To undo this action, drag the C1 label to the right to remove it from the plot area.

Similarly C5 pulls out CD8 T cells and NK cells, and C6 pulls out B cells. The response to the
cytokine is mostly contained in C3 with a further monocyte specific response in C2.

5.3 Gene loadings

Each component examined in the preceding sections represents a certain pattern of gene expression.
These patterns of gene expression are represented by the gene loadings. Within each component,
each gene has a loading. As will be seen, the tendency is for large loadings to be concentrated in a
relatively small set of genes for each component. Genes with large loadings may provide insights into
the biology represented by each component based on their known function or involvement in known
biological pathways.

The gene loadings may also be examined using langevitour, as shown in Figure 6. In this figure,
the points are genes, and the variables are the loading for each component.
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A B

Figure 6: scRNA-Seq gene loadings visualized using langevitour. The points are genes and the
variables are the loading for each component. An interactive version of this figure is available in the
supplemental file figures-page.html. (A) Genes involved in component 3. (B) Genes involved in
components 1 and 2.

• Observe the widget spinning freely for a while. The overall geometry is of a spiky ball. The
spikes generally represent sets of genes with large loadings in one component.

• Drag particular component labels onto the plot to examine them. Biological phenomena such as
different cell types (C5, C6) or responses to the cytokine (C3) often involve distinct sets of genes.
Furthermore, cell types are defined more by genes’ activation than genes’ deactivation. Varimax
rotation was able to align these distinct sets of genes into specific components. An exception is
genes used by monocytes and the monocyte response to stimulation (C1 and C2). These two
components show a broad fan of genes, which can be interpreted as the genes involved in being
a monocyte also being involved to varying degrees in the monocyte response to stimulation.

• Mouse near points to see the specific genes they represent.

6 Discussion

Langevin Dynamics produces samples from a specified probability distribution and produces a path
suitable for animation. Besides tours, a possible future application would be to use this to visualize
uncertainty in the posterior distribution of a Bayesian statistical model while placing details of the
model directly under interactive control. Visualization of samples from a distribution has been
previously investigated by Hullman, Resnick, and Adar (2015), as the Hypothetical Outcome Plots
(HOPs) method. HOPs displays a graphical representation of samples from a multivariate distribution
one after the other. An appealing feature of HOPs is that any visualization may be used. The viewer
can perceive the uncertainty in the distribution, and how the variables relate to each other in the values
they might take. However the display of HOPs simply hops from one sample to the next. There is also
earlier work in geospatial applications, such as by Ehlschlaeger, Shortridge, and Goodchild (1997) in
which a smooth animation was produced by interpolating between a sequence of samples. They note
that interpolated frames may no longer follow the original distribution, and propose a method that
preserves the correct variance in interpolated frames for their specific application. By using Langevin
Dynamics, a smooth animation could be produced in which each individual frame is naturally drawn
from the correct distribution.

Langevin Dynamics is similar to the Hamiltonian Monte Carlo method (HMC, see Neal 2011) used
for example by the Stan software package (Carpenter et al. 2017). Usually HMC alternates steps of
completely randomizing the velocity and relatively long runs of Hamiltonian Dynamics simulation.
This would produce a continuous path, but with occasional sharp turns. Neal (2011) describes a
version of HMC with frequent partial velocity refreshment that more closely resembles Langevin
Dynamics. An accept/reject step can make the sampling precisely accurate even with discrete time-
steps. Another possibility, for large datasets, is to use mini-batch gradients for computational efficiency
(Mandt, Hoffman, and Blei 2017). Mini-batch gradients provide a noisy estimate of the full gradient
and, with careful tuning, the level of noise required for Langevin Dynamics will be injected into the
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velocity. It may be possible to animate sampling from complex models in real-time smoothly.

Motion provides a channel of visual information not possible in static images. We are not accus-
tomed to visualizing objects in more than three dimensions, but things that move together in the
natural environment are usually physically connected, and this seems to be how our eyes interpret the
small rotations in more than three dimensions displayed by langevitour.

A Javascript widget has been introduced for interactively exploring high-dimensional data. It
is readily usable from the R environment, Shiny websites, or HTML documents generated using R
Markdown, including static HTML reports, slideshows, and journal articles.
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ggdensity: Improved Bivariate Density
Visualization in R
by James Otto and David Kahle

Abstract The ggdensity R package extends the functionality of ggplot2 by providing more inter-
pretable visualizations of bivariate density estimates using highest density regions (HDRs). The
visualizations are created via drop-in replacements for the standard ggplot2 functions used for this
purpose: geom_hdr() for geom_density_2d_filled() and geom_hdr_lines() for geom_density_2d().
These new geoms improve on those of ggplot2 by communicating the probabilities associated with
the displayed regions. Various statistically rigorous estimators are available, as well as convenience
functions geom_hdr_fun() and geom_hdr_fun_lines() for plotting HDRs of user-specified probability
density functions. Associated geoms for rug plots and pointdensity scatterplots are also presented.

1 Introduction

Density estimation is foundational to modern statistics. Not only does it provide a theoretical basis
for maximum likelihood estimation (Scott, 1992), it is also an important tool in exploratory data
analysis. This is especially true for univariate data: histograms, frequency polygons, and kernel
density estimates (KDEs) all visualize an estimated density.

With bivariate data, the situation is more complicated as the estimated density is a 3D surface, and
there is a tendency to avoid 3D visualization in static graphics due to visual perception biases. A more
common strategy is to represent the surface using other geometric objects or aesthetics in a 2D plot,
most commonly via contours of the density’s level sets. Typically the density is estimated with a KDE
and the contours correspond to the level sets of an equally spaced mesh over (0, M], where M is the
maximum of the estimated density’s height (usually rounded to the closest "pretty" value). We will
refer to these contours as ordinate mesh density contours (OMDCs), and the corresponding graphics
as traditional density contour plots or OMDC plots. By ordinate, we mean the variable z = f (x, y), or
in general the last element of the graph of a function f (x), which in this context represents density.

For example, the MASS package documentation suggests using MASS::kde2d() with
graphics::contour(), which selects its level sets by calling base::pretty() on 10 such breaks over
the (0, M] ordinate range, and ggplot2’s geom_density_2d() and geom_density_2d_filled() do the
same (Venables and Ripley, 2002; Wickham, 2009; Wilkinson, 2005). Unfortunately, the resulting
regions—those bounded by the OMDCs—cannot be immediately identified with corresponding
probabilities, and are challenging to interpret in the best of cases.

Following Hyndman (1996), we propose the use of highest density regions (HDRs) as replacements
for density visualization based on OMDCs. In a sense made rigorous in the next section, an HDR is
the smallest region containing a certain percentage of the estimated distribution, e.g. 90%. An HDR
contour is the boundary of this region. HDRs are constructed by determining "good" cutoff values for
the density, whereby cutoff values of the density we mean the ordinate values corresponding to the
HDR contours (i.e. the HDR contours are the level sets of these "good" cutoff values). Unlike OMDCs,
HDR contours’ ordinate values are almost never equally spaced in the ordinate range, and computing
them presents a number of practical and technical challenges.

In this article we introduce ggdensity, a new R package intended to address these challenges in
facilitating the visualization of bivariate HDRs and related topics in the ggplot2 framework. ggdensity
extends ggplot2 with a tight integration: instead of wrapping ggplot2 calls to return ggplot objects
that are hard to modify, ggdensity uses ggplot2’s API to provide new extensible (geom, stat) pairs
that behave in the way ggplot2 users have come to expect. These new stats provide a range of density
estimation options, as we describe in the next sections.

2 Motivating example

We begin with a motivating example to show how traditional density contour plots can be misleading
when exploring bivariate distributions. The top left plot in Figure 1 is a scatterplot of simulated
bivariate standard normal data whose distribution we want to visualize. On the bottom left, we
present the traditional way of visualizing the data’s 2d distribution: a contour plot of slices of its
estimated density (OMDCs). The function that created this graphic, geom_density2d() (alternatively
geom_density_2d()), has been in ggplot2 since its inception. It was modeled after a similar graphic
made with base graphics using MASS::kde2d() with contour(). In the top right is the filled contour
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version of the same plot, made with geom_density_2d_filled(). This type of plot was introduced in
2020 with ggplot2 version 3.3.2, which leveraged ggplot2’s new dependency on isoband that came in
ggplot2 version 3.3.0 (Wilke and Pedersen, 2021).

In the bottom right is our proposed alternative, ggdensity::geom_hdr(). Each of the three contour
plots show contours from the same estimated density surface, but the contours plotted by geom_hdr()
are HDR contours and are chosen to be inferentially relevant. By default these are the smallest regions
containing 50%, 80%, 95%, and 99% of the estimated density.

Plotting the HDRs results in a significantly more interpretable graphic that conveys more infor-
mation than equally spaced density contours. To make a more direct comparison, in Figure 2 we
superimpose the HDR contours onto the filled traditional density contour plot in the top right of
Figure 1. The result reveals that nearly 20% of the estimated distribution is outside the lowest OMDC.
Consequently, we would expect almost 1 out of every 5 observations to fall outside the traditional
density contour plot.

This is somewhat of a cautionary tale: while the contours seen in the bottom left and top right plots
of Figure 1 do seem to communicate some information to the viewer, it’s hard to say exactly what that
information is. And worse: it seems surprisingly easy to draw wrong conclusions. Upon scrutiny, the
overall OMDC strategy seems suspect as a general purpose tool for visualizing where the probability
mass of a bivariate distribution resides as it focuses exclusively on the density and ignores the region
over which that density extends. On the other hand, with HDRs one immediately understands where
the majority of the observed data lie and roughly how much data lies in each region. It is not possible
to achieve these insights with traditional density contour plots, since equivalent interpretations require
double integrals of the estimated density.

Figure 1: Comparing various geoms on a bivariate standard normal sample of size n = 2500.
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Figure 2: geom_density_2d_filled() and geom_hdr() (white) from Figure 1, showing that the tradi-
tional density contour plots can mislead: nearly 20% of the estimated distribution falls outside the
lowest OMDC. Labels generated with geomtextpath (Cameron and van den Brand, 2022).

3 Highest density regions

More formally, following Hyndman (1996) we adopt the following definition of highest density regions
(HDRs):

Definition 1 Let f (x) be the probability density function (PDF) of a random vector X ∈ Rp and α ∈ (0, 1).
For any constant c ∈ R define R f (c) = {x ∈ Rp : f (x) ≥ c} to be the subset of the sample space of X with
density at least c. The 100(1 − α)% HDR of X is the subset R f ( fα), where fα is the largest constant c such

that p f (c) := Pf

[
X ∈ R f (c)

]
≥ 1 − α. When f (x) is clear, we will simplify this to Rα = R f ( fα).

Note that p f (c) is non-increasing in c. Intuitively, we see that as c gets bigger the region where
f (x) ≥ c shrinks (or possibly remains unchanged), and so the probability of the region gets corre-
spondingly smaller (or at least can’t get bigger). fα is the largest point at which this probability is at
least 1 − α. We revisit this in the next section.

Of course, in practice we are given data x1, . . . , xn, ideally a random sample from f (x), and we
need to estimate the population HDRs. The problem of estimating HDRs, and more generally density
contour estimation, has been widely studied and several estimators have been proposed. Estimators
generally fall in one of three classes: plug-in estimators (Rigollet and Vert, 2009; Cadre, 2006), excess
mass estimators (Muller and Sawitzki, 1991; Polonik, 1995), and convex contour estimators (Hartigan,
1987). In this work we focus exclusively on plug-in estimators of HDRs due to their straightforward
interpretation and implementation. These estimators are of the form R̂α = R̂ f ( fα) := R f̂ ( f̂α) for some

PDF estimate f̂ (x) of f (x), where f̂α is the largest value c such that p̂ f (c) := p f̂ (c) = Pf̂

[
X ∈ R f̂ (c)

]
≥

1 − α.

Thus, plug-in HDR estimators estimate population HDRs with the HDRs of estimated densities. As
there are many ways to estimate a density, both parametric and nonparametric, one can arrive at many
different HDR estimates with the same data and probability mass 1 − α, and different choices confer
advantages and disadvantages. We revisit this notion in HDRs using different density estimators
using ggdensity after explaining how such estimates can be computed.

Before addressing that topic, it is worth reflecting on another aspect that makes HDRs so special:
their size. While HDRs are primarily of interest because their corresponding probabilities are immedi-
ately interpretable, they are also important because they are the smallest such sets that contain their
probabilities.

For any continuous distribution, there are an infinite number of different regions in its support
that contain probability at least 1 − α. The standard normal distribution provides a simple univariate
example. If Φ−1(x) is the quantile function of the standard normal distribution and 0 ≤ l < u ≤ 1 with
u − l = 1 − α, any interval of the form [Φ−1(l), Φ−1(u)] contains probability exactly 1 − α, and indeed
these are all such intervals that do. This is because P

[
Φ−1(l) ≤ Z ≤ Φ−1(u)

]
= P

[
Z ≤ Φ−1(u)

]
−

P
[
Φ−1(l) ≤ Z

]
= Φ(Φ−1(u)) − Φ(Φ−1(l)) = u − l = 1 − α. Setting 1 − α = .95, we can choose

l = 0, u = .95 yielding the interval (−∞, 1.645]. We can find similar intervals with other choices of l, u:
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[−2.326, 1.751]; [−2.054, 1.881]; [−1.881, 2.054]; [−1.751, 2.326]; and [−1.645, ∞), all of which contain
95% probability.

However, all intervals are typically not equally preferable: if we are interested in summarizing
the normal distribution with a set of probability 1 − α, we typically want to provide the smallest
such set. The intervals above have lengths ∞, 4.08, 3.93, 3.93, 4.08, and ∞. As is well-known, if we
want the smallest interval, we use [Φ−1(α/2), Φ−1(1 − α/2)] = [−1.96, 1.96] as the interval bounds,
with the interval length of 3.92. This interval corresponds to the region where the density exceeds
fα = ϕ(Φ−1(α/2)); and as such meets the definition of an HDR.

This is a general feature of HDRs: whether in one or many dimensions, they constitute the smallest
regions containing their corresponding probabilities, a fact seen from the following measure-theoretic
argument. For some f (x), α ∈ [0, 1], and an associated HDR Rα, let η = P [X ∈ Rα]. While η may
be equal to 1 − α, in some cases it may be more, for instance in the case of the uniform distribution.
Suppose A is a subset of the sample space of X with probability ξ ≥ η such that A \Rα is non-null, i.e.
A and Rα are not the same set. Then

η = P [X ∈ Rα] =
∫
Rα

f (x)dx =
∫
Rα∩A

f (x)dx +
∫
Rα\A

f (x)dx.

Similarly,

ξ = P [X ∈ A] =
∫
Rα∩A

f (x)dx +
∫
A\Rα

f (x)dx.

Since ξ ≥ η, ∫
A\Rα

f (x)dx ≥
∫
Rα\A

f (x)dx

By the definition of Rα, fα > f (x) over A \Rα and f (x) ≥ fα over Rα. Thus,

fαm(A \Rα) =
∫
A\Rα

fαdx >
∫
A\Rα

f (x)dx ≥
∫
Rα\A

f (x)dx ≥
∫
Rα\A

fαdx = fαm(Rα \ A),

where m denotes the Lebesgue measure of the given set, its size. Thus m(A \Rα) > m(Rα \ A) and
consequently m(A) > m(Rα).

The minimality of HDRs comes with a few trade-offs. First, there may be other regions of the
sample space with probability between 1 − α and η, the nominal and actual probabilities of the HDRs
respectively, that are smaller than the HDR. This can happen in cases where the PDF is constant on
some set of positive measure so that p f (c) jumps discontinuously over 1− α. The 100(1− α)% quantile
interval of the Unif(0, 1) distribution, [α/2, 1− α/2], illustrates this, for instance; it contains probability
exactly 1 − α and is of length 1 − α. By contrast, the 100(1 − α)% HDR for the uniform distribution
is Rα = [0, 1] for any α, contains 100% of the distribution, and is of length 1. While this is a rare
circumstance when using density estimators, it does occur when constructing HDRs from histogram
density estimates – they always contain more than nominal probability. The second trade-off is that
HDRs are only connected sets for all α if the distribution is unimodal. This is rarely the case for density
estimators, so it is common for the lowest probability HDRs, the smallest sets, to be disconnected: two
or more intervals in 1D and unions of blobs in 2D. A third challenge is that HDRs are non-trivial to
compute. It is to this challenge that we now turn.

4 Computing highest density regions

ggdensity enables the computation and visualization of 2D HDRs based on various plug-in estimators,
extending the functionality of ggplot2. In order to understand how HDRs are computed in two
dimensions, we find it helpful to first illustrate the process in one dimension.

4.1 Computing HDRs in one dimension

Consider the challenge of computing the 95% HDR of the standard normal distribution with PDF
f (x) = ϕ(x). One way to do this might be to fix a c, determine the interval [l, u] over which ϕ(x) ≥ c,
integrate ϕ(x) over [l, u], and move c up or down depending on whether the interval contains too
much or too little probability. l and u, the boundaries of the interval where ϕ(x) ≥ c, can be determined
numerically or algebraically from ϕ(x) = c, and the integral can be done via numerical integration. fα,
the special c that provides 1 − α probability, can also be determined numerically in many ways.

Unfortunately, this method doesn’t scale well. In general, the set R f (c) will not be a simple
interval as in the normal case. It will instead be a union of an unknown number of intervals whose
boundaries are unknown and hard to determine. Once known, numerical integration can be relied

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggdensity
https://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLE 224

upon to determine the integral, but only easily in one dimension. In two or more dimensions, the
situation is significantly more complex. The region R f (c) is implicitly described, and therefore some
form of grid-based approximation would be required before numerical integration could be applied.
Notice that there are essentially two hard problems here: computing R f (c), in the sense of determining
a useful description of it, and computing p f (c).

The basic idea used by ggdensity is simple: discretize and compute. In the univariate case, the
fundamental algorithm is this:

1. Evaluate f (x) on a regular mesh {xi : i = 1, . . . N} to obtain fi = f (xi) over some interval
nominally larger than the support of the data to create a table with rows (xi, fi) for i = 1, . . . , N.

2. Normalize the points into a discrete distribution pi = fi/ ∑i fi to create the table (xi, fi, pi).

3. Sort the N rows of the table (xi, fi, pi) by pi in decreasing order to obtain (x(i), f(i), p(i)).
1

4. Compute the cumulative sum a(k) = ∑k
i=1 p(i) to create the table (x(i), f(i), p(i), a(i)).

5. Estimate fα with the first f(i) such that a(i) ≥ 1 − α.

The point masses pi of the discrete approximation are in fact the areas of the rectangles of a Riemann
(i.e. piecewise constant) approximation to f (x) collapsed to individual points: they approximate the
probability over a range such as [xi − δ/2, xi + δ/2], where δ is the resolution of the mesh. Just as
Riemann approximations converge to the true value of the integral under very minor conditions on
f (x), arbitrarily accurate approximations to fα can be obtained by setting N suitably large. Because of
this, we will refer to approximating fα as “computing” fα instead of estimating it, and our notation
will not reflect the fact that it is an approximated quantity.

With fα in hand, the HDR can be approximated in any of a number of ways that are practically
equivalent for sufficiently large N. The easiest is to simply union of intervals [xi − δ/2, xi + δ/2] such
that fi ≥ fα. Figure 3 provides an illustration of the process using a very coarse mesh to emphasize
the process.
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Figure 3: p f (c) and R f (c) are computed by discretizing the density f (x), determining the probabilities
with densities above c, and constructing HDRs as unions of intervals. In this illustration, c = .23,
yielding p f (c) = .763.

1This is actually the opposite of order statistics notation: here p(1) is the largest probability of the discretized
distribution, and x(1) is the corresponding xi value.
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Figure 4: As the mesh size N grows, the HDR approximation improves for any f (x). Here N = 100
and the 90% HDR is illustrated.

N governs the accuracy of the approximation of p f (c) and the accuracy and resolution of R f (c)
in the resulting plot. Consequently, a reasonably large number is desired: ggdensity defaults this
parameter to N = 512 in geom_hdr_rug(). Figure 4 illustrates a more complicated example with a
bimodal f where N = 100 is used so that it is still possible to see the approximation.

Two adjustments are needed to fully operationalize 1D HDRs for data: using an approximation
f̂ (x) in place of f (x) and plotting several HDRs. Fortunately, both of these are easy. In practice density
estimator implementations usually return their estimates as values of the function f̂i = f̂ (xi) on a
mesh, not as some analytic expression. Such is the case for stats::density(), for example, which
accepts a univariate vector and returns its estimated density at N = 512 points on a regular mesh a
little larger than the data. Similarly, computing several HDRs at once requires virtually no added
computational expense: HDRs are nested regions, so to find several HDRs simply continue looking
down the list of accumulated probabilities a(i) until the desired probabilities are reached. This is
illustrated in Figure 5.

Figure 5: Computing several HDRs can be done with no added computational complexity, since the
regions are nested. Here the 50%, 80%, and 90% HDRs R̂α are illustrated using an estimated density
based on n = 1000 draws.
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4.2 Finding HDRs in two dimensions

The procedure for finding Rα for bivariate data is very similar to the univariate case. The basic idea
behind the computation of HDRs in ggdensity is again to discretize f (x) = f (x, y) and compute. The
fundamental algorithm is this:

1. Evaluate f (x, y) on a fine mesh {(xi, yj) : i = 1, . . . Nx, j = 1, . . . Ny} to obtain fij = f (xi, yj)
over some rectangular region nominally larger than the support of the data to create a table
(xi, yj, fij) for i = 1, . . . , Nx and j = 1, . . . , Ny. In practice, we usually use N = Nx = Ny.

2. Normalize the points into a discrete distribution pij = fij/ ∑i,j fij to obtain the table (xi, yj, fij, pij).

3. Sort the rows of the table by pij in decreasing order to obtain (x(k), y(k), f(k), p(k)), where k =
1, . . . , Nx × Ny and the parenthetical notation is used for consistency with the univariate case.
The original order is immaterial to the algorithm.

4. Compute and append the cumulative sum a(k) = ∑k
i=1 p(i) to the table to obtain the table

(x(k), y(k), f(k), p(k), a(k)).

5. Estimate fα with the first f(k) such that a(k) ≥ 1 − α.

Similar to the univariate case, the point masses pij of the discrete approximation can be thought of
as the volumes of the rectangular prisms representing a Riemann approximation to f (x, y) collapsed
to individual points. And again, just as Riemann approximations converge to the true value of the
integral, arbitrarily accurate approximations to fα can be obtained by setting Nx and Ny suitably
large for any reasonable f (x, y). We illustrate this in Figure 6. In practice, N = Nx = Ny governs the
resolution of the HDRs in the resulting plot and is set to a suitably large number, ggdensity defaults
this parameter to 100. Note, too, that this same approach will work in three dimensions and more,
however, the computational complexity does not scale into higher dimensions well, and ggdensity
does not support 3D graphics, so we do not pursue this further here.

In one dimension, the HDR corresponding to the points for which f (x) ≥ fα is naturally described
by union of the corresponding rectangular regions of the Riemann approximation. The same could be
done in two dimensions, too, as illustrated in Figure 6, however, any contour generating algorithm
would work. ggdensity uses an implementation of marching squares provided by the isoband
package (Wilke and Pedersen, 2021). Given a rectangular array of zeros and ones, the basic function
implementing the algorithm results in parametrically-described polygonal regions whose interior
contains only the points corresponding to the 1’s. In the present setting, such an array is provided by
the table with fij ≥ fα. This is illustrated in Figure 7.

Figure 6: In two dimensions and by analogy with Figure 3, fα is computed by discretizing the density
f (x, y), and HDRs are constructed from points (xi, yj) where f (xi, yj) ≥ fα. Here α = .05 was used.
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Figure 7: Figure 6 from the plane perspective. ggdensity constructs HDRS by applying the marching
squares contouring algorithm to binary grid where fij ≥ fα provided by isolines() and isobands().

An alternative approach is worth mentioning at this point. The method described above is
essentially what Hyndman (1996) refers to as the “numerical integration approach”. However, al-
ternative approaches exist. Hyndman (1996) suggests using the simple, consistent quantile estimate
f̂α = f̂(j), where f̂(j) is the (j/n) sample quantile of { f̂ (xi, yi)} and j = ⌊αn⌋. Presented with data
(x1, y1), . . . , (xn, yn), if f (x, y) is known, any estimate of the 1 − α quantile of f (X, Y) is an estimate of
fα; this is referred to as the “density quantile approach”. Notice that this requires contours intersect at
least one data point and forces a certain proportion of observed values outside of the HDRs, regardless
of sample size. Unavailable in ggdensity, this method2 is implemented in both hdrcde (Hyndman
et al., 2021) and gghdr (O’Hara-Wild et al., 2022).

2There are many valid choices of f̂α, hdrcde and gghdr make use of stats::quantile() with type = 7 which
estimates a continuous sample quantile function with linear interpolation, a slight modification of the strategy
outlined in Hyndman (1996).
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4.3 HDRs using different density estimators

As we noted previously, sample HDRs can be computed using many density estimation methods.
Figure 8 illustrates how 95% HDRs are calculated for histogram estimators and KDEs on a sample of
size n = 1, 000 from the standard bivariate normal distribution. These use the exact same method as
previously described.
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Figure 8: ggdensity facilitates using different density estimators to determine HDRs, including
histograms (top, 11 bins in each dimension) and kernel density estimators (bottom), the default. Here
95% HDRs are illustrated using N = 25 and n = 1, 000 draws from the standard bivariate normal
distribution. The illustration refects the method of construction, not output of geom_hdr().

Figure 9 displays the output of geom_hdr() using the full range of methods available for three differ-
ent simulated data sets with different features. By default, geom_hdr() and geom_hdr_lines() plot the
50%, 80%, 90% and 95% HDRs. The methods are available in both geom_hdr() and geom_hdr_lines()
through the method argument, which allows for the specification of various nonparametric and para-
metric estimators, each offering advantages in certain contexts. For example, histogram estimators
result in HDRs that obey constrained supports. Normal estimators, i.e. the best-fit bivariate normal
estimator, can be helpful in providing simplified visuals that give the viewer a sense of where the
distributions are, potentially at the expense of over-simplifying and removing important features of
how the variables co-vary.
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Figure 9: Comparing HDRs obtained with different method arguments to geom_hdr().
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4.4 HDRs from known density functions

The same method can be used to determine the HDRs of a given density function. This is implemented
for bivariate densities in ggdensity as geom_hdr_fun() and geom_hdr_lines_fun(), both accepting
a PDF via the fun argument. Figure 10 illustrates this by plotting the HDRs of bivariate random
vector X = (X1, X2) with X1 ⊥ X2, X1 ∼ N (0, 1) and X2 ∼ Gamma(5, 3) (left), and Y ∼ fY(y1, y2) ∝

exp
{
− 1

2(.20)2 (y2
1 + y2

2 − 1)2
}

(right), which concentrates its probability along the unit circle S1. In
this case we make use of the fact that geom_hdr_fun() can find the HDRs of unnormalized PDFs. It
does so by leveraging the fact that over a given window, the discretization is not affected by whether
or not the density is normalized.

f_X <- function(x1, x2) dnorm(x1) * dgamma(x2, 5, 3)
ggplot() + geom_hdr_fun(fun = f_X, xlim = c(-4, 4), ylim = c(0, 5))

f_Y <- function(y1, y2) exp(-1/(2 * .20^2) * (y1^2 + y2^2 - 1)^2)
ggplot() +
geom_hdr_fun(fun = f_Y, normalized = FALSE, xlim = c(-4, 4), ylim = c(-4, 4)) +
coord_equal()
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Figure 10: geom_hdr_fun() can be used to plot HDRs of normalized and un-normalized known PDFs.

In both of these examples, determining the exact contours is a nontrivial proposition. However, we
have not had to derive any results regarding the distributions of X or Y to plot them or find the values
of fα – this is all been numerically approximated by ggdensity via the previously discussed “numerical
integration” method. This represents a simple, powerful tool for visualizing and understanding the
probabilistic behavior of arbitrary densities, so long as their support is roughly known.

Beyond the utility of visualizing HDRs of theoretical densities, geom_hdr_fun() and geom_hdr_lines_fun()
can be used to plot HDRs for arbitrary parametric estimates of f . We discuss this at the end of the
following section.
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5 Further examples

We conclude with a series of more advanced examples that illustrate the flexibility and power of
ggdensity through more complicated use-cases.

5.1 Comparing populations

Since geom_hdr() and geom_hdr_lines() use transparency (the alpha aesthetic) to communicate
probability, color remains available to communicate group membership in the context of more than
one population via either the fill or color aesthetics. This allows for easy comparison of multiple
bivariate populations via their HDRs. In Figure 11, we use this strategy to compare the relationship
between flipper length and bill length for different species of penguins using the popular Palmer
penguins dataset (Horst et al., 2020). In this case geom_hdr_lines() is used to reduce overplotting.

As discussed previously, ggdensity provides several nonparametric and parametric estimators to
compute the HDRs. Figure 11 assumes a bivariate normal distribution, expressed by setting method =
"mvnorm" in geom_hdr_lines(). This implies that each group’s HDRs are elliptical and the resulting
visualization is a useful approximation of the true distributions. With it we can easily see the general
location of each of the groups and that all have similar covariance structures. These details can be
obscured when more flexible non-parametric HDR estimators are used, especially when sample sizes
are small.

ggplot(penguins, aes(flipper_length_mm, bill_length_mm, fill = species)) +
geom_hdr_lines(aes(color = species), method = "mvnorm") +
geom_jitter(shape = 21)
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Figure 11: Using geom_hdr_lines() with a color aesthetic can be used to reduce overplotting when
visualizing the HDRs for different subgroups of data.

5.2 HDRs and goodness of fit

It can be useful to combine geom_hdr() and geom_hdr_lines() to compare different estimators of f . A
powerful example is plotting elliptical contour lines corresponding to an estimated normal model on
top of filled contours of the KDE, facilitating a visual exploration of goodness of fit. We have included
two examples of this strategy in Figure 12. The left graphic illustrates bill length versus flipper length
for the Chinstrap penguins from Figure 11. Notice that the filled contours generally match the contour
lines, providing visual evidence towards the validity of an assumption of normality. By contrast, the
right graphic explores the relationship between two measurements from a dataset comparing 178
wines from Forina et al. (1986) exported as wines in sn (Azzalini, 2022). The filled contours do not
coincide with the contour lines – the nonparametric estimate of the density is visibly more skewed –
indicating that a normal approximation might not be appropriate for this data.
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penguins |>
filter(species == "Chinstrap") |>
ggplot(aes(flipper_length_mm, bill_length_mm)) +
geom_hdr() +
geom_hdr_lines(color = "red", method = "mvnorm") +
geom_jitter(color = "red")

ggplot(wines, aes(uronic, malic)) +
geom_hdr() +
geom_hdr_lines(method = "mvnorm", color = "red") +
geom_jitter(color = "red")
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Figure 12: Normality can be visually assessed by layering the HDRs of a KDE (black) with that of a
parametrically estimated bivariate normal (red), here illustrated with Palmer penguin data (left) and
wines data (right). The points in each plot have been jittered due to rounding in the data, notice that
this leads to small inconsistencies between the plotted data and HDRs.

This strategy can be extended to evaluating goodness of fit for arbitrary parametric models
via combining geom_hdr() and geom_hdr_lines_fun(), following the strategy outlined in HDRs for
arbitrary parametric models.

5.3 Other related geoms

ggdensity also includes functions geom_hdr_points() and geom_hdr_rug() for alternative methods of
visualizing HDRs3. These are illustrated in Figure 13, in which we visualize the old faithful dataset
(Azzalini and Bowman, 1990). The left image displays the standard visualization of HDRs from
geom_hdr(). The graphic in the middle, created by geom_hdr_points(), displays the data itself with
points colored by their HDR membership–this can be useful in situations where overplotting is a
concern. The plot on the right presents the original data with the estimated marginal HDRs via
geom_hdr_rug(). Note that the scale is the same across all of the plots, with the 50%, 80%, 95%, and
99% HDRs being visualized by default.

p <- ggplot(faithful, aes(eruptions, waiting))

p + geom_hdr()
p + geom_hdr_points()
p + geom_hdr_rug()

3The previously mentioned gghdr includes similar tools, we discuss this further in Discussion and future
directions.
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Figure 13: geom_hdr_points() and geom_hdr_rug() can provide more insight into bivariate scatter-
plots, as seen here with the faithful dataset.

It is important to note that geom_hdr_rug() can also be used when only an x or y aesthetic is
provided. This is illustrated in Figure 14 where the KDE of eruption duration is visualized alongside
its estimated HDRs. In this graphic we have chosen to communicate the HDRs via colors – in some
cases we have found this to be preferable when using geom_hdr_rug().

ggplot(faithful, aes(eruptions)) +
geom_density() +
geom_hdr_rug(aes(fill = after_stat(probs)), length = unit(.05, "npc"), alpha = 1) +
scale_fill_viridis_d(option = "magma", begin = .8, end = 0)

Figure 14: geom_hdr_rug() can also improve the visualization of univariate densities.

5.4 HDRs for arbitrary parametric models

Historically, there has been much focus on contour estimation based on non-parametric estimates of
f , typically KDEs. To our knowledge, there has been relatively little focus on parametric estimation
of HDRs. If a probability model is specified, estimated HDRs are simple to derive from f̂MLE, the
density’s maximum likelihood estimator (MLE). This allows for the visualization of a much larger
class of HDR estimators than those built into geom_hdr(); users can specify and estimate arbitrary
parametric models and provide the resulting density estimate to geom_hdr_fun().

We include an example of HDRs corresponding to a custom estimated parametric density in
Figure 15. Here we generated n = 100 draws from a bivariate exponential distribution (X, Y) ∼
f (x, y|θ) = Exp(θ), estimated θ with its MLE, and passed the resulting estimate f̂ (x, y) = f (x, y|θ̂) to
geom_hdr_fun() via the fun argument.
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set.seed(1)

df <- data.frame(x = rexp(100, 1), y = rexp(100, 1))

# pdf for parametric density estimate
f <- function(x, y, lambda) dexp(x, lambda[1]) * dexp(y, lambda[2])

# estimate parameters governing joint pdf
lambda_hat <- apply(df, 2, mean)

ggplot(df, aes(x, y)) +
geom_hdr_fun(fun = f, args = list(lambda = lambda_hat)) +
geom_point(fill = "lightgreen", shape = 21) +
coord_fixed() +
scale_x_continuous(limits = c(0, 7)) +
scale_y_continuous(limits = c(0, 7))

0

2

4

6

0 2 4 6

Figure 15: Plotting HDRs of specified distributions can be achieved with geom_hdr_fun().

6 Discussion and future directions

As described in Finding HDRs in two dimensions, ggdensity approximates sample HDRs via the
numerical integration approach, unlike other software such as hdrcde and gghdr that both rely on
the quantile approach (Hyndman, 1996). In practice the two approaches perform similarly, although
there are several technical ways in which they differ. One example is that HDRs estimated via sample
quantiles are not guaranteed to contain a certain proportion of estimated density, even if p f̂ (c) is strictly

decreasing. In other words, there is no guarantee that
∫
R̂α

f̂ (x) dx = 1 − α when R̂α is determined
using f̂α computed via the quantile method. Additionally, as the quantile method requires a sample
from f it is not possible to calculate HDRs from arbitrary densities as in geom_hdr_fun(). Historically,
the density quantile approach has been favored due to computational limitations associated with
numerical integration (Hyndman, 1996). However, with modern computing power, this is not a
concern anymore – we have found ggdensity to be very performant.

With both ggdensity and gghdr being extensions to ggplot2 for visualizing HDRs there is overlap
in their capabilities. There are analogs to geom_hdr_rug() and geom_hdr_points() implemented as
gghdr::geom_hdr_rug() and the helper function gghdr::hdr_bin(), respectively. From the user’s
perspective these implementations are similar, with ggdensity offering HDRs estimated via different
methods. A more serious distinction between the two is that gghdr does not provide a way to plot
bivariate HDRs in a way similar to geom_hdr() or geom_hdr_lines(). At present, ggdensity is the only
package that facilitates the visualization of bivariate HDR contours with ggplot2.

Another important difference is that both gghdr and hdrcde implement visualizations of con-
ditional HDRs, something we plan on implementing in ggdensity in the future. These allow users
to make visuals similar to regression-style modeling bands. We also plan on extending ggdensity’s
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capabilities to plot univariate HDRs, implementing something similar to ggdensity::geom_hdr_rug()
for the main plotting window; this will result in a tool similar to gghdr::geom_hdr_boxplot(). This
future feature also bears resemblance to the stat_slabinterval() family from ggdist, another ggplot2
extension for visualizing densities and their estimates (Kay, 2023). Finally, we also look to implement
more density estimators available via the method argument, for example skew-normal and mixture
models.
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Three-Way Correspondence Analysis in R
by Rosaria Lombardo, Michel van de Velden, and Eric J. Beh

Abstract Three-way correspondence analysis is a suitable multivariate method for visualising the
association in three-way categorical data, modelling the global dependence, or reducing dimensionality.
This paper provides a description of an R package for performing three-way correspondence analysis:
CA3variants. The functions in this package allow the analyst to perform several variations of this
analysis, depending on the research question being posed and/or the properties underlying the data.
Users can opt for the classical (symmetrical) approach or the non-symmetric variant - the latter is
particularly useful if one of the three categorical variables is treated as a response variable. In addition,
to perform the necessary three-way decompositions, a Tucker3 and a trivariate moment decomposition
(using orthogonal polynomials) can be utilized. The Tucker3 method of decomposition can be used
when one or more of the categorical variables is nominal while for ordinal variables the trivariate
moment decomposition can be used. The package also provides a function that can be used to choose
the model dimensionality.

1 Introduction

In many applications, one encounters problems where detecting and describing the association
between three categorical variables is of interest. For example, one may wish to analyse animal counts
stratified by species-by-site-by-time, treatment success stratified by cure-by-therapy-by-hospital,
customer satisfaction-by-service’s quality-by-country, or two interacting genes in expression under
the genotypes of another gene. One method specifically designed for analysing such data is three-way
correspondence analysis (Carlier and Kroonenberg, 1996). For this method of analysis, a three-way
contingency table is decomposed in such a way that the maximum amount of association is reflected
in a low-dimensional display. Depending on the underlying data, and the research questions being
asked, there are various ways to quantify and decompose the association in the table, generate a visual
display of the association and calculate the accompanying numerical summaries. Hence, several
variants of three-way correspondence analysis exist. Common among all the variants that we describe
below is the emphasis that is placed on data exploration through the visualization of the associations.

There exists a sizable body of literature that examines the various theoretical properties and
extensions of three-way correspondence analysis. For example, Kroonenberg (1989), Carlier and
Kroonenberg (1996), Kroonenberg (2008, Chap. 17), Beh and Lombardo (2014, Chap. 11) and Lombardo
et al. (2021) discuss a wide range of issues concerned with this technique. However, there also appears
to be only a few applications that use these techniques (Carlier and Kroonenberg, 1998; van Herk
and van de Velden, 2007; Lombardo et al., 2019). One reason for the lack of applications could be the
absence of R software packages to perform three-way correspondence analysis.

In this paper, we introduce CA3variants, a comprehensive R package that allows researchers to
apply variants of three-way correspondence analysis. In Section 2.2, we introduce the notation that
we adopt as well as two key measures of association - Pearson’s three-way phi-squared statistic and
Marcotorchino’s three-way index. These measures lie at the core of the three-way correspondence
analysis variants that we describe below. In Section 2.3 we present three methods for decomposing a
three-way contingency table, with a particular focus on the appropriateness of the different variants.
In Section 2.4 we show how the two association measures above, can be partitioned in bivariate and
trivariate association terms, and how can be used to define variants of three-way correspondence
analysis, and we consider specific issues concerned with the visualization and selection of the di-
mensionality of the three-way correspondence analysis solution. In Section 2.5, we briefly review the
software that is currently available for three-way analyses. In Section 2.6, we introduce our three-way
correspondence analysis package, CA3variants, and illustrate its features and application through
some illustrative examples. Some final comments are left for Section 2.7.

2 Measures of three-way association

Three-way correspondence analysis provides a numerical and graphical summary of how categories
and variables are related to one another. Rather than only considering the bivariate associations
between pairs of variables, three-way correspondence analysis also considers the trivariate associations
(Lombardo et al., 2021).

When performing three way correspondence analysis, the dependence structure of the three
categorical variables that are cross-classified to form a contingency table is analysed by considering
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an appropriate measure of association. This measure can then be partitioned to reveal more detail
about the nature of the association that exists between the variables. Two measures of association are
implemented in the CA3variants package: Pearson’s phi-squared statistic and Marcotorchino’s index.
Pearson’s three-way statistic is appropriate when studying deviations from three-way independence
and when the variables are symmetrically associated, while Marcotorchino’s three-way index is a
more suitable choice when the variables are not symmetrically associated. Depending on the choice
of the measure of association used, the appropriately scaled three-way table can be decomposed
into (low-dimensional) components for each of the variables. Before discussing these three-way
decomposition methods, we first introduce the notation used throughout this paper. We then provide
a brief description of Pearson’s phi-squared statistic and Marcotorchino’s index.

2.1 Notation

Suppose we have data from a sample of n subjects on three categorical variables. Such data can be
represented by a three-way contingency table consisting of I rows, J columns and K tubes, where each
cell value represents the count within an intersection of the levels of each of the three variables.

Denote N to be the contingency table of order I × J × K belonging to the space ℜI×J×K , subscripted
by i, j and k for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K, whose (i, j, k)th term is nijk, while
P is the table of joint relative frequencies of N whose (i, j, k)th term is pijk = nijk/n, such that

∑I
i=1 ∑J

j=1 ∑K
k=1 pijk = 1. Define pi•• = ∑J

j=1 ∑K
k=1 pijk, p•j• = ∑I

i=1 ∑K
k=1 pijk, p••k = ∑I

i=1 ∑J
j=1 pijk,

pij• = ∑K
k=1 pijk, pi•k = ∑J

j=1 pijk and p•jk = ∑I
i=1 pijk to be the univariate and bivariate marginal

relative frequencies of the three-way contingency table. In addition, define II to be the identity matrix
of order I × I in the space ℜI , and let DI , DJ , DK be the diagonal matrices containing the univariate
marginal relative frequencies in ℜI , ℜJ and ℜK whose general term is pi••, p•j• and p••k, respectively.

2.2 Pearson’s three-way statistic

When the association between the categorical variables of a three-way contingency table, N, is con-
sidered to be symmetric, we can analyse the strength of this association using Pearson’s three-way
phi-squared statistic

Φ2 =
I

∑
i=1

J

∑
j=1

K

∑
k=1

pi••p•j•p••k

(
pijk − pi••p•j•p••k

pi••p•j•p••k

)2

(1)

=
I

∑
i=1

J

∑
j=1

K

∑
k=1

pi••p•j•p••k

(
pijk

pi••p•j•p••k
− 1

)2

=
I

∑
i=1

J

∑
j=1

K

∑
k=1

pi••p•j•p••k

(
πPijk

)2
.

The symmetric nature of this measure implies that the three variables are all treated as predictor
variables. That is, none are deemed to be dependent on the outcome of any other variable being
studied. It can be shown that, under the independence assumption, Φ2 can be partitioned as

Φ2 =
I

∑
i=1

J

∑
j=1

pi••p•j•

(
pij• − pi••p•j•

pi••p•j•

)2

+
I

∑
i=1

K

∑
k=1

pi••p••k

(
pi•k − pi••p••k

pi••p••k

)2
(2)

+
J

∑
j=1

K

∑
k=1

p•j•p••k

(
p•jk − p•j•p••k

p•j•p••k

)2

+
I

∑
i=1

J

∑
j=1

K

∑
k=1

pi••p•j•p••k

(
pijk −α pijk

pi••p•j•p••k

)2

,

where

α p̂ijk = p̂ij• p̂••k + p̂i•k p̂•j• + p̂•jk p̂i•• − 2p̂i•• p̂•j• p̂••k . (3)

For further details see Carlier and Kroonenberg (1996) and Lombardo et al. (2020). Briefly, we get

Φ2 = Φ2
I J + Φ2

IK + Φ2
JK + Φ2

I JK . (4)

Observe that this partition also concerns Pearson’s chi-squared statistic, X2, (Lancaster, 1951; Lom-
bardo et al., 2020) obtained by multiplying each of the terms of phi-squared in equation (4) by the
sample size, n. Indeed, Pearson’s chi-squared statistic is well established for testing association
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between variables in contingency tables. Hence, deviations from three-way independence can be
orthogonally partitioned into three deviations from independence (for each of the two-way tables
formed by summing over each variable of the three-way contingency table) and a three-way associa-
tion term, as it will be shown in Section 2.6.1. This partition has been extensively discussed by Carlier
and Kroonenberg (1996) and more recently by Kroonenberg (2008, Chap. 17), Loisel and Takane (2016)
and Lombardo et al. (2020).

2.3 Marcotorchino’s three-way index

If the three categorical variables are non-symmetrically associated, or if one is interested in exploring
an non-symmetric association between the variables, a more appropriate measure is the three-way
Marcotorchino index. This index is defined by

τM =
∑I

i=1 ∑J
j=1 ∑K

k=1 p•j•p••k

(
pijk

p•j•p••k
− pi••

)2

1 − ∑I
i=1 p2

i••
. (5)

See, for example, Marcotorchino (1984a,b), Lombardo et al. (1996), Beh et al. (2007), Beh and
Lombardo (2014, Section 11.4.2) and Beh and Lombardo (2021b, Section 7.5). Since the denominator
of equation (5) is independent on the cell values of N, the numerator of the Marcotorchino index
suffices as a measure of association when performing three-way correspondence analysis. This
numerator measures the absolute increase in predictability of the response variable, given the predictor
variables (Marcotorchino, 1985; Lombardo et al., 1996). Like Pearson’s three-way phi-squared statistic,
Marcortorchino’s index is based on deviations from the three-way independence model. Without loss
of generality, assume that the row variable is considered to be dependent on the column and tube
variables. In doing so, the numerator of equation (5), which we shall simply refer to as Marcotorchino’s
τMnum statistic, is equal to

τMnum =
I

∑
i=1

J

∑
j=1

K

∑
k=1

p•j•p••k

(
pijk

p•j•p••k
− pi••

)2

(6)

=
I

∑
i=1

J

∑
j=1

K

∑
k=1

p•j•p••k

(
πMijk

)2
.

As in the symmetric case, an additive orthogonal partition of τMnum exists and is given by

τMnum =
I

∑
i=1

J

∑
j=1

p•j•

(
pij•
p•j•

− pi••

)2

+
I

∑
i=1

K

∑
k=1

p••k

(
pi•k
p••k

− pi••

)2

+
1
I

J

∑
j=1

K

∑
k=1

p•j•p••k

(
p•jk − p•j•p••k

p•j•p••k

)2

+
I

∑
i=1

J

∑
j=1

K

∑
k=1

p•j•p••k

(
pijk −α pijk

p•j•p••k

)2

, (7)

where

α pijk = p̂ij• p̂••k + p̂i•k p̂•j• +
p̂•jk

I
− p̂i•• p̂•j• p̂••k − p̂•j•

p̂••k
I

.

The partition of τMnum may be more simply expressed as

τMnum = τI J + τIK + τJK + τI JK . (8)

Hence, like Pearson’s three-way phi-squared statistic, τMnum (and hence the total predictability mea-
sure τM) is partitioned into four additive terms. The first three of these terms reflect the two-way
associations and the fourth term reflects the three-way association. The first two bivariate terms of
equation (8) are equal to the numerators of the Goodman-Kruskal indices (Goodman and Kruskal,
1954) between the response (row) variable and each of the two predictor (column and tube) variables,
respectively. These terms are also equal to the inertias of the marginal two-way tables in classical
two-way non-symmetric correspondence analysis (Lauro and D’Ambra, 1984; D’Ambra and Lauro,
1989; Kroonenberg and Lombardo, 1999; Takane and Jung, 2008). The third bivariate term of (8) is (up
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to the constant 1/I) equal to Φ2
JK , which is Pearson’s phi-squared statistic for the J × K contingency

table formed by aggregating over the row categories. This term can be seen as a measure of the
symmetric association between the two predictor variables. Finally, the last term of equation (8) is
a measure of the trivariate association between the variables. Beh et al. (2007) showed that the test
statistic associated with Marcotorchino’s three way index is the generalization of the C-statistic (Light
and Margolin, 1971), referred to here as the CM-statistic, and is defined by

CM = (n − 1) (I − 1) τM ∼ χ2
α,d f . (9)

Therefore, for both Pearson’s three-way chi-squared statistic and Marcotorchino’s three-way τM
statistic, under the null hypothesis of complete independence, each term of the partition is a chi-
squared random variable. For further details see Light and Margolin (1971), Beh et al. (2007), Beh and
Lombardo (2014, Section 11.5.2) and Beh and Lombardo (2021b, Section 7.5.2).

3 Decomposing three-way tables

The choice of which measure of association to use should be made based on the data at hand and the
research question under investigation. Depending on the choice, an appropriately scaled matrix can be
constructed. Three-way correspondence analysis can then be performed and involves fitting a model
to the data. In particular, low-dimensional component matrices as well as a core matrix that links the
different components, are fitted to the data in such a way that the sum-of-squares of the deviations
between the low-dimensional approximation and the original table is as small as possible.

Several decomposition models have been proposed in the literature for three-way contingency
tables. In the CA3variants package three types of decomposition are implemented. They are the
Tucker3 model (Tucker, 1963; Kroonenberg, 1983, 2008; Kiers et al., 1992) for when all three variables
are nominal, the trivariate moment decomposition (Lombardo et al., 2016b, 2021) for when all three
variables are ordinal, and a hybrid decomposition for a mix of nominal and ordinal categorical variables
(Lombardo and Beh, 2017). In the following subsections, we briefly review these decomposition
methods and how they apply to the different variants of three-way correspondence analysis.

3.1 Tucker3 decomposition for three-way tables

For the Tucker3 decomposition, a three-way matrix X with elements xijk is decomposed such that

xijk =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqraipbjqckr + eijk ,

where P, Q and R (P ≤ I, Q ≤ J, R ≤ K) are the fixed number of the components corresponding to the
row, column and tube variables, respectively. The aip, bjp and ckp values are elements of the column
matrices A, B and C, respectively, and give component loadings for the row, column and tube variables,
while gpqr is an element of the P × Q × R core array. The term eijk is the error of approximation. By
“flattening” the three-way matrix X – for example, by concatenating the K tubes of X – we can write
the Tucker3 decomposition in matrix form by

Tucker3 (X) = AG
(

BT ⊗ CT
)
+ E , (10)

where X and G are, respectively, the I × JK matrix of (flattened) data values and the P × QR matrix of
core elements.

The solution to A, B, C and G is obtained by minimizing the sum-of-squares of the elements of
E (matrix of the errors of approximation) using an alternating least-squares algorithm. The general
framework of the algorithm that CA3variants uses is based on the Tuckals3 alternating least squares
algorithm discusssed by Kroonenberg and Leeuw (1980) and Kroonenberg (1983, 1994).

Symmetric three-way correspondence analysis

For symmetric three-way correspondence analysis, the elements of Pearson’s three-way phi-squared
statistic are decomposed using a Tucker3 decomposition. In particular, the Tucker3 decomposition is
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applied to the appropriately scaled three-way array ΠP with elements

πPijk =
pijk

pi••p•j•p••k
− 1 , (11)

where the component matrices, A, B and C are constrained to be orthonormal with respect to the
diagonal matrices of univariate marginal relative frequencies such that

ATDIA = IP , BTDJB = IQ , and CTDKC = IR . (12)

Note that the weighted sum-of-squares of the elements of πPijk is equal to Pearson’s three-way phi-
squared statistic; see equation (1). In other words, the symmetric variant of three-way correspondence
analysis amounts to minimizing the weighted squared differences between the standardized deviations
of independence in the three-way table with the approximated values using the Tucker3 model. That
is:

I

∑
i=1

J

∑
j=1

K

∑
k=1

pi••p•j•p••k

(
πPijk − π̂Pijk

)2
,

is minimized where, for some value of P, Q and R

π̂Pijk =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqraipbjqckr .

The constraints of equation (12) are similar to the constraints used in the traditional approach to simple
(two-way) correspondence analysis. Consequently, symmetric three-way correspondence analysis can
be seen as a direct extension of the traditional two-way correspondence analysis approach. For more
details see, for example, Carlier and Kroonenberg (1996).

Non-symmetric three-way correspondence analysis

For non-symmetric three-way correspondence analysis, one variable needs to be selected as the
response variable. In the following discussion we choose, without loss of generality, the first (row)
variable to serve as the response variable. When performing non-symmetric three-way correspondence
analysis, we use the Tucker3 decomposition to decompose Marcotorchino’s three-way τMnum statistic
defined by equation (6). Let ΠM represents the three-way matrix with elements

πMijk =
pijk

p•j•p••k
− pi•• . (13)

Non-symmetric three-way correspondence analysis is then performed by applying the Tucker3
decomposition to ΠM where the components contained in the row, column and tube matrices A, B
and C, are constrained to be orthornormal with respect to the weight matrices II , DJ , DK . That is,

ATA = IP , BTDJB = IQ , and CTDKC = IR .

Note that, for the decomposition of ΠM, these constraints ensure that the weighted quadratic
norm of the low-dimensional approximation Π̂M, can be written as

∥Π̂M∥2 = τMnum =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

g2
pqr .

3.2 Trivariate moment decomposition

Rather than considering component matrices as the Tucker3 decomposition does, the trivariate moment
decomposition is based on column matrices consisting of orthogonal polynomials. The decomposition
was first proposed by Beh (1998b, Chap. 7) and has since been described by, for example, Beh and Davy
(1998), Lombardo et al. (2016b) and Lombardo et al. (2021, eq. 10), as an alternative method of three-way
decomposition. It is particularly useful when a variable consists of ordered categories, either increasing
or decreasing. The decomposition can be applied to either ΠP or ΠM and allows the researcher to
incorporate the ordinality by replacing the Tucker3 components with the orthogonal polynomials
for the ordinal variable. These polynomials are typically generated using the three-term recurrence
formulae of Emerson (1968) who demonstrated their computational efficiency when compared with
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the Gram-Schmidt orthogonalization process. Refer to Beh (1997, 1998a,b) and Beh and Lombardo
(2021a) for a definition and properties of these polynomials when performing correspondence analysis.

To form the polynomial basis space we generate as many orthogonal polynomials as there are
ordered categories. The matrix of row, column and tube orthogonal polynomials is denoted by
A = {αiu}, (for i = 1, . . . , I and u = 0, . . . , I − 1), B = {β jv} (for j = 1, . . . , J and v = 0, . . . , J − 1)
and C = {γkw} (for k = 1, . . . , K and w = 0, . . . , K − 1), respectively. Like the Tucker3 components,
when a symmetric variant of three-way correspondence analysis is performed, the row polynomials
are orthogonal with respect to the marginal relative frequencies pi••, while the column and tube
polynomials are orthogonal with respect to p•j• and p••k, respectively. In general, the first polynomial
that is computed for each ordered variable of the three-way table represents the zeroth-order polynomial
and is equal to 1 when in its normalized state. The second polynomial is the first-order polynomial
and reflects the variation in the linearity of the categories. The third polynomial is the second-order
orthogonal polynomial and reflects the variation in the dispersion of the categories. Higher-order
polynomials represent higher-order moments of the ordered categories. These polynomials have been
used extensively in the correspondence analysis literature. For more information, see, for example,
Beh (1997, 1998a), Beh and Lombardo (2014, p. 94), Lombardo et al. (2016a) and Beh and Lombardo
(2021b, Chap. 4).

When using the trivariate moment decomposition for symmetric and non-symmetric three-way
correspondence analysis, the decomposition of the arrays ΠP and ΠM is defined by replacing the
matrices of components A, B and C (see equation (10)) with their orthogonal polynomial equivalents.
In particular, for the non-symmetric case and given the different row weights, we consider α∗

u = p1/2
i•• αu,

βv and γw such that

πMijk =
U

∑
u=0

V

∑
v=0

W

∑
w=0

z̃uvwα∗iuβ jvγkw . (14)

For the decomposition given by equation (14), the row polynomials are weighted such that ∑I
i=1 α∗2

iu =

1 while the column and tube polynomials are weighted so that ∑J
j=1 p•j•β2

jv = 1 and ∑K
k=1 p••kγ2

kw = 1,
respectively. Note that the indices u, v, w are from 0 to U, V and W (where U ≤ I − 1, V ≤ J − 1,
W ≤ K − 1), respectively, and correspond to the orders of the polynomials. The z̃uvw value in equation
(14) is analogous to the core element gpqr in the nominal case and is therefore referred to as the
polynomial core element and is defined by

z̃uvw =
I

∑
i=1

J

∑
j=1

K

∑
k=1

πMijk p•j•p••kα∗iuβ jvγkw ,

and is of order (u, v, w). Such a term has also been referred to as a generalized correlation. See, for
example, Rayner and Beh (2009), Beh and Lombardo (2014, Chap. 6) and Beh and Lombardo (2021b,
Chap. 5). Observe that, unlike the Tucker3 decomposition given by equation (10), the trivariate
moment decomposition has a closed form that justifies the absence of the error of approximation in
equation (14).

3.3 Hybrid decomposition for nominal and ordinal variables

The hybrid decomposition involves computing Tucker3 components for the nominal variables, and
orthogonal polynomials for the ordinal variables (Lombardo and Beh, 2017; Lombardo et al., 2021).
Generally for the analysis of three-way contingency tables, we distinguish the following two cases:
1) there are two ordinal variables and one nominal variable, and 2) there are two nominal variables
and only one ordinal variable. Suppose we consider the case where we have a three-way contingency
table in which the row and column variables are ordinal and the tube variable is nominal. Then the
hybrid decomposition, for case 1, involves calculating the polynomials for the row and column variables
and the Tucker3 components for the nominal tube variable. When the row variable is treated as a
response variable, three-way non-symmetric correspondence analysis can be performed using the
hybrid decomposition of πMijk such that

πMijk = π̂Mijk + eijk

=
U

∑
u=0

V

∑
v=0

R

∑
r=1

zuvrα∗iuβ jvckr + eijk . (15)
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Here α∗
u and βv are the uth order row and vth order column polynomials, respectively, while cr is the

rth tube (Tucker3) component. The value of zuvr in equation (15) is defined by

zuvr =
I

∑
i=1

J

∑
j=1

K

∑
k=1

πMijk p•j•p••kα∗iuβ jvckw ,

and is referred to as the hybrid core element of order (u, v, r). While the number of orthogonal
polynomials for the rows and columns should always be equal to the number of categories that
define the variable (see Section 2.3.2), the number of Tucker3 components for the tube variable can be
smaller (R ≤ K). A complete orthogonal decomposition is always used when all the three variables
are ordered, as it is for equation (14), but is seldom used in practice when the variables are not
all ordered. Like the Tucker3 decomposition (see equation (10)) and unlike the trivariate moment
decomposition (see equation (14)), the hybrid decomposition given by equation (15) includes the error
of approximation, eijk, because the decomposition no longer has a closed form solution because of the
presence of the Tucker3 components.

4 Three-way correspondence analysis variants

Combining the two measures of three-way association described in Section 2.2 with the three methods
for decomposing three-way tables outlined in Section 2.3 gives four variants of three-way correspon-
dence analysis:

• Symmetric three-way correspondence analysis: this analysis is based on the partition of Pear-
son’s three-way phi-squared statistic and the Tucker3 decomposition of ΠP. It executes three-
way correspondence analysis by treating all variables symmetrically and corresponds to the
analysis described by Carlier and Kroonenberg (1996).

• Non-symmetric three-way correspondence analysis: this corresponds to partitioning Marco-
torchino’s three-way statistic and applies a Tucker3 decomposition to ΠM. In this analysis, one
of the three variables is treated as a response variable and the other two are treated as predictor
variables (Lombardo et al., 1996).

• Ordered symmetric three-way correspondence analysis: for this analysis, either the trivariate
moment decomposition (if all variables are ordinal) or the hybrid decomposition (if one or
two of the three variables are ordinal) is applied to ΠP leading to the partition of Pearson’s
three-way phi-squared statistic (Lombardo et al., 2021).

• Ordered non-symmetric three-way correspondence analysis: this analysis is based on the
trivariate moment decomposition (if all variables are ordinal) or the hybrid decomposition (if
one or two of the three variables are ordinal) of ΠM and leads to the partition of Marcotorchino’s
three-way index. Hence, in this analysis one variable is treated as the response variable and the
other two are treated as predictor variables.

These four variants of three-way correspondence analysis are incorporated into the CA3variants
package.

4.1 Visualizing three-way correspondence analysis solutions

Like the traditional approach to two-way correspondence analysis, visualization in three-way corre-
spondence analysis is an important feature and helps to provide a descriptive analysis of the data. To
visually display the (symmetric or non-symmetric) association that exists among the variables we con-
sider the interactive biplot (Carlier and Kroonenberg, 1996), also called as nested biplot by Kroonenberg
(2008, p. 441). In the interactive biplot, the categories of one variable, referred to as a reference variable,
are jointly visualized with all pair-wise combinations of the categories of the other two variables.
Hence, depending on the choice of reference variable, we can distinguish three different interactive
coordinates: row-column, row-tube and column-tube interactive coordinates.

To see how this works, and why the resulting visualizations are indeed biplots, note that all four
three-way correspondence analysis variants described in Section 2.4 yield three sets of “coordinates”
(one for each variable), as well as an array of core elements that describe the strength of association
between these values. Differences between variants can be described in terms of the different measures
of association under consideration (i.e., Pearson’s three-way phi-squared statistic or Marcotorchino’s
index), the orthogonalization constraints adopted, or the type of decomposition (i.e., Tucker3, trivariate
moment decomposition or hybrid decomposition) used.

Recall that the general form of the Tucker3 decomposition is given by equation (10). As we
described above, this matrix formulation is based on a “flattened” version of the three-way matrices
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that involves the concatenation of the categories of a variable. In fact, the concatenation of a variable
that leads to the P × Q × R approximation can be seen in the following three ways

XJK,I = (B ⊗ C)G1AT

XIK,J = (A ⊗ C)G2BT (16)

XI J,K = (A ⊗ B)G3CT .

Note that these arrangements have no influence on the approximated values of X. The subscripted
and flattened G’s indicate that, although their elements are the same, the organization differs between
them. Each of the formulations in equation (16) constitutes a biplot. To show this, suppose we consider
the decomposition of XJK,I . Then the rows of (B ⊗ C)G1 are the principal coordinates of the pair-
wise combinations of columns and tubes categories of X. Hence, plotting these jointly with the row
standard coordinates contained in the rows of A provides the analyst with a biplot interpretation of
the association. For an extensive discussion of biplot interpretations in the context of correspondence
analysis see, for example, Greenacre (2010) and Gower et al. (2011, Chapters 7 and 8). For a more
general treatment of data visualizations in dimension reduction methods, see Gower et al. (2014).

For each approximation in equation (16), the interactive coordinates can be expressed in either their
standard or principal form (whose features are the same of those derived for biplots in the classical
approach to correspondence analysis) and so leads to two types of interactive biplots:

• For the first type of interactive biplot, we can factorize each equation in such a way that the
categories for the non-interactive variable are displayed using standard coordinates so that they
are orthonormal with respect to the appropriate metric. Therefore, observing the combination
of categories from the other two variables (which constitutes the “interactive” structure of the
categories) are defined using principal coordinates (Kroonenberg, 2008, p. 273). Algebraically,
this choice simply means that the interactive coordinates are a form of principal coordinates.
They are calculated from the Kronecker product of two component matrices (for example, B and
C) multiplied by the appropriate G matrix (for example, G1). When displaying the standard
coordinates of the non-interactive variable, the points are often displayed as a projection from
the origin to their position defined by their standard coordinate.

• For the second type of interactive biplot, the G matrix is applied to the non-interactive variable.
Hence, the categories for this variable are displayed in terms of their principal coordinates while
the coordinates corresponding to the combination of categories from the other two variables
(i.e., the interactive coordinates) are depicted as standard coordinates (Lombardo et al., 2021).

4.2 Selecting the number of components

The three-way decompositions described in Section 2.3 require a chosen number of components (P,
Q and R) for each of the variables of N. A common approach is to consider various solutions for
the components, resulting in different values of dimensionality (i.e., values of P, Q and R) and then
inspect their appropriateness using a goodness-of-fit (or a lack-of-fit) measure with respect to the
degrees-of-freedom of the approximation obtained from these solutions. By increasing the number of
components the model becomes more complex but the goodness-of-fit of the model improves. Hence,
by considering a goodness- (or lack-) of-fit measure for different model complexities, the trade-off
between model fit and model complexity can be assessed.

Unfortunately, there is no “best” way to determine the optimal trade-off between model fit and
model complexity. Often, the choice of what dimensionality to select is made by visually inspecting a
plot of the goodness-of-fit against the degrees-of-freedom of the model. One such plot is a scree-like
plot and selecting the desired dimensionality is made by using a variety of strategies including simply
looking for an “elbow”. One may also select the dimensionality by observing where the “elbow” lies
in the lower boundary of the convex hull (Kroonenberg and Oort, 2003; Murakami and Kroonenberg,
2003; Kroonenberg, 2008). Scree-like plots can also be considered by using a measure of goodness-
(or lack-) of-fit on the y-axis and the degrees of freedom (or the number of free parameters) on the
x-axis. In this case, the analyst selects a model on or close to the “elbow” near the upper boundary of
the convex hull (Timmerman and Kiers, 2000; Ceulemans and Kiers, 2006).

To aid in the visual detection of an “elbow” in the convex hull, Ceulemans and Kiers (2006)
introduce the st-criterion which looks at the smallest angle on the convex hull and allows one to choose
a model on the higher (lower) boundary of the convex hull, with the best balance of goodness-(or lack-)
of-fit and df (or free parameters). Given the goodness-fit-value, f , and the model complexity-value,
d f , the st criterion for a model of dimensionality l can be written as

st(l) =
(

f (l)− f (l − 1)
d f (l)− d f (l − 1)

)
/
(

f (l + 1)− f (l)
d f (l + 1)− d f (l)

)
. (17)
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The number of models to consider when constructing the convex hull depends on the choice of
dimensionality, l, made, since there are as many models available to consider as there are combinations
of the three dimensions.

In addition to evaluating the goodness-of-fit for the different models, it may also be insightful to
asses how stable models of certain dimensionalities are. This can be done by first applying re-sampling
procedures to the three-way tables and then considering the resulting convex hulls. Several ways to
facilitate such an assessment have been implemented in the CA3variants package. More details of the
relevant functions and options can be found in Section 2.6.

5 Related software

Currently, there are no packages available in R devoted to three-way correspondence analysis. How-
ever, the R packages PTAk (Leibovici, 2010), ThreeWay (Giordano et al., 2014), rTensor (Li et al., 2018),
multiway (Eilers, 2019), psych (Revelle, 2018), tensorA (Statnikov, 2018), mvoutlier (Zhou, 2019) and
irlba (Hoffman, 2017) can be used to perform several different three-way decompositions, including
the Tucker3 decomposition. An overview of the areas of data analysis that these packages cover is
summarised in Table 1.

A complete three-way methods program is also available in Pieter Kroonenberg’s Fortran package
3WayPack and includes functionality to perform a multi-way correspondence analysis; see http:
//three-mode.leidenuniv.nl/ of the The Three-Mode Company. Similarly, an extensive collection of
three-way methods and decomposition tools are available for MATLAB through the N-Way Toolbox
(Bro, 2020). However, while these packages can be used to calculate solutions for the three-way
correspondence analysis variants based on the Tucker3 decomposition, doing so requires some non-
trivial data preparation and output processing steps.

Table 1: R packages for three-way data analysis. CA3: symmetric three-way correspondence analysis;
NSCA3: non-symmetric three-way correspondence analysis; OCA3: ordered symmetric three-way
correspondence analysis; ONSCA3: ordered non-symmetric three-way correspondence analysis; PCA3:
three-way principal component analysis

Three-way Data Analysis

package CA3 NSCA3 OCA3 ONSCA3 PCA3

CA3variants x x x x
ThreeWay x

PTAk x x
rTensor x

multiway x
psych x

tensorA x
mvoutlier x

irlba x

The R package CA3variants provides a straightforward way to perform the different variants of
three-way correspondence analysis described above on a three-way contingency table. Moreover, in
addition to the Tucker3 variants of three-way correspondence analysis, the package also allows for the
application of trivariate moment decomposition and hybrid decomposition methods, suitable when
variable categories are ordered.

6 CA3variants: Package description and examples

In this section, we introduce the main functions, arguments and options available in the CA3variants
package. These functions are tunelocal() and CA3variants().

The tunelocal() function can be used to determine an appropriate number of dimensions in the
approximation of ΠP or ΠM, while the function CA3variants() can be used to perform all four meth-
ods described in Section 2.4. Some similarities and differences of these four methods are summarized
in Table 2.

The CA3variants() and tunelocal() functions return S3 objects from which the plot(), print()
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and summary() functions are available. Note that both functions require the input arguments Xdata,
ca3type, resp and norder. Respectively, these arguments specify the three-way data, the type of
analysis being performed (which can be chosen from those outlined in Section 2.4), the response
variable (in the case of a non-symmetric variant) and the number of ordinal variables (when an
ordered variant is performed). Xdata can be a three-way table, or an (n × 3) data matrix where the
rows represent the n observations/objects and the 3 columns correspond to three categorical variables,
i.e. the row, column and tube variables (the levels/categories of each variable are given by integer
numbers).

The tunelocal() function can help the user to choose an appropriate number of dimensions
for any variant of three-way correspondence analysis. A list detailing the fit of all of the models
considered can be obtained using print(tune.out); here tune.out is the output object produced
using the tunelocal() function. This function considers the decompositions of the original data for
all triplets of dimensions. The stability of the fit of the solutions for different dimensionalities can
also be assessed by adding arguments related to the implementation of three resampling schemes
(when ‘boots = TRUE’ and ‘nboots = 100’). The available schemes are a non-parametric bootstrap
resampling method or a parametric bootstrap method using one of two distributions (multinomial or
Poisson). The parametric bootstrap can be considered as a simple parametric bootstrap (‘boottype =
"bootpsimple"’ ) when the row, column and tube marginals are fixed to equal those of the original
three-way table. Alternatively, it can be performed using a stratified parametric bootstrap method
(‘boottype = "bootpstrat"’) where the row and column marginals are fixed for each tube (for
k = 1, ..., K) of the original three-way table.

Differently from tunelocal(), another important argument of CA3variants() is dims. The argu-
ment dims defines the dimensionality of the solution which can be driven by first using tunelocal().
The available variants for ca3type are:

• ca3type = "CA3" for symmetric three-way correspondence analysis. This option is appropriate
when all variables are assumed, or known, to be nominal and symmetrically associated. This is
also the default analysis that is performed.

• ca3type = "NSCA3" for non-symmetric three-way correspondence analysis. This option is
appropriate when one of the variables is defined as the response variable which can be chosen
by specifying resp = "row" (the default choice), resp = "column" or resp = "tube". All three
variables are treated as being nominal.

• ca3type = "OCA3" for three-way ordered symmetric correspondence analysis. This option is
appropriate when at least one of the three variables consists of ordered categories.

• ca3type = "ONSCA3" for three-way ordered non-symmetric correspondence analysis. This
option is appropriate when at least one of three variables consists of ordered categories and
one of the variables is defined as the response variable. The analyst can specify the response
variable in the same way that the response variable is defined for non-symmetric three-way
correspondence analysis (see ca3type = "NSCA3").

Method Variables Association Decomposition
method

ca3type = "CA3" nominal symmetric Tucker3
ca3type = "NSCA3" nominal non-symmetric Tucker3
ca3type = "OCA3" ordinal symmetric Trivariate moment
ca3type = "ONSCA3" ordinal non-symmetric Trivariate moment
ca3type = "OCA3" one or two variables

are ordinal
symmetric Hybrid

ca3type = "ONSCA3" one or two variables
are ordinal

non-symmetric Hybrid

Table 2: Similarities and differences of three-way correspondence analysis methods in CA3variants().

Finally, the package contains four example data sets that can be used to test and benchmark the
different methods, all with varying features and variable structures. They are: happy - a 4 × 6 × 4
contingency table with n = 40323 - (Davis, 1977), happyNL - a 4× 5× 4 contingency table with n = 1669 -
(from the European Social Survey of 2016, http://www.europeansocialsurvey.org/), museum - a 253× 3
data matrix with n = 253 - (from a 2019 survery promoted by the University “Luigi Vanvitelli”, Italy),
and ratrank - a 9 × 9 × 5 contingency table with n = 44568 - (van Herk and van de Velden, 2007).
In Section 2.6.2 we illustrate the package by performing a NSCA3 on the data set happyNL, while
Sections 2.6.1 and 2.6.3 consider two symmetric analyses of the ratrank data set (a nominal three-way
correspondence analysis and a hybrid three-way analysis).
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6.1 Three-way symmetric correspondence analysis: Ranking and rating data

The dataset ratrank is one of the four datasets included in the CA3variants package. It is a data array
of size 9 × 9 × 5 that is formed from the cross-classification of the Rating (row), Ranking (column), and
Country (tube) variables, and was analyzed by van Herk and van de Velden (2007).

Participants from five European countries were asked to rate and rank the same nine values taken
from the list of values (LOV) described by Kahle (1983). For each of these European countries, a
contingency table was constructed with counts of co-occurrences of rating numbers and rankings.
The ranking task required participants to provide a strict ranking of the items. In the rating task,
participants are asked to provide ratings (on a 9 point scale) to the same items. It gives the participants
the freedom to rank the items in any way they desire, however, it is also open to response tendencies.
Such tendencies can be referred to as response styles. For example, some individuals may be more
inclined to use extreme ratings (lowest or highest) where others only use middle ratings to express
their preferences. The observed correspondence between the ratings and rankings could then be
used to inspect response tendencies and, in this study, to relate such tendencies to nationalities. For
more details on the data and the theory underlying the response tendencies, we refer to the van
Herk and van de Velden (2007). Our objective here is to illustrate the application of the CA3variants
package by reproducing some of the results published in their paper. After downloading and installing
CA3variants from the Comprehensive R Archive Network (CRAN), we load the package:

library("CA3variants")

Dimensionality of the solution

We use the tunelocal() function to determine an appropriate triplet of dimensions:

tune.ca3.out <- tunelocal(ratrank, ca3type = "CA3")
print(tune.ca3.out)
plot(tune.ca3.out)

The function tunelocal() yields an object containing goodness-of-fit measures, model complexity
and, when boots = TRUE, the bootstrap samples used. However, using print(tune.ca3.out) we
show the following numerical results for the models on the boundary:

#> # Convex hull (upper bound)

#> # Selected model(s):
#> complexity fit
#> c(2, 2, 1) 1 17726.27

#> All models on upper bound:
#> complexity fit st
#> c(1, 6, 1) 0 14265.56 NA
#> c(2, 2, 1) 1 17726.27 16.097440
#> c(3, 3, 1) 4 18371.23 3.116993
#> c(3, 3, 2) 12 18923.00 1.233506
#> c(3, 4, 2) 17 19202.58 1.846595
#> c(3, 4, 3) 28 19535.67 1.650064
#> c(4, 4, 3) 39 19737.53 1.291062
#> c(4, 4, 4) 54 19950.73 1.538958
#> c(5, 5, 4) 88 20264.76 1.368834
#> c(6, 6, 4) 130 20548.15 1.497295
#> c(7, 7, 4) 180 20773.47 NA

The numerical and graphical output of tune.ca3.out show that an appropriate triplet of dimen-
sions is (2, 2, 1). Note that Figure 1 is generated when using plot(tune.ca3.out). While cluttered, as
the result of the large number of triplets that can be considered in the analysis of ratrank, Figure 1
also shows that an appropriate dimensionality of the solution is (2, 2, 1). Each point in Figure 1 corre-
sponds to a combination of dimensions. The y-axis gives the goodness-of-fit measure for each model
which we use as the criterion for choosing the most appropriate dimensionality for the solution. More
complex models that involve higher dimensionalities (or, equivalently, higher degrees of freedom)
have a better fit. The red line outlines the convex hull where models on this line are superior to higher
dimensional options with a similar fit. For example, in Figure 1, for the models that lie below the
red line there is typically an alternative, less complex, model that achieves the same fit. Alternatively,
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Figure 1: Model fit versus complexity for three-way nominal CA of the ratrank data.

there is also an equally complex model having a better fit. In three-way correspondence analysis, like
other dimension reduction methods, users can factor in subjective criteria (such as interpretability)
when selecting the dimensionality of a model. Here, in accordance with Ceulemans and Kiers (2006),
we follow the st criterion and select the model, marked green in Figure 1, with two dimensions for the
row (Rating) and column (Ranking) variables and one for tube (Country) variable.

Numerical summary of the association

By following the analysis described in van Herk and van de Velden (2007) we perform a symmetric
three-way correspondence analysis, the default method, on the ratrank data. Following the output of
the tunelocal function and in accordance with van Herk and van de Velden (2007), we specify two
dimensions for the row (Rating) and column (Ranking) categories, and a single dimension for the tube
(Country) categories. This can be achieved by:

ca3.out <- CA3variants(ratrank, dims = c(2, 2, 1))

The print() function returns several key measures of association that are included in this output.
These include the percentage of explained inertia along each dimension, the partition of Pearson’s
three-way chi-squared and phi-squared statistics into four terms (see equation (4)), the corresponding
degrees of freedom, the p-value, and the relative sizes of each term of the partition (allowing for
comparisons between chi-squared values from different, asymptotic chi-squared distributions):

print(ca3.out)

#> # Percentage contributions of the components to the total inertia for column-tube
biplots

#> p1 p2
#> 67.008 16.347

#> # Percentage contributions of the components to the total inertia for row-tube
biplots
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#> q1 q2
#> 67.008 16.347

#> # Percentage contributions of the components to the total inertia for row-column
biplots

#> r1
#> 83.355

#> # Index partition

#> Term-IJ Term-IK Term-JK Term-IJK Term-total
#> Chi-squared 18359.272 589.605 254.629 2062.404 21265.910
#> Phi-squared 0.412 0.013 0.006 0.046 0.477
#> % of Inertia 86.332 2.773 1.197 9.698 100.000
#> df 64.000 32.000 32.000 256.000 384.000
#> p-value 0.000 0.000 0.000 0.000 0.000
#> X2/df 286.864 18.425 7.957 8.056 55.380

This output shows that the Pearson chi-squared statistic of ratrank is 21265.91 and, with a p-value
that is less than 0.0001, there is a statistically significant association between at least two of the variables
of the data set. Further insight into the nature of the association can be obtained from the terms of the
partition of the overall chi-squared. The output shows that the most dominant source of association
exists between the Rating and Ranking variables (Term-IJ), and contributes to 18359.27, or 86.33%, of
the total association among the three variables. The association between the Rating-Country variables
(Term-IK) and Ranking-Country variables (Term-JK) accounts for relatively little in comparison (2.77%
and 1.20%, respectively), but are still statistically significant sources of association. The association
among all three variables (Term-IJK) contributes to the remainder (or nearly 10%) of the association
between the variables. Further information about the nature of the association can be obtained visually
by performing a correspondence analysis.

Visual summary of the association

To reproduce the results from van Herk and van de Velden (2007), we consider here the row-tube
(Rating - Country) interactive biplot, so that the interactive row-tube points are plotted using principal
coordinates. This biplot is given by Figure 2 and is produced from the command:

plot(ca3.out, biptype = "row-tube", addlines = F)

By default, the plot() function uses a straight line from the origin to each standard coordinate to
depict the non-interactive variable. However, with so many points in Figure 2, adding projection lines
for each of the nine Ranking categories leads to a cluttered plot. Hence, and in accordance with van
Herk and van de Velden (2007), we use addlines = F to remove the lines. Furthermore, to control the
size of the points and their labels, the plot() function uses two arguments size1 and size2 (for the
points and labels, respectively); by default size1 = 1 and size2 = 3.

Finally, to avoid any further clutter of points close to the origin, a scaling argument can be used
that helps to reveal important features of the association without impacting the approximation. The
default for this scaling argument, which was applied here, is set such that the average sum of squares
for the two sets of points is the same, and is thus in accordance with the recommendations given by
Gower et al. (2010) and van de Velden et al. (2017). This default can be overwritten by specifying a
value for the scaleplot argument in the plot() function. Note that, except for this scaling, the biplot
given by Figure 2 is identical to Figure 1 in van Herk and van de Velden (2007).

Figure 2 shows that the highest value rank (“rank9”) generally receives the highest possible rating
(“9”) across all five countires. However, for the second highest value rank (“rank8”) the ratings tend
to vary from 4 to 8, showing some heterogeneity in how “rank8” is perceived in terms of the Rating
categories. For the lowest valued rank (“rank1”), we see a clear association with the lowest rating (“1”).
However, this level of rating is also often linked to items that received a rank of “2”. Moreover, for the
items that receive a rank of “1” up to “7”, we see that individuals tend to assign to them a rating of
between “1” and “3” (inclusive). Finally, each of the ratings appear rather homogeneous across all
five countries. However, with ratings from Germany being consistently furthest from the origin, and
those from the United Kingdom being closest to the origin, these Country categories provide, relatively
speaking, the strongest and weakest (respectively), contribution to the association. See van Herk and
van de Velden (2007) for a more in-depth analysis and explanation of this analysis.
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6.2 Three-way non-symmetric correspondence analysis: Happiness data

Since 1977, the study of the relationship between happiness, household characteristics and education
using data obtained from social survey data has received a great deal of attention. For an analysis
of this data set, see, for example, Davis (1977), Clogg (1982), Beh and Davy (1998) and Kroonenberg
(2008, Chap.17). Davis’ data set Davis (1977) examines the association between happiness, number
of siblings and years of schooling completed of 1517 individuals and is included in CA3variants
as happy. Kroonenberg (2008, Chap.17) studied Davis’ data by performing a symmetric three-way
correspondence analysis.

Following on from those studies mentioned above, we analyze a three-way contingency table,
obtained from the 2016 European Social Survey (http://www.europeansocialsurvey.org/). It involves
a sample of 1669 respondents from the Netherlands and investigates the association between their
reported level of Happiness, the level of Education and the number of people in their Household. As an
illustration of one of the three-way variants implemented in the CA3variants package, we now turn
our attention to performing the non-symmetric variant of three-way correspondence analysis.

Defining the variables

To assess the level of Happiness of a respondent, people were asked to reply to the question:

“Taking all things together, how happy would you say you are?"

Responses were made on a scale from 1 (“extremely unhappy”) to 10 (“extremely happy”). After
observing the distribution of counts in the data, we re-coded these scales into the following four
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Figure 2: Interactive row-tube biplot for ratrank. The column points (Ranking categories) are depicted
using standard coordinates and are labeled as “rank1” to “rank9”. The interactive row-tube points
(Rating-Country categories) are depicted using principal coordinates and are labelled by the rating
number (1 to 9) followed by the first letter of the country: France (F), Germany (G), Italy (I), Spain (S)
and the United Kingdom (U).
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categories of Happiness: “low” (for ratings < 6), “middle” (for ratings between 6 − 7), “high” (for a
rating equal to 8), and “very-high” (for ratings > 8).

The Education variable is defined using four categories. These are “Less than lower secondary
education” (coded “ED1”), “Lower secondary education completed” (coded “ED2”), “Upper secondary
education completed” (coded “ED3”) and “Post-secondary and/or tertiary education completed”
(coded “ED45”).

Finally, for the Household variable, the respondents were asked to reply to the question:

“Including yourself, how many people - including children - live here regularly as members of this
household?"

The four categories from this question were defined as follows: a one person household is coded
“HS1”, a two person household is coded “HS2”, a three person household is coded “HS3”, a four
person household is coded “HS4”, a five person household is coded “HS5’ and a household containing
more than five people is coded “>HS5”.

The cross-classification of the Happiness, Education and Household variables forms a three-way
contingency table which has been included in the package with the object name happyNL.

For our analysis of this contingency table, we consider the non-symmetric three-way correspon-
dence analysis variant with the row variable (Happiness) treated as the response variable, and the
column (Education) and tube (Household) variables defined as the predictor variables.

Dimensionality of the solution

Before performing a three-way NSCA on happyNL we first need to determine the dimensionality of
the solution. This can be done by comparing the fit and complexity of models of different dimension-
ality using the tunelocal() function. For this example, we consider decompositions applied to 100
resampled data tables (using the parametric bootstrap; the default), and calculate, for each triplet of
dimensions, the mean goodness of fit over the bootstrap samples. Note that, by doing so, the overall
number of estimated models equals I × J × K × nboots = 80 × 100 = 8000. All resampled data tables
are collected in the object named ‘XG’ of the output of the tunelocal() function:

tune.nsca3.out <- tunelocal(happyNL, ca3type = "NSCA3", resp = "row", boots = T)
plot(tune.nsca3.out)

The resulting plot is given as Figure 3. Each point in this plot corresponds to a combination of
dimensions. The y-axis gives the goodness-of-fit measure for each model. More complex models,
that is those involving higher dimensionalities have a better fit. The red line denotes the convex
hull where models on this line are superior to higher dimensional options with a similar fit. For
example, in Figure 3, for the models which are below the red line there is an alternative, less complex,
model achieving the same (or similar) fit, or there is an equally complex model having a better fit. In
three-way correspondence analysis, as with other dimension reduction techniques, users can factor
in subjective criteria such as interpretability when selecting the dimensionality of a model. Here, in
accordance with Ceulemans and Kiers (2006), we follow the st criterion and select the model, marked
green in Figure 3, with two dimensions for the row (Education) column (Household) and tube (Happiness)
variables.

Using print(tune.nsca3.out) we obtain the numerical results (i.e. fit) for the models that lie
along the red line in Figure 3. The output from this command is:

#> # Note that when boots = T, the data samples generated
#> # are given in the object named 'XG'

#> # Results for choosing the optimal model dimension

#> # Convex hull (upper bound)

#> # Selected model(s):
#> complexity fit
#> c(2, 2, 2) 4 187.6015

#> # All models on upper bound:
#> complexity fit st
#> c(1, 1, 4) 0 111.6055 NA
#> c(1, 2, 2) 1 145.6444 2.433839
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Figure 3: Model fit versus complexity for three-way NSCA of the happiness bootstrapped data.

#> c(2, 2, 2) 4 187.6015 2.965930
#> c(2, 3, 3) 12 225.3251 1.766711
#> c(3, 3, 3) 20 246.6776 1.382302
#> c(3, 4, 3) 28 262.1246 1.246718
#> c(3, 4, 4) 39 279.1611 1.734889
#> c(3, 5, 4) 50 288.9810 1.190973
#> c(4, 5, 4) 69 303.2229 NA

Numerical summary of the association

The CA3variants() function can be used to perform a three-way non-symmetric correspondence
analysis on happyNL by specifying the arguments of the function so that they define the data table,
the dimensionality of the solution, the type of analysis and the response variable. Here, using the
suggested dimensions, the analysis is performed so that:

nsca3.out <- CA3variants(happyNL, ca3type = "NSCA3", resp = "row",
dims = c(2, 2, 2))

The numerical output from this analysis is obtained using print(nsca3.out):

print(nsca3.out)

#> # Percentage contributions of the components to the total inertia for pred biplots

#> p1 p2
#> 47.407 22.696

#> # Index partition

#> Term-IJ Term-IK Term-JK Term-IJK Term-total
#> Tau Numerator 0.014 0.005 0.008 0.006 0.032
#> Tau 0.021 0.007 0.012 0.008 0.047
#> % of Inertia 43.162 14.719 24.749 17.371 100.000
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#> CM-Statistic 102.583 34.981 58.819 41.285 237.669
#> df 12.000 9.000 12.000 36.000 69.000
#> p-value 0.000 0.000 0.000 0.251 0.000
#> CM-Statistic/df 8.549 3.887 4.902 1.147 3.444

By reducing the dimensionality of the solution to (2, 2, 2), the first set of values (p1 and p2) are the
percentages of the total association which is explained by the two axes of a biplot; we will speak more
on these two values shortly. The summary of values that follow Index partition gives the four terms
of the partition of the Marcotorchino index, its numerator and its associated test statistic, CM-statistic
(see Section 2.2.3). Note that the last column, labeled Term-total corresponds to the three-way index
being partitioned. Consequently, the seven rows of this output summarize the elements of each term
of this partition, including their p-value and their relative sizes (allowing for comparisons between
CM-statistic values from different, asymptotic chi-squared distributions).

The data set happyNL has a CM-statistic of 237.669. Its small p-value (< 0.0001, df = 69) confirms
that there is very strong evidence to conclude that the Household and Education variables are statistically
significant predictors of Happiness. By partitioning the CM-statistic associated with the Marcotorchino
index, we can examine the sources of non-symmetric association that exists in the three-way table. We
see that all the bivariate association terms are statistically significant, but not the trivariate association
term (p-value < 0.251, df = 36) which assesses the increase in predictability of Happiness given the
number of people in a Household and the highest level of Education of the participants.

Visual summary of the association

While the trivariate term from the partition of the CM-statistic is not statistically significant, we shall
nonetheless visually explore how people’s level of Happiness is influenced by the number of people in
their Household and their highest level of Education. This shall be done by generating an interactive
biplot with the interaction of each combination of categories of the predictor variables depicted
using principal coordinates and, therefore, setting biptype = "pred". Note that there is indeed an
“interaction” (via a symmetric association) between the two predictor variables since the Term-JK
p-value is less than < 0.0001. The categories of the response variable are depicted in the biplot using
standard coordinates when biptype = "pred".

Applying the plot() function to the CA3variants object can be used to generate different biplots.
A description of some of all available plotting arguments can be found in Table 3. However, when a
non-symmetric variant is applied to the CA3variants object, a suitable interactive biplot that portrays
the non-symmetric association can be obtained using the command:

plot(nsca3.out, biptype = "pred")

which produces the interactive biplot of Figure 4. Figure 4 displays straight lines from the origin to each
standard coordinate to depict the non-interactive variable for the four levels of the Happiness variable.
Such lines are convenient for visualizing how the interactive points relate to the non-interactive points.
This is because the proximity of the points from the origin reflect deviations from independence.

In Figure 4, we see that the first dimension accounts for 47% (rounded to the nearest integer) of
the association between the variables while the second dimension accounts for 23%. Thus, Figure 4
captures approximately 70% of the association between the three categorical variables (when treated
non-symmetrically) of happyNL. These two percentages are also included as p1 and p2, respectively,
from the numerical summaries included in print(nsca3.out). Since Figure 4 provides a good visual
summary of the non-symmetric association of the variables of happyNL, we now turn our attention to
describing the nature of this association. The left side of Figure 4 shows a group of points corresponding
to HS1 (a single person household) combined with all levels of education. It shows that respondents
tend to exhibit lower levels of happiness when they live alone, regardless of education level. Due
to the non-symmetric nature of the association we can also infer that for these single households,
the groups with lower levels of education (HS1ED1 and HS1ED2) lead (or help predict) a low, or
middle, level of happiness. For those with a higher education, Figure 4 also suggests that having
a higher level of education does not necessarily lead to (or help to predict) a very-high happiness
level. Furthermore, respondents in a two person household (HS2) tend to be very happy (HS2 is a
good predictor of very-high levels of happiness), especially for those with a lower level of education
(HS2ED1 and HS2ED2). The interactive biplot shows that those with higher levels of education in
a two person household are still more associated with a very-high level of happiness (HS2ED3 and
HS2ED45) but less than those with less of an education.

For the large households (HS4 and >HS5), we observe that the effect of education level on happiness
appears to be stronger. That is, for these larger households, respondents with a higher (ED45) or a
middle-high (ED3) level of education tend to be more happy (high and very-high) than people with a

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 254

Arguments Description
Xout The output of CA3variants().
biptype Specifies the type of interactive biplot being produced. When ca3type = "CA3" or

= "OCA3" there are six options: biptype = "row", "column", "tube", "row-column",
"row-tube" and "column-tube". Each option refers to what is depicted using prin-
cipal coordinates. For instance, "row" specifies that the row points are depicted
using principal coordinates and, consequently, the interactive column-tube points
are depicted using standard coordinates. When ca3type = "NSCA3" or "ONSCA3",
there are only two biplot options: biptype = "resp" or "pred". The option "resp"
specifies that the response categories are depicted using principal coordinates, while
the option "pred" indicates that the interactive predictor points are in principal
coordinates.

scaleplot A biplot scaling argument used to avoid spatial cluttering by pulling points away
from the origin. See the description of the “gamma scaling” in Gower et al. (2011,
Section 2.3.1). By default, scaleplot is the overall average of the sum-of-squares
of the two sets of coordinates (principal and standard ones), so that the average
sum-of-squares for the two sets of points is the same (van de Velden et al., 2017).

addlines Specifies whether the points in standard coordinates are represented using axes. By
default, addlines = TRUE.

Table 3: Summary of important plotting options available in plot.CA3variants(). For all options use
?plot.CA3variants
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Figure 4: Interactive biplot from the NSCA3 of happyNL with Happiness and Education the interactive
variables

lower level of education (ED1 and ED2). Respondents that live in large households and have a low
level of education (HS4ED2, HS4ED1, >HS5ED2 and >HS5ED1) are not highly happy individuals.
Indeed, these interative points are on the opposite side of Figure 4 to the high level of happiness.
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6.3 Ordered three-way correspondence analysis: Ranking and rating data

In the analysis of ratrank in Section 2.6.1 we treated the Ranking and Rating variables as nominal when
they are, in fact, ordinal variables. Using the CA3variants package we can incorporate this ordinality
in the decomposition. In particular, we perform the analysis by treating Country as a nominal variable
and Ranking and Rating as ordinal by using the hybrid decomposition described in Section 2.3.3.

Dimensionality of the solution

Before we construct a low-dimensional display of the association between the ordinal variables (Rating
and Ranking) and the nominal variable (Country), we determine the appropriate dimension of the
solution. The 9× 9× 5 data set ratrank has a 8× 8× 4 sized matrix of hybrid core elements that reflect
the trivariate sources of association between the three variables. Not all these sources are important
for describing the analysis, or are even practically relevant. In most practical cases the linear and
quadratic sources of association are sufficient and provide a meaningful description of the association.
We use the tunelocal() function to determine the appropriate number of hybrid core elements to
define the dimensionality of the solution. When using the tunelocal() function for analysing ordinal
variables, one needs to specify the number of them; this is done by setting the argument norder = 2.
The numerical and graphical summaries from using this function are obtained using the commands:

tune.oca3.out <- tunelocal(ratrank, ca3type = "OCA3", norder = 2)
print(tune.oca3.out)

The numerical and graphical output of a similar form to those seen in the previous examples. The
visual and numerical outputs (not given here) show that the highest order hybrid core element is of
order (2, 2, 1) (i.e. the quadratic-by-quadratic-by-first order component association) so that all terms,
up to the (2, 2, 1) term, together account for most of the association between the three variables.

Numerical summary of the association

We perform OCA3 on ratrank using the dimensionalities as suggested by the output of the tunelocal()
function. Hence, we confine our attention to sources of association no higher than the quadratic-by-
quadratic-by-first hybrid core so that:

oca3.out <- CA3variants(ratrank, ca3type = "OCA3", dims = c(2, 2, 1), norder = 2)

We note that from such an analysis, only four of the 256 hybrid core elements are required to
account for most of the association that exists between the variables. We can gain more insight into the
structure of the association by inspecting the core elements from the hybrid decomposition. When
using the function summary(), the elements of the core and squared core arrays (Lombardo et al., 2021),
respectively, can be obtained:

summary(oca3.out)

#> Core table
#> , , r1

#> q1 q2
#> p1 -0.527 -0.143
#> p2 0.198 -0.246

#> Squared core table
#> , , r1

#> q1 q2
#> p1 0.278 0.020
#> p2 0.039 0.061

#> Explained inertia (reduced dimensions)
#> [1] 0.398

#> Total inertia (complete dimensions)
#> [1] 0.477

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 256

#> Proportion of explained inertia (when reducing dimensions)
#> [1] 0.834

Note that by confining the solution to include terms no higher than (2, 2, 1), the sum of squares of
these four squared core elements is 83.4% of the association that exists between the three variables of
the contingency table.

The four terms from this output are all adequately described using the linear and quadratic
polynomials for Rating and Ranking and just one Tucker3 component for Country, and are:

• the linear-by-linear polynomial component term (0.278) which describes the association be-
tween the ordered variables in terms of any differences that exist in the linearity of each ordered
set of categories that form the Rating and Ranking variables,

• the linear-by-quadratic polynomial component term (0.020) which describes the association
between the ordered variables in terms of any linear differences in the Rating variable and
dispersion differences in the Ranking variable,

• the quadratic-by-linear polynomial component (0.039) which describes the association between
the ordered variables in terms of any dispersion differences in the Rating variable and any linear
differences that exist in the Ranking variable, and

• the quadratic-by-quadratic polynomial component (0.061) which describes the association
between the ordered variables in terms of any dispersion differences that exist in the Rating and
Ranking variables.

Using the print() function we obtain the percentage contributions of the components to the total
inertia for different biplots, the overall decomposition information, as well as the partitionings of
the four terms of the Pearson three-way chi-squared statistic into their polynomial components. For
example, suppose we focus on the pair-wise association between the Rating and Ranking variables.
The partial output corresponding to the row and column (linear and non-linear) components of the
Chi2-IJ term can be shown:

print(oca3.out)
#> # ...
#> # Partition of the Term-IJ using polynomials

#> Term-IJ-poly %inertia df p-value
#> poly-row1 12701.275 69.182 8 0
#> poly-row2 3882.996 21.150 8 0
#> poly-row3 833.867 4.542 8 0
#> poly-row4 346.473 1.887 8 0
#> poly-row5 177.262 0.966 8 0
#> poly-row6 167.495 0.912 8 0
#> poly-row7 122.977 0.670 8 0
#> poly-row8 126.927 0.691 8 0
#> Chi2-IJ 18359.272 100.000 64 0
#> poly-col1 13819.761 75.274 8 0
#> poly-col2 3177.816 17.309 8 0
#> poly-col3 605.183 3.296 8 0
#> poly-col4 189.747 1.034 8 0
#> poly-col5 149.127 0.812 8 0
#> poly-col6 160.638 0.875 8 0
#> poly-col7 124.849 0.680 8 0
#> poly-col8 132.150 0.720 8 0
#> Chi2-IJ 18359.272 100.000 64 0
#> # ...

This output shows that all components are statistically significant (with p-values smaller than
0.0001). It also shows that the variation in the Rating variable (row variable) is dominated by the differ-
ence in the linearity of its categories - the linear component accounts for 100 × 12701.28/18359.27 =
69.18% of the variation in this variable. The linear component also accounts for the largest source of
variation in the Ranking variable (column variable), contributing to 100 × 13819.76/18359.27 = 75.27%
of the variables’ variation. Thus, if we were to confine our attention to just exploring further the
association between the Rating and Ranking variables by generating a visual summary of the asso-
ciation this can be done using the correspondence analysis approach introduced in Beh (1997) and
described by Beh and Lombardo (2014, Chap. 6) and Beh and Lombardo (2021b, Chap. 4). Since
both variables are dominated by differences in the linearity of their categories, such an analysis will
produce a correspondence plot that is dominated more by the first axis than any of the other axis in
the optimal plot.
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Figure 5: The row biplot from the classical three-way correspondence analysis of ratrank.

Visual summary of the association

Since the three-way association term is statistically significant (X2 = 21265.91, p-value < 0.0001), we
can examine the nature of this association term more closely. Visually summarizing this three-way
association can be done by considering the coordinate systems that generate the biplots described
in Section 2.4.1. Recall that in Section 2.6.1, we performed the classical approach to three-way
correspondence analysis and visualized the results using the row-tube (interactive) biplot. In doing so,
the Ranking-Country association – which is comparatively weak (contributing to 1.2% of the association)
but is statistically significant (p-value < 0.0001) – is depicted using standard coordinates while the
Rating categories are depicted using principal coordinates that are akin to XIK,J in (16).

To highlight differences between the classical and ordered three-way correspondence analysis, we
construct the row biplot of Figure 5 using the command:

plot(ca3.out, biptype = "row", addlines = F, scaleplot = 15)

note that ca3.out is the output from the classical analysis performed in Section 2.6.1. When Rating
and Ranking are treated as ordinal variables, Figure 6 gives the row biplot that can be obtained from
the command:

plot(oca3.out, biptype = "row", scaleplot = 15)

where the value for scaleplot = 15 was chosen by trial and error to ensure a reasonable separation of
the points in the biplot, without afffecting the approximation of the association between the variables.
While Figure 5 and Figure 6 both give parabolic configurations of the points, these configurations
are quite different since the former treats the variables as nominal and uses the components from a
Tucker3 decomposition while the latter is constructed using orthogonal polynomials for the ordered
row and column (Ratings and Rankings) variables and a Tucker3 component for the tube (Country)
variable. Observe that the parabolic shape of Rating in Figure 5 is more pronounced than the parabolic
configuration of Rating in Figure 6.

In addition to the visual differences between the two configurations of points, there are also some
features that make Figures 5 and 6 distinct. Indeed, the first axis of Figure 6 is constructed using the
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Figure 6: The row biplot from the ordered (hybrid) three-way correspondence analysis of ratrank.

linear orthogonal polynomial while the second axis is constructed using the quadratic orthogonal
polynomial. The linear and dispersion components contribute to 66% and 17%, respectively, of the
total inertia of the data; these percentages can be obtained from the output of the print(oca3.out)
command.

When considering all variables as nominal, as was done in our analysis in Section 2.6.1, the ratings
appear closely associated with the rankings across the five countries. However, treating the two
variables (Rating and Ranking) as ordinal provides additional information on some aspects of the
variable distribution (mean and variability). For example, Figure 6 shows that the configuration of the
Rating categories along the first (linear polynomial) axis is different to the configuration along the first
axis of Figure 5. This is because the variation of the Rating variabe is dominated more by differences
in the linearity of its categories than by its dispersion differences. This dominant linear component
affects the variable association and is captured by the configuration of points in Figure 6.

7 Conclusion

The CA3variants package described in this paper is, to the best of our knowledge, the only package
that allows practitioners and researchers to directly perform four variants of three-way correspondence
analysis, including the classical three-way correspondence analysis (Carlier and Kroonenberg, 1996),
the non-symmetric variant and the two ordered versions of three-way correspondence analysis
(Lombardo et al., 2021). Subsequent versions of the package may allow for additional flexibility by
providing the user more tools to numerically and visually explore the association structure between
categorical variables. These include, but are not confined to, the decomposition of the generalised
Cressie-Read family of divergence statistics (Pardo, 1996). Indeed, Pearson’s statistic is one of many
measures of symmetric association that can be considered. Alternatives include the Freeman-Tukey
statistic, log-likelihood ratio statistic, Neyman’s chi-squared statistic, and the Cressie-Read statistic,
which were originally developed to study two variables (Cressie and Read, 1984; Beh and Lombardo,
2023). These measures are all special cases of the Cressie-Read family of divergence statistics and have
been adapted for three-way and multi-way contingency tables (Pardo, 1996; Pardo and Pardo, 2003;
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Lombardo and Beh, 2022). Thus, this family of statistics may be incorporated into the CA3variants
package, thereby providing the user with greater flexibility for the choice of symmetric association
they wish to consider. Furthermore, next version of the package might consider the construction
of confidence regions that determine those categories (and interactions) that provide a statistically
significant contribution to the association between the variables (Beh, 2010; Ringrose, 1996, 2012).
Numerical summaries that accompany such regions, including p-values (Beh and Lombardo, 2015) can
certainly be incorporated and would provide similar functionality that is available in the CAvariants
package used for the correspondence analysis of two cross-classified categorical variables (Lombardo
and Beh, 2016).
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Estimating Heteroskedastic and
Instrumental Variable Models for Binary
Outcome Variables in R
by Mauricio Sarrias

Abstract The objective of this article is to introduce the package Rchoice which provides functionality
for estimating heteroskedastic and instrumental variable models for binary outcomes, whith emphasis
on the calculation of the average marginal effects. To do so, I introduce two new functions of
the Rchoice package using widely known applied examples. I also show how users can generate
publication-ready tables of regression model estimates.

1 Introduction

Often, applied researchers in different fields deal with binary (probit and logit) models that exhibit
heteroskedasticity (the error variance is not homogeneous across individuals), or with endogenous
variables.1 In both cases, the standard binary logit and probit estimator will be inconsistent, which
can lead to misleading conclusions (Yatchew and Griliches 1985; Wooldridge 2010).2

One widely used estimator to address heteroskedastic disturbances in the realm of binary outcomes
is the fully parametric multiplicative heteroskedastic binary model (Keele and Park 2006). This model
assumes that the error term’s variance depends on specific known covariates. For example, Alvarez
and Brehm (1995) use a heteroskedastic probit model to show that policy choices about abortion are
heterogeneous due to unequal variances.3

If some of the regressor is endogenous, approaches such as the control function (CF, Wooldridge
2015) or the maximum likelihood estimator (MLE, Newey 1987; Rivers and Vuong 1988) allow to
remediate the inconsistent estimates using an instrumental variables (IV) approach.

Routines for heteroskedastic and IV models exist in commercial software such as Stata (StataCorp
2019) and LIMDEP (Greene 2002). One advantage of Stata is that its command margins allows such
models to quickly and flexibly compute marginal effects. This is very attractive for users who need to
produce and export tables of estimates in Latex or other formats.

In this article, I review the main approaches and functions in R to estimate heteroskedastic and
IV models for binary outcomes, with a special focus on applied examples and the computation of
the marginal effects. Additionally, this article introduces two new functions of the Rchoice package
(Sarrias 2016) that allow estimating both types of models. The first function, hetprob(), estimates
binary dependent variable models assuming a parametric form for the heteroskedasticity. The model
can be either the probit or logit model and the parameters are estimated by Maximum Likelihood (ML),
which find the parameter values that make the observed data most probable under the assumptions of
the statistical model.

The second function, ivpml(), estimates binary probit models with endogenous continuous
variables using also the ML approach. As an additional feature, Rchoice also provides functions
to compute the average marginal effects for both models under different modelling approaches:
categorical variables, interactions terms, and quadratic variables. The package can also be used in
concert with the memisc package (Elff 2012), which produces publication-ready tables of regression
model estimates. Finally, I show that both functions produce the same estimates as the corresponding
Stata commands.4

The function hetprob() is intended to complement other related packages in R. For example, the
packages glmx (Zeileis, Koenker, and Doebler 2015) and oglmx (Carroll 2018) also allow to estimate
heteroskedastic binary models using MLE. The latter has the advantage of being able to compute
the marginal effects. However, the current version does not allow to identify functions of variables
that enter the equations for the mean and standard equations, interaction terms, or polynomials.
The ivpml() function provides the MLE for the probit model and hence complements the R package
ivprobit (Zaghdoudi 2018) which provides a two-step procedure. Another is the LARF package (An

1In econometrics, endogeneity refers to situations in which an explanatory variable is correlated with the error
term. The common sources of endogeneity are omitted variables, simultaneity, and measurement error.

2Inconsistency means that the estimator will not converge in probability to the true parameter.
3For other applications see Knapp and Seaks (1992) and Williams (2009).
4Stata codes for replicating the main results of this article are presented in Appendix C and Appendix D. Do

files are available in the supplemental material.
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and Wang 2016), which estimates local averages response functions for binary treatments and binary
instruments.

2 Models

2.1 Heterokedastic binary model

The multiplicative heterokedastic binary model (also known as the location-scale binary model) for
cross-sectional data has the following structure (Williams 2009):5

y∗i = x⊤i β + ϵi, (1)

Var(ϵi|zi) = σ2
i = σ2

ϵ

[
exp

(
z⊤i δ

)]2
, (2)

where y∗i is the latent (unobserved) response variable for individual i = 1, ..., n, xi is a k-dimensional
vector of explanatory variables determining the latent variable y∗i , β is the vector of parameters, and
ϵi is the error term distributed either normally or logistically with E(ϵi|zi, xi) = 0 and multiplicative
heterokedastic variance Var(ϵi|zi) = σ2

i , ∀i = 1, ..., n (Harvey 1976). The variance for each individual is
modeled parametrically assuming that it depends on a p-dimensional vector of observed variables zi,
whereas δ is the vector of coefficients associated with each variable. It is important to emphasize that
zi does not include a constant, otherwise the parameters are not identified (Greene and Hensher 2010).

Since we do not observe y∗i , we need a rule that relates the binary variable that we actually observe,
yi, to the latent variable. As it is standard, we use the following rule:

yi =

{
1 if y∗i > 0,
0 otherwise.

(3)

Using Equations (1), (2) and (3), the probability of observing yi = 1 is:

Pr(yi = 1|xi, zi) = F

(
x⊤i β

exp(z⊤i δ)

)
, (4)

where F(·) is either Φ(·), that is, the cumulative distribution function (CDF) for the standard normal
distribution, such that σ2

ϵ = 1, or Λ(·) = exp(·)
1+exp(·) , where Λ(·) represents the CDF for the standard

logistic distribution, so that σ2
ϵ = π2/3.

Let θ be the (k + p)-dimensional vector of all parameters. The vector θ can be estimated using the
Maximum Likelihood procedure. Using Equation (4), the MLE is the value of the parameters that
maximizes the following log-likelihood function:6

θ̂ML ≡ argmax
θ∈Θ

n

∑
i=1

ln


[

1 − F

(
x⊤i β

exp(z⊤i δ)

)]1−yi
[

F

(
x⊤i β

exp(z⊤i δ)

)]yi
 .

As in any non-linear model, the estimated coefficients alone cannot be interpreted as marginal
changes on Pr(yi = 1|xi, zi). Let wk be a continuous variable appearing in both x and z, then the partial
effect is (see Greene 2003):

∂Pr(yi = 1|xi, zi)

∂wik
= f

(
x⊤i β

exp
(
z⊤i δ

))( βk − (x⊤i β)δk

exp
(
z⊤i δ

) )
, (5)

where f (·) is the probability density function (PDF) for the standard normal or standard logistic
distribution. The average partial effect (APE) can be consistently estimated as follows:

ÂPEk =
1
n

n

∑
i=1

f

 x⊤i β̂

exp
(

z⊤i δ̂
)
 β̂k − (x⊤i β̂)δ̂k

exp
(

z⊤i δ̂
)
 , (6)

and their standard error can be estimated either by delta method or bootstrap. The delta method

5Multiplicative exponential heteroskedasticity was first proposed by Harvey (1976) for linear models. For
identification of the multiplicative heterokedastic binary model see Carlson (2019).

6The analytic gradient and Hessian for the multiplicative heterokedastic binary model used by Rchoice are
presented in Appendix A.
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provides an analytic approximation for the standard errors based on the asymptotic variance-covariance
matrix of the MLE. The bootstrap is non-parametric resampling technique, which involves generating
a large number of resampled datasets (bootstrap samples) and estimating (6) for each sample. For
further details see Wooldridge (2010).

Finally, a likelihood-ratio (LR) or Wald test can be performed to test the null hypothesis of
homoskedasticity: H0 : δ = 0.

2.2 Probit models with endogenous continous variable

Consider the following two-equation model:

y∗1i = x⊤1i β1 + γy2i + ϵi = x⊤i β + ϵi, (7)

y2i = x⊤1iδ1 + x⊤i2δ2 + υi = z⊤i δ + υi, (8)

y1i = 1 [y∗1i > 0] , (9)

where i = 1, ..., n, y∗1i is a latent (unobserved) response variable for individual i and we observe y1i = 1
if and only if 1

[
y∗1i > 0

]
, y2i is the continuous endogenous variable, xi1 is a k1-dimensional vector

of predetermined (exogenous) variables, xi2 is a k2-dimensional vector of additional (exogenous)

instruments, xi =
(

x⊤1i , y2i

)⊤
is a k × 1 column vector such that k = k1 + 1, and zi =

(
x⊤1i , x⊤2i

)⊤
is a

p × 1 vector where p = k1 + k2. Equation (7) is the structural equation, whereas Equation (8) is the
first-stage equation. Further, assume that (ϵ, υ) are distributed as bivariate normal with zero mean.

Two-step approach

The simplest approach for estimating the parameters of Equation (7) and (8) is using a two-step
procedure (Rivers and Vuong 1988) also known as Control Function (CF) approach (Wooldridge 2015).
Under joint normality of (ϵ, υ), we can write ϵ as a function of υ as follows:7

ϵi|υi =
σϵ

συ
ρυi + ηi, (10)

where Var(ϵi) = σ2
ϵ , Var(υi) = σ2

υ , ηi ∼ N
[
0, (1 − ρ2)σ2

ϵ

]
and ρ = Cov(ϵi, υi)/(σϵ · συ). If ρ = 0, y2 is

exogenous and the traditional probit model will deliver consistent estimates. For identification, we
need to set Var(ϵi) = 1. Then Equation (10) can be re-written as:

ϵi = λυi + ηi, (11)

where ηi ∼ N
[
0, (1 − ρ2)

]
and λ = Cov(ϵi, υi)/σ2

υ . Inserting Equation (11) in the latent Equation (7)
yields:

y∗1i = x⊤1i β1 + γy2i + λυi + ηi,

and the probability of observing y1i = 1 is:

Pr(y1i = 1|y2i, zi, υi) = Pr(y∗1i > 0|y2i, zi, υi) = Φ
(

x⊤1i β
∗
1 + γ∗y2i + λ∗υi

)
. (12)

Thus, if we knew υi, a probit of y1 on x and υ would consistently estimate the scaled parameters
β∗

1 = β1/
√

1 − ρ2, γ∗ = γ/
√

1 − ρ2, and λ∗ = λ/
√

1 − ρ2. Using this idea, the estimation procedure
is as follows (see Wooldridge 2010, sect. 15.7.2):

• Run an OLS regression of y2 on z (Equation (8)) and compute the residuals υ̃i = y2i − z⊤i δ̃. Both
δ̃ and υ̃ are consistently estimated.

• Run the probit y1 on x1, y2 and υ̃ to get consistent estimators of the scaled coefficients β∗, γ∗

and λ∗.

Note that the term control function comes from the fact that the inclusion of υ̃ in the second step
controls for the correlation between ϵi and υi.

Some of the structural parameters can be recovered after the two-step procedure. Since σϵ = 1,
ρ = Cov(ϵi, υi)/συ = λ · συ. Thus, an estimate of ρ can be recovered from:

ρ̂ = λ̂∗ · σ̃υ, (13)

7If x ∼ N(µ, σ2), then we can write xi = µ + σui , where ui ∼ N(0, 1).
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where λ̂∗ is the probit estimate of λ∗ and σ̃υ is the square root of the usual error variance estimator
from the first-stage regression. The unscaled parameters can also be recovered using the two-stage
estimates. For instance, since γ∗ = γ/

√
(1 − ρ2), and using our result in Equation (13), then γ̂ =

γ̂∗
[

1 −
(

λ̂∗ · σ̃υ

)2
]1/2

.

As explained by Wooldridge (2010), the usual probit z-statistic on υ̃ is a valid test of the null
hypothesis that y2 is exogenous: H0 : λ∗ = 0.8 However, the estimated variance-covariance matrix of
the probit model does not deliver correct standard errors for the rest of the parameters since it does
not include the sampling variability of δ̂ when λ ̸= 0.

Following Wooldridge (2015), the APEs are obtained by taking either derivatives or differences
(depending on whether the explanatory variable is continuous or discrete) of the Average Structural
Function (ASF) given by:

ASF(x1, y2) = Eυ

[
Φ
(

x⊤1i β
∗
1 + γ∗y2i + λ∗υi

)]
. (14)

This function averages out the first-stage residuals υi, purging the model of endogeneity. Under
the weak law of large numbers, a consistent estimator for ASF(x1, y2) in Equation (14) is:

ÂSF =
1
n

n

∑
i=1

Φ
(

x⊤1i β̂
∗
1 + γ̂∗y2i + λ̂∗υi

)
, (15)

which incorporates the estimated unobservables from the first stage without perturbing them. Hence,
to estimate the APE for y2 we can compute:

ÂPEy2 = γ̂∗ 1
n

n

∑
i=1

ϕ
(

x⊤1i β̂
∗
1 + γ̂∗y2i + λ̂∗υi

)
. (16)

where ϕ(·) is the standard normal density function. A standard error for this ÂPE can be obtained via
the delta method or bootstrap.

2.3 Maximum Likelihood approach

We can also estimate the parameters using the MLE. To derive the log-likelihood function, we need
to find the joint distribution f (y1i, y2i|z) = f (y1i|y2i, zi) f (y2i|zi). Under the joint normality, y2i|zi ∼
N(z⊤i δ, σ2

υ ) and its conditional marginal density is (Wooldridge 2014):

f (y2i|zi) =
1
συ

ϕ

(
y2i − z⊤i δ√

1 − ρ2

)
. (17)

Using the fact that the normal distribution is symmetric, the conditional density of y2i given
(y2i, zi) can be written as:

f (y1i|y2i, zi) = Φ

qi ·

x⊤i β +
ρ
συ

(
y2i − z⊤i δ

)
√

1 − ρ2

 , (18)

where qi = 2y2i − 1 (see Greene 2003). Using Equations (17) and (18), the joint probability for each
individual i is:

f (y1i, y2i|zi; θ) = Φ

qi ·

x⊤i β +
ρ
συ

(
y2i − z⊤i δ

)
√

1 − ρ2

 1
συ

ϕ

(
y2i − z⊤i δ√

1 − ρ2

)
. (19)

The MLE is a value of the parameter vector that maximizes the following expression:9

θ̂ML ≡ argmax
θ∈Θ

n

∑
i=1

ln

Φ

qi ·

x⊤i β +
ρ
συ

(
y2i − z⊤i δ

)
√

1 − ρ2

 1
συ

ϕ

(
y2i − z⊤i δ√

1 − ρ2

) .

8Under the null H0 : λ∗ = 0 it is true that ϵ = υ and therefore the distribution of υ does not play any role under
the null.

9The analytic gradient and Hessian for the MLE used by Rchoice are presented in Appendix B.
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After the parameters are estimated, the APE for the endogenous variable can be estimated as:

ÂPEy2 =
γ̂√

1 − ρ̂2

1
n

n

∑
i=1

ϕ

x⊤i β̂ +
ρ̂
σ̂υ

υ̂i√
1 − ρ̂2

 . (20)

A second option would be to compute the effect for the structural model assuming that endogeneity
does not exist (the values of the covariates are given and fixed). In this case, the APE for the endogenous
variable is computed as:

ÂPEy2 = γ̂
1
n

n

∑
i=1

ϕ
(

x⊤i β̂
)

. (21)

3 Applications

3.1 Heteroskedastic binary models

Promotion of scientists

To show how R can be used to fit heteroskedastic binary response models, I first use Allison (1999)‘s
dataset called “tenure.cvs” (see also Williams 2010). The data consists of observations of the careers of
university professors over time, tracking multiple cross-sectional and longitudinal indicators including
gender, the number of published article, and quality of department, among others.

We can load the dataset into R as follows:

tenure_data <- read.csv(file = 'tenure.csv')

Following Allison (1999) and Williams (2009) I focus on whether women get a lower payoff from
their published work than men. First, I estimate a binary logit model using the glm() function for men
and women separately, where the structural model is given by

tenure∗ = β0 + β1year + β2year2 + β3select + β4articles + β5prestige + ϵ,

tenure = 1 [tenure∗ > 0] ,

where ϵ is distributed logistically with mean 0 and variance π2/3. The dependent variable, tenure, is
whether an assistant professor was promoted in that year, and 0 otherwise, year is the number of years
since the beginning of the assistant professorship, select is a measure of undergraduate selectivity
of the colleges where scientists received their bachelor’s degree, articles is the cumulative number
of articles published by the end of each person-year, and prestige is a measure of prestige of the
department in which scientist was employed. To obtain similar results as Allison (1999), I restrict the
sample to year <= 10. Thus, each person has one record per year of service as an assistant professor,
for as many as ten years.

sub_data <- subset(tenure_data, year <= 10)
logit_m <- glm(tenure ~ year + I(year^2) + select + articles + prestige,

subset = (female == 0),
data = sub_data,
family = binomial(link = "logit"))

logit_w <- glm(tenure ~ year + I(year^2) + select + articles + prestige,
subset = (female == 1),
data = sub_data,
family = binomial(link = "logit"))

To present the results I use the mtable() function from memisc package (Elff 2012).

library("memisc")
mtable("Logit for men" = logit_m,

"Logit for women" = logit_w,
summary.stats = c("Log-likelihood", "AIC", "BIC", "N"))

#>
#> Calls:
#> Logit for men: glm(formula = tenure ~ year + I(year^2) + select + articles +
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#> prestige, family = binomial(link = "logit"), data = sub_data,
#> subset = (female == 0))
#> Logit for women: glm(formula = tenure ~ year + I(year^2) + select + articles +
#> prestige, family = binomial(link = "logit"), data = sub_data,
#> subset = (female == 1))
#>
#> ==================================================
#> Logit for men Logit for women
#> --------------------------------------------------
#> (Intercept) -7.680*** -5.842***
#> (0.681) (0.866)
#> year 1.909*** 1.408***
#> (0.214) (0.257)
#> I(year^2) -0.143*** -0.096***
#> (0.019) (0.022)
#> select 0.216*** 0.055
#> (0.061) (0.072)
#> articles 0.074*** 0.034**
#> (0.012) (0.013)
#> prestige -0.431*** -0.371*
#> (0.109) (0.156)
#> --------------------------------------------------
#> Log-likelihood -526.545 -306.191
#> AIC 1065.090 624.382
#> BIC 1097.863 654.155
#> N 1741 1056
#> ==================================================
#> Significance: *** = p < 0.001; ** = p < 0.01;
#> * = p < 0.05

From previous output, it can be noticed that the coefficient of articles for men is approximately
twice as large as for women: 0.074 vs 0.034. One possible conclusion we could draw from this result
is that women suffer from discrimination. That is, the return per additional article on the propensity
to get a promotion is on average lower for women, holding other things constant. However, Allison
(1999) notes that this result might be due to variance error term differences. For example, women might
have more heterogeneous career patterns than men due to unobserved factors affecting promotion. In
particular, assume that we have the following model for men (M) and women (W):

y∗iM = x⊤iMβ + ϵiM,

y∗iW = x⊤iW β + ϵiW ,

ϵiM ∼ Λ(0, σ2
M),

ϵiW ∼ Λ(0, σ2
W),

where Λ(·) is the logistic CDF. Both men and women have the same coefficients, β, in the propensity
to be promoted, but different scales, σ2

M ̸= σ2
W . Note that the logit model identifies β = α

σ . Thus, if
women have greater variance than men, σW > σM, their coefficient will be smaller, assuming similar
return to productivity. To allow for such possibility, Williams (2009) suggests fitting a heteroskedastic
logit (HET-Logit) model where the standard deviation of the error term is modeled as

σi = exp(δ · femalei).

This model can be estimated in R using the hetglm() function from glmx package or hetprob()
function from Rchoice package. The syntax to fit the model using hetprob() is the following

library("Rchoice")
het_logit <- hetprob(tenure ~ factor(female) + year + I(year^2) + select +

articles + prestige | factor(female),
data = sub_data,
link = "logit")

Similarly to hetglm() function, the formula argument of hetprob() has the form y ~ x | z, where
y is the binary response variable, x are the explanatory covariates, and z are the covariates affecting the
variance of the error term. The argument link indicates whether a logit (link = "logit") or probit
(link = "probit") model should be fitted.
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The output is the following:

summary(het_logit)

#> ------------------------------------------------------------------
#> Maximum Likelihood estimation of Heteroskedastic Binary model
#> Newton-Raphson maximisation, 4 iterations
#> Return code 8: successive function values within relative tolerance limit (reltol)
#> Log-Likelihood: -836.2824
#> 8 free parameters
#>
#> Estimates for the mean:
#> Estimate Std. error z value Pr(> z)
#> (Intercept) -7.490505 0.659663 -11.3551 < 2.2e-16 ***
#> factor(female)1 -0.939190 0.370524 -2.5348 0.0112524 *
#> year 1.909544 0.199694 9.5624 < 2.2e-16 ***
#> I(year^2) -0.139687 0.016943 -8.2448 < 2.2e-16 ***
#> select 0.181920 0.052657 3.4548 0.0005507 ***
#> articles 0.063534 0.010219 6.2173 5.059e-10 ***
#> prestige -0.446207 0.096904 -4.6046 4.132e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Estimates for lnsigma:
#> Estimate Std. error z value Pr(> z)
#> het.factor(female)1 0.30223 0.14618 2.0675 0.03868 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> LR test of lnsigma = 0: chi2 4.5 with 1 df. Prob > chi2 = 0.0339
#> -------------------------------------------------------------------

The results using hetglm() are the following

library("glmx")
het_glmx <- hetglm(tenure ~ factor(female) + year + I(year^2) + select +

articles + prestige | factor(female),
data = sub_data,

family = binomial(link = "logit"))
summary(het_glmx)

#>
#> Call:
#> hetglm(formula = tenure ~ factor(female) + year + I(year^2) + select +
#> articles + prestige | factor(female), data = sub_data, family = binomial(link = "logit"))
#>
#> Deviance residuals:
#> Min 1Q Median 3Q Max
#> -1.8473 -0.5666 -0.2926 -0.1149 3.3397
#>
#> Coefficients (binomial model with logit link):
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -7.490489 0.648517 -11.550 < 2e-16 ***
#> factor(female)1 -0.939174 0.364357 -2.578 0.009948 **
#> year 1.909540 0.199095 9.591 < 2e-16 ***
#> I(year^2) -0.139686 0.016762 -8.334 < 2e-16 ***
#> select 0.181919 0.051916 3.504 0.000458 ***
#> articles 0.063534 0.009884 6.428 1.3e-10 ***
#> prestige -0.446207 0.097083 -4.596 4.3e-06 ***
#>
#> Latent scale model coefficients (with log link):
#> Estimate Std. Error z value Pr(>|z|)
#> factor(female)1 0.3022 0.1433 2.109 0.0349 *
#> ---
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#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Log-likelihood: -836.3 on 8 Df
#> LR test for homoscedasticity: 4.501 on 1 Df, p-value: 0.03387
#> Dispersion: 1
#> Number of iterations in nlminb optimization: 7

Although the coefficients estimated by both functions are very similar, their standard errors are
somewhat different. One potential explanation for this difference is the optimization algorithm used
by each function. hetprob() uses Newton-Raphson algorithm available in maxLik() function from
maxLik package (Henningsen and Toomet 2011), whereas hetglm() uses nlminb algorithm as default.

Now, I compare the logit and Het-Logit estimates using mtable() function.10 The following output
presents the estimates.

mtable("Logit for men" = logit_m,
"Logit for women" = logit_w,
"Heteroskedastic" = het_logit,
summary.stats = c("Log-likelihood", "AIC", "BIC", "N"))

#>
#> Calls:
#> Logit for men: glm(formula = tenure ~ year + I(year^2) + select + articles +
#> prestige, family = binomial(link = "logit"), data = sub_data,
#> subset = (female == 0))
#> Logit for women: glm(formula = tenure ~ year + I(year^2) + select + articles +
#> prestige, family = binomial(link = "logit"), data = sub_data,
#> subset = (female == 1))
#> Heteroskedastic: hetprob(formula = tenure ~ factor(female) + year + I(year^2) +
#> select + articles + prestige | factor(female), data = sub_data,
#> link = "logit", method = "nr")
#>
#> ========================================================================
#> Logit for men Logit for women Heteroskedastic
#> ----------- ----------- -------------------
#> tenure tenure mean lnsigma
#> ------------------------------------------------------------------------
#> (Intercept) -7.680*** -5.842*** -7.491***
#> (0.681) (0.866) (0.660)
#> year 1.909*** 1.408*** 1.910***
#> (0.214) (0.257) (0.200)
#> I(year^2) -0.143*** -0.096*** -0.140***
#> (0.019) (0.022) (0.017)
#> select 0.216*** 0.055 0.182***
#> (0.061) (0.072) (0.053)
#> articles 0.074*** 0.034** 0.064***
#> (0.012) (0.013) (0.010)
#> prestige -0.431*** -0.371* -0.446***
#> (0.109) (0.156) (0.097)
#> factor(female)1 -0.939* 0.302*
#> (0.371) (0.146)
#> ------------------------------------------------------------------------
#> Log-likelihood -526.545 -306.191 -836.282
#> AIC 1065.090 624.382 1688.565
#> BIC 1097.863 654.155 1736.055
#> N 1741 1056 2797
#> ========================================================================
#> Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05

The estimated coefficients for the HET-Logit model indicate that being a woman increases the
variance of the error term (δ̂ = 0.302) and decreases the propensity to be promoted (β̂6 = -0.939).

Using the estimate δ̂, we can also compute how much the disturbance standard deviation differ by
gender. Note that the standard deviation of the error term for women is σW = exp(0.302), whereas for
men is σM = exp(0) = 1. Then,

10mtable() does not support objects of class hetglm.
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sigma_w <- exp(coef(het_logit)["het.factor(female)1"])
(1 - sigma_w) / sigma_w

#> het.factor(female)1
#> -0.2608322

This result implies that the standard deviation of the disturbance for men is 26% lower than the
standard deviation for women. Conversely, this also means that the standard deviation of the residuals
is exp(0.302) = 1.35 times larger for women compared to men (Williams 2009, 2010). The 95%-CI for
this ratio can be computed using the delta method by deltaMethod() function from car package (Fox,
Friendly, and Weisberg 2013):

library("car")
sharef <- "(1 - exp(`het.factor(female)1`)) / exp(`het.factor(female)1`)"
deltaMethod(het_logit, sharef)

#> Estimate SE
#> (1 - exp(`het.factor(female)1`))/exp(`het.factor(female)1`) -0.26083 0.10805
#> 2.5 % 97.5 %
#> (1 - exp(`het.factor(female)1`))/exp(`het.factor(female)1`) -0.47261 -0.0491

So far, the HET-Logit estimates suggest that there are gender differences in both the dependent
variable and in the variance of the error term. However, the estimated coefficients do not allow us to
conclude whether women have a lower return than men for productivity. To give some insights about
this question, I estimate a HET-Logit model including the interaction between female and articles in
the choice equation:

het_logit2 <- hetprob(tenure ~ factor(female) + year + I(year^2) + select +
articles + prestige + factor(female)*articles |
factor(female),

data = sub_data,
link = "logit")

print(summary(het_logit2), digits = 3)

#> ------------------------------------------------------------------
#> Maximum Likelihood estimation of Heteroskedastic Binary model
#> Newton-Raphson maximisation, 4 iterations
#> Return code 1: gradient close to zero (gradtol)
#> Log-Likelihood: -835.1335
#> 9 free parameters
#>
#> Estimates for the mean:
#> Estimate Std. error z value Pr(> z)
#> (Intercept) -7.3653 0.6547 -11.25 < 2e-16 ***
#> factor(female)1 -0.3781 0.4500 -0.84 0.401
#> year 1.8383 0.2029 9.06 < 2e-16 ***
#> I(year^2) -0.1343 0.0170 -7.89 3.1e-15 ***
#> select 0.1700 0.0517 3.29 0.001 **
#> articles 0.0720 0.0114 6.31 2.8e-10 ***
#> prestige -0.4205 0.0961 -4.37 1.2e-05 ***
#> factor(female)1:articles -0.0305 0.0187 -1.63 0.104
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Estimates for lnsigma:
#> Estimate Std. error z value Pr(> z)
#> het.factor(female)1 0.177 0.163 1.09 0.28
#>
#> LR test of lnsigma = 0: chi2 1.22 with 1 df. Prob > chi2 = 0.2684
#> -------------------------------------------------------------------

The coefficient for female * articles is not statistically significant when residual variation by
gender is involved. As argued by Allison (1999), this result proposes dissimilarities in productivity
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Figure 1: Distribution of predicted probability and predicted sigma

returns between males and females resulting from variability in unobserved factors rather than
discriminatory influences.

Once we have fitted a model, we can use the predict() command to obtain the predicted
probability and the predicted scale factor, σ̂i, which can be readily used for visualization as shown in
Figure 1. The following lines plots the distribution of both measures:

par(mfrow = c(1, 2))
hist(predict(het_logit2, type = "pr"),

main = "Predicted probabilities",
xlab = "Probabilities")

hist(predict(het_logit2, type = "sigma"),
main = "Predicted sigma",
xlab = "Sigma")

An additional feature of Rchoice package is that it allows to estimate the APEs for heteroskedastic
binary models, as in Equation (6), using effect() function. Similarly to command margins() from
margins package (Leeper 2021) or avg_slopes() from marginaleffects package (Arel-Bundock 2023),
this function takes into account whether the variables are continuous, categorical or both. The user
must specify categorical variables using factor() in the formula argument; otherwise, the effect()
function will assume that the variable is continuous, when the variable may already be a factor in the
dataset. In the following lines, we compute the APEs for a HET-Probit and HET-Logit model.11 The
results are the following:

eff_logit <- effect(het_logit2)
het_probit <- hetprob(tenure ~ factor(female) + year + I(year^2) + select +

articles + prestige + factor(female)*articles |
factor(female),

data = sub_data,
link = "probit")

eff_probit <- effect(het_probit)
mtable(eff_probit,

eff_logit)

#>
#> Calls:
#> eff_probit: hetprob(formula = tenure ~ factor(female) + year + I(year^2) +
#> select + articles + prestige + factor(female) * articles |
#> factor(female), data = sub_data, link = "probit", method = "nr")

11The Jacobian matrix is computed numerically using jacobian() function from numDeriv package (Gilbert
and Varadhan 2019).
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#> eff_logit: hetprob(formula = tenure ~ factor(female) + year + I(year^2) +
#> select + articles + prestige + factor(female) * articles |
#> factor(female), data = sub_data, link = "logit", method = "nr")
#>
#> =============================================
#> eff_probit eff_logit
#> ---------------------------------------------
#> factor(female)1 -0.031** -0.031**
#> (0.012) (0.012)
#> year 0.032*** 0.032***
#> (0.002) (0.002)
#> select 0.014*** 0.015***
#> (0.004) (0.004)
#> articles 0.006*** 0.005***
#> (0.001) (0.001)
#> prestige -0.035*** -0.036***
#> (0.008) (0.008)
#> ---------------------------------------------
#> Log-likelihood -832.478 -835.133
#> N 2797 2797
#> =============================================
#> Significance: *** = p < 0.001;
#> ** = p < 0.01; * = p < 0.05

The APEs are very close to each other and statistically significant. According to the HET-Probit
estimates, one additional published article increases the probability of being promoted by 0.6 percent
points, whereas being a woman decreases the probability of promoted by 3.1%.

Labor participation

Our second example is a replication of Greene (2003)‘s example 17.7 based on the dataset “mroz.cvs”.
This dataset is based on a cross-section data on the wages of 428 working, married women, originating
from the 1976 Panel Study of Income Dynamics (PSID), which can be loaded as follows:

mroz <- read.csv(file = 'mroz.csv')
mroz$kids <- with(mroz, factor((kidslt6 + kidsge6) > 0,

levels = c(FALSE, TRUE),
labels = c("no", "yes")))

mroz$finc <- mroz$faminc / 10000

Using this data, Greene (2003) estimates the following HET-Probit model for women labor
participation:

inlf∗ = β0 + β1age + β2age2 + β3finc + β4educ + β5kids + ϵ, (22)

ϵ ∼ N(0, σ2
i ), (23)

σi = exp(δ1kids + δ2finc), (24)

where inlf is a dummy variable indicating whether the woman participates in labor force, age is age
in year, finc is family income in 1975 dollars divided by 10,000, educ is education in year and kids
indicates whether children under 18 are present in the household. It is further assumed that kids and
finc affect the variability of the error term.

The probit, Het-Probit and average marginal effects are estimated as follows:12

labor_hom <- glm(inlf ~ age + I(age^2) + finc + educ + factor(kids),
data = mroz,
family = binomial(link = "probit"))

labor_het <- hetprob(inlf ~ age + I(age^2) + finc + educ + factor(kids) |
factor(kids) + finc,

data = mroz,
link = "probit")

eff_labor_het <- effect(labor_het)

12Greene (2003) computes the marginal effects at the mean instead of the average marginal effects.
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mtable(labor_hom,
labor_het,
eff_labor_het)

#>
#> Calls:
#> labor_hom: glm(formula = inlf ~ age + I(age^2) + finc + educ + factor(kids),
#> family = binomial(link = "probit"), data = mroz)
#> labor_het: hetprob(formula = inlf ~ age + I(age^2) + finc + educ + factor(kids) |
#> factor(kids) + finc, data = mroz, link = "probit", method = "nr")
#> eff_labor_het: hetprob(formula = inlf ~ age + I(age^2) + finc + educ + factor(kids) |
#> factor(kids) + finc, data = mroz, link = "probit", method = "nr")
#>
#> ========================================================================
#> labor_hom labor_het eff_labor_het
#> ----------- ------------------ -----------
#> inlf mean lnsigma inlf
#> ------------------------------------------------------------------------
#> (Intercept) -4.157** -6.030*
#> (1.404) (2.498)
#> age 0.185** 0.264* -0.009***
#> (0.066) (0.118) (0.003)
#> I(age^2) -0.002** -0.004*
#> (0.001) (0.001)
#> finc 0.046 0.424 0.313* 0.069**
#> (0.043) (0.222) (0.123) (0.024)
#> educ 0.098*** 0.140** 0.030***
#> (0.023) (0.052) (0.009)
#> factor(kids): yes/no -0.449*** -0.879** -0.141 -0.161***
#> (0.130) (0.303) (0.324) (0.043)
#> ------------------------------------------------------------------------
#> Log-likelihood -490.848 -487.636 -487.636
#> N 753 753 753
#> ========================================================================
#> Significance: *** = p < 0.001; ** = p < 0.01; * = p < 0.05

The results show that family income does not play any role in the choice equation. However, it
increases the variability of the error term. APE indicates that an increase of $10,000 of family income
increases the probability of labor force involvement by 6.9%. There is not enough statistical evidence
that proves having children under 18 in the household produces heteroskedasticity.

We can also use the Wald test provided by linearHypothesis() function from car package to test
the null hypothesis of homoskedasticity:

coefs <- names(coef(labor_het))
linearHypothesis(labor_het, coefs[grep("het", coefs)])

#> Linear hypothesis test
#>
#> Hypothesis:
#> het.factor(kids)yes = 0
#> het.finc = 0
#>
#> Model 1: restricted model
#> Model 2: inlf ~ age + I(age^2) + finc + educ + factor(kids) | factor(kids) +
#> finc
#>
#> Df Chisq Pr(>Chisq)
#> 1
#> 2 2 6.5331 0.03814 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The null hypothesis of homoskedasticity is rejected at the 5% with a χ2
2 = 6.533.
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Supplementary materials provide Stata code (version 16.1) to replicate all the results in this Section.
The log file is presented in Appendix C. Overall, the results using Stata are exactly the same to those
reported by hetprob() function from Rchoice package.

3.2 Instrumental variable probit model

Control function approach

In this example, and similar to Wooldridge (2010), we use the mroz sample and assume the following
slightly modified model for married women’s labor force participation from previous Section:

inlf∗ =β0 + β1educ + β2exper + β3exper2 + β4age + β5kidslt6+

β6kidsge6 + β7nwifeinc + ϵ,

nwifeinc =δ0 + δ1educ + δ2exper + δ3exper2 + δ4age + δ5kidslt6+

δ6kidsge6 + δ7huseduc + υ,

lfp = 1 [lfp∗ > 0]

where nwifeinc is the other sources of income (divided by 1,000) and assumed to be endogenous.
A just identified IV model is estimated by using husband’s education, (huseduc), as an instrument
for nwifeinc. The strong identification assumption here is that husband’s schooling is unrelated to
factors that affect a married woman’s labor force decision once nwifeinc and the other variables are
accounted for (Wooldridge 2010).

When interpreting the results from an IV model, it is important to compare its magnitude with a
model that assumes exogeneity. In this example, our benchmark APE for nwifeinc is obtained by the
standard probit model:

probit <- glm(inlf ~ educ + exper + I(exper^2) + age + kidslt6 + kidsge6 + nwifeinc,
data = mroz,
family = binomial(link = "probit"))

ape.probit <- mean(dnorm(predict(probit, type = "link"))) * coef(probit)["nwifeinc"]
ape.probit

#> nwifeinc
#> -0.003616176

Accordingly, an increase of $1,000 in other sources of income reduces the labor force participation
probability by 0.4%, holding all other factors constant. Note that the same APE, along with its standard
error, can also be obtained using avg_slopes() command:

library("marginaleffects")
avg_slopes(probit, variables = "nwifeinc")

#>
#> Term Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 %
#> nwifeinc -0.00362 0.00147 -2.46 0.0139 6.2 -0.0065 -0.000736
#>
#> Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high
#> Type: response

I proceed to estimate the model using the CF approach. First, I estimate the first-step equation,
which is a linear model, and obtain the residuals υ̃:

fstep <- lm(nwifeinc ~ educ + exper + I(exper^2) + age + kidslt6 + kidsge6 + huseduc,
data = mroz)

mroz$res.hat <- fstep$residuals

We can also test the power of the instrument using linearHypothesis() function:

linearHypothesis(fstep, "huseduc")
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#> Linear hypothesis test
#>
#> Hypothesis:
#> huseduc = 0
#>
#> Model 1: restricted model
#> Model 2: nwifeinc ~ educ + exper + I(exper^2) + age + kidslt6 + kidsge6 +
#> huseduc
#>
#> Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 746 86955
#> 2 745 81120 1 5834.8 53.586 6.427e-13 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first-stage F statistic on huseduc is substantially above the traditional cut-off of ten suggesting
that the instrument is not weak.

The second-step is computed using glm() function and adding the residuals (res.hat) as an
additional explanatory variable:

sstep <- glm(inlf ~ educ + exper + I(exper^2) + age + kidslt6 + kidsge6 + nwifeinc + res.hat,
data = mroz,
family = binomial(link = "probit"))

summary(sstep)

#>
#> Call:
#> glm(formula = inlf ~ educ + exper + I(exper^2) + age + kidslt6 +
#> kidsge6 + nwifeinc + res.hat, family = binomial(link = "probit"),
#> data = mroz)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -2.2523 -0.9078 0.4204 0.8566 2.2803
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.0171183 0.5380339 0.032 0.97462
#> educ 0.1702142 0.0377615 4.508 6.56e-06 ***
#> exper 0.1163118 0.0193869 6.000 1.98e-09 ***
#> I(exper^2) -0.0019458 0.0005999 -3.244 0.00118 **
#> age -0.0449529 0.0101351 -4.435 9.19e-06 ***
#> kidslt6 -0.8444319 0.1197268 -7.053 1.75e-12 ***
#> kidsge6 0.0477912 0.0449431 1.063 0.28761
#> nwifeinc -0.0368639 0.0183848 -2.005 0.04495 *
#> res.hat 0.0267092 0.0191539 1.394 0.16318
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 1029.75 on 752 degrees of freedom
#> Residual deviance: 800.61 on 744 degrees of freedom
#> AIC: 818.61
#>
#> Number of Fisher Scoring iterations: 4

Since the z-statistic for res.hat is 1.4, we cannot reject the null hypothesis that nwifeinc is
exogenous: H0 : λ = 0.

An estimate of ρ can be obtained using Equation (13) and the following syntax:

lambda.hat <- coef(sstep)["res.hat"]
k <- length(fstep$coefficients)
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SSE <- sum(fstep$residuals^2)
n <- length(fstep$residuals)
sigma.upsilon <- sqrt(SSE/(n - k))
rho.hat <- lambda.hat * sigma.upsilon
rho.hat

#> res.hat
#> 0.2787068

Thus, the estimated correlation using the CF approach is ρ̂ = 0.279. It is important to recall that the
estimated coefficients for the sstep model represent the coefficients scaled by a factor of 1/

√
1 − ρ2.

Moreover, the standard errors from the sstep model are biased since they do not consider the sampling
error of the first stage. However, we can use ivprobit() function from ivprobit package (Zaghdoudi
2018) to get the correct standard errors:13

library("ivprobit")
twostep.probit <- ivprobit(inlf ~ educ + exper + I(exper^2) + age + kidslt6 + kidsge6 |

nwifeinc | educ + exper + I(exper^2) + age + kidslt6 +
kidsge6 + huseduc,

data = mroz)
summary(twostep.probit)

#> Coef S.E. t-stat p-val
#> Intercep 0.01711834 0.54865782 0.0312 0.975118
#> educ 0.17021419 0.03848938 4.4224 1.121e-05 ***
#> exper 0.11631183 0.01976301 5.8853 6.001e-09 ***
#> I(exper^2) -0.00194584 0.00061195 -3.1798 0.001535 **
#> age -0.04495285 0.01032548 -4.3536 1.526e-05 ***
#> kidslt6 -0.84443188 0.12176581 -6.9349 8.818e-12 ***
#> kidsge6 0.04779117 0.04578807 1.0437 0.296940
#> nwifeinc -0.03686390 0.01874338 -1.9668 0.049580 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimates of the sstep and twostep.probit models are the same, while their standard errors
are slightly different.

The APE for nwifeinc—and any other continuous variable—can be computed using Equation (16)
and its standard error via bootstrap method. Below, I use package boot (Canty 2002) to perform the
simulation. First, a function called ape() is created which returns the APE. The first argument of this
function is the dataset, whereas the second argument can be an index vector of the observations in the
dataset.

ape <- function(data, indices){
d <- data[indices, ]
# Compute the first-stage regression
fstep <- lm(nwifeinc ~ educ + exper + I(exper^2) + age + kidslt6 + kidsge6 +

huseduc,
data = d)

# Obtain the residuals
d$res.hat <- fstep$residuals
# Compute the second-stage regression
sstep <- glm(inlf ~ educ + exper + I(exper^2) + age + kidslt6 + kidsge6 +

nwifeinc + res.hat,
data = d,
family = binomial(link = "probit"))

# Compute APE for nwincome
out <- mean(dnorm(predict(sstep, type = "link"))) * coef(sstep)["nwifeinc"]
return(out)

}

Once we have defined the function ape(), we can use the boot() function to perform the bootstrap
procedure. In the following syntax, R = 500 resamplings are used and the 90%-CI interval is obtained
using boot.ci() function.

13ivprobit() uses a minimum chi-squared estimator (Newey 1987).
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library("boot")
set.seed(666)
results <- boot(data = mroz, statistic = ape, R = 500)
results

#>
#> ORDINARY NONPARAMETRIC BOOTSTRAP
#>
#>
#> Call:
#> boot(data = mroz, statistic = ape, R = 500)
#>
#>
#> Bootstrap Statistics :
#> original bias std. error
#> t1* -0.0110576 -0.0005050597 0.005877061

boot.ci(results, type = "norm", conf = 0.90)

#> BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
#> Based on 500 bootstrap replicates
#>
#> CALL :
#> boot.ci(boot.out = results, conf = 0.9, type = "norm")
#>
#> Intervals :
#> Level Normal
#> 90% (-0.0202, -0.0009 )
#> Calculations and Intervals on Original Scale

The results show that another $1,000 in other sources of income reduces the labor force participation
probability by 1.1 percent points with 90%-CI [−2,−.09]. This estimate, which is marginally statistically
significant, is about three times larger than the probit estimate that treats nwifeinc as exogenous:
-0.04.

Finally, we can recover the unscaled parameters by multiplying the coefficients by
√
(1 − ρ̂2) as

follows:

coef(sstep) * sqrt(1 - rho.hat^2)

#> (Intercept) educ exper I(exper^2) age kidslt6
#> 0.016440046 0.163469667 0.111703116 -0.001868741 -0.043171653 -0.810972324
#> kidsge6 nwifeinc res.hat
#> 0.045897507 -0.035403215 0.025650873

Maximum likelihood estimator

In this Section I estimate the model from previous Section using the MLE. To do so, I use the ivpml()
function from Rchoice package. The syntax is as follows:

fiml.probit <- ivpml(inlf ~ educ + exper + I(exper^2) + age + kidslt6 + kidsge6 +
nwifeinc | huseduc + educ + exper + I(exper^2) + age +
kidslt6 + kidsge6,

data = mroz)

#>
#> Estimating a just identified model....
#>
#> Obtaining starting values from probit and linear model...

The syntax of ivpml() is similar to that of ivreg() function from AER package. The formula has
two part in the right-hand side, that is, y ~ x | z where y is the binary response variable, x are the
regressors (x in Equation (7)), and z are the exogenous variables (x1 and x2 in Equation (8)).
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During the optimization procedure, ivpml() displays several messages which can be turned-off
by setting messages = FALSE. The output indicates that the model is just-identified and that the initial
values for the optimization procedure are obtained from the traditional probit and linear models for
the structural and first-stage equation, respectively. Similarly to hetprob() function, the optimization
algorithm can be managed using the argument method, which is passed on to the maxLik() function.
Currently, the default algorithm is the Newton-Raphson, method = "nr".

summary(fiml.probit)

#> --------------------------------------------
#> Maximum Likelihood estimation of IV Probit model
#> Newton-Raphson maximisation, 3 iterations
#> Return code 8: successive function values within relative tolerance limit (reltol)
#> Log-Likelihood: -3230.642
#> 18 free parameters
#> Estimates:
#> Estimate Std. error z value Pr(> z)
#> inlf:(Intercept) 1.6499e-02 5.3008e-01 0.0311 0.9751702
#> inlf:educ 1.6403e-01 3.1225e-02 5.2531 1.495e-07 ***
#> inlf:exper 1.1209e-01 2.1199e-02 5.2873 1.241e-07 ***
#> inlf:I(exper^2) -1.8751e-03 5.9150e-04 -3.1701 0.0015237 **
#> inlf:age -4.3319e-02 1.1331e-02 -3.8230 0.0001319 ***
#> inlf:kidslt6 -8.1375e-01 1.2994e-01 -6.2623 3.794e-10 ***
#> inlf:kidsge6 4.6054e-02 4.3139e-02 1.0676 0.2857141
#> inlf:nwifeinc -3.5524e-02 1.6190e-02 -2.1941 0.0282247 *
#> nwifeinc:(Intercept) -1.4720e+01 3.7672e+00 -3.9076 9.322e-05 ***
#> nwifeinc:huseduc 1.1782e+00 1.6009e-01 7.3594 1.847e-13 ***
#> nwifeinc:educ 6.7469e-01 2.1254e-01 3.1744 0.0015016 **
#> nwifeinc:exper -3.1299e-01 1.3752e-01 -2.2760 0.0228480 *
#> nwifeinc:I(exper^2) -4.7756e-04 4.4955e-03 -0.1062 0.9153983
#> nwifeinc:age 3.4015e-01 5.9390e-02 5.7274 1.020e-08 ***
#> nwifeinc:kidslt6 8.2627e-01 8.1402e-01 1.0151 0.3100812
#> nwifeinc:kidsge6 4.3553e-01 3.2027e-01 1.3599 0.1738728
#> lnsigma 2.3398e+00 2.5768e-02 90.8016 < 2.2e-16 ***
#> atanhrho 2.7379e-01 1.9296e-01 1.4189 0.1559361
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Instrumented: nwifeinc
#> Instruments: (Intercept) huseduc educ exper I(exper^2) age kidslt6 kidsge6
#> Wald test of exogeneity (corr = 0): chi2 2.01 with 1 df. Prob > chi2 = 0.1559
#> --------------------------------------------

During the optimization procedure the parameters συ and ρ might tend to the boundary points
of the parameter space, generating identifiability problems of the MLE. To avoid this issue, ivpml()
re-parametrizes the parameters.14 First, to ensure συ > 0, ivpml() instead estimates log νυ such that:

συ = exp(log νυ). (25)

Second, ivpml() forces the correlation to remain in the (−1,+1) range by using the inverse
hyperbolic tangent:

atanh(ρ) = τ =
1
2

log
(

1 + ρ

1 − ρ

)
,

where τ is unrestricted, and ρ can be obtained using the inverse of τ:

τ−1 = ρ = tanh(τ). (26)

In the following syntax, we recover συ and ρ using Equations (25) and (26), respectively, and their
standard errors are computed using delta method approach by deltaMethod() function:

deltaMethod(fiml.probit, "exp(lnsigma)")

14This re-parametrization is also used by ivprobit function in Stata.
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#> Estimate SE 2.5 % 97.5 %
#> exp(lnsigma) 10.37928 0.26746 9.85508 10.903

deltaMethod(fiml.probit, "tanh(atanhrho)")

#> Estimate SE 2.5 % 97.5 %
#> tanh(atanhrho) 0.267145 0.179190 -0.084061 0.6184

Again, the FIML estimate of ρ is close to that found using the CF approach which was 0.279. If
significant, a positive ρ would indicate that there is a positive correlation between ϵ and υ. That is, the
unobserved factors that make it more likely for a woman to have a higher income from other sources
also make it more likely that the woman will be participating in the labor force.

For those users who are more familiar with Stata (see Appendix D), it is important to mention that
its function ivprobit estimates the 95%-CI for ρ̂ and σ̂υ as follows:

cbind(exp(coef(fiml.probit)["lnsigma"] - qnorm(0.975) * stdEr(fiml.probit)["lnsigma"]),
exp(coef(fiml.probit)["lnsigma"] + qnorm(0.975) * stdEr(fiml.probit)["lnsigma"]))

#> [,1] [,2]
#> lnsigma 9.868094 10.91695

cbind(tanh(coef(fiml.probit)["atanhrho"] - qnorm(0.975) * stdEr(fiml.probit)["atanhrho"]),
tanh(coef(fiml.probit)["atanhrho"] + qnorm(0.975) * stdEr(fiml.probit)["atanhrho"]))

#> [,1] [,2]
#> atanhrho -0.1040317 0.5730038

The APEs can be estimated using the function effect(). The main argument of this function is
asf. If asf = TRUE (the default), then the APEs are computed using Equation (20). On the other hand,
if asf = FALSE the APEs are computed using Equation (21).

summary(effect(fiml.probit))

#> ------------------------------------------------------
#> Marginal effects for the IV Probit model:
#> ------------------------------------------------------
#> dydx Std. error z value Pr(> z)
#> educ 0.051057 0.011101 4.599 4.24e-06 ***
#> exper 0.023071 0.002952 7.816 5.44e-15 ***
#> age -0.013484 0.002986 -4.516 6.31e-06 ***
#> kidslt6 -0.253295 0.033077 -7.658 1.89e-14 ***
#> kidsge6 0.014335 0.013520 1.060 0.2890
#> nwifeinc -0.011058 0.005550 -1.992 0.0463 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Note: Marginal effects computed as the average for each individual

summary(effect(fiml.probit, asf = FALSE))

#> ------------------------------------------------------
#> Marginal effects for the IV Probit model:
#> ------------------------------------------------------
#> dydx Std. error z value Pr(> z)
#> educ 0.048777 0.008733 5.585 2.33e-08 ***
#> exper 0.021997 0.003723 5.908 3.46e-09 ***
#> age -0.012882 0.003322 -3.878 0.000105 ***
#> kidslt6 -0.241982 0.036594 -6.613 3.78e-11 ***
#> kidsge6 0.013695 0.012792 1.071 0.284373
#> nwifeinc -0.010564 0.004736 -2.230 0.025724 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Note: Marginal effects computed as the average for each individual

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 281

The results show that both APEs are close to each other. Note also that the estimated APE for
nwifeinc using the CF approach is very similar to that ones obtained by MLE. Appendix D also
shows that the Stata function ivprobit() provides the same estimates and marginal effects as ivpml()
function.

4 Summary

The aim of the article was to provide a primer on estimating heteroskedastic and IV model for binary
outcomes in R. I also show that the current version of Rchoice package (available at https://cran.r-
project.org/web/packages/Rchoice/index.html) allows to estimate such models in a flexible way
and provides accurate average marginal effects that are very similar to those provided by Stata’s
margins command. Rchoice can be used in concert with other packages. For example, one can format
the summary output from Rchoice with memisc to produce well-formatted tables for regression
estimates

5 Appendix A: Gradient and Hessian for binary response models with
heteroskedasticity

In this section, I provide the analytic gradient and Hessian used by hetprob() function in Rchoice.
The log-likelihood function for the binary choice model with exponential heteroskedasticity can be
written as:

ℓ(θ) =
n

∑
i=1

ln F(ai),

where F(·) is either the CDF of the standard normal or standard logistic distribution, θ =
(

β⊤, δ⊤
)⊤

is the full (k + p)-dimensional vector of parameters, and:

ai = qi

(
x⊤i β

exp(z⊤i δ)

)
,

qi = 2(yi − 1).

The gradient is:
∂ℓ(θ)

∂θ
=

n

∑
i=1

[
f (ai)

F(ai)

∂ai
∂θ

]
,

=
n

∑
i=1

[m(ai)gi] ,

where m(·) = f (·)/F(·) = ϕ(·)/Φ(·) for the probit model and m(·) = 1 − Λ(·) for the logit model,
and ∂ai/∂θ = gi such that:

gi =

(
∂ai
∂β
∂ai
∂δ

)
=

qi

exp(z⊤i δ)

(
xi

−
(

x⊤i β
)

zi

)
.

The Hessian is given by:

∂2ℓ(θ)

∂θ∂θ⊤
=

∂

∂θ⊤

(
∂ℓ(θ)

∂θ

)
,

=
n

∑
i=1

[
h(ai)gig

⊤
i + m(ai)Hi

]
,

where h(ai) = ∂m(ai)/∂ai = −aim(ai)− m(ai)
2 and:

Hi =
∂ai

∂θ∂θ⊤
=

( ∂ai
∂β∂β⊤

∂ai
∂β∂δ⊤

∂ai
∂δ∂β⊤

∂ai
∂δ∂δ⊤

)
=

 O − qi

exp(z⊤i δ)
xiz⊤i

− qi

exp(z⊤i δ)
zix⊤i

qi(x⊤i β)

exp(z⊤i δ)
ziz⊤i

 .
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6 Appendix B: Gradient and Hessian for binary response models with
endogeneity

In this section, I provide the analytic gradient and Hessian used by ivpml function in Rchoice. The
log-likelihood function can be written as:

ℓ(θ) =
n

∑
i=1

[ln (Φ(ai)) + ln(1)− ln (συ) + ln [ϕ(bi)]] ,

where θ =
(

β⊤, δ⊤, συ, ρ
)⊤

is an (k + p + 2)-dimensional vector and:

ai = qi

x⊤i β +
ρ
συ

(
y2i − z⊤i δ

)
√

1 − ρ2

 ,

bi =
y2i − z⊤i δ

συ
,

qi = 2(yi − 1),

συ = exp(ln νυ),

ρ = tanh(τ).

The first derivatives of the log-likelihood function are:

∂ℓ(θ)

∂β
=

n

∑
i=1

[
m(ai)

(
qi√

1 − ρ2

)
xi

]
,

∂ℓ(θ)

∂δ
=

n

∑
i=1

[
−m(ai)

(
qi (ρ/συ)√

1 − ρ2

)
+ bi

(
1
συ

)]
zi,

∂ℓ(θ)

∂ ln νυ
=

n

∑
i=1

[
−m(ai)

qiρ√
1 − ρ2

bi + b2
i − 1

]
,

∂ℓ(θ)

∂τ
=

n

∑
i=1

m(ai)qi

 x⊤i βρ + bi√
sech2(τ)

 ,

where m(ai) = ϕ(ai)/Φ(ai), dtanh(τ)/dτ = sech2(τ), and we use the fact that ϕ′(bi) = −biϕ(bi) so
that ϕ′(bi)/ϕ(bi) = −bi.

The Hessian is given by:

H =


∂2ℓ(θ)
∂β∂β⊤

∂2ℓ(θ)
∂β∂δ⊤

∂2ℓ(θ)
∂β∂ ln νυ

∂2ℓ(θ)
∂β∂τ

˙ ∂2ℓ(θ)
∂δ∂δ⊤

∂2ℓ(θ)
∂δ∂∂ ln νυ

∂2ℓ(θ)
∂δ∂τ

˙ ˙ ∂2ℓ(θ)
∂(ln νυ)2

∂2ℓ(θ)
∂ ln νυ∂τ

˙ ˙ ˙ ∂2ℓ(θ)
∂τ2

 .
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The second derivatives are:

∂2ℓ(θ)

∂β∂β⊤ =
n

∑
i=1

h(ai)

(
qi√

1 − ρ2

)2

xix
⊤
i

 ,

∂2ℓ(θ)

∂β∂δ⊤ =
n

∑
i=1

−h(ai)

(
qi√

1 − ρ2

)2 (
ρ

συ

)
xiz

⊤
i

 ,

∂2ℓ(θ)

∂β∂ ln νυ
=

n

∑
i=1

−h(ai)

(
qi√

1 − ρ2

)2

(ρbi) xi

 ,

∂2ℓ(θ)

∂β∂τ
=

n

∑
i=1

h(ai)

(
qi√

1 − ρ2

)qi

 x⊤i βρ + bi√
sech2(τ)

 xi

 ,

∂2ℓ(θ)

∂δ∂δ⊤ =
n

∑
i=1

h(ai)

(
qi (ρ/συ)√

1 − ρ2

)2

− 1
σ2

υ

 ziz
⊤
i ,

∂2ℓ(θ)

∂δ∂ ln νυ
=

n

∑
i=1

(
bi
συ

)h(ai)

(
qiρ√
1 − ρ2

)2

− 2

 zi,

∂2ℓ(θ)

∂δ∂τ
=

n

∑
i=1

−h(ai)

(
qi (ρ/συ)√

1 − ρ2

)qi

 x⊤i βρ + bi√
sech2(τ)

 zi,

∂2ℓ(θ)

∂(ln νυ)2 =
n

∑
i=1

h(ai)

(
qiρbi√
1 − ρ2

)2

+ m(ai)

(
qiρbi√
1 − ρ2

)
− 2b2

i

 ,

∂2ℓ(θ)

∂ ln νυ∂τ
=

n

∑
i=1

−bi

h(ai)
qiρ√
1 − ρ2

qi

 x⊤i βρ + bi√
sech2(τ)

+ m(ai)
qi√

sech2(τ)

 ,

∂2ℓ(θ)

∂τ2 =
n

∑
i=1

h(ai)

qi
x⊤i βρ + bi√

sech2(τ)

2

+ qim(ai)
x⊤i β + biρ√

sech2(τ)

 ,

where h(ai) = −aim(ai)− m(ai)
2.

7 Appendix C: Stata code for heteroskedastic binary response models

*=========================================
*** Example 1: Promotion of scientists ***
*=========================================
. import delimited "$dir/tenure.csv", clear
(23 vars, 2,945 obs)

. ** Logit models for men and women

. quietly eststo logit_m: logit tenure year c.year#c.year select ///
articles prestige if (year <= 10 & female == 0)

. quietly eststo logit_w: logit tenure year c.year#c.year select ///
articles prestige if (year <= 10 & female == 1)

. esttab logit_m logit_w, b(3) se(3)
--------------------------------------------

(1) (2)
tenure tenure

--------------------------------------------
tenure
year 1.909*** 1.408***

(0.214) (0.257)
c.year#c.y~r -0.143*** -0.096***

(0.019) (0.022)
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select 0.216*** 0.055
(0.061) (0.072)

articles 0.074*** 0.034**
(0.012) (0.013)

prestige -0.431*** -0.371*
(0.109) (0.156)

_cons -7.680*** -5.842***
(0.681) (0.866)

--------------------------------------------
N 1741 1056
--------------------------------------------
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

. ** Heterokedastic logit model

. quietly ssc install oglm

. quietly eststo het_logit: oglm tenure i.female year c.year#c.year select ///
articles prestige if (year <= 10), hetero(i.female) link(logit)

. esttab logit_m logit_w het_logit, b(3) se(3)
------------------------------------------------------------

(1) (2) (3)
tenure tenure tenure

------------------------------------------------------------
tenure
year 1.909*** 1.408*** 1.910***

(0.214) (0.257) (0.200)
c.year#c.y~r -0.143*** -0.096*** -0.140***

(0.019) (0.022) (0.017)
select 0.216*** 0.055 0.182***

(0.061) (0.072) (0.053)
articles 0.074*** 0.034** 0.064***

(0.012) (0.013) (0.010)
prestige -0.431*** -0.371* -0.446***

(0.109) (0.156) (0.097)
0.female 0.000

(.)
1.female -0.939*

(0.371)
_cons -7.680*** -5.842***

(0.681) (0.866)
------------------------------------------------------------
lnsigma
0.female 0.000

(.)
1.female 0.302*

(0.146)
------------------------------------------------------------
cut1
_cons 7.491***

(0.660)
------------------------------------------------------------
N 1741 1056 2797
------------------------------------------------------------
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

. ** Testing how much the disturbance standard deviation differ by gender

. margins, expression((1 - exp([lnsigma]_b[1.female])) / exp([lnsigma]_b[1.female]))
Warning: expression() does not contain predict() or xb().
Warning: prediction constant over observations.

Predictive margins Number of obs = 2,797
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Model VCE : OIM
Expression : (1 - exp([lnsigma]_b[1.female])) / exp([lnsigma]_b[1.female])

------------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_cons | -.2608323 .1080501 -2.41 0.016 -.4726065 -.0490581

------------------------------------------------------------------------------

. ** Heterokedastic logit model 2

. eststo het_logit2: oglm tenure i.female year c.year#c.year select ///
articles prestige i.female#c.articles if (year <= 10), hetero(i.female) link(logit)

Heteroskedastic Ordered Logistic Regression Number of obs = 2,797
LR chi2(8) = 415.39
Prob > chi2 = 0.0000

Log likelihood = -835.13347 Pseudo R2 = 0.1992

-----------------------------------------------------------------------------------
tenure | Coef. Std. Err. z P>|z| [95% Conf. Interval]

------------------+----------------------------------------------------------------
tenure |

1.female | -.3780598 .4500207 -0.84 0.401 -1.260084 .5039645
year | 1.838257 .2029491 9.06 0.000 1.440484 2.23603

|
c.year#c.year | -.1342828 .017024 -7.89 0.000 -.1676492 -.1009165

|
select | .1699659 .0516643 3.29 0.001 .0687057 .2712261

articles | .0719821 .0114106 6.31 0.000 .0496178 .0943464
prestige | -.4204742 .0961206 -4.37 0.000 -.608867 -.2320813

|
female#c.articles |

1 | -.0304836 .0187427 -1.63 0.104 -.0672185 .0062514
------------------+----------------------------------------------------------------
lnsigma |

1.female | .1774193 .1627087 1.09 0.276 -.1414839 .4963226
------------------+----------------------------------------------------------------

/cut1 | 7.365286 .6547121 11.25 0.000 6.082074 8.648498
-----------------------------------------------------------------------------------

. ** Plot predicted probability and sigma

. predict phat, pr outcome(1)

. predict sigmahat, sigma

. hist phat
(bin=34, start=2.232e-12, width=.02503351)

. hist sigmahat
(bin=34, start=1, width=.00570976)

. ** Average Marginal Effects for logit and probit heterokedastic models

. quietly oglm tenure i.female year c.year#c.year select ///
articles prestige i.female#c.articles if (year <= 10), hetero(i.female) link(probit)

. eststo eff_probit: margins, dydx(*) predict(outcome(1)) post
Average marginal effects Number of obs = 2,797
Model VCE : OIM
Expression : Pr(tenure==1), predict(outcome(1))
dy/dx w.r.t. : 1.female year select articles prestige
------------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
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1.female | -.031161 .0115614 -2.70 0.007 -.053821 -.0085011
year | .031839 .0019586 16.26 0.000 .0280002 .0356779

select | .0142546 .0041796 3.41 0.001 .0060626 .0224465
articles | .00559 .0007685 7.27 0.000 .0040838 .0070962
prestige | -.0350608 .0077056 -4.55 0.000 -.0501635 -.0199581

------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

. quietly oglm tenure i.female year c.year#c.year select ///
articles prestige i.female#c.articles if (year <= 10), hetero(i.female) link(logit)

. eststo eff_logit: margins, dydx(*) predict(outcome(1)) post
Average marginal effects Number of obs = 2,797
Model VCE : OIM
Expression : Pr(tenure==1), predict(outcome(1))
dy/dx w.r.t. : 1.female year select articles prestige
------------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
1.female | -.0312105 .0115836 -2.69 0.007 -.053914 -.008507

year | .0319057 .0019277 16.55 0.000 .0281275 .0356839
select | .0145808 .0042388 3.44 0.001 .006273 .0228886

articles | .0053378 .0007523 7.09 0.000 .0038632 .0068123
prestige | -.0360711 .007934 -4.55 0.000 -.0516215 -.0205207

------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.

. esttab eff_probit eff_logit, b(3) se(3)
--------------------------------------------

(1) (2)

--------------------------------------------
0.female 0.000 0.000

(.) (.)
1.female -0.031** -0.031**

(0.012) (0.012)
year 0.032*** 0.032***

(0.002) (0.002)
select 0.014*** 0.015***

(0.004) (0.004)
articles 0.006*** 0.005***

(0.001) (0.001)
prestige -0.035*** -0.036***

(0.008) (0.008)
--------------------------------------------
N 2797 2797
--------------------------------------------
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

. *=========================================

. *** Example 2: Labor Participation ***

. *=========================================

.

. * Open dataset and create variables

. import delimited "$dir/mroz.csv", clear

. gen kids = (kidslt6 + kidsge6) > 0

. gen finc = faminc/10000

. * Hetekedastic binary probit model

. quietly eststo labor_hom: probit inlf age c.age#c.age finc educ kids

. quietly eststo labor_het: oglm inlf age c.age#c.age finc educ i.kids, ///
hetero(finc i.kids) link(probit)
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. quietly eststo eff_labor_het: margins, dydx(*) predict(outcome(1)) post

. esttab labor_hom labor_het eff_labor_het, b(3) se(3)

------------------------------------------------------------
(1) (2) (3)

inlf inlf
------------------------------------------------------------
main
age 0.185** 0.264* -0.009***

(0.066) (0.118) (0.003)
c.age#c.age -0.002** -0.004*

(0.001) (0.001)
finc 0.046 0.424 0.069**

(0.042) (0.222) (0.024)
educ 0.098*** 0.140** 0.030***

(0.023) (0.052) (0.009)
kids -0.449***

(0.131)
0.kids 0.000 0.000

(.) (.)
1.kids -0.879** -0.161***

(0.303) (0.043)
_cons -4.157**

(1.402)
------------------------------------------------------------
lnsigma
finc 0.313*

(0.123)
0.kids 0.000

(.)
1.kids -0.141

(0.324)
------------------------------------------------------------
cut1
_cons 6.030*

(2.498)
------------------------------------------------------------
N 753 753 753
------------------------------------------------------------
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

. * Wald test

. estimates restore labor_het
(results labor_het are active now)

. quietly oglm

. test [lnsigma]: finc 1.kids

( 1) [lnsigma]finc = 0
( 2) [lnsigma]1.kids = 0

chi2( 2) = 6.53
Prob > chi2 = 0.0381

8 Appendix D: Stata code for binary response models with endogeneity

. ************************************

. *** IV Probit ***

. ************************************

. *=========================================

. *** Control function approach ***
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. *=========================================

. import delimited "$dir/mroz.csv", clear
(22 vars, 753 obs)

. * Probit estimates and marginal effect

. probit inlf educ exper c.exper#c.exper age kidslt6 kidsge6 nwifeinc

Iteration 0: log likelihood = -514.8732
Iteration 1: log likelihood = -402.06651
Iteration 2: log likelihood = -401.30273
Iteration 3: log likelihood = -401.30219
Iteration 4: log likelihood = -401.30219

Probit regression Number of obs = 753
LR chi2(7) = 227.14
Prob > chi2 = 0.0000

Log likelihood = -401.30219 Pseudo R2 = 0.2206
---------------------------------------------------------------------------------

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------

educ | .1309047 .0252542 5.18 0.000 .0814074 .180402
exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311

|
c.exper#c.exper | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111

|
age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376

kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029
kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179
nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378

_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901
---------------------------------------------------------------------------------

. margins, dydx(nwifeinc)
Average marginal effects Number of obs = 753
Model VCE : OIM
Expression : Pr(inlf), predict()
dy/dx w.r.t. : nwifeinc

------------------------------------------------------------------------------
| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
nwifeinc | -.0036162 .0014414 -2.51 0.012 -.0064413 -.0007911

------------------------------------------------------------------------------

. * Control function approach

. eststo fstep: reg nwifeinc educ exper c.exper#c.exper age kidslt6 kidsge6 huseduc

Source | SS df MS Number of obs = 753
-------------+---------------------------------- F(7, 745) = 27.13

Model | 20676.7705 7 2953.82436 Prob > F = 0.0000
Residual | 81120.3451 745 108.886369 R-squared = 0.2031

-------------+---------------------------------- Adj R-squared = 0.1956
Total | 101797.116 752 135.368505 Root MSE = 10.435

---------------------------------------------------------------------------------
nwifeinc | Coef. Std. Err. t P>|t| [95% Conf. Interval]

----------------+----------------------------------------------------------------
educ | .6746951 .2136829 3.16 0.002 .2552029 1.094187

exper | -.3129877 .1382549 -2.26 0.024 -.5844034 -.0415721
|

c.exper#c.exper | -.0004776 .0045196 -0.11 0.916 -.0093501 .008395
|

age | .3401521 .0597084 5.70 0.000 .2229354 .4573687
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kidslt6 | .8262719 .8183785 1.01 0.313 -.7803305 2.432874
kidsge6 | .4355289 .3219888 1.35 0.177 -.1965845 1.067642
huseduc | 1.178155 .1609449 7.32 0.000 .8621956 1.494115
_cons | -14.72048 3.787326 -3.89 0.000 -22.15559 -7.285383

---------------------------------------------------------------------------------

. predict res_hat, resi

. test huseduc
( 1) huseduc = 0

F( 1, 745) = 53.59
Prob > F = 0.0000

. eststo sstep: probit inlf educ exper c.exper#c.exper age kidslt6 kidsge6 nwifeinc res_hat

Iteration 0: log likelihood = -514.8732
Iteration 1: log likelihood = -401.13728
Iteration 2: log likelihood = -400.30361
Iteration 3: log likelihood = -400.30301
Iteration 4: log likelihood = -400.30301

Probit regression Number of obs = 753
LR chi2(8) = 229.14
Prob > chi2 = 0.0000

Log likelihood = -400.30301 Pseudo R2 = 0.2225
---------------------------------------------------------------------------------

inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
----------------+----------------------------------------------------------------

educ | .1702153 .0376718 4.52 0.000 .0963798 .2440507
exper | .1163123 .0193312 6.02 0.000 .0784239 .1542007

|
c.exper#c.exper | -.0019459 .0006009 -3.24 0.001 -.0031235 -.0007682

|
age | -.044953 .0101367 -4.43 0.000 -.0648206 -.0250855

kidslt6 | -.8444363 .1198154 -7.05 0.000 -1.07927 -.6096025
kidsge6 | .0477905 .0443204 1.08 0.281 -.0390758 .1346568

nwifeinc | -.0368641 .0182706 -2.02 0.044 -.0726738 -.0010543
res_hat | .0267093 .0189352 1.41 0.158 -.0104031 .0638217
_cons | .0171187 .5392914 0.03 0.975 -1.039873 1.07411

---------------------------------------------------------------------------------

. * Two-step IV-probit

. ivprobit inlf educ exper c.exper#c.exper age kidslt6 kidsge6 (nwifeinc = huseduc), twostep
Checking reduced-form model...

Two-step probit with endogenous regressors Number of obs = 753
Wald chi2(7) = 173.79
Prob > chi2 = 0.0000

---------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

----------------+----------------------------------------------------------------
nwifeinc | -.0368641 .0186314 -1.98 0.048 -.0733809 -.0003472

educ | .1702153 .0384014 4.43 0.000 .0949499 .2454806
exper | .1163123 .0197084 5.90 0.000 .0776846 .15494

|
c.exper#c.exper | -.0019459 .0006129 -3.17 0.001 -.0031471 -.0007446

|
age | -.044953 .010327 -4.35 0.000 -.0651936 -.0247125

kidslt6 | -.8444363 .1218529 -6.93 0.000 -1.083264 -.605609
kidsge6 | .0477905 .045177 1.06 0.290 -.0407549 .1363359
_cons | .0171187 .5498911 0.03 0.975 -1.060648 1.094885

---------------------------------------------------------------------------------
Instrumented: nwifeinc
Instruments: educ exper c.exper#c.exper age kidslt6 kidsge6 huseduc
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---------------------------------------------------------------------------------
Wald test of exogeneity: chi2(1) = 1.99 Prob > chi2 = 0.1584

. *=========================================

. *** MLE ***

. *=========================================

. ivprobit inlf educ exper c.exper#c.exper age kidslt6 kidsge6 (nwifeinc = huseduc)

Fitting exogenous probit model

Iteration 0: log likelihood = -514.8732
Iteration 1: log likelihood = -401.13728
Iteration 2: log likelihood = -400.30361
Iteration 3: log likelihood = -400.30301
Iteration 4: log likelihood = -400.30301

Fitting full model

Iteration 0: log likelihood = -3230.6635
Iteration 1: log likelihood = -3230.6421
Iteration 2: log likelihood = -3230.6421

Probit model with endogenous regressors Number of obs = 753
Wald chi2(7) = 200.50

Log likelihood = -3230.6421 Prob > chi2 = 0.0000
-----------------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]
------------------------+----------------------------------------------------------------

nwifeinc | -.0355243 .0161904 -2.19 0.028 -.0672569 -.0037916
educ | .1640289 .0312249 5.25 0.000 .1028293 .2252285
exper | .112085 .0211991 5.29 0.000 .0705356 .1536344

|
c.exper#c.exper | -.0018751 .0005915 -3.17 0.002 -.0030345 -.0007158

|
age | -.0433193 .0113314 -3.82 0.000 -.0655284 -.0211101

kidslt6 | -.8137458 .1299442 -6.26 0.000 -1.068432 -.5590599
kidsge6 | .0460536 .0431386 1.07 0.286 -.0384966 .1306037
_cons | .0164965 .5300821 0.03 0.975 -1.022445 1.055438

------------------------+----------------------------------------------------------------
corr(e.nwifeinc,e.inlf)| .2671475 .1791903 -.1040303 .5730063

sd(e.nwifeinc)| 10.37928 .2674576 9.868095 10.91695
-----------------------------------------------------------------------------------------
Instrumented: nwifeinc
Instruments: educ exper c.exper#c.exper age kidslt6 kidsge6 huseduc
-----------------------------------------------------------------------------------------
Wald test of exogeneity (corr = 0): chi2(1) = 2.01 Prob > chi2 = 0.1559

. eststo me1: margins, dydx(*) predict(pr) post
Average marginal effects Number of obs = 753
Model VCE : OIM
Expression : Average structural function probabilities, predict(pr)
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6
------------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
nwifeinc | -.0110576 .0055497 -1.99 0.046 -.0219348 -.0001805

educ | .0510572 .0111011 4.60 0.000 .0292994 .072815
exper | .0230711 .0029517 7.82 0.000 .0172858 .0288563
age | -.013484 .002986 -4.52 0.000 -.0193365 -.0076314

kidslt6 | -.2532945 .0330766 -7.66 0.000 -.3181235 -.1884655
kidsge6 | .0143351 .0135204 1.06 0.289 -.0121644 .0408345
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------------------------------------------------------------------------------

. qui ivprobit inlf educ exper c.exper#c.exper age kidslt6 kidsge6 (nwifeinc = huseduc)

. eststo me2: margins, dydx(*) predict(pr fix(nwifeinc)) post

Average marginal effects Number of obs = 753
Model VCE : OIM

Expression : Average structural function probabilities, predict(pr fix(nwifeinc))
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6
------------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
nwifeinc | -.0105638 .0047364 -2.23 0.026 -.0198469 -.0012807

educ | .0487769 .0087333 5.59 0.000 .03166 .0658937
exper | .0219965 .0037232 5.91 0.000 .0146992 .0292939
age | -.0128817 .0033216 -3.88 0.000 -.019392 -.0063714

kidslt6 | -.2419815 .0365941 -6.61 0.000 -.3137047 -.1702583
kidsge6 | .0136948 .0127924 1.07 0.284 -.0113777 .0387674

------------------------------------------------------------------------------
Warning: The chosen prediction can result in estimates of derivatives or

contrasts that do not have a structural function interpretation.

. esttab me1 me2, b(3) se(3)
--------------------------------------------

(1) (2)

--------------------------------------------
nwifeinc -0.011* -0.011*

(0.006) (0.005)
educ 0.051*** 0.049***

(0.011) (0.009)
exper 0.023*** 0.022***

(0.003) (0.004)
age -0.013*** -0.013***

(0.003) (0.003)
kidslt6 -0.253*** -0.242***

(0.033) (0.037)
kidsge6 0.014 0.014

(0.014) (0.013)
--------------------------------------------
N 753 753
--------------------------------------------
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001
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genpathmox: An R Package to Tackle
Numerous Categorical Variables and
Heterogeneity in Partial Least Squares
Structural Equation Modeling
by Giuseppe Lamberti,

Abstract Partial least squares structural equation modeling (PLS-SEM), combined with the analysis of
the effects of categorical variables after estimating the model, is a well-established statistical approach
to the study of complex relationships between variables. However, the statistical methods and software
packages available are limited when we are interested in assessing the effects of several categorical vari-
ables and shaping different groups following different models. Following the framework established
by Lamberti, Aluja, and Sanchez (2016), we have developed the genpathmox R package for handling
a large number of categorical variables when faced with heterogeneity in PLS-SEM. The package has
functions for various aspects of the analysis of heterogeneity in PLS-SEM models, including estimation,
visualization, and hypothesis testing. In this paper, we describe the implementation of genpathmox in
detail and demonstrate its usefulness by analyzing employee satisfaction data.

1 Introduction

Partial least squares structural equation modeling (PLS-SEM; Wold, 1985) is a method for estimating
causal relationships between observed variables and hypothesized latent variables (Evermann and
Rönkkö, 2021). PLS-SEM was developed initially as an alternative to the classical covariance based-
structural equation modeling (CB-SEM) that estimates latent variables (LVs) as common factors that
explain co-variation between the associated indicators (Hair Jr et al., 2017a). However, in the last
fifteen years it has become a reference for estimating causal models, in particular in marketing and
management research (Becker et al., 2022; Sarstedt et al., 2022a,b; Hair Jr et al., 2021; Henseler, 2020;
Evermann and Rönkkö, 2021).

Concurrent with the affirmation of the PLS-SEM approach for estimating causal models, there
has been a corresponding surge in research addressing the issue of heterogeneity in parameter
estimation.This arises when the existence of different models is assumed for data characterized by
differences in the coefficients that explain causal relationships between LVs. In this scenario, a single
model could provide a biased view of those causal relationships. The literature describes several
approaches to tackling heterogeneity that can be classified in terms of observed heterogeneity, and non-
observed heterogeneity (for a detailed review of the PLS-SEM analysis in the presence of heterogeneity,
see Klesel et al., 2022)

Observed heterogeneity is based on the hypothesis that the underlying relationship between
latent variables vary by certain categorical variables (CVs), for example sociodemographic factors
such as gender, education, or social status, such that the data can be separated into groups and a
different model can be fit to each group. The presence of observed heterogeneity is then verified by
testing whether the coefficients of the estimated models are significantly different between groups
(Hair Jr et al., 2017b). Belonging to this category are the classical PLS multigroup tests, including the
parametric (Keil et al., 2000), permutation (Chin and Dibbern, 2010), and Henseler (Henseler et al.,
2009) tests, as well as the more recent approach proposed by Klesel et al. (2019). As for non-observed
heterogeneity, this is present when differences are inherent to the data. In this scenario, a different
approach is required, and different models are typically identified following a latent class analysis
(Sarstedt et al., 2022c) or clustering (Esposito Vinzi et al., 2008) approach.

Methodological advances and the increase in applications have led to the development of nu-
merous R packages, starting with plspm (Sanchez et al., 2015), subsequently followed by cSEM
(Rademaker and Schuberth, 2020) and SEMinR (Ray et al., 2020), both of which incorporate recent
developments in the PLS approach, including improved estimation (consistent PLS (PLSc) Dijkstra
and Henseler, 2015), improved validation criteria (the PLSpredict approach to prediction Shmueli
et al., 2016, 2019), new reliability measures (Dijkstra and Henseler, 2015; Hair Jr et al., 2019), and also
matrixpls (Rönkkö, 2017), particularly used for simulation studies. Concerning heterogeneity, the
cSEM package allows multigroup analysis with several embedded tests. Pathmox analysis (Sanchez
and Aluja, 2006; Lamberti et al., 2016, 2017) was proposed as a useful method when observed hetero-
geneity is assumed, but several potential CVs exist that could define different groups and models. This
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method explores and identifies, using an iterative algorithm, the most significantly different groups
associated with significant differences in models. The algorithm follows a segmentation tree approach,
where each node is a PLS-SEM model. Differences are compared and partitions are chosen that define
the most significant divergences between coefficients (Lamberti et al., 2016). The algorithm has been
further improved, first by including a statistical test capable of identifying, for each split, the model
coefficient responsible for the partitions (Lamberti et al., 2017), and then by combining the pathmox
algorithm with classical multigroup analysis in a new approach called hybrid multigroup analysis
(Lamberti, 2021).

In this paper, we describe the genpathmox package (Lamberti, 2022) which implements the
classical pathmox analysis and the more recently developed hybrid multigroup analysis (Lamberti,
2021). The package, initially developed in 2014, has been updated to include recent methodological
advances (including PLSc; Dijkstra and Henseler, 2015) and has also been modified to work jointly with
the cSEM package to increase analytical flexibility. Below we first review the framework formalized
by Lamberti et al. (2016), then provide an overview of the genpathmox package, and finally, we
demonstrate the use of the package on real-world analysis of employee satisfaction data and work
climate drivers.

2 Overview of the pathmox methodology

Pathmox analysis (Lamberti et al., 2016, 2017) was introduced to handle observed heterogeneity in
PLS-SEM when several CVs are present. Unlike classical methods for tackling observed heterogeneity
in PLS-SEM, instead of testing whether a CV produces a significant difference in model coefficients
(i.e., a confirmatory approach), an exploratory approach is adopted. That is, the aim of pathmox is to
identify siginificantly different groups associated with different PLS models, provided they exist. The
algorithm applies a binary tree partitioning approach. It first estimates a single global model for the
entire dataset to define the root node of the tree, and then explores all possible binary partitions for
each CV. Differences in coefficients are statistically evaluated by the F-global test (Lamberti et al., 2016).
This test provides a global measure of the degree of difference between partitions (i.e., a p-value).
Comparisons are then sorted in descending order based on the p-values, and the partition with the
smallest p-value (i.e. one which suggests the greatest difference from the root model) is then chosen as
optimal.

The degree of difference between models (the split criterion) is determined by applying a test,
inspired by Chow (1960) and Lebart et al. (1979) which compares differences between the coefficients of
two linear regression models. In pathmox, the difference between two PLS-SEM models is determined
by comparing structural model coefficients, i.e., by comparing, as in the case of Chow (1960) and
Lebart et al. (1979), restricted deviance vs. unrestricted deviance, defined, respectively, as the deviance
calculated for the whole sample considering a single model valid for all the observations, and the sum
of the model deviances estimated for each group of observations.

From a graphical standpoint, pathmox is not much different from a classical segmentation tree –
as the algorithm produces a tree with a root, intermediate nodes, and terminal nodes – other than that
each node is associated with a PLS model.

2.1 The split criterion

The split criterion used to define the tree partitions is a critical aspect of the pathmox algorithm. Below
we describe the F-global test, the formulation of the null and alternative hypotheses, and the statistic
used to test the null hypothesis (further details are available in Lamberti et al., 2016).

Consider a simple structural model with one dependent LV, denoted by the Greek letter η, and
explained by a generic set of independent LVs denoted by the matrix X = {ξip}, where i = 1, . . . , n
refers to the observation, and where p = 1, . . . , P refers to the LV. Its generalization into a more
complex model is straightforward.

Using the matrix form, the model can be expressed as:

η = Xβ + ε (1)

where β is the vector of the regression coefficients of η, and where ε is the disturbance term. Let
the data be partitioned by rows, where the partition is determined by a CV with m categories (i.e.,
segments or groups). The number of units in group g (g = 1, . . . , m) is denoted by ng, and the total
sample size can be expressed as n = ∑m

g=1 ng. The F-global test compares model coefficients only by
considering binary partitions. This means that the number of comparisons depends on the nature of
the CVs. With a dummy (binary) CV, there is just a single comparison. With a nominal CV, there are
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2m−1 − 1 comparisons. Finally, with an ordinal CV, there are m − 1 comparisons.

The logic of the test is to compare the coefficients of two models, while considering two different
scenarios. Under the null hypothesis, we assume that one model is valid for all observations. This
implies that one coefficient for each independent LV is enough to explain the dependent LV. If we
consider the simplest case of a dummy CV (m=2), denoting the two groups as A and B, the null and
alternative hypotheses can be formulated as:

H0 : βA = βB (2)

H1 : βA ̸= βB (3)

According to the null and alternative hypotheses, and following Lebart et al. (1979), we can rearrange
Eq. 1 as follows: [

ηA
ηB

] [
XA
XB

] [
β

]
+

[
εA
εB

]
(4)

[
ηA
ηB

] [
XA 0
0 XB

] [
βA
βB

]
+

[
εA
εB

]
(5)

We calculate the deviance (the sum of squared residuals, SSR) for both models: SSRH0 under
the null hypothesis and SSRH1 under the alternative. Finally, we test the null hypothesis using the
following statistic:

F =

(SSRH0 − SSRH1 )

/
p

SSRH1

/
n − 2p

(6)

which follows an F distribution with p and (n − 2p) degrees of freedom, where p is the number of
explanatory LVs, and where n = nA + nB is the total number of observations.

2.2 Improving tree partition interpretation: the F-coefficient test

The F-coefficient test was an important improvement in the algorithm introduced in Lamberti et al.
(2017). The F-global test used in pathmox as a split criterion is a global criterion that establishes
whether or not the CV reflects a significant difference. However, it does not provide information as
to which coefficients are responsible for that difference. The F-coefficient test complements the split
criterion in pathmox by providing information about which coefficients may be responsible for the
significant difference.

Rearranging the model formulated by Eq. 1, we consider the particular case of one dependent LV
denoted η, and two predictor LVs denoted ξ1 and ξ2:

η = ξ1β1 + ξ2β2 + ε (7)

Let us assume that a significant difference exists between the models estimated for the two groups,
A and B, as defined by a generic dummy variable. Applying the F-global test (Lamberti et al., 2016)
we cannot determine whether the difference between the two models depends on ξ1 or ξ2, or depends
on both. However the null hypotheses for β1 and β2, and the corresponding alternative hypotheses,
can be reformulated to determine whether the coefficients estimated for the predictors are significantly
different, as follows:1

H0 :βiA = βiB with i = 1, 2 (8)

H1 :βA ̸= βB (9)

According to the null and alternative hypotheses, and following Lebart et al. (1979), we can rearrange
Eqs. 4 and 5 as:

1Note that the alternative hypothesis is the same for both ξ1 and ξ2.
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[
ηA
ηB

] 
ξ1A 0 0
0 ξ2A 0
ξ1B 0 0
0 0 ξ2B


 β1

β2A
β2A

 +

[
εA
εB

]
(10)

[
ηA
ηB

] 
ξ1A 0 0
0 ξ2A 0
0 0 ξ1B
0 ξ2B 0


 β1A

β1B
β2

 +

[
εA
εB

]
(11)

[
ηA
ηB

] 
ξ1A 0 0 0
0 ξ2A 0 0
0 0 ξ1B 0
0 0 0 ξ2B




β1A
β1B
β2A
β2B

 +

[
εA
εB

]
(12)

We calculate again the deviance for both models (SSRH0 and SSRH1) and test the null hypothesis
using the following statistic:

Fi =

(
SSRH0βi

− SSRH1

)/
1

SSRH1

/
2 (n − ∑ p)

with i=1,2 (13)

which follows an F distribution with 1 and 2 (n − ∑ p) degrees of freedom, and where p is the number
of explanatory LVs, and n = nA + nB is the total number of observations.

Note that both the F-global and the F-coefficient are implemented in the genpathmox package.

2.3 Stop criteria

Since pathmox is an iterative algorithm, its convergence depends on the specific stop criteria adopted
by the user. Three criteria (all implemented in the genpathmox package) are proposed in Lamberti
et al. (2016):

1. A more significant partition is not found. This means that the null hypothesis is not rejected in
any of the candidate partitions, and as the obtained models are similar to each other, it makes
no sense to continue splitting the data. This condition is also strictly related to the significance
threshold of the p-value chosen by the user, usually set to 0.05 (a typical p-value threshold in
PLS-SEM applications).

2. Maximum tree depth is achieved. This is related to the number of terminal nodes required by
the user, a choice based on the complexity of the model and the number of CVs used. Generally
speaking, trees of 2-3 levels (with a maximum of 4-8 associated terminal nodes) are preferred.2

3. A node has too few observations to be partitioned. PLS-SEM works well with a relatively
small number of observations, but it is recommended to fix a threshold of a relatively large
number of observations to ensure that nodes are representative. For exploratory purposes, the
recommended number of observations in each node is between 50 and 100.

2.4 Pathmox to reduce the number of comparisons before running multigroup analysis:
hybrid multigroup analysis

A criticism of the multigroup approach is that differences between coefficients could be difficult to
interpret when the number of comparisons is high. This could happen when we have to simultaneously
analyze more than one CV, or when the CV has more than 3 or 4 levels.

The pathmox algorithm does not perform an a posteriori statistical comparison of the coefficients
of the models associated with the terminal nodes, nor does it establish the invariance between groups
that is an important aspect of comparing PLS-SEM models (Henseler et al., 2016).3 However, pathmox

2A greater tree depth results in a higher number of terminal nodes, with the direct consequence of having to
make more comparisons between model coefficients, and with results that may not always be easy to interpret.

3Invariance ensures that a dissimilar group-specific model estimate does not depend on diverse LV meaning
across groups. A specific procedure to verify measurement invariance in the PLS-PM framework – proposed by
Henseler et al. (2016) – is measurement invariance of composite models (MICOM), consisting of three hierarchical
steps: (1) configural invariance, which ensures the same LV specifications when LVs are equally parameterized
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can be used just to reduce the number of groups to compare before running a classical multigroup
analysis. Instead of using the original CV, the multigroup comparison uses a new intersection CV
defined by the CV groups resulting from the tree partitions. This is called the hybrid segmentation
variable (Lamberti, 2021), which is used for the hybrid multigroup analysis.

The hybrid multigroup analysis consists of sequential steps as follows:

1. Use pathmox to identify the most significantly different groups

2. Use multigroup analysis to compare the groups:

(a) Test the invariance of the constructs among groups using the MICOM procedure (Henseler
et al., 2016)

(b) Test the statistical differences between models using a criterion proposed by the literature
(Klesel et al., 2022).

Note that the genpathmox package does not include any function to automatically run the hybrid
multigroup analysis. Rather, this analysis is done, as will be shown below, by combining the gen-
pathmox and cSEM (using the functions testMICOM() to test invariance, and testMGD() to compare
coefficients).

2.5 Pathmox advantages and limitations

A first advantage of pathmox is that, given a set of CVs, it yields the most significantly different groups
associated with the most significantly different models. The algorithm reduces the number of groups
to be compared and analyzed, with the direct consequence that the user merely has to interpret the
differences. A second advantage is that it ranks CVs by their importance in the split process (as in other
classical tree partitioning procedures). This is important because an analysis of differences in PLS-SEM
with more CVs involves not only comparing groups, but also establishing the most significant sources
of heterogeneity in defining differences.

The main limitation of pathmox is related to the split criteria. The fact that the algorithm realizes an
exhaustive search over unadjusted p-values to determine the best partition could potentially produce
biased results (Loh and Shih, 1997). A possible solution would be to apply a Bonferroni correction
for multiple comparisons, but this is not yet available in the current version of the package. The
F-global and the F-coefficients are parametric tests based on a classical parametric statistic: the F-
statistic. This supposes the normality assumption of the perturbation terms with equal variance in
all dependent constructs, even though the assumptions are rarely met in practice. Nevertheless, the
sensitivity of the F-statistic is guaranteed by a larger sample size, lower levels of random perturbations,
and clearer differences in the segments, as shown by the simulations performed by Lamberti et al.
(2016, 2017). Another important limitation is that pathmox focuses only on the problem of detecting
the path coefficients that are responsible for differences between PLS-SEM models, by adapting the
measurement model to each segment. This leads to the problem of invariance, which greatly increases
in importance when we analyze data with potential sources of heterogeneity by fitting one model
to each segment. In this situation, it could become difficult to guarantee that each construct in each
segment is measuring the same latent construct.

Finally, it is important to remark that the F-tests are determined by the sum of the squares of the
residuals of the structural model in parent and children nodes and using the composite scores. Indeed,
in the case of the common factor, the composites scores can just be used as common factor proxies
since they are contaminated by measurement random error. Hence, the F-test ranking of the CVs
may not be optimum when there is a small number of indicators per latent variable. Researchers who
intend to apply pathmox when common factors are present in the model should take this limitation
into account in performing the analysis; alternatively they should use the classical PLS algorithm
modifying the options of the genpathmox functions accordingly.

and estimated across groups, (2) compositional invariance, which ensures that LV scores reflect the same construct
across groups, and (3) equality of latent variables, which means that values and variances ensure that data can be
pooled across groups. If all three steps are confirmed, full measurement invariance is established, while if only
the first two steps are confirmed partial measurement invariance is established. Step one and two are necessary
condition for performing multigroup analysis. A practical guideline on applying MICOM is provided by (Hair Jr
et al., 2017b), while Henseler et al. (2016) provide more details on methodological aspects.
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3 The genpathmox package

3.1 Overview

The genpathmox package is based on one main function called pls.pathmox(), which implements
the pathmox algorithm and provides results for analysis. Four additional functions are a summary()
function, and three plot functions (plot(), bar_impvar(), bar_terminal()) that help the user to
interpret results. In practice, users should first apply the main function pls.pathmox() to generate
a "plstree" object. The components of this object include tree partition results, fitted coefficients of
the PLS models for each terminal node, and other results to be used for the analysis. The "plstree"
object plays an instrumental role, as it is a necessary input for the other functions in the package. This
design is convenient, as details of data, PLS model, and tree split rules need only be specified once in
pls.pathmox(), and are passed to other functions.

The summary() function provides a complete output of all results, plot() provides the segmen-
tation tree plot, bar_impvar() provides a bar plot of the ranking by importance of the CVs that
participate in the split process, and bar_terminal() produces a bar plot of the coefficients of the PLS
terminal nodes of the tree, enabling intuitive analysis of the differences between them.

The genpathmox package has been designed to interact with the cSEM package (Rademaker and
Schuberth, 2020), one of the latest and most complete packages for PLS-SEM analysis. This package
can be used to analyze each model associated with the terminal nodes identified by pathmox and to
run the hybrid multigroup analysis. To that end, the "plstree" object also contains a list of datasets
called .hybrid, corresponding to lists of datasets of observations belonging in the tree terminal nodes.

Using the .hybrid list combined with the cSEM::csem(), each terminal node can be easily and
completely analyzed in terms of model validation, coefficient estimation, and inference. The resulting
object generated by csem() can then be passed to testMICOM() to verify the invariance of the model
constructs for the terminal nodes, and to testMGD() to compare the coefficients. The hybrid multigroup
approach (Lamberti, 2021) can then be implemented. Further details on how to use the cSEM package
are available in Rademaker and Schuberth (2020).

Figure 1 illustrates how to use the genpathmox package. On the left, the grey block contains
the input elements, i.e., the data, the model, and the tree rules. Calling up pls.pathmox() generates
the "plstree" object, as shown in the central orange block, which yields estimation and visualization
results, as shown in the two orange blocks on the right. Finally, plstree$hybrid is used as the input
parameter of the cSEM package, yielding full results for the terminal nodes and the multigroup
analysis, as shown in the blue blocks.

Input

Data
(manifest variables - MV)

catvar
(categorical 

Variables - CV)

PLS model 
formula

(design of the  relationship 
between LV, and LV and 

MV) 

Tree rules
(tree depth, significance 

threshold, node size)

Pathmox tree analysis

plstree object

pls.pathmox()

Estimation

• Tree structure
• F-tests results
• Categorical variables 

ranking of 
importance 

• Terminal PLS models  
su
mm
ar
y(
)

Visualization

• Tree plot
• Barplot of ranking of 

importance
• Barplot of terminal 

nodes coefficients 

plot()
bar_impvar()

bar_terminal()

Specific Terminal 
node analysis

cSEM package
csem() function
(Rademaker et al., 2020) 

Multigroup Terminal 
node analysis

cSEM package
testMICOM() 
testMGD()  
function

(Rademaker et al., 2020) 

plstree$hybrid

Figure 1: Illustration of genpathmox package functions
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3.2 Implementation of main functions

3.3 Estimation function: pls.pathmox

To apply the pls.pathmox function, users need to specify at least three arguments:

1. .model. A formula specifying the model described using syntax inspired by the lavaan package
(Rosseel, 2012). Structural and measurement models are defined by enclosure between double
quotes. The directional link between constructs is defined using the ("∼") operator. The
dependent LV is on the left-hand side of the operator, and the explanatory LVs, separated by the
("+") operator, are on the right-hand side. As for the outer model, LVs are defined by listing the
corresponding indicators after the operator ("=∼") if the LV is modelled as a common factor, or
the operator("<∼") if the LV is modelled as a composite. On the left-hand side of the operator is
the LV, and on the right-hand side are the indicators separated by the ("+") operator. Please note
that variable labels cannot contain (".") (for details of the meaning of modes A and B, see Hair Jr
et al., 2016).

2. .data. A matrix or data frame containing the indicators.

3. .catvar. A single factor or set of factors organized as a data frame containing the CVs used as
sources of heterogeneity.

Other input parameters have default values. Table 1 reports the meaning of each parameter and
the admissible and default values.

Parameter Purpose Possible values Default
values

.scheme inner weighting scheme "centroid", "factorial", or
"path"

"path"

.consistent consistent PLS estimation
(Dijkstra and Henseler,
2015) is used instead of
classical approach (Wold,
1985)

TRUE or FALSE TRUE

.alpha minimum threshold signifi-
cance

values belonging the inter-
val [0, 1]

0.05

.deep maximum tree depth an integer ≥ 1 2

.size minimum proportion of to-
tal sample admissible for a
node size

value belonging the interval
[0, 1]

0.10

.candidate
size

minimum admissible size
for a candidate node

an integer ≥ 0 50

.tree logic parameter to show the
tree plot

TRUE or FALSE TRUE

Table 1: Input parameters with default values

Once the split process is complete, results are saved in the object of class "plstree" , which contains
all the results necessary to interpret the pathmox analysis (see Table 2)

Results Use

MOX provides information on the tree structure: node type (intermediate
or terminal), node size, binary split

terminal_paths allows visualization of path coefficients and R2 for each terminal node
var_imp provides a ranking of the CVs used in the split process
Fg.r identifies which CV is responsible for the partition
Fc.r identifies the path coefficient responsible for the partition
hybrid subsets of data associated with each terminal node

Table 2: "plstree" results
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3.4 Visualization functions: plot, bar_impvar and bar_terminal

Three types of plots are possible in the genpathmox package: a pathmox treeplot, a barplot which
displays the ranking of the CVs, and a barplot of the PLS-SEM coefficients of the terminal nodes.
The tree plot is obtained by applying the plot() function, which returns a tree structure with root,
intermediate, and terminal nodes. For each partition, the F-global test p-value is reported with the
associated CV, and the number of observations associated with each node. The plot is implemented
using functions from the diagram package (Soetaert, 2020). The plot of the CV ranking is obtained using
the bar_impvar() function. This function uses the barplot() function to visualize the importance of
the CVs. The importance of each CV is based on the F-statistic of the F-global test calculated for each
CV in each tree node. Finally, the plot of the coefficients of the PLS-SEM model for each terminal node
is obtained using the bar_terminal() function, also based on the barplot() function, which allows a
more intuitive comparison of the coefficients of the terminal nodes.

The user can choose between two bar plot visualizations: (1) a plot of all the coefficients of the
same model in the same plot, which is useful for comparing the terminal nodes models, and (2) a plot
of the same coefficients for all terminal nodes in the same plot (lines correspond to the coefficients and
bars report the coefficient effects), useful for a more direct comparison of a specific coefficient between
models. In the former, the bar plot depicted for each model also plots the associated R2. Visualization
options are selected by modifying the .bycoef parameter. By default, this is set to FALSE, meaning
that the function implements the first option. We also need to specify for which dependent LV we
want to visualize the predictor effect by fixing the parameter .LV = " ", which we do by indicating the
dependent LV between quotation marks.

4 Application: analysis of employee satisfaction in terms of work climate
drivers

The use of the genpathmox package is illustrated using real-world data on employee satisfaction in
an international Spanish bank. In the financial sector, the impact of work climate on the relationship
between strategic human resource management and organizational performance is crucial, in particular
among younger employees (Kollmann et al., 2020). Another issue of relevance is that different groups
of employees may respond in different ways to specific human resource management practices
(Lamberti et al., 2020). The data of a sample of younger employees (≤30 years) of the Spanish
bank contain measures regarding satisfaction (SAT), loyalty (LOY), and five work climate constructs:
empowerment (EMP), company reputation (REP), leadership (LEAD), pay (PAY), and work conditions
(WC). Our model relates the five work climate constructs with SAT, and SAT with LOY. Each construct
is represented by a specific set of indicators. Information is also available on gender (female 53.36%),
job level (intermediate, 52.01%), and seniority (length of service < 5 years, 66.81%).

Full details of indicators and LVs are available in the genpathmox manual, and details of the
theoretical framework are provided in Lamberti et al. (2020).

Our objectives were: (1) to identify defining characteristics of different groups of employees, and
(2) to analyze differences in the models for those groups.

4.1 Estimation

We used the pls.pathmx() function to partition the tree according to the CVs. We specified in order
the parameter of the function pls.pathmx(): the model (.model), (2) the data (.data), and (3) the CVs
(.catvar). The other parameters were left at the default values. We defined a structural model relating
the five work climate constructs (EMP, REP, LEAD, PAY, WC) with SAT, and SAT with LOY, and we
then related each construct to its own set of indicators (measurement model).

Note that, in this example, LVs are estimated as common factors. Indeed, by fixing the parameter
.consisten = TRUE, consistent PLS estimation (Dijkstra and Henseler, 2015) will only have an effect
on the final estimation of the path coefficients of the models of terminal nodes as identified by
pathmox. Composite scores will be used to calculate the F-statistic, and to identify potential sources of
heterogeneity.

# load genpathmox package
library(genpathmox)

# load data
data(climate)
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# define del model
climate_model = "

# structural model
SAT ~ EMP + REP + PAY + WC + LEAD
LOY ~ SAT
# measurement model
EMP =~ Empo1 + Empo2 + Empo3 + Empo4 + Empo5
REP =~ Imag1 + Imag2 + Imag3
PAY =~ Pay1+ Pay2 + Pay3 + Pay4
WC =~ Work1 + Work2 + Work3
LEAD =~ Lead1 + Lead2 + Lead3 + Lead4 + Lead5
SAT =~ Sat1 + Sat2 + Sat3 + Sat4 + Sat5 + Sat6
LOY =~ Loy1 + Loy2 + Loy3
"

# define the set of categorical variables
climate_catvar = climate[,1:3]

# run the pls.pathmox() function
climate.pathmox = pls.pathmox(

.model = climate_model,

.data = climate,

.catvar = climate_catvar)

PLS-SEM PATHMOX ANALYSIS

---------------------------------------------
Info parameters algorithm
parameters algorithm value

1 threshold signif. 0.05
2 node size limit(\%) 0.10
3 tree depth level 2.00

---------------------------------------------
Info segmentation variables

nlevels ordered treatment
Level 3 TRUE ordinal
Seniority 2 TRUE binary
Gender 2 FALSE binary

As shown above, the default output of the pls.pathmx() function is a table containing the stop
criteria and the list of CVs used in the split partitions. Below we use the summary() function to interpret
the results.

summary(climate.pathmox)

PLS-SEM PATHMOX ANALYSIS

---------------------------------------------
Info parameters algorithm:
parameters algorithm value

1 threshold signif 0.05
2 node size limit(%) 0.10
3 tree depth level 2.00
---------------------------------------------
Info tree:

parameters tree value
1 deep tree 2
2 number terminal nodes 3
---------------------------------------------
Info nodes:
node parent depth type terminal size % variable category

1 1 0 0 root no 669 100.00 <NA> <NA>
2 2 1 1 node no 476 71.15 Level low/medium
3 3 1 1 least yes 193 28.85 Level high
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4 4 2 2 least yes 258 38.57 Gender Female
5 5 2 2 least yes 218 32.59 Gender Male
---------------------------------------------
Info splits:

Variable:
node variable g1.mod g2.mod

1 1 Level low/medium high
2 2 Gender Female Male

Info F-global test results (global differences):
node F value Pr(>F)

[1,] 1 6.9711 <2e-16 ***
[2,] 2 3.0647 0.0021 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Info F-coefficient test results (coefficient differences) :

Node 1 :
F value Pr(>F)

EMP -> SAT 2.5902 0.1078
REP -> SAT 0.4056 0.5243
PAY -> SAT 3.6390 0.0567 .
WC -> SAT 0.7342 0.3917
LEAD -> SAT 4.1333 0.0422 *
SAT -> LOY 0.1044 0.7467
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Node 2 :
F value Pr(>F)

EMP -> SAT 0.0229 0.8797
REP -> SAT 0.6333 0.4263
PAY -> SAT 0.1874 0.6652
WC -> SAT 0.9907 0.3198
LEAD -> SAT 2.5447 0.1110
SAT -> LOY 17.9754 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
---------------------------------------------
Info variable importance ranking:

variable ranking
2 Level 0.3949974
3 Seniority 0.3101112
1 Gender 0.2948914
---------------------------------------------
Info terminal nodes PLS-SEM models (path coeff. & R^2):

node 3 node 4 node 5
EMP->SAT 0.1233 0.2051 0.2725
REP->SAT 0.3037 0.1548 0.1238
PAY->SAT 0.0798 0.2863 0.1290
WC->SAT 0.4222 0.1333 0.3768
LEAD->SAT 0.2283 0.3283 0.1545
SAT->LOY 0.6934 0.7582 0.8806
R^2 SAT 0.6831 0.6863 0.6597
R^2 LOY 0.4808 0.5749 0.7754

We can interpret the summary() results as follows:

1. Pathmox indicates that different groups of employees exist that define SAT and LOY differently.
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2. The variables that stratify the different groups of employees are, in order: job level (F-statistic
= 6.971, p-value <0.001), gender (F-statistic = 3.065, p-value = 0.002). That this, the analysis
suggests that employees are first partitioned into low/intermediate level employees versus
high level employees, and low/intermediate level employees are then partitioned according to
gender.

3. The coefficients responsible of the first split are LEAD–>SAT (F-statistic = 4.133, p-value = 0.042),
and for the second split, SAT–>LOY (F-statistic = 17.975, p-value < 0.001).

4. Pathmox ultimately identifies three groups associated to the terminal tree nodes: high level
employees (node 3), female low level employees (node 4), and male low level employees (node
5).

5. The CV ranking reveals that the most important differentiating characteristic for SAT and LOY
is job level, followed by seniority, and finally gender.

6. In terms of work climate drivers defining SAT, the model comparisons indicate that:

(a) High level employees (node 3) are least motivated by EMP (β = 0.123) and most motivated
by WC β = 0.422) and REP (β = 0.303).

(b) Female low level employees (node 4) are most motivated by LEAD (β = 0.328), PAY
(β = 0.286), and EMP (β = 0.205).

(c) Male low level employees (node 5) are most motivated by WC (β = 0.377) and least
motivated by REP (β = 0.124), and also are the employees with the highest R2 for LOY
(0.775).

4.2 Visualization

The summary() output can be complemented by plots. First, the plot() function, as applied to the
object of class "plstree", produces the tree plot. The bar_impvar() and bar_terminal() functions
allow graphical visualization of the ranking of CVs and a comparison of the coefficients (default value
bycoef = FALSE, and LV = "SAT" to show the predictors of SAT most relevant for the analysis of work
climate drivers). The three plots are shown in Figure 2.

# treeplot
plot(climate.pathmox)
# ranking of CVs
bar_impvar(climate.pathmox)
# coefficients comparison
bar_terminal(climate.pathmox, .LV = "SAT")

4.3 Terminal node outputs

Specific terminal nodes can be analyzed using the cSEM package function csem(). By default the
csem() function needs two parameters: the datasets that include all indicators (.data), and the PLS-
SEM model relationships (.model). As we are interested in the results of the terminal nodes, we pass
the hybrid list in the "plstree" object to the .data parameter, and use the same formula object defined
for the pls.pathmox() function. Below we reproduce the code, but not the output, as not directly
related with the genpathmox package.

# load cSEM package
library(cSEM)

# identify terminal nodes
terminal_nodes_data = climate.pathmox$hybrid

# terminal nodes results
terminal_nodes_results = csem(.data = terminal_nodes_data,

.model = climate_model)
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Figure 2: Plot types available in the genpathmox package: the treeplot (top left), the variable-
importance ranking plot (top right), and the barplot of the terminal nodes coefficients (bottom)

4.4 Hybrid multigroup approach (Lamberti, 2021): invariance and multigroup analysis

For the invariance and the multigroup comparison of the terminal nodes identified by pathmox,
we pass the object generated by the csem() function to the testMICOM() and testMGD() functions.
Note that, for the multigroup comparison, we need to indicate which coefficients to compare by
fixing the parameter .parameters_to_compare. We generate the work climate model, but this time
only indicating the causal relationship between the LVs. Finally, we indicate which statistical test
to use for comparison using the .approach_mgd parameter (for our example, the permutation test,
.approach_mgd = "Chin"). Below we reproduce the code to show how genpathmox interfaces with
cSEM, omitting the results as there are not directly produced by the genpathmox package.

# MICOM procedure
climateMICOM = testMICOM(terminal_nodes_results)

# define the relationship between LVs
climateMICOM = testMICOM(terminal_nodes_results)

climate_innermodel = "
# Structural model
SAT ~ EMP + REP + PAY + WC + LEAD
LOY ~ SAT
"

# multigroup analysis
climateMGA = testMGD(terminal_nodes_results,

.parameters_to_compare = climate_innermodel,

.approach_mgd = "Chin")
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5 Summary

The genpathmox R package handles observed heterogeneity in PLS-SEM models when the number
of CVs is high and we do not know what the most significant groupings could be. Development of
genpathmox reflects the statistical framework described in Lamberti (2021), and Lamberti et al. (2017,
2016), and the package has several functions that enable estimation and visualization of tree partitions.
By using genpathmox, users can quickly explore the effects of heterogeneity on their PLS-SEM models
and identify groups that may contribute to significant differences.
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Taking the Scenic Route: Interactive and
Performant Tour Animations
by Casper Hart and Earo Wang

Abstract The tour provides a useful vehicle for exploring high dimensional datasets. It works by
combining a sequence of projections—the tour path—in to an animation—the display method. Cur-
rent display implementations in R are limited in their interactivity and portability, and give poor
performance and jerky animations even for small datasets. We take a detour into web technologies,
such as Three.js and WebGL, to support smooth and performant tour visualisations. The R package
detourr implements a set of display tools that allow for rich interactions (including orbit controls,
scrubbing, and brushing) and smooth animations for large datasets. It provides a declarative R
interface which is accessible to new users, and it supports linked views using crosstalk and shiny.
The resulting animations are portable across a wide range of browsers and devices. We also extend
the radial transformation of the Sage Tour (Laa, Cook, and Lee (2021)) to 3 or more dimensions with
an implementation in 3D, and provide a simplified implementation of the Slice Tour (Laa, Cook, and
Valencia (2020)).

1 Introduction

An important first step in any data analysis task is to plot the data so that we can get an intuitive
understanding of its structure, for example identifying the presence of clusters or outliers. When the
data consists of one or two variables this is quite straightforward, but as the dimensionality of the
data increases it becomes more difficult to visualise.

Several methods exist for high dimensional data visualisation. Given a data matrix X we can
simply plot each variable X1 . . . Xp against the others in a pairwise fashion with the result being a
scatterplot matrix (e.g. (Becker and Cleveland 1987)). We can also view projections of our data by
calculating Y = XA where A is a p × d projection matrix with d usually being 1 or 2. We can choose A
in several different ways, some examples being Principal Component Analysis (PCA) which chooses
the directions which explain the maximum variance, and Linear Descriminant Analysis (LDA) which
maximises the ratio of between-group and within-group sums of squares. The scatterplot matrix can
also be thought of as a projection method where the projections are parallel to each pair of coordinate
axes. These are all examples of linear dimension reduction techniques, but non-linear techniques are also
available such as t-SNE (Van der Maaten and Hinton 2008) and UMAP (McInnes, Healy, and Melville
2018) that aim to preserve both local and global structure of the data.

Rather than generating a single static visual, the tour (Asimov 1985); (Buja et al. 2005) works by
combining a smooth sequence of projections in to an animation, which can then be viewed using a
variety of different display methods (Wickham et al. 2011). This allows the viewer to explore the data
from a number of different perspectives while being able to visually connect what would otherwise
be disjointed views. However, existing display implementations for tours in R are limited in their
interactivity, performance, and portability, and generally result in jerky animations even for small
datasets with only tens or hundreds of observations.

In this paper we introduce a new R package called detourr, which provides portable and perfor-
mant display methods for tours. In the first section we give a background of tours and review a few
existing software implementations, and in the section following we describe how the software is used.
We will then highlight some of the implementation decisions related to performance, and later provide
a case study using embeddings created from the MNIST (LeCun 1998) dataset. In the final section we
will discuss how this work might be extended in future.

2 Background and related works

At its core, the tour is a sequence of projections of a data set that are combined together to form an
animation. If we denote an n × p data matrix X and a p × d projection matrix A, then we can denote
our n × d projected data set Y as Y = XA.

Each projection matrix A is often referred to as a plane, frame, or basis. (Note that in this paper,
the term frame is avoided in this context to avoid ambiguity with animation frames). These bases are
constrained to be orthonormal, so each column of A is a unit vector, and is orthogonal to each other
column. In order to produce a smooth animation, a set of target bases are selected and interpolated
between. Geodesic interpolation is generally used as described in (Buja et al. 2005).
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2.1 Types of tours

Different tour paths arise from using different methods for selecting the target bases. For example, the
grand tour was introduced by (Asimov 1985) and chooses a set of target projections at random. This
can be thought of as a random walk around projections of the data.

The projection pursuit guided tour chooses bases to find a more interesting projection than the
current one, where the interestingness is defined by some index function. Index functions such as
central mass, holes, and lda are described in (Cook, Swayne, and Buja 2007).

Other types of tours include the little tour, which ensures bases parallel to the axes are visited; the
frozen tour will fix some of the values in the projection matrix A between bases; the local tour chooses
bases that are within some angular distance of the starting basis.

In all of these, the tour path is calculated in two steps; the target basis is calculated and then
interpolation is done so that the transition to the next basis is smooth. Some methods generate the
tour path in a single step, for example the langevitour package in R (Harrison 2022) produces tours as
more of a physics simulation where points have position, velocity, momentum, and damping, and the
position of points in subsequent animation frames is allowed to evolve while taking in to account user
interactions.

2.2 Display methods

The typical display methods for tours include histograms or density plots for 1D projections, and
x-y scatter plots for 2D ones. 3D data can be viewed by a 3D scatterplot with a virtual perspective
camera to enable displaying on a monitor. This can be enhanced with fog to make closer points more
prominent, and interactive rotation controls to give a more immersive 3D experience. Projections with
3 or more dimensions can be displayed using parallel coordinates plots. Other displays exist such as
Andrew’s plot (Andrews 1972), where each point is represented by a Fourier curve plotted between
−π and π.

These display methods can be enhanced to display additional information, for example the slice
tour described in (Laa, Cook, and Valencia 2020) highlight points whose orthogonal distance to the
projection plane is smaller than some threshold, and fade out points that are further away. This is
good for finding hollowness in data, with an example shown in the case study.

Furthermore, the data may be transformed after being projected. One consequence of the curse of
dimensionality is that when projecting from high to low dimensions, the points tend to crowd towards
the centre. (Laa, Cook, and Lee 2021) describes the sage tour, and provides a radial transformation that
ensures the relative volume at a radius r in the data space is preserved in the projected space. The
effect of this is that the crowding is reduced, and uniformly distributed data in the original space will
continue to be uniform in the projected space.

2.3 Software implementations

The tourr package (Wickham et al. 2011) is the most prevalent and comprehensive software in R (R
Core Team 2021) for visualising tours. It implements many of the tour paths described previously
including grand, little, guided, frozen, etc. and display methods including scatter plots (with variations
for the sage and slice tour), parallel coordinates plots, depth displays, Andrew’s plot. The package
also allows exporting tours as GIF images via the gifski package (Ooms 2021), or exporting to GGobi
(Swayne et al. 2003) to allow for interaction and linked brushing, etc. However, the tourr package uses
the R graphics device as the primary display, which is quite limited in performance and interactivity.

The spinifex package (Spyrison and Cook 2020) provides manual tours built on tourr and using R
shiny (Chang et al. 2021), and allows the user to manipulate the contribution of each variable one at
a time. The liminal R package (Lee 2021) provides an interactive gadget for displaying tour visuals.
Linked selection and brushing is implemented on both visuals, and play / pause / restart controls are
provided.

The langevitour R package instead uses the htmlwidgets package (Vaidyanathan et al. 2021) to
display the tour. The main calculations are performed in JavaScript and the points are displayed as
a scatter plot using HTML5 Canvas. The displays have good performance so large numbers of data
points can be plotted with the animation remaining smooth, and includes interactive features such
as drag-and-drop of additional plot elements, and modifying parameters of the tour and having the
changes reflected in real time. Once the tour visualisation is generated it then no longer relies on the
R runtime so it can be easily exported and embedded on a website for example. But this package is
developed with a particular focus of visualising physics dynamics, rather than the more classical tour
methods like in tourr.
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(Kipp, Laa, and Cook 2019) uses D3.js (Bostock, Ogievetsky, and Heer 2011) combined with the R
shiny (Chang et al. 2021) package to display dynamic tour visualisations. However, this setup had
limited performance; the client-server nature of shiny led to inconsistent frame rates, and the number
of points that could be drawn was limited to <2000 because of the limitations of SVG when drawing
many individual elements.

3 Usage and interactivity

When designing the user API for detourr, a data-oriented approach is taken to make it approachable,
and the visuals are built in JavaScript to enable rich user interactions. detourr also supports the full
suite of tour path generating functions from the tourr package. The result is an experience that is
feature-rich, immersive, and accessible to newcomers.

This chapter is structured as follows. The first section describes the user API in R and supported
features, the second describes how the user can interact with the resulting visual. Throughout the
chapter, we use the pdfSense dataset (Wang et al. (2018); Lee (2021)) to provide a running example.
This data set consists of 2808 observations and 56 input variables from CT14HERA parton distribution
function fits. The first 6 principal components are used to create the tour, accounting for ~55% of the
variance in the data.

3.1 User interface

detourr has a data-oriented user interface heavily influenced by the Tidy Data (Wickham (2014))
workflow, Grammar of Graphics (Wilkinson (2012); Wickham (2010)), and ggplot2 (Wickham (2016)).
The visualisation is built in a sequence of steps which follow the logical flow of data in the tour
building process, which makes the API intuitive and accessible.

Instantiating the tour

To begin, we instantiate a tour using the detour() function:

p <- detour(pdf_df, tour_aes(
projection = starts_with("PC"),
colour = Type,
label = ID

))

The first argument to detour() is a data frame in tidy format containing the tour data and aesthetics.
Enforcing the use of data frames encourages data-centric statistical thinking. The second argument
defines the aesthetic mapping of data variables through the tour_aes() function, similar to ggplot2.
The currently supported aesthetics are:

• projection: (required) the numeric columns to be projected
• colour: point colour
• label: label text to be shown when the mouse is hovered over a point.

These mappings support tidy evaluation and tidyselect syntax (Henry and Wickham (2022)) such
as starts_with(), where(is.numeric()), column ranges using col_1:col_n, negation -col_n, and
others, for easier column selection.

Generating the tour path

Once the tour is initialised with the data and aesthetics, the tour path is defined by piping the output
from detour() to the tour_path() function. Note that |> is the pipe operator introduced in R 4.1:
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p <- p |> tour_path(grand_tour(3))
p

#> # A tibble: 458 x 2
#> is_new_basis projection_matrix
#> <lgl> <list>
#> 1 TRUE <dbl [6 x 3]>
#> 2 FALSE <dbl [6 x 3]>
#> 3 FALSE <dbl [6 x 3]>
#> 4 FALSE <dbl [6 x 3]>
#> 5 FALSE <dbl [6 x 3]>
#> # i 453 more rows

The tour_path() function defines parameters for the tour such as:

• tour_path: the tour path generator, e.g. grand_tour(), guided_tour(), or any other path gener-
ator compatible with the tourr package

• start: the starting basis or projection matrix
• fps: frames per second with which to display the animation. Defaults to 30 but can be increased

for a smoother animation or decreased for very large data.
• max_bases: the number of basis frames to generate. A higher number will give a longer tour

animation.

The resulting detour object is stored in a standard data frame for easy consumption and inspection.
It contains the full details of the tour path, where the ith row corresponds to the ith animation frame of
the tour, with the following columns:

1. is_new_basis: whether the projection matrix corresponds to a new basis (TRUE) or is interpolated
(FALSE)

2. projection_matrix: the projection matrix.

This form gives the user full visibility of the tour path, and allows the projection matrices to be
traced and extracted for further analyses.

Creating the animation

To display the tour animation, we simply pipe the output of tour_path() to any of the functions
prefixed with show_ provided by the detourr package. The available display functions are:

• show_scatter(): the core 2D or 3D scatter plot display
• show_slice(): a slice tour display based on Laa, Cook, and Valencia (2020)
• show_sage(): a sage tour implementation based on Laa, Cook, and Lee (2021)

p |> show_scatter(axes = FALSE)

The output of tour_path() becomes the input of show_*(), forming a fluent pipeline. For the three
display methods described above, the common parameters are:

• palette: the colour palette to use for the tour.
• center: whether the data should be centred before displaying.
• axes: whether to show axis / what the axis titles should be
• edges: a two-column numeric matrix defining indices of points where line segments should be

drawn between
• paused: whether the animation should be initialised in a paused state.
• scale_factor: used to scale the points in or out so that they appear on a sensible range, similar

to a zoom function. Defaults to the reciprocal of maximum distance from a point to the origin,
so that the points fit inside a unit ball.

There are also parameters specific to each display method, such as slice_relative_volume for
show_slice(), and gamma and R for show_sage(). These details will be described further in the Display
Methods section.
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Figure 1: Initial frame of the scatterplot display generated by the ‘show_scatter‘ display function.
Controls are on the left, and an interactive timeline is on the bottom of the plot.

Putting all of this together, we have:

detour(pdf_df, tour_aes(
projection = starts_with("PC"),
colour = Type,
label = ID

)) |>
tour_path(grand_tour(3)) |>
show_scatter()

This chaining process allows us to construct the tour visualisation incrementally in a way that
is intuitive and easy to follow. The user is able to inspect the result at each step in the chain, and it
aligns well with the grammar of graphics and tidy data workflows. This makes detourr accessible to
newcomers who may not have worked with tours previously.

3.2 Interactivity

Presently, several well-developed R packages allow the use of web technologies in R; htmlwidgets
allows binding R code with HTML and JavaScript to create standalone widgets; shiny provides features
for combining various elements in to interactive web applications powered by R; crosstalk (Cheng
and Sievert (2022)) enables linked selection and brushing between different HTML Widgets; and
rmarkdown (Allaire et al. (2022)) allows creating HTML documents with HTML Widgets embedded
within. The use of web technologies such as JavaScript enable the resulting visuals to be portable and
accessible, and enable the implementation of rich interactive features. In this section we will describe
these interactive features and how they can be configured.

Label aesthetics

In the above example, labels are defined within the call to tour_aes(), which contains all of the
aesthetic mappings for the tour. The label aesthetic produces a tooltip which is shown whenever
the mouse is hovered over the data point. By default, the text in the tooltip will have the format
column_name: value, with each specified column on a new line. If users want more control over what
appears in the tooltip, one can use the I() function so that the values in the aesthetic column appear
as-is. For example in 2, the left plot specifies the label aesthetic as label = c(InFit, Type, ID, pt,
x, mu) and the right is specifies the label as-is by using label = I(ID) in the call to tour_aes(). When
using the I() function for the label aesthetic, only one column can be specified at a time.
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Figure 2: (Left) Tooltip showing data from the 6 columns specified in the ‘label‘ aesthetic. Note that
both the column names and values are present in the tooltip. (Right) The ‘ID‘ column is provided as-is
to the label aesthetic via the ‘I()‘ function.

Controls

Table 1 shows a breakdown of the controls found on the left side of the visual. Note that the icon for
the currently selected control will be highlighted blue; otherwise it will be black. When the icons are
hovered over in the show_scatter() widget, alternative text will be shown.

Timeline controls

The timeline at the bottom of the widget controls play and pause, and allows for scrubbing to a specific
point in the tour. The timeline can also be used to jump to a specific basis by clicking on any of the
white basis markers, and hovering the mouse over the basis markers will display the index of that
basis.

Linked selection and filtering

detourr supports linked selection and filtering by integrating with crosstalk. When a crosstalk
SharedData object is provided to detour() in place of a data frame, selections made using the box
selection tool will be reflected in all linked visuals. Likewise, any selection or filtering applied to a
linked visual will be reflected by detourr. Compatible widgets include plotly (Sievert (2020)), leaflet
(Cheng, Karambelkar, and Xie (2022)), and DT (Xie, Cheng, and Tan (2022)). An example of this is
shown in the case study.

4 Web technologies for performance

One of the goals of this work is to improve upon the animation performance of existing tour displays.
detourr uses several different web technologies to maximise performance so that smooth animations
can be played with large data sets consisting of upwards of 100k data points. This performance also
enables the animations to work with less powerful devices, making detourr accessible to a wider range
of users.

The primary technology that allows for high-performance data visualisation is JavaScript itself.
JavaScript engines in browsers such as Chrome and Firefox are highly optimised, leveraging methods
such as Just-In-Time (JIT) compilation for improved runtime speed. However JavaScript is single-
threaded, dynamically typed, and garbage collected, so despite these optimisations we can still run in
to performance bottlenecks in some situations.

Figure 4 shows a simplified overview of the data flow in detourr when creating and viewing
a widget. On the left are the operations that are performed by R, which only occur once when the
visual is first created and have a minimal performance impact. On the right are the main operations
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Table 1: An overview of the interactive controls available in the detourr displays

Control Icon Description

Orbit When the ‘show_scatter()‘ widget is generated, orbit
controls will be enabled by default. This allows click
and drag to rotate the visual, and scrolling/pinching to
zoom. Note that orbit controls for the 2D variant work
best if dragging from left to right, not up and down.
Also note that the icon for the currently selected control
will be highlighted blue; otherwise it will be black.

Pan The pan control also allows scrolling to zoom, and
click and drag to pan.

Box Selection The selection control allows for transitory box selection
by brushing. Holding the ‘shift‘ key will allow for
persistent selection, and points outside of the selection
will be indicated by increased transparency. There is
currently a limitation where only visible points can be
selected. If a point is completely obscured by other
points, it will not be selected.

Brush The brush button will apply the current colour to the
selected points.

Colour Selector The colour selector will look slightly different
depending on the browser being used. When the
colour selection is changed, the selected points will be
updated immediately.
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Figure 3: An illustration of the box selection and brush tool being used together.

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 315

Instantiate tour

Generate tour path

Create and display widget

Render points
(Three.js / WebGL)

Calculate next frame Y=XA
(TensorFlow.js / WASM)

Animation
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JSON
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Figure 4: An overview of the data flow when creating a detourr visualisation. The full tour path is
generated in R and then passed to JavaScript when the widget is created. The operations that occur in
the animation loop in JavaScript are the most important to optimise.

performed by JavaScript when the widget is displayed in a browser or IDE. Linear algebra and
rendering operations need to run 30 times per second, so the technology decisions surrounding them
have a big impact on performance. These technology decisions and are discussed in this chapter.

4.1 Linear algebra operations

The single-threaded nature of JavaScript makes matrix multiplication a performance bottleneck. At
each animation frame, we must calculate the product XA where X is our data matrix and A is our
projection matrix. The slice tour generated by the show_slice() display function requires an additional
step of calculating the distance from each point to the projection plane which involves several more
matrix operations.

To address this, detourr uses TensorFlow.js (Abadi et al. (2016)) as the main library for storing
data and projection matrices and performing matrix operations. TensorFlow.js requires the user chose
between one of three available backends:

CPU is a single-threaded JavaScript implementation which carries with it the limitations of
JavaScript dynamic typing and garbage collection causing non-deterministic slow-downs at runtime.

WebAssembly (WASM) is a binary format that is used as a compilation target allowing code
written in other languages like C, C++, and Rust to be run in the browser. This circumvents the
dynamic typing and garbage collection limitations of JavaScript and allows near-native execution
speed. The TensorFlow WASM backend uses the XNNPACK library from Google to accelerate matrix
operations, which can run operations in parallel using threads and SIMD (Single Instruction Multiple
Data).

WebGL: uses WebGL shaders to perform matrix operations on the GPU. According to the docu-
mentation, the performance benefit is primarily seen with large and complex deep learning models, so
is unlikely to provide much benefit over the WebAssembly backend for our use case, and so is not
investigated further in this section.

4.2 Performance comparison

To compare these backend options a simple performance profile was run in Microsoft Edge (Chromium)
on a Macbook Pro 2019 (i7, 32Gb RAM). The implementations that were compared were:

• Hand Coded: a manual JavaScript implementation coded using for loops, operating on nested
arrays representing data and projection matrices.

• TensorFlow CPU: the vanilla single-threaded CPU backend for TensorFlow.js.
• TensorFlow WASM: the TensorFlow.js WASM backend.

These backends were compared across 3 datasets of different sizes and complexity, using a 2D
Grand Tour:
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Figure 5: Performance comparison across different data sets and backends. TensorFlow provides
better performance than a hand-coded implementation across the board. For smaller datasets like
pdfsense, there is little difference between CPU and WASM backends for TensorFlow.js, but for larger
dataset WASM performs much better.

• pdfsense: The same data set used throughout this chapter; 2808 observations across 56 variables,
taking the first 6 principal components for the tour.

• mnist_embeddings_8d: 8-dimensional embeddings of the MNIST dataset, with a total of 10k
observations.

• mnist_embeddings_32d: 32-dimensional embeddings of the MNIST dataset, again with 10k
observations.

Figure 5 shows the performance of the three backends across the example datasets. TensorFlow
provides better performance across the board when compared to the hand-coded implementation, but
the difference between the CPU and WASM backends only becomes apparent with the larger MNIST
embeddings datasets. Note that the metric % Scripting Time is the time spent across all JavaScript
scripting for the visual, and not just the time spend on linear algebra operations. This is why we see
such diminishing returns with the smaller pdfsense dataset.

Another important comparison is the performance of the show_slice() display function between
these datasets. The slice tour uses additional matrix operations to calculate the distance from each
point to the projection plane, so the benefit of WASM backend is even more apparent. This is shown in
Figure 6

4.3 Rendering

When displaying data visuals using JavaScript in a browser, there are three main technologies that can
be used:

SVG is commonly used for web-based visuals, including in software such as D3.js (Bostock,
Ogievetsky, and Heer (2011)) with good support for interaction and animation. Kipp, Laa, and Cook
(2019) uses D3.js with SVG for rendering tours, but describes performance issues when the number of
points gets close to 2,000. This is because while SVG is suitable for drawing large and complex shapes,
performance can degrade when rendering many individual shapes.

HTML5 Canvas (2D) uses a canvas element with a 2D rendering context and provides good
performance, allowing many thousand data points to be used with smooth animation. This is the
rendering method used by the langevitour package, and provides much better performance over SVG
for this use case.

HTML5 Canvas (WebGL) uses the WebGL rendering context with GPU acceleration to achieve
high performance, and is used by a range of browser-based 3D animations and games. This typically
provides higher performance than using the 2D canvas rendering context.

detourr implements HTML5 Canvas with the WebGL rendering context using the Three.js (Cabello
(2010)) library. This is the same library that powers the TensorFlow Embedding Projector (Smilkov et
al. (2016)), and allows for flexible and performant 2D and 3D data visuals.
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Figure 6: The additional matrix operations required by the slice tour display function make the
performance benefit of the WASM backend much more apparent.

One downside of using HTML5 Canvas elements is that custom logic is needed to determine
where the mouse pointer is relative to visual elements when interactions occur. This issue is resolved is
by rendering the image twice; the first pass renders to the screen and the second renders to an invisible
“picking” scene. The colours of the points in this picking scene correspond to the ID of the point that
was rendered. When a mouse is hovered over a pixel or a set of pixels are selected, we simply check
their colour in the picking scene to determine which point IDs relate to the event. Rendering the scene
twice at each frame makes performance all the more important.

Despite this extra step, a naive performance benchmark of the rendering performance of detourr
using the mnist_embeddings_8d data set at 30 FPS shows only 3% of the time is devoted to rendering
and painting points, which for our use case is negligible.

5 Display methods

There are three display functions implemented in the detourr package: show_scatter(), show_sage(),
and show_slice(). All three support 2D and 3D tour paths, and are based on the core show_scatter()
function. In this section, we will delve in to some of the implementation details of these functions and
how the original and sage display has been extended to three dimensions.

5.1 Scatter display

The scatter display forms the core of the three display methods, and contains all of the features and
interactions described in previous sections. It is implemented in TypeScript using the Three.js library
(Cabello (2010)) for rendering and TensorFlow.js (Abadi et al. (2016)) for linear algebra operations.

5.2 Slice display

The slice display is implemented in the show_slice() function, and is based on the slice tour described
in Laa, Cook, and Valencia (2020). At each animation frame, the distance from each point to the
projection plane is computed. Those points closer than some threshold h to the projection plane are
highlighted, and those further away are greyed out. Slices offset from the origin are also supported.

Despite the slice tour itself being equivalent to that in tourr, the implementation has been modified
for a simpler implementation. Laa, Cook, and Valencia (2020) calculates the distance as:

ν̃2
i = ||x′i ||

2 (1)

where

x′i = xi − (xi · a1)a1 − (xi · a2)a2 (2)
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Figure 7: Selected frames of a 2D slice tour of a hollow unit sphere. The anchor for the slice is set to (1,
0, 0). Initially the slice is near the origin, but moves closer to the edge of the sphere as v1 rotates to be
near orthogonal to the projection plane.

and similar for the 3-dimensional case but with an additional term. With some rearranging, we
can instead express this with the equivalent:

ν̃2 = (X − XAAT)21p (3)

This requires fewer terms than the original, and is in a form that is more elegant to implement
using TensorFlow.js. The implementation is also the same for both the 2D and 3D variants which keeps
the code simple.

Offsetting the slice

Laa, Cook, and Valencia (2020) provides a generalisation of equations (1) and (2) for a projection plane
passing through an arbitrary anchor point c as follows:

1. Calculate xi
′ as per equation (2)

2. Calculate the component c′ of c orthogonal to the projection plane as:

c′ = c − (c · a1)a1 − (c · a2)a2

3. Calculate ν2
i = ||x′i − c′||2 = x′2i + c′2 − 2x′i · c′ where the cross-term is expressed as:

x′i · c′ = xi · c − (c · a1)(xi · a1)− (c · a2)(xi · a2)

With this method there are many terms to calculate, and it was found it was difficult to implement
and test. To circumvent this issue we instead take a different approach. Rather than offsetting the
projection plane to pass through the point c and then calculating the distances for each point, we
instead offset the data points by c in the opposite direction. This gives a distance calculation between
points and projection plane that is equivalent to the original implementation but is much simpler to
calculate. First we calculate the offset points X′:

X′ =


x1 − c
x2 − c

...
xn − c

 (4)

And then calculate the distances to the projection plane similar to equation (3):

ν̃2 = (X′ − X′AAT)21p (5)

Figure 7 shows a slice tour implemented using equations (4) and (5) with an anchor of (1, 0, 0).
Initially v1 is almost parallel to the projection plane, and so the slice runs close to the origin and only
the points near the outside of the hollow sphere are highlighted. As the tour progresses, v1 becomes
nearly orthogonal to the projection plane, and so the slice runs close to the edge of the sphere and only
a small number of points near the centre of the visual are highlighted.
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5.3 Sage display

As the dimension of data increases, the volume of space that contains the data increases exponentially.
One effect of this is that points tend to sit close to the edge of the space, with few points near the center.
Hastie et al. (2001) gives a good illustration of this, where if we have N uniformly distributed points
in a unit ball of dimension p centred at the origin, the median distance from the origin to the closest
point is given by the equation

d(p, N) =

(
1 − 1

2

1
N

) 1
p

(6)

Counter-intuitively, when we project data from a high-dimensional space to low-dimensions, we
see the opposite effect where points tend to crowd towards the center of the projected space. Laa,
Cook, and Lee (2021) describes a method for correcting this distortion so that points are less crowded
towards the center. It does this by ensuring the relative volume at a given radius r in the original space
is preserved in the projected space. The relative volume for a 2-dimensional projection is given by the
equation

v2(r; p, R) =
V2D(r; p, R)

V(R, p)
= 1 −

(
1 −

( r
R

)2
) p

2

(7)

where p is the dimension of our original data, R is the radius of the p-ball that contains our data,
and r is the projected radius within [0, R].

The formula for the corrected radius r′y is then given as

r′y = R

√
1 −

(
1 −

( r
R

)2
) p

2

(8)

detourr uses a slight variation of equation (8) to calculate the corrected radius, which omits the
multiplier of R. This is because we always plot the data on the range r′y = [0, 1], so the multiplier is
not needed:

r′y =

√
1 −

(
1 −

( r
R

)2
) p

2

(9)

The full implementation is as follows:

1. Calculate the projected data Y = XA, where X has already been scaled.
2. Calculate the trimmed radius of the projected points rtrim

y = min(ry, R) and apply the radial
transformation described in equation (9) to get the corrected radius r′y.

3. Scale the Euclidean point vectors by a factor of
r′y
ry

This differs from the original implementation described in Laa, Cook, and Lee (2021) in that
we don’t convert the Euclidean vectors to polar form, and instead apply the scaling directly to the
Euclidean vectors. This removal of the conversion step was primarily to improve performance.

Extension to 3D

Laa, Cook, and Lee (2021) provides the equation for the relative projected volume at radius r on to a
two dimensional disk for the 2-dimensional sage display. In this paper, we extend and implement
the scatter, sage, and slice displays in 3D, and to do this we needed to calculate the relative projected
volume for the case of a 3-dimensional projection.

In the appendix we show that the relative projected volume for a sphere at radius r is given by:

v3(r; p, R) = BetaInc
(( r

R

)2
,

3
2

,
p − 1

2

)
(10)

Where BetaInc(x, α, β) is the regularised incomplete beta function. This is important because it
represents the radial CDF of points projected to 3 dimensions, and suggests that the radial PDF of the

projected points is Beta
(

3
2 , p−1

2

)
assuming the original data is a uniformly distributed ball of radius

R.

So for the three dimensional case, the full radial transformation for the sage tour is given by
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Figure 8: (Top) Initial frames of a 3D scatter tour of a 3, 10, and 50 dimensional ball respectively from
left to right. (Bottom) Selected frames of a 3D sage tour of similar 3, 10, and 50 dimensional balls. As
the dimensionality increases, the standard scatter display crowds the points near the center, whereas
the sage display shows a consistent radial distribution of points. All screenshots are at the same zoom
level.

r′y = 3

√
BetaInc

(( r
R

)2
,

3
2

,
p − 1

2

)
(11)

We also show that this generalises to any projection from p to d dimensions with p > d with the
equation:

v(r; p, R, d) = BetaInc
(( r

R

)2
,

d
2

,
p − d

2
+ 1
)

(12)

This also suggests that equation (7) is a special case of equation (12).

The 3D sage tour is currently implemented in the show_sage() function, and like the scatter and
slice displays the correct variant is chosen automatically based on the dimension of the provided
tour path. However, this is not implemented for d > 3 as we don’t yet have a display method that
can handle higher-dimensional projections. This will be implemented as an extension of a Parallel
Coordinates Plot (PCP) or Andrew’s plot in future.

An example of the 3D sage tour is shown in Figure 8.

6 Case study — MNIST embeddings

A common task when analysing wide or sparse data sets is to generate embeddings; finding a lower
dimensional representation of high dimensional data, placing similar objects close together and
dissimilar objects far apart in the embedding space. This is especially useful when dealing with text or
image data.

An example of this is the algorithm used for facial recognition in FaceNet (Schroff, Kalenichenko,
and Philbin (2015)). A neural network is trained which maps a vector representation of images of faces
to a lower dimensional space. The network minimises the distance between examples of the same
class and maximises distances between examples from different classes in the output space. The result
is that the euclidean distance between faces can be used as a metric for face similarity, so an unknown
face can be classified as belonging to a specific individual if the distance between the unknown face
and one or more known faces is small.
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Figure 9: Selected frames from the 8-dimensional MNIST embeddings data using show_scatter() as the
display method. The colour corresponds to the handwritten digit 0, 1, ..., 9. Despite the large number
of data points, the animation of the tour is smooth and interactions are responsive.

The datasets mnist_embeddings_8d and mnist_embeddings_32d in the detourr package are embed-
dings trained using a similar algorithm to FaceNet but using the MNIST (LeCun (1998)) handwritten
digits dataset. The training set consists of 60,000 28x28 pixel training images and in the following
examples we visualise the test set containing 10,000 examples.

6.1 Scatterplot display

Using the core show_scatter() function to display a grand_tour() tour path in Figure 9 we can see
quite good separation between the clusters corresponding to each of the 10 digits. Despite the tour
animation consisting of 10,000 data points, the animation runs smoothly at 30 FPS in Microsoft Edge
on a Macbook Pro 2019. Running a performance profile of the animation indicates the CPU is idle
90% of the time while the animation is playing. The remaining time is divided between scripting
(6%, including linear algebra operations), rendering (1.4%), painting (0.8%) and system (1.8%). When
running the same tour on the mnist_embeddings_32d dataset, the animation is still quite smooth and
CPU is 80% idle.

In the lower left of Figure 9 is an example of the label aesthetic at work. This allows the user
to identify which group a set of points belongs to, as well as the precise ID of any outliers that may
require further investigation.
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Figure 10: Selected frames from the 8-dimensional MNIST embeddings data using show_sage() as the
display method with a 2D grand tour path. The sage display shows the data points near the surface of
the unit ball, which is due to the L2 normalisation of the original embeddings. This structure was not
clear in the standard scatter display but is preserved with the sage display.

6.2 Sage and Slice display methods

The show_scatter() display method gives the viewer a fairly good sense of the data set, but there
is some structure that may not be obvious. The embeddings in the mnist_embeddings_8d and
mnist_embeddings_32d datasets are L2 normalised, so the points sit on the surface of a unit ball
in the high-dimensional space. To reveal this structure, we can use the sage (Laa, Cook, and Lee (2021))
or slice (Laa, Cook, and Valencia (2020)) display methods, which are implemented as show_sage() and
show_slice() respectively.

The sage display scales points outwards based on their radius so that the relative volume of the
circle or sphere in the projected space is the same as in the original space. In the example shown in
Figure 10, the show_sage() display method is used. The effect is that the projected points tend sit
much closer to the surface of the unit circle, giving a much clearer view of the ball-like structure of the
original data.

The slice display highlights points based on their proximity to the projection plane. Points that
are close to the projection plane are highlighted and those further away are faded out by making
them transparent. In the case of the MNIST embedding data in Figure 11 the ball structure of the data
manifests as a clear circular void in the middle of the plot, with points highlighted only towards the
edges.

6.3 Linked selection

Plot interactions such as selection and filtering can be helpful for identifying and exploring outliers,
clusters, and other interesting features in a dataset. These are enhanced even further when multiple
visuals are linked, and selections and filters are applied to all linked visuals. In this example, we
compare the tour animation with the result of a T-SNE (Van der Maaten and Hinton (2008)) which
was performed using the excellent Rtsne R package (Krijthe (2015)) and displayed using plotly. The
visuals are linked using the R package crosstalk and a set of filter checkboxes is also added.

Figure 12 shows the linked visuals in their initial state with no filtering applied. We can then use
the selection tool in either of the visuals to highlight points, and see the highlighting applied to both
visuals as in Figure 13.

Figure 14 shows the result of filtering the visuals using the filter checkboxes on the left. In the
filtered visual, outlying points are much easier to see, and they can be easily investigated using
tooltips.
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Figure 11: Selected frames of the 8-dimensional MNIST embeddings data using show_slice() as the
display method. The slice display makes the hollowness of this data apparent.

Figure 12: Linked visuals of the tour using detourr (left) compared to a T-SNE dimension reduction
(right)

Figure 13: Linked visuals with selection applied. Points can be selected in either visual via click-and-
drag and the selection will be reflected in both.
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Figure 14: Linked visuals with filtering applied. Viewing each digit individually makes outlying
points much more apparent, and those points can be identified using tooltips.

The code used to produce figures 12, 13, and 14 is shown below. Here each plot is created using a
crosstalk SharedData object in place of a standard data frame, and linked together using the bscols
function:

library(crosstalk)
library(Rtsne)
library(plotly)

data(mnist_embeddings_8d)

ts <- select(mnist_embeddings_8d, starts_with("X")) |>
Rtsne(num_threads = 4)

Y <- as_tibble(ts$Y)
names(Y) <- c("Y1", "Y2")

plot_df <- bind_cols(mnist_embeddings_8d, Y)
shared_mnist <- SharedData$new(plot_df)

detour_plot <- detour(shared_mnist, tour_aes(
projection = starts_with("X"), color = label,
label = c(id, label),

)) |>
tour_path(grand_tour(2)) |>
show_sage(width = "100%", height = "450px")

tsne_plot <- plot_ly(shared_mnist,
x = ~Y1,
y = ~Y2,
text = paste0("Label: ", plot_df$label, "<br>", "ID: ", plot_df$id),
color = ~label,
height = 450,
colors = viridisLite::viridis(10)

) |>
highlight(on = "plotly_selected", off = "plotly_doubleclick") |>
add_trace(type = "scatter", mode = "markers")

bscols(
list(

filter_checkbox("label", "Label", shared_mnist, ~label)
),
detour_plot, tsne_plot,
widths = c(1, 5, 6)

)
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7 Conclusion and future work

In this paper we have introduced detourr which provides interactive, performant, and portable tour
visualisations from R. We accomplish these things using web technologies; TensorFlow.js (Abadi et
al. (2016)) provides fast linear algebra operations through WebAssembly, Three.js provides GPU
rendering via WebGL, and JavaScript & HTML enable good performance and interactive features
across the board. We also provide a simplified implementation of the Slice display (Laa, Cook, and
Valencia (2020)), and have generalised the radial transformation from the Sage display (Laa, Cook,
and Lee (2021)) to work with tours of 3 or more dimensions. All of this is done with an intuitive user
interface which makes the software accessible to new users.

Looking ahead, the priority for the next stage of development is to leverage detourr’s extensible
design to implement additional display methods such as density plots, histograms, parallel coordinates
plots, and Andrew’s plot. Additional changes could also be made to allow the radial transformation
of the sage display and the highlighting of points from the slice display to be incorporated in to these
other display methods, rather than being limited to only the scatter plot display. This would also allow
the additional information from both the sage and slice tour applied to the same visual.

Further enhancements could be made by implementing facetting; allowing grouped data to be
displayed across separate visuals with unified controls and timeline added. This could be taken further
by allowing multiple different displays to use the same controls and timeline, for example displaying a
scatter plot alongside one or more density plots.

To extend the existing scatter plot displays, the addition of an interactive legend would greatly
enhance the user experience. As well as providing context for the point colour / fill, this would allow
the user to be able to filter groups without needing to use a separate package like shiny or crosstalk. A
shape aesthetic would also be beneficial, and the ability to export the projection matrix at the current
frame would make it easier to perform analysis once an interesting projection is found.

As well as being able to display points and lines, support for plotting surfaces would allow for
rich visualisations of regression model fits and classification boundaries. Three.js has good support for
drawing surfaces, however it’s not clear how a decision boundary can be projected down to a lower
number of dimensions or whether this is actually feasible.

Support for displaying images or sprites directly on the tour visual or as an extension of the tooltip
functionality is possible. A similar feature is implemented in the Tensorboard Embedding Visualiser
(Smilkov et al. (2016)) which also uses Three.js under the hood.

What’s more, Three.js has support for VR, which would be an interesting addition for exploring
an immersive 3D tour visual.
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8 Radial CDF of hyperspheres projected to 3 dimensions

In order to implement the 3D variant of the sage tour (Laa, Cook, and Lee (2021)), we need an
expression for the relative projected volume of a sphere of radius R. This is then used as a scaling
factor for point radii in the visualisation to prevent points from being crowded towards the centre.

First we denote the volume of a p-dimensional hypersphere by:

2πp/2Rp

pΓ(p/2)

In the appendix of Laa et al. (2022) (equations 7–10) is a derivation for the relative projected
volume of a ball of radius r.

F(r; p, R) =
Vinside(r; p, R)

V(p, r)
(13)

= 1 − Voutside(r; p, R)
V(p, r)

(14)

And the formula for Voutside(r; p, R) for a circle is given as:

Voutside(r; p, R) =
∫ R

r
V(p − 2,

√
R2 − x2)2πxdx (15)

To extend this to the 3-dimensional case, we can modify (15) to express the volume outside a
sphere of radius r as:

Voutside(r; p, R) =
∫ R

r
V(p − 3,

√
R2 − x2)4πx2dx (16)

and it follows that the relative projected volume for a sphere is

F3(r; p, R) = 1 −
∫ R

r V(p − 3,
√

R2 − x2)4πx2dx
V(p, R)

(17)

We know 2Γ(3/2) = Γ(1/2) =
√

π so with some rearranging this can be reduced to:

F3(r; p, R) = 1 − 2
Rp

Γ(p/2 + 1)
Γ(3/2)Γ((p − 1)/2)

∫ R

r
(R2 − x2)(p−3)/2x2dx (18)

Denoting u = 1 −
( x

R
)2 and dx = R2

−2x du = R
−2

√
1−u

du for a change of variable this becomes

F3(r; p, R) = 1 − Γ(p/2 + 1)
Γ(3/2)Γ((p − 1)/2)

∫ 1− r2

R2

0
u(p−3)/2(1 − u)1/2du (19)

= 1 − BetaInc
(

1 −
( r

R

)2
,

p − 1
2

,
3
2

)
(20)

= BetaInc
(( r

R

)2
,

3
2

,
p − 1

2

)
(21)

where BetaInc is the regularised incomplete beta function (the CDF of a Beta distribution).

We can generalise this to any projection from p to d dimensions using the same steps, but with

Voutside(r; p, R, d) =
∫ R

r
V(p − d,

√
R2 − x2)

2πd/2

Γ(d/2)
xd−1dx (22)

where 2πd/2

Γ(d/2) xd−1 is the surface area of a d-ball.

This results in the relative projected volume of a projection from p to d dimensions being given by:

F(r; p, R, d) = BetaInc
(( r

R

)2
,

d
2

,
p − d

2
+ 1
)

(23)

Figures 15 and 16 compare the theoretical results from equations (21) and (23) respectively with
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Figure 15: Relative projected volume for projections from p dimensions to d=3 dimensions. The solid
line is simulated data, and the dashed line is the theoretical CDF

simulated values.
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Identifying Counterfactual Queries with
the R Package cfid
by Santtu Tikka

Abstract In the framework of structural causal models, counterfactual queries describe events that
concern multiple alternative states of the system under study. Counterfactual queries often take
the form of “what if” type questions such as “would an applicant have been hired if they had over
10 years of experience, when in reality they only had 5 years of experience?” Such questions and
counterfactual inference in general are crucial, for example when addressing the problem of fairness
in decision-making. Because counterfactual events contain contradictory states of the world, it is
impossible to conduct a randomized experiment to address them without making several restrictive
assumptions. However, it is sometimes possible to identify such queries from observational and
experimental data by representing the system under study as a causal model, and the available data as
symbolic probability distributions. Shpitser and Pearl (2007) constructed two algorithms, called ID*
and IDC*, for identifying counterfactual queries and conditional counterfactual queries, respectively.
These two algorithms are analogous to the ID and IDC algorithms by Shpitser and Pearl (2006b, 2006a)
for identification of interventional distributions, which were implemented in R by Tikka and Karvanen
(2017) in the causaleffect package. We present the R package cfid that implements the ID* and IDC*
algorithms. Identification of counterfactual queries and the features of cfid are demonstrated via
examples.

1 Introduction

Pearl’s ladder of causation (or causal hierarchy) consists of three levels: association, intervention,
and counterfactual (Pearl, 2009). These levels describe a hierarchy of problems with increasing
conceptual and formal difficulty. On the first and lowest level, inference on associations is based
entirely on observed data in the form of questions such as “what is the probability that an event
occurs?” or “what is the correlation between two variables”. On the second level, the inference
problems are related to manipulations of the system under study such as “what is the probability
of an event if we change the value of one variable in the system”. Questions on the intervention
level cannot be answered using tools of the association level, because simply observing a change in
a system is not the same as intervening on the system. Randomized controlled trials are the gold
standard for studying the effects of interventions, because they enable the researcher to account for
confounding factors between the treatment and the outcome and to carry out the intervention in
practice. However, there are often practical limitations that make it difficult, expensive, or impossible
to conduct a randomized experiment. The third and highest level is the counterfactual level. Typically,
counterfactual statements compare the real world, where an action was taken or some event was
observed, to an alternative hypothetical scenario, where a possibly different action was taken, or a
different event was observed. Counterfactuals are often challenging to understand even conceptually
due this notion of contradictory events in alternative worlds, and such alternatives need not be limited
to only two. In general, questions on the counterfactual level cannot be answered by relying solely
on the previous levels: no intervention or association is able to capture the notion of alternative
hypothetical worlds.

While counterfactual statements can be challenging, they are a core part of our everyday thinking
and discourse. Importantly, counterfactuals often consider retrospective questions about the state of
the world, such as “would an applicant have been hired if they had more work experience”. This
kind of retrospection is crucial when fair treatment of individuals is considered in hiring, healthcare,
receiving loans or insurance, etc., with regards to protected attributes, especially when the goal
is automated decision-making. Statistical approaches to fairness are insufficient in most contexts,
such as in scenarios analogous to the well-known Simpson’s paradox, but routinely resolved using
the framework of causal inference. In some cases, even interventional notions of fairness may be
insufficient, necessitating counterfactual fairness (Kusner et al., 2017; Zhang and Bareinboim, 2018).

The structural causal model (SCM) framework of Pearl provides a formal approach to causal
inference of interventional and counterfactual causal queries (Pearl, 2009). An SCM represents the
system of interest in two ways, First, the causal relationships are depicted by a directed acyclic
graph (DAG) whose vertices correspond to variables under study and whose edges depict the direct
functional causal relationships between the variables. Typically, only some of these variables are
observed and the remaining variables are considered latent, corresponding either to confounders
between multiple variables or individual random errors of single variables. Second, the uncertainty
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related to the variables in the system is captured by assuming a joint probability distribution over its
latent variables. The functional relationships of the model induce a joint probability distribution over
the observed variables. The SCM framework also incorporates the notion of external interventions
symbolically via the do-operator, and a graphical representation of counterfactual scenarios via parallel
worlds graphs (Avin et al., 2005; Shpitser and Pearl, 2007, 2008).

One of the fundamental problems of causal inference is the so-called identifiability problem,
especially the identifiability of interventional distributions. Using the SCM framework and do-
calculus, it is sometimes possible to uniquely represent an interventional distribution using only
the observed joint probability distribution of the model before the intervention took place. Such
interventional distributions are called identifiable . More generally, we say that a causal query is
identifiable, if it can be uniquely represented using the available data. In most identifiability problems,
the available data consists of causal quantities on levels below the query in the ladder of causation, but
the levels also sometimes overlap, (e.g., Bareinboim and Pearl, 2012; Tikka and Karvanen, 2019; Lee
et al., 2019). The identifiability problem of interventional distributions, and many other interventional
identifiability problems have been solved by providing a sound and complete identification algorithm
(e.g., Shpitser and Pearl, 2006; Huang and Valtorta, 2006; Lee et al., 2019; Kivva et al., 2022).

Software for causal inference is becoming increasingly prominent. For R, a comprehensive
overview of the state-of-the-art is provided by the recently launched task view on Causal Inference
on the Comprehensive R Archive Network (CRAN). Out of the packages listed in this task view,
the Counterfactual (Chen et al., 2020) and WhatIf (Stoll et al., 2020) packages are directly linked
to counterfactual inference, but the focus of these packages is estimation and they do not consider
the identifiability of counterfactual queries. The R6causal (Karvanen, 2022) package can be used to
simulate data from counterfactual scenarios in a causal model. R packages most closely related to
causal identifiability problems are the causaleffect (Tikka and Karvanen, 2017), dosearch (Tikka et al.,
2021), and dagitty (Textor et al., 2017).

We present the first implementation of the counterfactual identifiability algorithms of Shpitser and
Pearl (2007) (see also Shpitser and Pearl, 2008) as the R package cfid (counterfactual identification).
The cfid package also provides a user-friendly interface for defining causal diagrams and the package
is compatible with other major R packages for causal identifiability problems such as causaleffect,
dosearch and dagitty by supporting graph formats used by these packages as inputs.

The paper is organized as follows. Section 2.2 introduces the notation, core concepts and definitions,
and provides an example on manual identification of a counterfactual query without relying on the
identifiability algorithms. Section 2.3 presents the algorithms implemented in cfid and demonstrates
their functionality via examples by tracing their operation line by line. Section 2.4 demonstrates the
usage of the cfid package in practice. Section 2.5 concludes the paper with a summary.

2 Notation and definitions

We follow the notation used by Shpitser and Pearl (2008) and we assume the reader to be familiar with
standard graph theoretic concepts such as ancestral relations between vertices and d-separation. We
use capital letters to denote random variables and lower-case letters to denote their value assignments.
Bold letters are used to denote sets of random variables and counterfactual variables. We associate the
vertices of graphs with their respective random variables and value assignments in the underlying
causal models. In figures, observed variables of graphs are denoted by circles, variables fixed by
interventions are denoted by squares, and latent unobserved variables are denoted by dashed circles
when explicitly included and by bidirected edges when the corresponding latent variable has two
observed children. Latent variables with only one child, which are called error terms , are not shown
for clarity.

A structural causal model is a tuple M = (U, V, F, P(u)) where U is a set of unobserved random
variables, V is a set of n observed random variables, F is a set of n functions such that each function fi
is a mapping from U ∪V \ {Vi} to Vi and such that it is possible to represent the set V as function of
U. P(u) is a joint probability distribution over U. The causal model also defines its causal diagram G.
Each Vi ∈ V corresponds to a vertex in G, and there is a directed edge from each Vj ∈ U ∪V \ {Vi} to
Vi. We restrict our attention to recursive causal models in this paper, meaning models that induce an
acyclic causal diagram.

A counterfactual variable Yx denotes the variable Y in the submodel Mx obtained from M by
forcing the random variables X to take the values x (often denoted by the do-operator as do(X = x) or
simply do(x)). The distribution of Yx in the submodel Mx is called the interventional distribution of Y
and it is denoted by Px(y). However, if we wish to consider multiple counterfactual variables that
originate from different interventions, we must extend our notation to counterfactual conjunctions.
Counterfactual conjunctions are constructed from value assignments of counterfactual variables, and
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individual assignments are separated by the ∧ symbol. For example, yx ∧ zx ∧ x′ denotes the event
that Yx = y, Zx = z and X = x′. The probability P(yx ∧ zx ∧ x′) is the probability of the counterfactual
event. Note that primes do not differentiate variables, instead they are used to differentiate between
values i.e., x is a different value from x′ and they are both different from x′′ but all three are value
assignments of the random variable X. If the subscript of each variable in the conjunction is the same,
the counterfactual probability simply reduces to an interventional distribution.

Each counterfactual conjunction is associated with multiple parallel worlds , each induced by a
unique combination of subscripts that appears in the conjunction. A parallel worlds graph of the
conjunction is obtained by combining the graphs of the submodels induced by interventions such
that the latent variables are shared. The simplest version of a parallel worlds graph is a twin network
graph, contrasting two alternative worlds (Balke and Pearl, 1994a,b; Avin et al., 2005). As a more
complicated example, consider the counterfactual conjunction γ = yx ∧ x′ ∧ zd ∧ d. In simpler terms,
this conjunction states that Y takes the value y under the intervention do(X = x), Z takes the value
z under the intervention do(D = d), and X and D take the values x′ and d, respectively, when no
intervention took place. Importantly, this conjunction induces three distinct parallel worlds: the
non-interventional (or observed) world, a world where X was intervened on, and a world where D
was intervened on. For instance, if the graph in Figure 1(a) depicts the original causal model over
the variables Y, X, Z, W and D, then Figure 1(b) shows the corresponding parallel worlds graph for γ,
where each distinct world is represented by its own set of copies of the original variables. In Figure 1(b),
U corresponds to the bidirected edge between X and Y in Figure 1(a), and the other U-variables are
the individual error terms of each observed variable, that are not drawn when they have only one
child in Figure 1(a).

Note that instead of random variables, some nodes in the parallel worlds graph now depict fixed
values as assigned by the interventions in the conjunction. This is a crucial aspect when d-separation
statements are considered between counterfactual variables in the parallel worlds graph, as a backdoor
path through a fixed value is not open. Furthermore, not every variable is necessarily unique in a
parallel worlds graph, making it possible to obtain misleading results if d-separation is used to infer
conditional independence relations between counterfactual variables. For instance, if we consider
the counterfactual variables Yx, Dx and Z in a causal model whose diagram is the graph shown in
Figure 1(a), then Yx is independent of Dx given Z, even though Yx is not d-separated from Dx in the
corresponding parallel worlds graph of Figure 1(b). This conditional independence holds because Z
and Zx are in fact the same counterfactual variable. To overcome this problem, the parallel worlds
graph must be further refined into the counterfactual graph where every variable is unique, which we
will discuss in the following sections in more detail. For causal diagrams and counterfactual graphs,
V(G) denotes the set of observable random variables not fixed by interventions and v(G) denotes the
corresponding set of value assignments.

The following operations are defined for counterfactual conjunctions and sets of counterfactual
variables: sub(·) returns the set of subscripts, var(·) returns the set of (non-counterfactual) variables,
and ev(·) returns the set of values (either fixed by intervention or observed). For example, consider
again the conjunction γ = yx ∧ x′ ∧ zd ∧ d. Now, sub(γ) = {x, d}, var(γ) = {Y, X, Z, D} and
ev(γ) = {y, x, x′, z, d}. Finally, val(·) is the value assigned to a given counterfactual variable, e.g.,
val(yx) = y. The notation yx.. denotes a counterfactual variable derived from Y with the value
assignment y in a submodel Mx∪z where Z ⊆ V \ X is arbitrary.

The symbol P∗ is used to denote the set of all interventional distributions of a causal model M over
a set of observed variables V, i.e.,

P∗ = {Px | x is any value assignment of X ⊆ V}

In the following sections, we consider identifiability of counterfactual queries in terms of P∗. In essence,
this means that a counterfactual probability distribution P(γ) is identifiable if it can be expressed
using purely interventional and observational probabilities of the given causal model.

2.1 Example on identifiability of a counterfactual query

We consider the identifiability of the conditional counterfactual query P(yx|zx ∧ x′) from P∗ in the
graph depicted in Figure 2. This graph could for instance depict the effect of an applicant’s education
(X) on work experience (Z) and a potential hiring decision (Y) by a company. Our counterfactual query
could then consider the statement “what is the probability to be hired if the applicant’s education level
was changed to x, given that their work experience under the same intervention was z and when in
reality their education level was x′”. In this example, we will not rely on any identifiability algorithms.
Instead, we can derive a formula for the counterfactual query as follows:
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(b) A parallel worlds graph of (a) for yx ∧ x′ ∧ zd ∧ d. Colors are used here to
distinguish the observed and fixed nodes that belong to different parallel worlds:
black for the non-interventional world, blue for the world induced by do(X = x),
and red for the world induced by do(D = d). Note that node U is drawn twice
for clarity due to its many endpoints.

Figure 1: An example causal diagram and a corresponding parallel worlds graph.

X Z Y

Figure 2: A graph for the example on identifiability of a conditional counterfactual query P(yx|zx ∧ x′).

P(yx|zx ∧ x′) =
P(yx ∧ zx ∧ x′)

∑y P(yx ∧ zx ∧ x′)

=
P(yxz ∧ zx ∧ x′)

∑y P(yxz ∧ zx ∧ x′)
(composition)

=
P(yxz|zx ∧ x′)P(zx ∧ x′)

∑y P(yxz|zx ∧ x′)P(zx ∧ x′)

=
P(yxz)P(zx ∧ x′)

P(zx ∧ x′)∑y P(yxz)
(independence restrictions)

= P(yxz)

= Pxz(y)

Thus, we find that the answer to our initial question is simply the probability of hiring if the applicant’s
education level and work experience were changed to x and z, respectively. In the above derivation,
we used the notions of composition and independence restrictions (Holland, 1986; Pearl, 1995; Halpern,
1998; Pearl, 2009). Composition is one of the axioms of counterfactuals stating that if a variable is
forced to a value that it would have taken without the intervention, then the intervention will not
affect other variables in the system. In this case, intervention setting Zx to z has no effect on Yx because
we have observed Zx = z, thus we can add Z to the intervention set of Yx. Independence restrictions
state if the observed parents of a variable are intervened on, then the counterfactual is independent of
any other observed variable when their parents are also held fixed, if there are no paths between the
variables via latent variables. In this case Yx,z is independent of Zx and X because there is no path via
latent variables connecting Y to Z or X in G.
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In this example, the interventional distribution Px,z(y) can be further identified from the observed
joint distribution P(x, z, y) as P(y|x, z) via the second rule of do-calculus by noting that Y is d-separated
from X and Z in the graph when the outgoing edges of X and Z are removed. Thus, the answer to our
initial question can be further refined into the probability of hiring among applicants with education
level x and work experience z. The cfid package provides this kind of identification pipeline from the
counterfactual level down to the lowest possible level in the causal hierarchy.

3 Algorithms for identifying counterfactual queries

Manual identification of counterfactuals is challenging and more nuanced than identification of
interventional distributions due to fixed values and non-uniqueness of counterfactual variables in the
parallel worlds graph. Therefore, identification of a counterfactual query can be achieved in several
ways. First, we may find that the query is identifiable and thus we can express it in terms of purely
interventional distributions. In contrast, we may find that the query is not identifiable, meaning that
is not possible to represent it in terms of purely interventional distributions. Alternatively, we may
find that the query is inconsistent meaning that the same counterfactual variable has been assigned
at least two different values in the conjunction, and thus the query is identified as a zero-probability
event. For example, suppose we are tasked with identifying P(yx, y′z) but we find that Yx and Yz are
actually the same variable, and thus cannot attain two different values y and y′ simultaneously. For
conditional counterfactual queries, there is also a fourth option where the query is undefined if the
conditioning conjunction is inconsistent.

Algorithmic identification of interventional distributions takes advantage of the so-called C-
component factorization (Tian and Pearl, 2002; Shpitser and Pearl, 2006) which also plays a key role
in the identification of counterfactual queries. The maximal C-components of a causal diagram are
obtained by partitioning the vertices V related to observed variables of the graph such that two vertices
A, B ∈ B in the same partition are connected by a path with edges into A and B where every node
on the path in V except A and B is a collider, and A and B are not connected to any other partitions
via such paths. Maximal C-components are defined analogously for parallel worlds graphs and
counterfactual graphs with the restriction that we do not consider vertices that correspond to fixed
values to belong to any C-component. The set of maximal C-components of a DAG G is denoted by
C(G). As an example, the maximal C-components of the graph of Figure 1(b) are {X, Xd, Y, Yx, Yd},
{D, Dx}, {Z, Zx, Zd}, and {W, Wx, Wd}.

We recall the ID* and IDC* algorithms of Shpitser and Pearl (2007) which are depicted in Figures 3
and 4 for identifying counterfactual queries and conditional counterfactual queries, respectively.
Both algorithms are sound and complete (Shpitser and Pearl, 2008, Theorems 26 and 31), meaning
that when they succeed in identifying the query, the expression returned is equal to P(γ) or P(γ|δ),
respectively, and when they fail, the query is not identifiable. We aim to characterize the operation
of these algorithms on an intuitive level and provide line-by-line examples of their operation via
examples.

function ID*(G, γ)
INPUT: G a causal diagram, γ a conjunction of counterfactual events
OUTPUT: an expression for P(γ) in terms of P∗, or FAIL

1. if γ = ∅, return 1

2. if (∃xx′ .. ∈ γ), return 0

3. if (∃xx.. ∈ γ), return ID*(G, γ \ {xx..})

4. (G′, γ′) = make-cg(G, γ)

5. if γ′ = INCONSISTENT, return 0

6. if C(G′) = {S1, . . . , Sk}, return ∑V(G′)\γ′ ∏
k
i=1ID*(G, si

v(G′)\si )

7. if C(G′) = {S}, then

8. if (∃x, x′) s.t. x ̸= x′, x ∈ sub(S), x′ ∈ ev(S), throw FAIL

9. else, let x = ∪ sub(S), return Px(var(S)).

Figure 3: Counterfactual identification algorithm ID* by Shpitser and Pearl (2007).
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We begin by describing the ID* algorithm. On line 1, we check for an empty conjunction, which
by convention has probability 1. Line 2 checks for direct inconsistencies meaning counterfactual
variables that are intervened on but simultaneously observed to have a different value than the
intervention. Such counterfactuals violate the Axiom of Effectiveness (Pearl, 2009), and if found,
we return probability 0. Line 3 removes tautological counterfactuals from the conjunction meaning
counterfactuals where the variable was observed to have the value it was forced to take via intervention.
Line 4 calls the make-cg algorithm to construct the counterfactual graph G′ and the corresponding
conjunction γ′ where some counterfactual variables may have been relabeled due to equivalence
between counterfactual variables. We leave the details of the make-cg algorithm and the related core
results to the supplementary material. In summary, the output G′ of make-cg is a refined version
of the parallel worlds graph of G and γ, where each counterfactual variable is unique. Similarly, if
some variables in γ were found to be equivalent, then those variables are replaced in γ′ by their new
representatives in G′. If as a result of this operation the refined conjunction γ′ is now inconsistent,
we again return probability 0. The next two lines take advantage of the C-component factorization
of the counterfactual graph G′, analogously to the ID algorithm. If there is more than one maximal
C-component of G′, then we proceed to line 6 where the original query is decomposed into a set of
subproblems, each of which we again call ID* for. Note that the sets Si are sets of counterfactual
variables, but we may interpret them as counterfactual conjunctions in the subsequent recursive calls.
Similarly, we may interpret γ′ as a set of counterfactual variables when carrying out the outermost
summation over the possible values of the counterfactual variables in V(G′) \ γ′. In cases where
a set Si contains counterfactual variables, the intervention do(v(G′) \ si) should be understood as
merging of the subscripts, e.g., if Si = {Yx} and V(G′) \ Si = {Z}, and Yx has the value y in γ′, then
si

v(G′)\si = yx,z.

If there is only one C-component, we enter line 7 that serves as the base case. There are now only
two options. If there is an inconsistent value assignment on line 8 such that at least one of the values is
in the subscript, then the query is not identifiable, and we fail. If there is no such conflict, we can take
the union of all the subscripts in γ′ and return their effect on the variables in γ′ on line 9.

function IDC*(G, γ, δ)
INPUT: G a causal diagram, γ, δ conjunctions of counterfactual events
OUTPUT: an expression for P(γ|δ) in terms of P∗, or FAIL, or UNDEFINED

1. if ID*(G, δ) = 0, return UNDEFINED

2. (G′, γ′ ∧ δ′) = make-cg(G, γ ∧ δ)

3. if γ′ ∧ δ′ = INCONSISTENT, return 0

4. if (∃yx ∈ δ′) s.t. (Yx ⊥⊥ γ′)G′yx , return IDC*(G, γ′yx , δ′ \ {yx})

5. else, let P′ = ID*(G, γ′ ∧ δ′), return P′/P′(δ)

Figure 4: Conditional counterfactual identification algorithm IDC* by Shpitser and Pearl (2007).

In contrast, the IDC* algorithm is simpler, as it leverages the ID* algorithm. The consistency of the
conditioning conjunction δ is first confirmed on line 1, and if δ is found to be inconsistent, then the
conditional probability P(γ|δ) is undefined, and we return. Line 2 applies the make-cg algorithm to
the joint conjunction γ∧ δ to construct the corresponding counterfactual graph G′ and the restructured
version of the conjunction, γ′ ∧ δ′. If γ′ ∧ δ′ was found to be inconsistent, we return probability 0 on
line 3. Line 4 takes advantage of conditional independence relations implied by the counterfactual
graph G′ and the second rule of do-calculus to add variables as interventions to γ′ by removing them
from δ′. If the necessary d-separation holds, we initiate a recursive call to IDC* again. Finally on
line 5, if no more variables can be removed from δ′, we simply apply the ID* algorithm to the joint
conjunction γ′ ∧ δ′ and obtain the identifying functional as a standard conditional probability from
the distribution returned by ID*.

3.1 Examples on the identifiability algorithm

We recall the counterfactual conjunction γ = yx ∧ x′ ∧ zd ∧ d from Section 2.2 and describe how the ID*
algorithm operates when applied to P(γ) in the graph of Figure 1(a), which we will label as G in the
context of this example. We start from line 1 and continue to line 2 as γ is not an empty conjunction.
On line 2, we note that γ does not contain any inconsistencies, similarly on line 3 we see that γ does
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not contain any tautological statements. Thus, we reach line 4 and apply the make-cg algorithm to
obtain the counterfactual graph G′ and the modified conjunction γ′.

We describe the operation of the make-cg algorithm in this instance. The goal is to determine
which variables in the parallel worlds graph of Figure 1(b) represent the same variable. We consider
all variable pairs in a topological order of G that originate from the same non-counterfactual variable
in G. First, we can conclude that X and Xd are the same variable, as they have the same functional
mechanisms and the same parent U. By the same argument, D and Dx are the same variable with the
common parent UD. The fixed variables x and d cannot be merged with the other X-derived variables
and D-derived variables, respectively, as their functional mechanisms are different. Next, we merge W
and Wd because their X-derived parents (X and Xd) were found to be the same and they have the same
parent UW . However, WX cannot be merged with the other two W-derived variables, because X (and
thus Xd) was observed to attain the value x′ in γ, but x has the value x as fixed by the intervention. In
contrast, we can merge the triplet Z, Zx and Zd, because their D-derived parents attain the same value,
and they have the same parent UZ. The intuition is that because the U-variables are shared between
worlds, intervention and observation have the same effect if the observed values agree with the values
fixed by intervention. This is a consequence of the Axiom of Composition as was considered in the
example of Section 2.2.1. Finally, we consider the Y-derived variables and merge Yx and Yd because
their Z-derived parents are the same, their W-derived parents are the same, and they have the same
parent U. The variable Yx cannot be merged with the other two, because its W-derived parent Wx was
not the same variable as W and Wd.

Consequently, we must choose a name for each merged variable. This choice is arbitrary and plays
no role in the correctness of the algorithm; the difference is purely notational. In this example, we pick
the original name with the fewest subscripts to represent the merged variable, i.e., X represents the
merged pair X, Xd, Z represents the merged triplet Z, Zx, Zd, W represents the merged pair W, Wd and
finally Y represents the merged pair Y, Yd. Note that because the Z-derived variables were all merged
but d was not merged with D and Dx, we essentially have two D-derived parents for the merged Z.
In such scenarios, we simply omit the fixed version of the parent variable from the graph, because
this scenario may only arise if the parent variables were found to have the same value, thus their
role in the functional mechanisms of their children is identical. Lastly, we may restrict our attention
to those counterfactual variables that are ancestral to the query γ in this merged graph, which are
x, Wx, Yx, Z, D, X and U

Thus, we obtain the counterfactual graph G′ for γ depicted in Figure 5 using once again the
convention that unobserved variables with only one child are not drawn. As a result of the variable
merges, we also update our original conjunction γ with references to the merged variables to obtain
γ′ = yx ∧ x′ ∧ z ∧ d. The new conjunction γ′ is not inconsistent on line 5, and thus we continue.

X D

Z

x

Wx

Yx

Figure 5: Counterfactual graph G′ for yx ∧ x′ ∧ zd ∧ d of the graph of Figure 1(a).

On line 6 we first determine the maximal C-components of the counterfactual graph G′ which are
{X, Yx}, {Z}, {Wx} and {D}. By the C-component factorization we have that

P(yx ∧ x′ ∧ z ∧ d) = ∑
w

P(yx,z,w,d ∧ x′z,w,d)P(zy,x,w,d)P(wx,y,z,d)P(dy,x,z,w), (1)

which means that we launch four recursive calls to ID* to identify each of the terms in the right-hand
side expression. We will consider the last three terms first as they result in a similar simple path
through the algorithm. For each of these terms, the counterfactual graph will contain a single non-fixed
vertex (Zy,x,w,d, Wx,y,z,d and Dy,x,z,w, respectively). Because the conjunctions are not empty, there are
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no inconsistencies or tautologies, and only a single C-component, we end up on line 7 in each case.
None of the terms contain value assignments that would conflict with the subscript and thus each term
is identified as an interventional distribution on line 9. Note that when line 7 is reached, redundant
subscripts should be removed, i.e., those subscript variables that are not ancestors of the counterfactual
variables in γ′ in the counterfactual graph G′. Otherwise, a conflict may be found erroneously on
line 8. This operation was not formally included in the algorithm by Shpitser and Pearl (2007), but
nonetheless carried out in a running example by Shpitser and Pearl (2008). Thus, P(zy,x,w,d) = Pd(z),
P(wx,y,z,d) = Px(w) and P(dy,x,z,w) = P(d). For the first term P(yx,z,w,d ∧ x′z,w,d), the only difference is
that the counterfactual graph has two non-fixed vertices, but the outcome is the same and we end up
on line 7 due to the single C-component containing Yx,z,w,d and Xz,w,d. There are no conflicts this time
either, and we obtain P(yx,z,w,d ∧ x′z,w,d) = Pw,z(y, x′). Thus, we obtain the identifying functional of
the counterfactual query:

P(yx ∧ x′ ∧ zd ∧ d) = ∑
w

Pw,z(y, x′)Pd(z)Px(w)P(d).

Next, we will consider an example that causes a conflict at line 7 resulting in a non-identifiable
counterfactual query. Suppose that we also have an edge from X to Y in the graph of Figure 1(a) and
we wish to identify the same counterfactual query P(yx ∧ x′ ∧ z ∧ d) as in the previous example in
this modified graph. The ID* algorithm proceeds similarly as in the previous example up to line 4
where we obtain a slightly different counterfactual graph, which is the graph of Figure 5, but with the
corresponding extra edge from X to Yx. Thus, the algorithm proceeds similarly to line 6, where the
C-component factorization is the same as (1). The last three terms are still identifiable, but this time
the first term P(yx,z,w,d ∧ x′z,w,d) is problematic. On line 7 after removing redundant interventions, the
term takes the form P(yx,z,w ∧ x′z,w) which now contains a conflict, because x appears in the subscript
but x′ is observed at the same time, resulting in non-identification on line 8.

We return to the example presented in Section 2.2.1 and apply the IDC* algorithm to identify the
counterfactual query P(yx|zx ∧ x′) in the graph of Figure 2, which we will again refer to as G in the
context of this example. We trace the application of IDC*(G, yx, zx ∧ x′). On line 1, the ID* algorithm
is applied to zx ∧ x′, which is not identifiable, but also not inconsistent. Continuing to line 2, we apply
the make-cg algorithm to construct the counterfactual graph G′, which is shown in Figure 6(a). First,
the parallel worlds graph is constructed and make-cg proceeds to determine which variable pairs can
be merged (see the Supplementary Material for details on the make-cg algorithm).

X

x

Z

Zx

Y

Yx

U UY

(a) Parallel worlds graph for yx ∧ zx ∧ x′ (the counter-
factual graph).

X

x

Z

z

Y

Yx,z

U UY

(b) Parallel worlds graph for yx,z ∧ x′ (the counterfac-
tual graph).

Figure 6: Counterfactual graphs used during the derivation of P(yx|zx ∧ x′).

Because X was observed to have the value x′, but the intervention for Z and Y has the value x,
we cannot merge X and x. Similarly, the X-parent of Z in both worlds has a different value, meaning
that Z and Zx cannot be merged either. Finally, through the same reasoning, Y and Yx will remain
unmerged due to the difference in the Z-parent. Thus, the parallel worlds graph is the counterfactual
graph G′ in this instance. This also means that γ′ = γ and δ′ = δ in the output of make-cg.

On line 3, we check for inconsistencies in yx ∧ zx ∧ x′, but there are none. Next on line 4, we
check whether either of the two variables in δ′ are d-separated from γ′ when outgoing edges of
that variable have been removed. We can see that X is not d-separated from Yx, because the path
X ← U1 → Zx → Yx is open in G′X . However, Zx is d-separated from Yx in G′Zx

(note that x is fixed
by intervention, and thus the path Zx ← x → Yx is not an open backdoor path). Thus, line 4 adds an
intervention on Z to Yx because Yx is a descendant of Zx in G′, and removes Zx from δ′, and we call
IDC*(G′, yx,z, x′).
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We now trace this new recursive call. Once again on line 1, ID* is not able to identify the effect, but
is also not inconsistent. Next, we construct a new counterfactual graph G′′ for yx,z ∧ x′ as depicted in
Figure 6(b). Using similar reasoning as before, the make-cg algorithm is not able to merge any nodes
this time either and thus the parallel worlds graph is the counterfactual graph. Again, this means that
γ′′ = γ′ and δ′′ = δ′ in the output of make-cg. Line 3 checks again for inconsistencies in yx,z ∧ x′, but
there are none. Thus, we arrive again on line 4, but this time X is d-separated from Yx,z in G′′X . Now,
Yx,z is not a descendant of X in G′′ so no new intervention is added to Yx,z, and x′ is removed from δ′′.
Because the conditioning δ-argument of the next IDC* call is now empty, we can call ID* directly as
ID*(G, yx,z), but P(yx,z) is no longer a counterfactual quantity, but an interventional distribution and
thus directly identifiable from P∗ as Px,z(y).

We note the difference compared to the manual identification strategy we used in Section 2.2.1 to
obtain identifiability. Instead of using axioms of counterfactuals or independence restrictions explicitly,
the ID* and IDC* algorithms take full advantage of the counterfactual graph and the conditional
independence relations between the counterfactual variables implied by it.

4 Using the cfid package

The cfid package is available from CRAN at https://cran.r-project.org/package=cfid and can be
obtained in R using the following commands:

R> install.packages("cfid")
R> library("cfid")

Development of cfid takes place on GitHub https://github.com/santikka/cfid.

The main contributions of the cfid package are the implementations of the ID* and IDC* algo-
rithms. The package also provides reimplementations of the ID and IDC algorithms for interventional
distributions from the causaleffect package, but without relying on the igraph (Csardi and Nepusz,
2006) package. In fact, cfid has no mandatory package dependencies or installation requirements.
The cfid package provides its own text-based interface for defining graphs, which closely follows the
syntax of the dagitty package, and also supports other external graph formats directly. Installation of
the igraph and dagitty packages is optional and required only if the user wishes to import or export
graphs using the aforementioned packages.

The inclusion of the identifiability algorithms for interventional distributions enables a full identi-
fication pipeline. First, we determine the identifiability of a counterfactual query from the set of all
interventional distributions, and then proceed to identify each interventional distribution that appears
in the identifying functional of the counterfactual from the joint observed probability distribution of
the causal model. The level of attempted identification can be specified by the user.

4.1 Defining causal diagrams

Causal diagrams (i.e., DAGs) in cfid are constructed via the function dag

dag(x, u = character(0L))

where x is a single character string in a syntax analogous to the DOT language for GraphViz (and the
dagitty package), and u is an optional character vector of variable names that should be considered
unobserved in the graph. Internally, a semi-Markovian representation is always used for DAGs where
each latent variable has at most two children, which is obtained from the input via the latent projection
(Verma and Pearl, 1990).

As an example, the graph of Figure 2 can be constructed as follows:

R> g <- dag("X -> Z -> Y; X -> Y; X <-> Z")

Above, individual statements are separated by a semicolon for additional clarity, but this is optional,
and a space would suffice. More generally, the input of dag consists of statements of the form
n1e1n2e2 · · · eknk where each ei symbol must be a supported edge type, i.e., ->, <- or <->, and each
ni symbol must correspond to single node such as X or a subgraph such as {X,Y,Z} or {X -> Y}.
Subgraphs are enclosed within curly braces, and they follow the same syntax as x. Subgraphs can
also be nested arbitrarily. An edge of the form X -> {...} means that there is an edge from X to all
vertices in the subgraph, and the interpretation for <- and <-> is analogous. Individual statements in
the graph definition can be separated by a semicolon, a space, or a new line. Commas can be used
within subgraphs to distinguish vertices, but a space is sufficient.

The same DAG can often be defined in many ways. For example, we could also define the graph
of Figure 2 using a subgraph construct as follows:
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R> g <- dag("X -> {Z, Y}; Z -> Y; X <-> Z")

We could also combine the outgoing edge of Z and the bidirected edge into a single statement:

R> g <- dag("X -> {Z, Y}; X <-> Z -> Y;")

The edge from Z to Y could be defined in the subgraph as well:

R> g <- dag("Z <-> X -> {Z -> Y}")

The output of dag is an object of class "dag" which is a square adjacency matrix of the graph, with
additional attributes for the vertex labels and latent variables and a print method. Graph definitions
that imply cycles or self-loops will raise an error. Examples of more complicated graph constructs can
be found from the cfid package documentation for the dag function. Graphs using supported external
formats can be converted to "dag" objects via the function import_graph. Conversely, "dag" objects
can be exported in supported external formats using the function export_graph.

4.2 Defining counterfactual variables and conjunctions

Counterfactual variables are defined via the function counterfactual_variable or its shorthand alias
cf

counterfactual_variable(var, obs = integer(0L), sub = integer(0L))
cf(var, obs = integer(0L), sub = integer(0L))

The first argument var is a single character string naming the variable, e.g., "Y". The second argument
obs describes the value assignment as a single integer. The value of this argument does not describe
the actual value taken by the variable, but simply the assignment level, meaning that obs = 1 is a
different value assignment than obs = 0, but the actual values that the counterfactual variable takes
need not necessarily be 1 and 0. The idea is similar to the internal type of factors in R. Finally, sub
defines the set of interventions as a named integer vector, where the actual values correspond to the
intervention levels, and not actual values, analogous to obs. The output of cf is an object of class
"counterfactual_variable".

As an example, the counterfactual variables in γ = yx ∧ x′ ∧ zd ∧ d can be defined as follows:

R> v1 <- cf(var = "Y", obs = 0L, sub = c(X = 0L))
R> v2 <- cf(var = "X", obs = 1L)
R> v3 <- cf(var = "Z", obs = 0L, sub = c(D = 0L))
R> v4 <- cf(var = "D", obs = 0L)
R> list(v1, v2, v3, v4)

[[1]]
y_{x}

[[2]]
x'

[[3]]
z_{d}

[[4]]
d

The print method for "counterfactual_variable" objects mimics the notation used in this paper in
LaTeX syntax.

Individual "counterfactual_variable" objects can be combined into a counterfactual conjunc-
tion via the function counterfactual_conjunction or its shorthand alias conj. This function takes
arbitrarily many "counterfactual_variable" objects as input. The output of conj is an object of class
"counterfactual_conjunction".

R> c1 <- conj(v1, v2, v3, v4)
R> c1

y_{x} /\ x' /\ z_{d} /\ d

Alternatively, the `+` operator can be used to build conjunctions from counterfactual variables or
conjunctions.
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R> c2 <- v1 + v2
R> c3 <- v3 + v4
R> c2
R> c3
R> c2 + c3

y_{x} /\ x'
z_{d} /\ d
y_{x} /\ x' /\ z_{d} /\ d

The subset operator `[` is supported for counterfactual conjunctions

R> c1[c(1, 3)]

y_{x} /\ z_{d}

Just as the cf function, the print method for "counterfactual_conjunction" objects mimics the
formal notation of using the ∧ symbol to separate individual statements, but this symbol can also be
changed by the user.

4.3 Identifying counterfactual queries

Identification of counterfactual queries is carried out by the function identifiable

identifiable(g, gamma, delta = NULL, data = "interventions")

where g is a causal diagram defined by the function dag, gamma is the counterfactual conjunction γ
as a "counterfactual_conjunction" object describing the counterfactual query P(γ) to be identified,
delta is an optional argument also of class "counterfactual_conjunction" that should be provided
if identification of a conditional counterfactual P(γ|δ) is desired instead. Finally, data defines the
available probability distributions for identification. The default value "interventions" means that
identification is carried out to the intervention level, i.e., by using only the set of all interventional
distributions P∗. The alternatives are "observations", where only the joint observed probability
distribution P(v) is available, and "both" where both P∗ and P(v) are available, and identification in
terms of P(v) is prioritized.

We reassess the identifiability examples of Section 2.3.1 using the cfid package. The conjunction of
the query γ for the first two examples is the same as c1 in the previous section. We define the graphs
for the identifiable case in Figure 1(a) and the non-identifiable case with the additional edge from X to
Y:

R> v1 <- cf(var = "Y", obs = 0L, sub = c(X = 0L))
R> v2 <- cf(var = "X", obs = 1L)
R> v3 <- cf(var = "Z", obs = 0L, sub = c(D = 0L))
R> v4 <- cf(var = "D", obs = 0L)
R> c1 <- conj(v1, v2, v3, v4)
R> g1 <- dag("Y <-> X -> W -> Y <- Z <- D")
R> g2 <- dag("Y <-> X -> W -> Y <- Z <- D; X -> Y")
R> out1 <- identifiable(g1, c1)
R> out2 <- identifiable(g2, c1)
R> out1
R> out2

The query P(y_{x} /\ x'/\ z_{d} /\ d) is identifiable from P_*.
Formula: \sum_{w} P_{w,z}(y,x')P_{x}(w)P_{d}(z)P(d)

The query P(y_{x} /\ x'/\ z_{d} /\ d) is not identifiable from P_*.

The identifiable function returns an object of class "query", whose print method provides a sum-
mary of the identification result. Objects of this class are lists with the following elements:

id A logical value that is TRUE if the counterfactual query is identifiable and FALSE otherwise.

formula An object of class "functional" representing the identifying functional. The format method
for "functional" objects provides the formula of the counterfactual query in LaTeX syntax
when the query is identifiable. Otherwise, formula is NULL.

undefined A logical value that is TRUE if the conditional counterfactual query is found to be undefined.

query The original query as a "counterfactual_conjunction" object.
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data The data argument passed to identifiable.

By default, the notation of Shpitser and Pearl (2007) is used for interventional distributions, where
interventions are denoted using the subscript, e.g. Px(y). If desired, the notation can be swapped to
Pearl’s notation with the explicit do-operator denoting interventions, e.g., P(y|do(x)). This can be
accomplished via the use_do argument of the format method for "functional" objects (passed here
via the print method):

R> print(out1[["formula"]], use_do = TRUE)

\sum_{w} P(y,x'|do(w,z))P(w|do(x))P(z|do(d))P(d)

For the third example of Section 2.3.1, we have already defined the counterfactual variable Yx of the
query as v1 and the observation X = x′ in the condition as v2. We still need to define the graph of
Figure 2 and the other conditioning variable Zx:

R> g3 <- dag("Z <-> X -> {Z -> Y}")
R> v5 <- cf("Z", 0, c(X = 0))
R> identifiable(g3, v1, v5 + v2)

The query P(y_{x}|z_{x} /\ x') is identifiable from P_*.
Formula: P_{x,z}(y)

Recall from Section 2.2.1, that this interventional distribution can be further identified, which can be
accomplished by setting the data argument to "observations" in identifiable (or to "both" in this
case):

R> identifiable(g3, v1, v5 + v2, data = "observations")

The query P(y_{x}|z_{x} /\ x') is identifiable from P(v).
Formula: P(y|x,z)

4.4 Formatting output for reports

The LaTeX formatting of the formulas returned by the identifiable function enables them to be
directly rendered as mathematics, for example in an R Markdown or a Sweave document. For instance,
we can write an inline markdown code chunk within a mathematics environment, where we use the
format method with the formula element of a "query" object.

\(`r format(out1$formula)`\)

This would render as ∑w Pw,z(y, x′)Px(w)Pd(z)P(d) in the document. Similarly, we could use the
use_do argument to render the formula such that the do-operator is used instead to represent the
interventions.

\(`r format(out1$formula, use_do = TRUE)`\)

This would render as ∑w P(y, x′|do(w, z))P(w|do(x))P(z|do(d))P(d).
Similarly, we can also directly render "counterfactual_query" objects into mathematics. We

replace the default variable separator string, defined via the var_sep argument, with " \\wedge " to
properly render the ∧ symbol. The leading and trailing spaces are used so that the command name
does not get mixed with the variable names.

\(`r format(c1, var_sep = " \\wedge ")`\)

When rendered, this produces yx ∧ x′ ∧ zd ∧ d.

5 Summary

The cfid package provides an easy-to-use interface to identifiability analysis of counterfactual queries.
The causal diagram of the causal model can be specified by the user via an intuitive interface, and a
variety of commonly used external graph formats are supported. The results from the identifiability
algorithms are wrapped neatly in LaTeX syntax to be readily used in publications or reports. This
tutorial demonstrates the features of the package and provides insight into the core algorithms it
implements.
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vivid: An R package for Variable
Importance and Variable Interactions
Displays for Machine Learning Models
by Alan Inglis, Andrew Parnell, and Catherine Hurley

Abstract We present vivid, an R package for visualizing variable importance and variable interactions
in machine learning models. The package provides heatmap and graph-based displays for viewing
variable importance and interaction jointly, and partial dependence plots in both a matrix layout
and an alternative layout emphasizing important variable subsets. With the intention of increasing
machine learning models’ interpretability and making the work applicable to a wider readership,
we discuss the design choices behind our implementation by focusing on the package structure and
providing an in-depth look at the package functions and key features. We also provide a practical
illustration of the software in use on a data set.

1 Introduction

Our motivation behind the creation of the vivid package is to investigate machine learning models in
a way that is simple to understand while also offering helpful insights into how variables affect the
fit. We do this through the use of heatmaps, network graphs, and both a generalized pairs plot style
partial dependence plot (PDP) (Friedman 2000) and a space saving PDP based on key variable subsets.
While the techniques and fundamental goals of these visualizations have been discussed in Inglis,
Parnell, and Hurley (2022a), we focus here on the implementation details of the package by providing
a complete listing of the functions and arguments included in the vivid package with further examples
indicating advanced usage beyond that previously shown. In this work we examine the decisions
made when designing the package and provide an in-depth look at the package functions and features
with the intention of making the work applicable to a larger readership. This article outlines the general
architectural principles implemented in vivid, such as the data structures we use and data formatting,
function design, filtering techniques, and more. We illustrate each function by way of a practical
example. Our package is available on the Comprehensive R Archive Network at https://cran.r-
project.org/web/packages/vivid or on GitHub at https://github.com/AlanInglis/vivid.

In recent years machine learning (ML) algorithms have emerged as a valuable tool for both industry
and science. However, due to the black-box nature of many of these algorithms it can be challenging
to communicate the reasoning behind the algorithm’s decision-making processes. With the need
for transparency in ML growing it is important to gain understanding and clarity about how these
algorithms are making predictions (Antunes et al. 2018; Felzmann et al. 2019). Many R packages are
now available that aid in creating interpretable machine learning (IML) models such as iml (Molnar,
Bischl, and Casalicchio 2018), DALEX (Biecek 2018), and lime (Hvitfeldt, Pedersen, and Benesty 2022).
For a comprehensive review of IML, see Molnar (2022) and Biecek and Burzykowski (2021).

How we choose to visualize aspects of the model output is of vital importance to how a researcher
can interpret and communicate their findings. Consequently, model summaries such as variable
importance and variable interactions (VImp and VInt; together we term these VIVI) are frequently
used in various fields to comprehend and explain the hidden structure in an ML fit. In ecology
they are employed to determine the causes of ecological phenomena (e.g. Murray and Conner 2009);
in meteorology VImp measures and partial dependence plots are used to examine air quality (e.g.
Grange et al. 2018); in bioinformatics, understanding gene-environment interactions have made these
measures an important tool for genomic analysis (e.g. Chen and Ishwaran 2012).

In Table 1 we summarize VIVI measures and visualizations provided by a selection of R packages.
VIVI measures are categorized as global or local, depending on whether they refer to the entire
predictor space or a specific sub-region. For instance, Individual Conditional Expectation (ICE) curves
(Goldstein et al. 2015) and Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro, Singh,
and Guestrin 2016) are considered local methods (implementations of which can be found in the
ICEbox package (Goldstein et al. 2015) and the lime package (Hvitfeldt, Pedersen, and Benesty 2022)),
whereas partial dependence and permutation importance represent global methods. Packages that
incorporate local or global methods can be found under the column ‘Method’ in Table 1. Additionally,
VIVI measures can be broken down into model specific (embedded) methods or model agnostic
methods. The packages listed in Table 1 are grouped by whether they can compute model specific or
agnostic measures and can be found under the column ‘Measure’. In embedded methods the variable
importance is incorporated into the ML algorithm. For example, random forests (RF) (Breiman
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Table 1: Summary of a selection of R packages that can be used to assess the variable importance,
variable interactions, or partial dependence and if these metrics are global or local and model-specific
or model-agnostic. A brief description of available visualizations for evaluating model behavior is
also provided.

Package Description VIVI Measure Method

vip A general framework for analyzing the
behavior of ML models. Also provides PDP
based importance and ability to plot Shapley
values. Built with ggplot2.

Both Agnostic Global

iml A general framework for analyzing the
behavior of ML models. Ability to create
lollipop, dot, and barplots. Also includes
univariate and bivariate PDPs, ICE curves,
LIME, and Shapley visualizations. Built with
ggplot2.

Both Agnostic Both

flashlight A general framework for analyzing the
behavior of ML models. Ability to plot VIVI
measures using barplots. Includes univariate
and bivariate PDPs, ICE curves, Global
surrogate, and SHAP visualizations. Built
with ggplot2.

Both Agnostic Global

DALEX A general framework for analyzing the
behavior of ML models. Contains a suite of
visualizations including Ceteris Paribus,
Shapley, PDPs, model performance, and
diagnostic plots. Built with ggplot2.

Both Agnostic Both

lime A general framework for fitting a local
interpretable model. Ability to create VImp
and model visualizations using barplots and
heatmaps. Can also create interactive plots.
Built with ggplot2.

VImp Agnostic Local

pdp A general framework for constructing PDPs
from various types machine learning models,
bivariate, and trivariate PDPs and ICE curves.
Built with ggplot2.

VInt Agnostic Global

ICEbox Used to create Individual Conditional
Expectation (ICE) plots. Provides univariate
and bivariate PDPs and ICE curves. Built
with ggplot2.

VInt Agnostic Local

randomForestExplainer Contains a set of model-specific tools to
determine which random forests variables are
most important. Ability to create VIVI plots
displaying the mean minimal depth
distribution and conditional minimal depth.
Can also display multi-way importance, pairs
plots containing different metrics, and
Bivariate PDP. Built with ggplot2.

Both Specific Global

randomForest Used to build random forest models. Offers
VImp, error rate, and univariate PDPs. Built
using base R.

VImp Specific Global

EIX Contains a set of model-specific tools to
determine which GBM variables are most
important. Ability to create VIVI plots using
lollipops, barplots, and heatmaps. Can also
display dot and radar plots. Built with
ggplot2.

Both Specific Global

varImp Computes random forest VImps for the
conditional inference random forest of the
party package.

Vimp Specific Global

bartMachine Used to build Bayesian additive regression
tree models. Ability to plot VIVI measures
with uncertainty included using barplots.
Also includes a suite of model diagnostic
plots and univariate PDP. Built using base R.

Both Specific Global
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2001) and gradient boosting machines (GBM) (Friedman 2000) use the tree structure to evaluate the
performance of the model. Bayesian additive regression tree models (BART) (Chipman, George, and
McCulloch 2010) also use an embedded method to obtain VIVI measures by looking at the proportion
of splitting rules for variables or variable pairs used in the trees. The package randomForestExplainer
(Paluszynska, Biecek, and Jiang 2020) provides a set of tools to understand what is happening inside a
random forest and uses the concept of minimal depth (Ishwaran et al. 2010) to assess both importance
and interaction strength by examining the position of a variable within the trees. Additionally the
varImp (Probst 2020) package can be used to compute importance scores for the conditional inference
random forest of the party package (Strobl et al. 2008). For gradient boosted machines, the EIX
(Maksymiuk, Karbowiak, and Biecek 2021) package can be used to measure and identify VIVI and
visualize the results.

Model-agnostic methods are techniques that can, in principle, be applied to any ML algorithm.
Agnostic methods not only provide flexibility in relation to model selection but are also useful for
comparing different fitted ML models. An example of a model agnostic approach for evaluating
VImps is permutation importance (Breiman 2001). This method calculates the difference in a model’s
predictive performance following a variable’s permutation; implementations are available in the
packages iml, flashlight (Mayer 2023), DALEX and vip (Greenwell and Boehmke 2020). Each package
provides options for specifying the performance metric to use in computing the model performance as
well as providing options to select the number of permutations, with flashlight and DALEX packages
additionally providing an option to select the number of observations that should be sampled for
the calculation of variable importance. The vip package also provides a PDP/ICE-based variable
importance method, which quantifies the variability in PDP and ICE plots. For VInts, Friedman’s
H-statistic (Friedman and Popescu 2008) is an agnostic interaction measure derived from the partial
dependence by comparing a pair of variables’ joint effects with the sum of their marginal effects.
Packages iml and flashlight provide implementations.

Partial dependence plots (PDPs) were first introduced by Friedman (2000) as a model agnostic
way to visualize the relationship between a specified predictor variable and the fit, averaging over
other predictors’ effects. Similar to PDPs, individual conditional expectation curves (ICE) (Goldstein
et al. 2015) show the relationship between a specified predictor and the fit, fixing the levels of other
predictors at those of a particular observation. PDP curves are then the average of the ICE curves
over all observations in the dataset. R packages offering PDPs include iml, DALEX (which calls the
ingredients package (Biecek and Baniecki 2023)), flashlight, and pdp (Greenwell 2017); the package
ICEbox (Goldstein et al. 2015) provides ICE curves and variations. Each package provides options for
selecting the size of the grid for evaluating the predictions, with flashlight and DALEX providing
options to select the number of observations to consider in calculating the partial dependence.

In vivid we provide a suite of functions (see Table 2) for calculating and visualizing variable
importance, interactions and the partial dependence. Our displays conveniently show (either model
specific and agnostic) VImp and VInt jointly using heatmaps and network graphs. Through the use
of seriation techniques, we group together variables with the greatest impact on the response. For
our network plot, additional filtering to remove less influential variables and clustering options to
group highly interacting variables are provided, thus providing a more informative picture identifying
relevant features. Additionally, our implementation makes it possible to apply our methods to subsets
of data, which leads to locally-based importance measures. Our generalized PDP (GPDP) displays
partial dependence plots in a matrix layout combining univariate and bivariate partial dependence
plots with variable scatterplots. This layout, coupled with seriation, allows for quick assessment of
of how pairs of variables have an impact on the model fit. We furthermore provide a more compact
version of the GDPD, the so-called zen-partial dependence plot (ZPDP) consisting only of those
bivariate partial dependence plots with high VInt. All of our displays are designed to quickly identify
how variables, both singly and jointly, affect the fitted response and can be used for regression or
classification fits. As the output of our displays are ggplot2 objects (Wickham 2016), they are easily
customizable and provide the flexibility to create custom VIVI visualizations.

This paper is structured as follows. First we introduce a dataset and fit models that will be used
as examples throughout this paper. Following this, we describe vivid functionality for calculating
VIVI. We then move on to visualizations and focus on the functionality provided by the two functions
viviHeatmap and viviNetwork for displaying VIVI, and two functions for displaying PDPs namely,
pdpPairs and pdpZen. Finally we provide some concluding discussion.

2 Example: Data and Models

The well-known Boston housing data (Harrison Jr and Rubinfeld 1978) from the R package MASS
(Venables and Ripley 2002) concerns prices of 506 houses and 14 predictor variables including property
attributes such as number of rooms and social attributes including crime rate and pollution levels. The
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Table 2: Summary of functions available in the vivid package. The main construction function is vivi
which is used to calculate the VIVI values for subsequent use in the visualizations.

Function Description Type

vivi Create a VIVI matrix of class vivid VIVI construction
viviReorder Reorders a square matrix so high VIVI values

are pushed to the top left of the matrix
VIVI construction

viviHeatmap Heatmap plot of VIVI values Visualization
viviNetwork Network plot of VIVI values Visualization
pdpVars Univariate partial dependence plot with ICE

curves displayed as a grid
Visualization

pdpPairs Pairs plot showing bivariate PDP,
ICE/univariate PDP, and data

Visualization

pdpZen A zigzag expanded navigation plot (zenplot)
displaying partial dependence values

Visualization

CVpredictfun Predict function Utility
zPath Constructs a zenpath for connecting and

displaying pairs to be used with pdpZen
Utility

as.data.frame.vivid Takes a matrix of class vivid and turns it into
a data frame

Utility

vip2vivid Takes measured importance and interactions
from the vip package and turns them into
vivid matrix which can be used for plotting

Utility

response is the median value of owner-occupied homes in $1000s (medv).

We first fit a random forest (using the randomForest package). In order to access all the available
embedded variable importance scores, the importance argument must be TRUE when calling the
randomForest function. This allows any of the provided importance metrics to be used in vivid.
However, in our following examples, we use an agnostic VImp measure supplied by the vivid
package, which allows us to directly compare VImp values across different fits.

library("randomForest")
library("MASS")
set.seed(1701)
data("Boston")

rf <- randomForest(medv ~., data = Boston)

Next we fit a gradient boosted machine (using the xgboost package). For the GBM we set the
maximum number of boosting iterations, nrounds, to 100 as no default is provided in xgboost.

library("xgboost")
gbst <- xgboost(data = as.matrix(Boston[,1:13]),

label = as.matrix(Boston[,14]),
nrounds = 100,
verbose = 0)

In the following sections we will explain how aspects of the two fits can be compared with vivid
software. We will also explain aspects of our software design with reference to these fits.

3 Calculating VIVI

The first step in using vivid is to calculate variable importance and interactions for a model fit. The vivi
function calculates both of these, creating a square, symmetric matrix containing variable importance
on the diagonal and variable interactions on the off-diagonal. Required inputs are a fitted ML model,
a data frame on which the model was trained, and the name of the response variable for the fit. The
returned matrix has importance and interaction values for all variables in the supplied data frame,
excluding the response. Our visualizations functions viviHeatmap and viviNetwork are designed
to show the results of a vivi calculation, but will work equally well for any square matrix with
identical row and column names. (Note, the symmetry assumption is not required for viviHeatmap
and viviNetwork uses interaction values from the lower-triangular part of the matrix only.)
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The code snippet below shows the creation of a vivid matrix for the random forest fit. For clarity,
we include all of the vivi function arguments for the random forest fit, though only the first three are
required. Other inputs will be described in the section vivi function additional arguments.

library("vivid")

set.seed(1701)
viviRf <- vivi(fit = rf,

data = Boston,
response = "medv",
reorder = FALSE,
normalized = FALSE,
importanceType = "agnostic",
gridSize = 50,
nmax = 500,
class = 1,
predictFun = NULL,
numPerm = 4)

In the absence of any model-specific importance measure we use an agnostic permutation method
described by Fisher, Rudin, and Dominici (2019) to obtain the variable importance scores. In this
method a model error score (root mean square error) is calculated, then each feature is randomly
permuted and the model error is re-calculated. The difference in performance is considered to be the
variable importance score for that feature. By default the permutation is set to be replicated four times
to account for variability. However, we provide an option to select a desired number of permutations
(via the numPerm argument)).

The vivi function calculates both the importance and interactions using S3 methods. By default,
the agnostic importance and interaction scores in vivid are computed using the generalized predict
function from the condvis2 package (C. Hurley, OConnell, and Domijan 2022). Consequently, vivid
can be used out-of-the-box with any model type that works with condvis2 predict (see CVpredict
from condvis2 for a full list of compatible model types). To allow vivid to run with other model fits, a
custom predict function must be passed to the predictFun argument (as discussed below).

The S3 method used to obtain the importance is called vividImportance. vivid relies on the flash-
light package to calculate agnostic importance via flashlight::light_importance which currently
works for numeric and numeric binary responses only. For model-specific variable importance, we
provide individual methods to access importance scores for some of the most popular model fitting
R packages, namely; ranger (Wright and Ziegler 2017), randomForest, mlr (Bischl et al. 2016), mlr3
(Lang et al. 2019), and parsnip (Kuhn and Vaughan 2022) (however, more could be added via addi-
tional methods). To access any available model-specific variable importance from the aforementioned
packages, the importanceType argument must be set to equal the selected importance metric. For
example, to select the percent increase in mean square error importance score from the randomForest
package, the importanceType argument must be set to equal this measure as it is called within the
randomForest package, that is; importanceType = "%IncMSE". If the importanceType is not set or
is set to equal agnostic, then the agnostic importance is calculated. It should be noted that when
comparing different model fits, using model-specific variable importance will result in importance
measures that are not directly comparable (however, comparing model specific scores could be useful
when comparing the same fitting procedure evaluated using different parameters). In the case that a
practitioner may wish to use our visualizations to compare different model fits, we recommend using
the agnostic permutation approach supplied by vivid to make a direct comparison of the importance
measures.

For variable interactions, we use the model-agnostic Friedman’s H-statistic to identify any pairwise
interactions. As discussed in Inglis, Parnell, and Hurley (2022a), we recommend the unnormalized
version of the H-statistic which prevents detection of spurious interactions which can occur when
the bivariate partial dependence function (used in the construction of the H-statistic) is flat. In the
case of a binary response classification model, we follow Hastie, Tibshirani, and Friedman (2009) and
compute the H-statistic and partial dependence on the logit scale.

The vivi function calculates interactions using an S3 method called vividInteraction, which
again relies on the flashlight package to calculate Friedman’s H-statistic via flashlight::light_interaction.
Friedman’s H-statistic is the only interaction measure currently available in vivid, though the method
of Greenwell, Boehmke, and McCarthy (2018) could also be used for this purpose. Embedded interac-
tion measures could easily be incorporated via S3 methods in future.

flashlight simplifies the calculation of VIVI values as it allows a custom predict function to
be supplied for the calculation of agnostic importance and the H-statistic; this flexibility means

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=vivid
https://CRAN.R-project.org/package=condvis2
https://CRAN.R-project.org/package=vivid
https://CRAN.R-project.org/package=condvis2
https://CRAN.R-project.org/package=condvis2
https://CRAN.R-project.org/package=vivid
https://CRAN.R-project.org/package=flashlight
https://CRAN.R-project.org/package=flashlight
https://CRAN.R-project.org/package=ranger
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=mlr
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=parsnip
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=vivid
https://CRAN.R-project.org/package=flashlight
https://CRAN.R-project.org/package=vivid
https://CRAN.R-project.org/package=flashlight


CONTRIBUTED RESEARCH ARTICLE 349

importance and the H-statistic can be calculated for any ML model. Note that as flashlight im-
portance and interaction functions act in a model agnostic way, they will give a VIVI of zero for
variables in the dataset (except the response) that are not used by the supplied ML fit. We supply
an internal custom predict function called CVpredictfun to both flashlight::light_importance and
flashlight::light_interaction. CVpredictfun is a wrapper around CVpredict from the condvis2
package, which adds an option for the classification to select (via the class argument to vivi) the class
to be used for prediction and calculates predictions on the logit scale by default. CVpredict accepts a
broad range of fit classes thus streamlining the process of calculating VIVI.

In situations where the fit class is not handled by CVpredict (as is the case for the GBM model
created from xgboost), supplying a custom predict function to the vivi function by way of the
predictFun argument allows the agnostic VIVI values to be calculated. In the code snippet below, we
build the vivid matrix for the GBM fit using a custom predict function, which must be of the form
given in the code snippet. For brevity we omit some of the optional vivi function arguments. By
default, the agnostic variable importance is used to allow for a direct comparison of the importance
measures for both model fits.

# predict function for GBM
pFun <- function(fit, data, ...) predict(fit, as.matrix(data[,1:13]))

set.seed(1701)
viviGBst <- vivi(fit = gbst,

data = Boston,
response = "medv",
reorder = FALSE,
normalized = FALSE,
predictFun = pFun)

3.1 vivi function additional arguments

The vivi function has 11 arguments. Some of these have been discussed above, including fit, data,
response, importanceType, and predictFun. Here we provide a summary of the remaining arguments.
First, the normalized argument determines if Friedman’s H-statistic should be normalized or not (see
Inglis, Parnell, and Hurley (2022a), for the pros and cons of each version). The arguments gridSize
and nmax are used to set the size of the grid for evaluating the predictions and maximum number
of data rows to consider, respectively, in the calculation of the H-statistic. Lowering the grid size
can provide a significant speed boost, though at the expense of predictive accuracy. Additionally,
sampling the data via nmax offers a speed boost. The default values for gridSize and nmax are 50 and
500, respectively.

3.2 Speed tests

A drawback of using Friedman’s H-statistic as a measure of interaction is that it is a computationally
expensive calculation, and may be especially time-consuming for models where prediction is slow.
Figure 1 shows the build time (rounded to the nearest second) averaged over five runs for the creation
of a vivid matrix with default parameters for different ML algorithms using the Boston Housing
data. As the Boston housing data has 13 predictor variables, Friedman’s H-statistic is computed for
91 predictor pairs. The ML algorithms are: GBM, random forest, support vector machine (SVM),
neural network (NN), and k-nearest neighbors (KNN). The SVM, NN, and KNN were built using the
e1071 (Meyer et al. 2021), nnet (Venables and Ripley 2002), and kknn (Schliep and Hechenbichler
2016) packages, with the KNN being built through the mlr3 (Lang et al. 2019) framework. Each of the
models were built using their default settings and, for each model fit, the agnostic VIVI was measured.
The speed tests were performed on both a 2017 Mac-book Pro 2.3 GHz Dual-Core Intel Core i5 with
8GB of RAM and a 2021 32GB Mac-book M1 Pro. Here we are essentially comparing predict times for
the various fits. The NN fit created using the nnet package was the fastest, followed by GBM. Both
random forests are the slowest, and surprisingly, the older Mac beats its higher spec cousin for the
randomForest fit.

3.3 Alternative construction of a vivid matrix

A vivid matrix may also be obtained from variable importance and interaction values calculated
elsewhere. The package vip offers these, and evaluates interactions using a method called the feature
importance ranking measure (FIRM, see Greenwell, Boehmke, and McCarthy (2018), for more details).
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Figure 1: Mean time over five runs, on two MacBooks, for the creation of a vivid matrix for different
models. Times are highly dependent on the model fit, with NN the fastest and random forests the
slowest.

The vip2vivid function we provide in vivid takes VIVI values created in vip and turns them into a
vivid matrix, that can be subsequently used with our plotting tools. For example, in the code below,
model-specific VImp and FIRM VInt scores are calculated for the random forest fit, and subsequently
arranged into a vivid matrix with the VImps on the diagonal and VInts on the off-diagonal.

library("vip")
# get model specific VImps using vip package
vipVImp <- vi(rf, method = 'model')
# get VInts using vip package
vipVInt <- vint(rf, feature_names = names(Boston[-14]))

# turn into vivi-matrix
vipViviMat <- vip2vivid(importance = vipVImp, interaction = vipVInt)

4 Heatmap of Variable Importance and Variable Interactions

The viviHeatmap function constructs a heatmap displaying both importance and interactions, with
importance on the diagonal and interactions on the off-diagonals. A vivid matrix is the only required
input, which does not necessarily need to be symmetric (for example, the interaction measures from
the randomForestExplainer package are asymmetric and could be visualized using our heatmap.
Color palettes for the importance and interactions are optionally provided via impPal and intPal
arguments. For the default color palette we choose single-hue, color-blind friendly sequential color
palettes from Zeileis et al. (2020), where low and high VIVI values are represented by low and high
luminance color values respectively, aiding in highlighting values of interest.

The ordering of the heatmap is taken from the ordering of the input matrix. As reorder was set to
FALSE when building both the random forest and GBM fit vivid matrix, the ordering of the heatmaps
matches the variable order in the dataset. This is useful for directly comparing multiple heatmaps,
however it does not necessarily lend itself for easy identification of the largest VIVI values. If we were
to seriate both vivi matrices separately, we would end up with different optimal orderings for each
matrix. An alternative is to create a common ordering by averaging over the two vivid matrix objects
and applying the vividReorder function to the result. (This function uses a seriation algorithm based
on the techniques of Earle and Hurley (2015) designed to place high interaction variables adjacently
and to pull high VIVI variables towards the top-left; see Inglis, Parnell, and Hurley (2022a) for details.)
Both VIVI matrices are then re-ordered using the newly obtained variable order.

# average over matrices and seriate to get common ordering
viviAvg <- (viviRf + viviGBst) / 2
viviAvgReorder <- vividReorder(viviAvg)

# reorder vivi-matrices
ord <- colnames(viviAvgReorder)
viviRf <- viviRf[ord,ord]
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Figure 2: Agnostic variable importance and variable interaction scores for a random forest fit in (a)
and GBM fit in (b) on the Boston housing data displayed as a heatmap. The random forest fit has
weaker interactions and lower importance scores than the GBM fit. Both fits identify lstat as the most
important followed by rm. In both fits, lstat has numerous interactions with other variables, notably
crim in the random forest fit and nox in the GBM fit.

viviGBst <- viviGBst[ord,ord]

Arguments impLims and intLims specify the range of importance and interaction values to be
mapped to colors. Default values are calculated from the maximum and minimum VIVI values in the
vivid matrix. Importance and interaction values falling outside the supplied limits are squished to the
closest limit. It can be useful to specify these limits in the situation where there is an extremely large
VIVI value that dominates the display, or where we wish two or more plots to have the same limits for
comparison purposes, as in the example below. The angle argument is used to rotate the x-axis labels.

Figure 2 shows our improved ordering so that variables with high VIVI values are pushed to the
top left of the plots. Filtering can also be applied to the input matrix to display a subset of variables.
When compared to the GBM fit in (b), the random forest fit in (a) has weaker interactions and lower
importance scores. Both plots identify lstat as being the most important. Both fits also show that lstat
(the percentage of lower status of the population) interacts with several other variables, though the
interactions are much stronger for the GBM. Notably, the strongest interaction in both fits are different.
These are lstat : crim (where crim is the per capita crime rate by town) for the random forest fit and
lstat : nox (where nox is parts per 10 million nitrogen oxides concentration) for the GBM fit.

viviHeatmap(viviRf, angle = 45, intLims = c(0,1), impLims = c(0,8))
viviHeatmap(viviGBst, angle = 45, intLims = c(0,1), impLims = c(0,8))

5 Network of Variable Importance and Variable Interactions

The viviNetwork function constructs a network graph displaying both importance and interactions.
Similarly to viviHeatmap , this function takes a vivid matrix as the only required input and provides
a visual representation of the magnitude of the importance and interaction values through the size
of the nodes and edges in the graph, in addition to color. In the plot each variable is represented as
a node, with its importance being represented through size and color such that larger, darker nodes
indicate a higher importance. Each pairwise interaction is represented by a connecting edge, where
larger interaction values get thicker, darker edges; Figure 3 provides an example. This type of plot
enables the user to quickly identify the magnitude of the importance and interactions of the variables
that have the most impact on the response. The viviNetwork function optional arguments follows the
same conventions as viviHeatmap: custom color palettes for importance and interactions are provided
via the impPal and intPal, and the range of VIVI values to be mapped to the colors are specified via
the impLims and intLims.

By default, we choose a circular layout to display the graphs, as when coupled with the seriated
vivid matrix, variables with high VIVI are grouped in a clock-wise arrangement starting at the top.
This arrangement allows for easy identification of variables with high VIVI. Custom layouts are
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possible by providing a numeric matrix with two columns and one row per node to the layout
argument. Additionally, any of the layouts available in the igraph package (Csardi and Nepusz 2006)
can be specified. The subject of network graph layouts has been extensively studied (for examples
see Purchase (1997), Herman, Melançon, and Marshall (2000), Freeman (2000)). It has been shown
that certain layouts of network graphs can significantly aid in cognitive interpretation. For example,
Purchase (1997) note that reducing the number of edge crossovers is by far the most important
aesthetic (even for small amounts of data), while maximizing symmetry has a lesser effect. Several
of the layouts provided by the igraph package can aid interpretation (such as the Sugiyama layout
algorithm (Sugiyama, Tagawa, and Toda 1981), which tries to minimize edge crossover.)

We provide options to filter the graph via the intThreshold and removeNode arguments. This
helps to highlight variables with high VIVI scores, which is useful in settings with many predictors.
The intThreshold argument filters edges with weight (i.e., VInt value) below a specified value and
removeNode removes nodes with no connecting edges after thresholding interaction values. We can
optionally cluster similar variables together with respect to their VIVI scores via the cluster argument,
thereby aiding in the process of highlighting variables of interest. The cluster argument can take
either a vector of cluster memberships for nodes or an appropriate igraph clustering function.

We demonstrate network plots displaying VIVI values for the GBM fit. In Figure 3, we show both
a default network plot including all variables in (a) and a filtered and clustered network plot in (b). For
the filtered plot we select VIVI values in the top decile. This selection allows us to focus only on the
variables with the most impact on the response. The variables that remain are lstat, nox, rm, crim, dis
(weighted mean of distances to five Boston employment centers), tax (full-value property-tax rate per
$10,000), and ptratio (pupil-teacher ratio by town). We then perform a hierarchical clustering treating
variable interactions as similarities, with the goal of grouping together high-interaction variables.
Here we manually select the number of groups we want to show via the cutree function (which cuts
clustered data into a desired number of groups). Finally we rearrange the layout using igraph. Here,
igraph::layout_as_star places the first variable (deemed most relevant using the VIVI seriation
process above) at the center, which in Figure 3 (b) emphasizes its key role as the most important
predictor which also has the strongest interactions.

# default network plot for GBM
viviNetwork(viviGBst)

# clustered and filtered network for GBM
intVals <- viviGBst
diag(intVals) <- NA

# select VIVI values in top 10%
impTresh <- quantile(diag(viviGBst),.9)
intThresh <- quantile(intVals,.9,na.rm=TRUE)
sv <- which(diag(viviGBst) > impTresh |

apply(intVals, 1, max, na.rm=TRUE) > intThresh)

h <- hclust(-as.dist(viviGBst[sv,sv]), method = "single")

viviNetwork(viviGBst[sv,sv],
intLims = c(0,1),
impLims = c(0,8),
cluster = cutree(h, k = 3), # specify number of groups
layout = igraph::layout_as_star)

In Figure 3(a), when displaying all the variables, we can clearly identify which variables have
the highest VIVI values. The large darker nodes of lstat and rm indicate their importance and the
dark, thick connecting edge between lstat and nox tell us that these two variables strongly interact. In
(b), after applying a hierarchical clustering, we can see the strongest mutual interactions have been
grouped together for the GBM fit. Namely, lstat, nox, crim, rm, and dis are all grouped together. The
remaining variables are individually clustered.

We provide a conversion of vivid matrix objects to a data frame via an as.data.frame method,
as demonstrated below. This facilitates plotting with base R and ggplot2, for example a barplot of
either VImp or VInt values. Note that while vivi returns a matrix of class vivid, the class attribute
was dropped when the matrix was re-ordered.

class(viviRf)<- c("vivid", class(viviRf))
head(as.data.frame(viviRf), 4)
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Figure 3: Network plots showing VIVI scores obtained from a GBM fit on the Boston housing data. In
(a) we display the all values in a circle. In (b) we use a hierarchical clustering to group variable with
high VIVI together and rearrange the layout using an igraph function.
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Figure 4: Partial dependence plots (black line) with individual conditional expectation curves (colored
lines) of a GBM fit on the Boston housing data. The changing partial dependence and ICE curves of
lstat and rm indicate that these variables have some impact on the response.

#> Variable_1 Variable_2 Value Measure Row Col
#> 1 lstat lstat 4.80970237 Vimp 1 1
#> 2 nox lstat 0.06387693 Vint 2 1
#> 3 rm lstat 0.15226649 Vint 3 1
#> 4 crim lstat 0.44728494 Vint 4 1

6 Partial Dependence and Individual Conditional Expectation Curves

6.1 Univariate Partial Dependence Plot

The pdpVars function constructs a grid of univariate PDPs with ICE curves for selected variables. We
use ICE curves to assist in the identification of linear or non-linear effects. The fit, data frame used to
train the model, and the name of the response variable are required inputs. In the code below, we show
an example of the partial dependence and ICE curves for the first five features from the GBM vivid
matrix, with output shown in Figure 4. We use the custom GBM predict function given previously.

top5 <- colnames(viviGBst)[1:5]
pdpVars(data = Boston,

fit = gbst,
response = "medv",
vars = top5,
predictFun = pFun)

All of our PDP variants handle categorical responses and predictors. The color palette is cus-
tomized via the pal argument. In all of our PDPs, this defaults to a diverging palette which accentuates
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fitted values that differ from the average. Dark red and dark blue are used to indicate high and low
values of ŷ respectively. The middle values are displayed in yellow. The nIce argument specifies
the number of ICE curves to be drawn. This is either a single number specifying the number of
observations to be sampled for the ICE curves, or a vector of row indices, an option that is useful for
example to display ICE curves from particular classes. The default value for nIce is 30, which allows
individual curves to be seen.

The ordering of the PDPs is taken from the ordering of variables in the data set, or may be specified
via the vars argument. In Figure 4, the ordering is taken directly from our seriated vivid matrix,
thereby showing the top five most influential variables. As with the construction of the vivid matrix,
the gridSize and nmax arguments determine the number of predictions.

In Figure 4 we can see from the changing PDP and ICE curves that lstat and rm have the clearest
impact on the response, with the predicted median house price being higher for low values of lstat
and high values of rm. Additionally, the predicted median house price appears to be higher for low
values of dis before leveling off at around 2.5. The remaining variables have generally flat partial
dependence and ICE curves.

6.2 Generalized Pairs Partial Dependence Plot

The pdpPairs function creates a generalized pairs partial dependence plot (GPDP). In our GPDP, we
use a matrix layout and plot the univariate partial dependence (with ICE curves) on the diagonal,
bivariate partial dependence on the upper diagonal and a scatterplot of raw variable values on the
lower diagonal, where all colors are assigned to points and ICE curves by the predicted ŷ value.
In the case of categorical predictors, the partial dependence for each factor level is shown in the
upper-diagonal (for an example of this, see Inglis, Parnell, and Hurley (2022a)). As with the univariate
PDP, the fit, data frame used to train the model, and the name of the response variable are required
inputs.

set.seed(1701)
pdpPairs(data = Boston,

fit = gbst,
response = "medv",
gridSize = 20,
nIce = 50,
vars = top5,
convexHull = TRUE,
fitlims = "pdp",
predictFun = pFun)

As with the univariate PDP, the ordering can be controlled via the var argument. By default,
the ordering is taken from the order of the data. In the code above, we display only the interesting
variables seen in previous plots by selecting the first five variables from our seriated vivid matrix. We
also chose to display 50 ICE curves. As with pdpVars, additional arguments specify the color palette
and number of ice curves, while gridSize and nmax determine the number of predictions.

For our GPDP, we follow the general design choices in vivid and specify the range of predicted
values to be mapped to the colors via the fitlims argument. We set the default fit range for the color
map for the GPDP to the range of the collection of PDP surfaces with fitlims = "pdp". The setting
of this argument at its default value allows for maximum resolution of the bivariate PDPs. Since
predictions for specific observations and ICE curves would likely exceed these bounds, the closest
value within the color map’s bounds is used to allocate colors. Alternatively fitlims = 'all" specifies
that limits are calculated as the full range of predictions shown.

In the upper diagonals we exclude extrapolated areas from the bivariate PDPs to prevent interpre-
tation of the PDPs in areas where there is no data. The removal of extrapolated areas can be prevented
by specifying convexHull = FALSE.

In Figure 5, in addition to the univariate PDPs, we capture the effects of the variables on the
response via the bivariate PDP on the upper-diagonal and the distribution of the data in the lower-
diagonal. The scatterplots are useful for determining if variables are highly correlated, as highly
correlated variables may spuriously affect the partial dependence and give erroneous results (Apley
and Zhu 2020). Of note are the variables lstat and rm. We can clearly see that when the number of
rooms (rm) is high and the percentage of lower status of the population (lstat) is low, the predicted ŷ
median house price value is high. This is exemplified in the changing bivariate PDP.
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Figure 5: Filtered generalized pairs partial dependence plot for a GBM fit on the Boston housing
data. From both the univariate and bivariate PDPs, we can see that lstat and rm have an impact on
the response. As lstat decreases and rm increases, predicted median house price value goes up. The
bivariate PDP of lstat : nox shows that as nox increases, the predicted value decreases.

7 Zen Partial Dependence Plots

The pdpZen function creates partial dependence plots utilizing a space-saving method based on graph
Eulerians (Hierholzer and Wiener 1873). An Eulerian path, also known as an Eulerian trail, is a route
that traverses each edge of a graph exactly once. When this path forms a closed loop, the traversal is
referred to as an Eulerian tour. We call this display zen-partial dependence plots (ZPDP). The display is
based on the zigzag expanded navigation plots, known as zenplots , available in the zenplots package
(Hofert and Oldford 2020). Zenplots were created to display paired graphs of high-dimensional data
focusing on the most important 2D displays. In our adaptation we show bivariate PDPs that focus on
the variables with the largest interaction values in a compact zigzag layout, which is helpful when
predictor space is high-dimensional.

The code below illustrates pdpZen, here displaying the first five variables from GBM’s vivid matrix.
Later we show an example focusing on high-interacting pairs of variables. We use the same convention
as our previous PDPs with regard to color palette and limits, grid size, and the number of rows
considered for evaluation. The ZPDP also has a variable rug plot on each axis to avoid interpretation
problems that may occur in the presence of skewness.

pdpZen(data = Boston,
fit = gbst,
response = "medv",
convexHull = TRUE,
zpath = top5,
predictFun = pFun)

The argument zpath specifies the variables to be plotted, defaulting to all dataset variables aside
from the response. In the code above, zpath is the vector lstat, nox, rm, crim and dis. The resulting
plot shown in Figure 6 presents the bivariate PDP for every consecutive pair of variables in a zigzag
layout.

7.1 Zen-paths

ZPDP are most useful when the bivariate PDPs plotted are selected to be an interesting subset of all
pairwise plots. To obtain this subset, we consider a network graph displaying VIVI values, such as
that in Figure 3 (a). We then filter the edges below a selected interaction value, leaving only highly
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Figure 6: Zen partial dependence plot for the GBM fit on the Boston data. Here we display first five
variables from the GBM’s ‘vivid‘ matrix. Only plots for consecutive variables are shown.

interacting variable pairs, as in Figure 3(b). Our goal is to then build a ZPDP consisting of the bivariate
plots represented by each edge of the thresholded graph. The zPath function creates a sequence or
sequences of variable paths for use in pdpZen.

The zPath function takes four arguments. These are: viv - a matrix of interaction values, cutoff -
exclude interaction values below this threshold, method - a string indicating which method to use to
create the path, and connect - a logical value indicating if separate Eulerians should be connected

Two methods are provided, either "greedy.weighted" or "strictly.weighted". The first option
uses the greedy Eulerian path algorithm (C. B. Hurley and Oldford 2011, 2022) for connected graphs.
This visits each edge at least once, beginning at the edge with the highest weight and traversing
through the remaining edges, giving priority to the highest-weighted edge. Some edges may be visited
more than once or additional edges may be visited if the number of nodes in the graph is not even.
The second method "strictly.weighted" (provided by zenplot) visits edges strictly in decreasing
order by weight (here the interaction values). If connect is TRUE the sequences obtained by the strictly
weighted method are concatenated to form a single path.

In the code below, we provide two examples of creating zen-paths, from the top 10% of interaction
scores in viviGBst.

intThresh <- quantile(intVals, .9, na.rm=TRUE)
# set zpaths with different parameters
zpGw <- zPath(viv = viviGBst, cutoff = intThresh, method = "greedy.weighted")
zpGw

#> [1] "nox" "lstat" "dis" "ptratio" "lstat" "rm" "crim"
#> [8] "lstat" "tax" "rm" "nox"

zpSw <- zPath(viv = viviGBst, cutoff = intThresh, connect = FALSE, method = "strictly.weighted")
zpSw

#> [[1]]
#> [1] "nox" "lstat" "dis"
#>
#> [[2]]
#> [1] "lstat" "rm" "nox"
#>
#> [[3]]
#> [1] "lstat" "crim" "rm"
#>
#> [[4]]
#> [1] "ptratio" "lstat" "tax"

Our first created zen-path object, zpGw, uses the greedy.weighted method and visits each edge
exactly once. The second zen-path, zpSw, uses the strictly.weighted method with connect = FALSE.
zpSw consists of four unconnected paths. The zenplots for two of these paths are constructed below.

pdpZen(data = Boston,
fit = gbst,
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Figure 7: ZPDP for a GBM fit on the Boston data. In (a) the zpath is defined by the ‘greedy.weighted‘
sorting method. In (b), the sorting method is defined by the ‘strictly.weighted‘ method and is un-
connected. For low values of lstat and and high values of rm, predicted median house price value
increases.

response = "medv",
zpath = zpGw,
convexHull = TRUE,
predictFun = pFun)

pdpZen(data = Boston,
fit = gbst,
response = "medv",
zpath = zpSw,
convexHull = TRUE,
predictFun = pFun)

Note that there are 7 different variables involved in high interactions, which could be displayed in
a 7 × 7 GPDP, showing a total of 21 bivariate PDPs. But only 8 of these have VInt values above the 90%
quantile, and Figure 7(b) using the strictly.weighted path shows just these bivariate PDPs’ compact
layout. Using the greedy.weighted sorting method in (a) produces a smaller, neater plot but at the
expense of including some plots that are not particularly interesting (for example the pair dis : ptratio).
However, it should be noted that any of the arguments from the zenplot function from the zenplots
package can be used with the pdpZen function. These include multiple options for different or custom
layouts.
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8 Summary

We have presented a detailed exposition of our R package vivid which contains a suite of integrated
functions implementing algorithms and novel visualizations for exploring variable importance and
variable interactions in machine learning models. Our techniques are intuitive, adaptable, easy to
customize and facilitate model comparison. When building the vivid matrix to use in our heatmap
and network visualizations, VIVI metrics that are model specific or model-agnostic may be employed.
For measuring interactions we currently only provide the option to use the agnostic Friedman’s
H-statistic. However, as outlined in the Calculating VIVI section, the inclusion of different VIVI
measures is easily possible.

Our vivid package is a useful addition to the other packages in the area of model visualization,
such as those discussed in the Introduction section. Our heatmap and network plots efficiently
determine which variables have the greatest impact on the response. When coupled with the seriation,
filtering, and clustering techniques, these visualizations enhance the interpretation of ML predictions.
Our GPDP and ZPDP can be used to provide a thorough examination of the behavior of a fitted
ML model by examining the individual variable effects and their pairwise interactions. These plots
combine the bivariate PDP, ICE curves, and scatterplots of the raw variable values. They further allow
focusing on subsets of variables with high VInt, and so allow us to efficiently explore a fitted ML
model by focusing attention to only the most crucial aspects.

It has been noted that the presence of correlated variables can lead to biased VIVI measures. For
example, Friedman and Popescu (2008) note that when subsets of variables are highly correlated,
it becomes difficult to distinguish between low and higher order interactions among them in a
straightforward manner when using the H-statistic. Similarly, Fisher, Rudin, and Dominici (2019) state
that for permutation variable importance, the presence of highly correlated variables can affect the
measured variable importance and propose using a method of conditional importance, such as that
implemented for conditional random forests in the party package. Our GPDP can be used to identify
any evident correlations by observing the plot of the data and the PDP with convex hull. However,
careful consideration should be employed when interpreting the VIVI measures from vivid and we
recommend evaluating any potential correlation between variables in conjunction with our proposed
visualizations. Several R packages are available for assessing and visualising correlations, such as
corrplot (Wei and Simko 2021) and corrgrapher (Morgen and Biecek 2020).

For future work, the inclusion of other model summaries could be incorporated into vivid, such
as the interaction statistics described in Greenwell, Boehmke, and McCarthy (2018) or the use of
accumulated local effects (ALE) of Apley and Zhu (2020). This latter method was created to address
bias problems with partial dependency functions and could be used in place of the bivariate PDPs
seen in both the GPDP and ZPDP. However the calculation of an agnostic, easily interpretable variable
interaction measure that accounts for correlated variables remains an ongoing research goal. Allowing
a user to view the variation across replicates when performing permutation importance could also be
incorporated. This could be added into the heatmap graphic by way of a value suppressing uncertainty
palette (Correll, Moritz, and Heer 2018), where the uncertainty in included in the visualization (for
example, see Inglis, Parnell, and Hurley (2022b)). Additionally, providing alternative metrics such as
AUC or accuracy for computation of permutation importance in classification, as well as computations
and visualizations of higher order interactions, interactive graphics and incorporating multivariate
response variables are interesting areas for future research.
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