The

Journal

Volume 14 /4, December 2022

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorialo 4

Contributed Research Articles

knitrdata: A Tool for Creating Standalone Rmarkdown Source Documents. 6
netgwas: An R Package for Network-Based Genome Wide Association Studies. . . . 18
robslopes: Efficient Computation of the (Repeated) Median Slope 38
Generalized Mosaic Plots in the ggplot2 Framework 50
A Study in Reproducibility: The Congruent Matching Cells Algorithm and cmcR

Package. oo oo Lo 79
Bootstrapping Clustered Data in R using Imeresampler 103
DGLMEXxtPois: Advances in Dealing with Over and Under-dispersion in a Double

GLM Framework.o oL 121
Making Provenance Work forYou 141
remap: Regionalized Models with Spatially Smooth Predictions 160
HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer . 179
OTrecod: An R Package for Data Fusion using Optimal Transportation Theory195
populR: a Package for Population DownscalinginR 223
dycdtools: an R Package for Assisting Calibration and Visualising Outputs of an

Aquatic Ecosystem Model 0000000 235
SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis . . 252
Limitations in Detecting Multicollinearity due to Scaling Issues in the mcvis Package . 264
ppseq: An R Package for Sequential Predictive Probability Monitoring 280
pCODE: Estimating Parameters of ODEModels 291
TreeSearch: Morphological Phylogenetic AnalysisinR 305
The openVA Toolkit for Verbal Autopsies 316
BayesPPD: An R Package for Bayesian Sample Size Determination Using the Power

and Normalized Power Prior for Generalized Linear Models. 335

News and Notes

Bioconductor Notes 352

Changeson CRAN 356

News from the Forwards Taskforce. .. 358
ChangesinR 361
R Foundation News 365

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications
regarding this publication should be addressed to the
editors. All articles are licensed under the Creative
Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Catherine Hurley, Maynooth University, Ireland

Executive editors:

R Journal Homepage:
http://journal.r-project.org/

Email of editors and editorial board:
r-journal@R-project.org

The R Journal is indexed /abstracted by EBSCO, DOA]J,
Thomson Reuters.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
http://journal.r-project.org/

CONTRIBUTED RESEARCH ARTICLE

Editorial

by Catherine Hurley

On behalf of the editorial board, I am pleased to present Volume 14 Issue 4 of the R Journal.
In response to our increased number of publications (now about 80 per year), this is the first
year the R Journal moved to four issues. In addition, over the last year our software support-
ing the publication process has substantially improved. As a result of these developments,
accepted articles are now published in a more timely fashion.

We have also added some R Journal reporting summaries to our webpage, and will
expand on this in future. For published articles, the time from first submission to accept
averages at under a year. Currently, just a very small number of 2021 submissions await
a final decision, and even for 2022 submission, the majority of articles have received an
accept/reject decision.

This is my last issue as Editor-in-Chief. Simon Urbanek takes over as Editor-in-Chief
for 2023, having served as an Executive Editor since 2020. Simon is a huge contributor to
the R community as a long-standing member of the R-core team. During his term, he plans
to build further infrastructure to further streamline the R Journal submission and review
process.

Dianne Cook recently finished her Editorial board term. She has been a hugely positive
influence on the R Journal over the last number of years, and has been the driving force
behind new software for journal operations and article production. Personally, I was very
grateful for the guidance she provided as I took on the daunting role of EIC.

During the last year, Gavin Simpson stepped down from his editorial board role, having
served two years. Beth Atkinson and Earo Wang have completed their terms as Associate
Editors. On behalf of the board, I would like to thank Gavin, Beth and Earo for their hard
work on behalf of the Journal. New additions are Rob Hyndman who has joined the Editorial
board, and Vincent Arel-Bundock who has just joined the Associate Editor team.

The R Journal Editors recently held our first meeting with our Editorial Advisory Board.
The purpose of the board is to assist with continuity across editors and to provide indepen-
dent advice. We thank them for their time and guidance.

Behind the scenes, several people assist with the journal operations. Mitchell O'Hara-
Wild continues to work on infrastructure, H. Sherry Zhang continues to develop the rjtools
package under the direction of Professor Dianne Cook. In addition, articles in this issue
have been carefully copy edited by Hannah Comiskey.

In this issue

News from CRAN, Rcore, Bioconductor, RFoundation and RForwards are included in this
issue.

This issue features 20 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. Supplementary material
with fully reproducible code is available for download from the Journal website. Topics
covered in this issue are

Reproducible Research

* knitrdata: A Tool for Creating Standalone Rmarkdown Documents

* Making Provenance Work for You

¢ A Study in Reproducibility: The Congruent Matching Cells Algorithm and cmcR
package

¢ The openVA Toolkit for Verbal Autopsies

Multivariate Statistics, Visualisation

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=rjtools

CONTRIBUTED RESEARCH ARTICLE

* Bootstrapping Clustered Data in R using Imeresampler
* Generalized Mosaic Plots in the ggplot2 Framework
* robslopes: Efficient Computation of the (Repeated) Median Slope

Econometrics
* DGLMExtPois: Advances in Dealing with Over and Underdispersion in a Double

GLM Framework
¢ Limitations of the R mcvis package

Spatial Analysis

¢ remap: Regionalized Models with Spatially Smooth Predictions
* populR: A Package for Population Down-Scaling in R

Ecological and Environmental analysis

* HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
* dycdtools: an R Package for Assisting Calibration and Visualising Output

Statistical Genetics

* SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis
* netgwas: An R Package for Network-Based Genome Wide Association Studies

Bayesian inference
* BayesPPD: An R Package for Bayesian Sample Size Determination Using the Power

and Normalized Power Prior for Generalized Linear Models
* ppseq: An R Package for Sequential Predictive Probability Monitoring

Other
¢ pCODE: Estimating Parameters of ODE Models

* TreeSearch: Morphological Phylogenetic Analysis
® OTrecod: An R Package for Data Fusion using Optimal Transportation Theory

Catherine Hurley
Maynooth University

https://journal.r-project.org
r-journal@r-project.org

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://journal.r-project.org
mailto:r-journal@r-project.org

CONTRIBUTED RESEARCH ARTICLE

knitrdata: A Tool for Creating Standalone

Rmarkdown Source Documents
by David M. Kaplan

Abstract Though Rmarkdown is a powerful tool for integrating text with code for analyses in a single
source document exportable to a variety of output formats, until now there has been no simple way
to integrate the data behind analyses into Rmarkdown source documents. The knitrdata package
makes it possible for arbitrary text and binary data to be integrated directly into Rmarkdown source
documents via implementation of a new data chunk type. The package includes command-line and
graphical tools that facilitate creating and inserting data chunks into Rmarkdown documents, and the
treatment of data chunks is highly configurable via chunk options. These tools allow one to easily
create fully standalone Rmarkdown source documents integrating data, ancillary formatting files,
analysis code and text in a single file. Used properly, the package can facilitate open distribution of
source documents that demonstrate computational reproducibility of scientific results.

Introduction

The basic principles of open science are that the data, research methodologies and analysis tools (e.g.,
the specific computational tools) used for scientific research should be made publicly available so that
others can confirm and validate scientific analyses. Open science is particularly important for studies
and disciplines for which true experimental replication is often difficult or impossible due to spatial,
temporal or individual specificity [e.g., we cannot replicate Earth; Powers and Hampton (2019)]. In
these cases, computational reproducibility, i.e., the ability to reproduce analytic results given the
original data and analysis code, can still be achieved and can provide significant credibility to results
(Powers and Hampton 2019). Though scientists, governments and journals often place great emphasis
on access to raw data (Cassey and Blackburn 2006; Lowndes et al. 2017), it is important to remember
that computational reproducibility can only be assured if data, methods, computational tools and the
relationships between these are all openly accessible. Even when data are made publicly available,
there are often significant gaps between the Methods section of a publication and the raw data that
complicate reproducibility without access to the detailed code used to generate results. It is, therefore,
essential for computational reproducibility that the code used to generate results be distributed along
with the data and the publication itself. Though there are a number of potential ways to distribute all
these elements together, probably the most common current approach is to place the data in a publicly
accessible data store (e.g., Dryad) and to associate the code with the publication via the supplementary
material and/or by including it in the data store. Though this is a perfectly viable approach that
can greatly enhance transparency of research, it physically separates data from analysis code and
interpretation of results, potentially leading to confusion and/or loss of information regarding how
these different element interrelate. At times, it would be more convenient, transparent and/or effective
to join all the elements into a single document. The R package presented here, knitrdata (Kaplan
2020a), provides tools for doing just that - integrating data directly into Rmarkdown source documents
so that data, code for analyses and text interpreting results are all available in a single file.

Rmarkdown (Allaire, Xie, McPherson, et al. 2022) has become an increasingly popular tool for
generating rich scientific documents while maintaining a source document that makes explicit the
relationship between text and specific analyses used to produce results (Xie 2014; Lowndes et al.
2017). In a nutshell, Rmarkdown source documents are text documents comprised of two major
elements: structured text that make up the headings and paragraphs of the document, and blocks
of code (typically, but not exclusively, R code) for doing analyses and generating figures and tables.
Rmarkdown source documents can be processed into a variety of final output formats, including
PDF documents formatted for scientific publication. During this processing, the blocks of code in the
source document are executed and used to augment the final output document with figures, tables
and analytic results. In addition to providing a single source document that includes both written text
and code for carrying out analyses, Rmarkdown has other benefits for open science, such as requiring
the user to provide fully functioning code that runs from start to end without errors and facilitating
reuse and updating of documents when new data arrives.

Until now, however, it has been difficult to integrate the raw data itself that are the bases for
analyses directly into Rmarkdown source documents. Typically, data are placed in external files that
are accessed via R code contained in the Rmarkdown source document that is executed during the
knitting. As previously mentioned, this has the disadvantage of physically separating data from
analysis code and text contained in the Rmarkdown source document, potentially leading to confusion

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://datadryad.org
https://CRAN.R-project.org/package=knitrdata

CONTRIBUTED RESEARCH ARTICLE

and/or information loss. Furthermore, on a practical level, it often can be extremely convenient to
merge all pertinent information into a single source document (e.g., to facilitate collaboration on an
Rmarkdown source document). knitrdata provides a simple mechanism for integrating arbitrary text
or binary data directly into Rmarkdown source documents, thereby allowing one to create standalone
source documents that include all the elements necessary for conducting analyses. This integration is
done with minimal additional formatting of the data (e.g., allowing one to insert comma-separated
value (CSV) data without escaping quotation marks directly into Rmarkdown documents) and in
a way that clearly visually separates data from R code, thereby facilitating comprehension of the
different elements that contribute to analyses. knitrdata also facilitates encryption of data integrated
into Rmarkdown source documents, thereby allowing one to merge data with analysis code and text
even in cases where industrial or ethical privacy constraints restrict data access to a specific group of
individuals.

Below, I briefly provide a conceptual overview of how knitrdata works, presenting some simple
examples of its use and the tools available to facilitate integrating data into Rmarkdown source
documents. I then discuss typical use cases and workflows for development of Rmarkdown source
documents with knitrdata, as well as a number of potential caveats for its use. I conclude by reflecting
on the value of knitrdata for achieving computational reproducibility and its place within the growing
pantheon of tools that make Rmarkdown an increasingly essential tool for research.

knitrdata installation and usage

The knitrdata package is available on CRAN, though the latest version can be installed from github
using the remotes (Csérdi et al. 2021) package:

remotes::install_github("dmkaplan2000/knitrdata”,
build_vignettes=TRUE)

Once the package has been installed, all that is needed to use the functionality provided by the
package in a Rmarkdown source document is to load the library at the start of the document, typically
in the setup chunk:

library(knitrdata)

Conceptual overview of knitrdata

To understand how knitrdata works and the functionality it provides, one must first understand
some of the terminology and functioning of Rmarkdown itself. As previously mentioned, Rmarkdown
documents are a combination of text written in markdown, a simple, structured text format that can
be translated into a large number of final output formats, and code for doing analyses that can
augment the final output document with analytic results, tables and figures. The code is contained in
specially delimited blocks, referred to as chunks. For example, adding the following to an Rmarkdown
document:

)
plot(-5:5,(-5:5)"2,type="1")

would add a plot of a parabola to the final output document. The process of translating a
Rmarkdown document into a final output document is known as knitting, and this process is carried
out using (often implicitly via RStudio) the knitr package (Xie 2015).

Though code chunks typically contain R code, knitr supports a large number of other language
engines, allowing one to integrate analyses in a number of other computer languages, including C,
Python and SQL. For example, one could use the SQL language engine to import the contents of a
database table into the R environment by including the following chunk in a Rmarkdown source
document:

{sqgl connection="dbcon"”,output.var="d"}
SELECT * FROM "MyTable"”;

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://cran.r-project.org/package=knitrdata
https://github.com/dmkaplan2000/knitrdata
https://CRAN.R-project.org/package=remotes
https://CRAN.R-project.org/package=knitr

CONTRIBUTED RESEARCH ARTICLE

During knitting, this will create in the R environment a variable d containing the contents of the
table MyTable accessible via the (previously created) active R database connection dbcon. Note that
the name of the database connection and the name of the output variable are supplied in the chunk
header via what are known as chunk options. Though this database table could be imported into the R
environment without the SQL language engine using R code:

Ry
d = dbGetQuery(dccon, "SELECT * FROM \"MyTable\";")

the use of the SQL language engine has both practical and conceptual advantages. On the practical
side, it avoids the need to escape quotation marks and allows text editors to recognize and highlight
the code as SQL, both of which becoming increasingly valuable as the length and complexity of SQL
queries increase. On the conceptual side, using the SQL engine visually separates database queries
from R code and text, thereby better communicating the structure and functioning of analyses in
Rmarkdown documents.

The knitrdata package works in many ways analogously to the SQL language engine, adding a
new data language engine to the list of language engines known to knitr that is specifically designed
to import raw “data” into the R environment and/or export it to external files. Here the term “data” is
used in a very wide sense, including not only standard data tables (e.g., CSV text files) or binary data
(e.g., RDS files, NetCDF files, images), but also text and formatted text (e.g., XML files, BibTeX files).
For example, placing the following chunk in a Rmarkdown source document will, during the knitting
process, create in the R environment a data frame d containing the contents of the comma-separated
values (CSV) data in the chunk (provided that the knitrdata package has been previously loaded as
described above):

***{data output.var="d",loader.function=read.csv}
name, score

David M. Kaplan,1.2

The man formerly known as "Prince”,3.4

Peter 0'Toole,5.6

As with the SQL language engine, the name of the output variable for the chunk is supplied with
a chunk option and in this example a loader. function option instructs knitrdata how to translate
the contents of the chunk into a usable R object (in this example the R function read. csv is used to
translate the CSV data into a data frame).

There are of course a number of other ways that such a simple data table could be imported into
the R environment, including via an external data file or directly in R code, one approach to which
might be:

)
d = read.csv(textConnection(

"name, score

David M. Kaplan,1.2

The man formerly known as \"Prince\"”,3.4
Peter 0'Toole,5.6

")

However, using the data language engine has much the same practical and conceptual advantages
as the SQL data language engine, avoiding the need for escaping certain characters and visually
separating data from code, both of which become increasingly valuable as dataset size increases.

Incorporating binary data into Rmarkdown source documents is a bit more complicated as the
data must first be encoded as ASCII text (see the Section below on Binary data chunks for details),
but the basic principles are the same - encoded binary data is incorporated into a data chunk and
chunk options are used to tell knitrdata how to decode the data and load it into the R environment
during knitting (see Table 1 for a full list of data chunk options). There is also the possibility of
saving data chunk contents out to external files using the output. file chunk option. This option is
particularly useful for integrating into Rmarkdown source documents ancillary text files used in the
final formatting of the output of the knitting process, such as BibTeX files with references, LaTeX style
files for PDF output and CSS style files for HTML output. For example, the following chunk would
export a BibTeX reference to a file named refs.bib, taking care not to overwrite an existing file with

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 9

the same name [though note that similar functionality can also be achieved with the cat language
engine; Xie, Dervieux, and Riederer (2020)]:

"~ {data output.file = "refs.bib"”, eval=!file.exists("refs.bib")}

@book{allaireRmarkdownDynamicDocuments2020,
title = {Rmarkdown: {{Dynamic}} Documents for r},
author = {Allaire, JJ and Xie, Yihui and McPherson, Jonathan and Luraschi, Javier and Ushey, Kevin and Atkins, Ar
year = {2020}

As code chunks are processed during knitting before generating the final output document, these
files can be generated at any point during the knitting process using data chunks (in particular, it is
often most practical to place this information at the end of a Rmarkdown document).

Table 1: Full list of knitrdata chunk options.

Chunk option Description

decoding.ops A list with additional arguments for data_decode. Currently only
useful for passing the verify argument to gpg::gpg_decrypt (Ooms
2022) for gpg encrypted chunks.

echo A boolean indicating whether or not to include chunk contents in
Rmarkdown output. Defaults to FALSE.

encoding One of 'asis', 'base64' or 'gpg'. Defaults to 'asis' for
format="'text' and 'base64' for format="'binary"'.

eval A boolean indicating whether or not to process the chunk. Defaults to
TRUE.

external.file A character string with the name of a file whose text contents will be
used as if they were the contents of the data chunk.

format One of 'text' or 'binary'. Defaults to 'text'.

line.sep Only used when encoding="'asis". In this cases, specifies the character

string that will be used to join the lines of the data chunk before export
to an external file, further processing or returning the data. Defaults to
knitrdata::platform.newline().

loader.function A function that will be passed (as the first argument) the name of a file
containing the (potentially decoded) contents of the data chunk.

loader.ops A list of additional arguments to be passed to loader.function.

max . echo An integer specifying the maximum number of lines of data to echo in

the final output document. Defaults to 20. If the data exceeds this
length, only the first 20 lines will be shown and a final line indicating
the number of ommitted lines will be added.

md5sum A character string giving the correct md5sum of the decoded chunk data.
If supplied, the md5sum of the decoded data will be calculated and
compared to the supplied value, returning an error if the two do not

match.

output.file A character string with the filename to which the chunk output will be
written. At least one of output.var or output.file must always be
supplied.

output.var A character string with the variable name to which the chunk output
will be assigned. At least one of output.var or output. file must
always be supplied.

Using data chunks, just about any data or information that would typically be stored in external
files can be integrated directly into Rmarkdown source documents. In particular, this permits creating
standalone Rmarkdown source documents that can be knitted without need for external data files,
thereby uniting text, code and data in a single source document.

Note that this is different from the self_contained YAML header option permitted by some
Rmarkdown output formats, notably HTML output formats. This option attempts to create a single
output file that contains everything needed to visualize the final output document (e.g., in the case
of HTML documents, the output HTML file will contain any CSS styles, javascript libraries and /or
images used by the document), but it says nothing about whether or not external files are needed to

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=gpg

CONTRIBUTED RESEARCH ARTICLE

10

knit the Rmarkdown source document (i.e., it is relevant to the output side of knitting, not the input
side). In fact, a source document can be standalone in that all data and formatting files needed for
knitting are incorporated within it using data chunks, but the final output (HTML) document may not
be self contained because it relies on external files or libraries for visualization, and vice-versa (i.e.,
standalone source documents and standalone output documents are two separate and independent
concerns).

Under the hood, the way knitrdata works is by adding (using the knitr: :knit_engines$set()
function) to the list of language engines that knitr maintains internally a data entry that points to a
function inside the knitrdata package that processes data chunks (specifically the eng_data function,
though users would typically not interact directly with this function). When knitting a Rmarkdown
document, knitr will call this function each time a data chunk is encountered, passing it both the
textual contents of the chunk and any chunk options. The function then uses this information to process
the chunk, decoding it if necessary (via the format and encoding chunk options) and returning it as
either a variable in the R environment (output.var chunk option) and/or an external file (output.file
chunk option) after any additional processing has been carried out (via, e.g., the loader. function
chunk option).

Text data chunks

Though a basic example of a data chunk containing CSV tabular data has been presented in the
previous section, it is useful to develop that example a bit more to better understand the functioning of
knitrdata. The simplest data chunks contain plain text that is read, but not processed by knitrdata.
For example, omitting the loader. function chunk option from the previously presented data chunk
with CSV data produces a different outcome:

“~~{data output.var="txt"}
site,density

a,1.2

b,3.4

c,5.6

During the knitting process, this will place the text contents of the chunk into a R variable named
txt, but no further processing of the text will be carried out (i.e., the variable txt will contain the
literal text contents of the chunk, excluding the header with the chunk options and the tail). One could
later convert the text into a R data. frame using the read. csv command in a R chunk placed after the
data chunk:

)
d <- read.csv(text=txt)

The loader. function chunk option used in the initial data chunk example above causes knitrdata
to combine into one process the two steps of (1) reading in the chunk contents and (2) converting
them into a usable R data object. Whereas the first of these steps, reading the chunk contents, is
carried out for all data chunks, the second only occurs if the loader. function chunk option is given.
loader.function should be a function that takes in the name of a file containing the chunk contents
and returns the processed contents. Though read.csv is likely to be a common choice, there are
many other possibilities including readRDS, read.csv2, scan, png: : readPNG and custom, user-defined
functions. One can also supply a list of additional input arguments to the loader function using
the loader.ops chunk option (e.g., one could change the expected separator in CSV data using
loader.ops=list(sep="1")).

Binary data chunks

Though text data chunks can integrate into Rmarkdown source documents many small- to medium-
sized tabular data sets, binary data formats, such as RDS files, are more convenient for more com-
plicated and/or larger data sets. Incorporating binary data into Rmarkdown documents requires
additional steps relative to text data: encoding the binary data as text and telling the data chunk how
to decode the encoded data. knitrdata provides tools for simplifying these two steps that currently
support encoding and decoding of two widely-used encodings: base64 and gpg. base64 is a standard
format for encoding binary data as ASCII text based on translation of 6 bits of information into one

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://en.wikipedia.org/wiki/Base64

CONTRIBUTED RESEARCH ARTICLE

11

of 64 alphanumeric and symbolic ASCII characters. Base64 encoded data looks like a somewhat
intimidating jumble of characters, but the format is extremely widely used behind the scenes in many
common web applications, such as email attachments and embedding images in HTML pages. In
particular, base64 is widely supported by a number of software packages and programming languages,
including R, Python, Matlab and Julia, so base64 encoded data is highly readable and likely to remain
so for a very long time.

gpg, standing for GNU Privacy Guard, is a standard protocol for encrypting information so that
only those with specific decryption keys can have access. This format can be used to ensure that only
specific individuals can actually read and utilize the data contained in a Rmarkdown source document,
as might be necessary when dealing with confidential (e.g., medical or trade-secret) data. Here, I
focus primarily on base64 encoding as this is the simplest and likely most common format for binary
data chunks, and a full description of the configuration and use of GPG is beyond the scope of this
document. The detailed use of gpg is, however, described in the package vignette.

Though knitrdata users rarely need to encode data by hand as the package provides graphical
tools for this, it is instructive to have a basic understanding of the underlying functions for encoding
and decoding data: data_encode and data_decode. data_encode takes the name of the file containing
the data and the name of the encoding format, and it returns the encoded data that one would
incorporate into a data chunk, either to the R command line or to a file. For example, if one saves the
data frame d created in the previous section to a binary RDS file:

saveRDS(d, "data.RDS")
then one can encode this data as base64 using:

b64 = knitrdata::data_encode("data.RDS", "base64")
cat(b64)

#> H4sTAAAAAAAAAT20vQ+CMBDFKx+DGNTEXxPk2J11c3HQwLsbIgInrBUokQmsKkbj5
#> PzsrXrEMekn721/f693JY4zZzLEsZrt0Z04x2s6XxCZOsWiNvwbWIx1t8JY1sA9g
#> h9cchcEQnTkUKCCVquAgqv8NFyFoA1hCqTMTc+PyQV1zBYRZImXMCQ/336rloazow
#> 0k3bYjQVvfdM2BVYSNIMZBnoaNgZylgq/p+Keyy7VAeIBCsMUGWzY/a+knXQNFJI1
#> owdtTdO8SN4fPb8RNSOBAAA=

This jumble of characters starting with "H4sI" is the base64 encoded contents of the binary file
that one would place in a data chunk. For large files, it is often more practical to output the encoded
data to a file by supplying the output argument:

knitrdata::data_encode("data.RDS", "base64",
output="data.RDS.base64")

GPG encoding works similarly to base64 encoding, but one must change the format from "base64"
to "gpg" and specify the encryption key (i.e., the receiver ID) to be used to encrypt the data.

Once one has the encoded data, one can use it in a data chunk by supplying the format="binary"
chunk option and, optionally, an appropriate loader. function to convert the data into a R object:

{data format="binary",output.var="d",loader.function=readRDS}
H4sTAAAAAAAAAT20vQvCMBDFz480Kn6A4Hybk11c3HQQFXE7VHA9aopimkgiF jf/
Z2et1500es0931/3crdvA@ADMNXUAT8h2MWryYynIQIMYfATQIulv6Th6YCbENAQ
kaQ8xvgoMCOFqTaZMPKOZ6VzhWQxMieVCO/rRulqDG7HsdZSMOi5v+fPaVmL jtdR
WhaUV@OHNhwNFmbD+oLgHTQcrg@20Ef+pRIKtUhVsH+hKYWpc9tfeMjoPqoVdt+jB
rSiKF8v7A6bdy9EtAQAA

During knitting, this chunk will be processed, decoding the encoded binary RDS file and loading
it into the variable d using the readRDS function. knitrdata will by default assume that the encoding
is base64 when format="binary", but one can also specify the chunk option encoding="base64" for
increased clarity. For GPG encoded data, one would use encoding="gpg". As with text data chunks,
one can alternatively output the decoded contents of the chunk to a file (output.file option) or return
it to the R session as a raw binary vector (by not supplying a loader. function).

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://gnupg.org/

CONTRIBUTED RESEARCH ARTICLE

12

(a) Data chunk inserter x (b) Eliminate (data) chunks x

Cancal Data chunk inserter m p— Eliminate (data) chunks
Active .Rmd
Line number: 244 Active document: ~/docs/papers/2020-

knitrdata/2020-knitrdata.Rmd
Data file:
Browse. Show 10 v entries

Search:

Chunk label: type label start end

setup 32 44
Format: Encoding r-packages-bib 46 49
text @ binary asis ® basebd O gpg P & -
@ Do MD5 sum check? # Encode the data? data % 105

Output variable name (no quotes): Crie e 7 s

Output file name (no quotes)

Loader function:

Evaluate chunk?

TRUE -

Figure 1: The (a) 'Insert filled data chunk’ and (b) 'Remove chunks’ RStudio add-ins included with
knitrdata. The dialogues will open when selected from the “Addins” menu of RStudio. They allow
one to (a) insert a data chunk containing the contents of an existing external data file into an open
Rmarkdown document, and (b) delete one or more chunks from an open Rmarkdown document.

RStudio add-ins for creating data chunks

As manually encoding data and creating data chunks can be complicated, particularly for large data
files, knitrdata includes graphical RStudio add-ins that do all the hard work of incorporating data in
Rmarkdown documents. The principal add-in is called Insert filled data chunk (Fig. 1a). Though
its use is meant to be largely self-explanatory, an instructional video is available on YouTube (Kaplan
2020b). The basic idea is that one opens a Rmarkdown source document in the RStudio editor, places
the cursor at the location one wants to insert a data chunk and then activates the add-in. The add-in
prompts for the name of the data file to be incorporated, as well as values for various data chunk
output and processing options. Based on the type of data file selected, the add-in will attempt to select
or suggest various appropriate options. For example, if a RDS file is chosen, then format will be set to
binary, encoding will be set to base64 and the loader function will be set to readRDS. These defaults
can be manually modified if not appropriate. The add-in also greatly facilitates and encourages the
use of MD5 sum data integrity checks. After all options have been set, one clicks on Create chunk and
an appropriately-formatted data chunk will be inserted in the active Rmarkdown source document at
the cursor location.

knitrdata also provides a Remove chunks add-in that allows ones one to quickly delete unwanted
(data and non-data) chunks (Fig. 1b), as well as a set of functions for command-line examination,
creation and removal of chunks from Rmarkdown documents (e.g., create_chunk, insert_chunk,
list_rmd_chunks, remove_chunks).

If one is not using RStudio to edit and knit Rmarkdown documents, then one can invoke the Skiny
dialog to create data chunks directly from the command line using the create_data_chunk_dialog
function contained in the knitrdata package. In this case, chunk contents will be (silently) returned
on the command line for later insertion in a Rmarkdown document.

Use cases

There are a number of use cases for the functionality provided by knitrdata, primary among them
providing a single source for public diffusion of all information related to a publication or report,
and/or making collaboration on Rmarkdown source documents simpler by eliminating or reducing

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

13

the need for external files. A simple example of the prior is the Rmarkdown source document used to
generate this publication, which includes text data chunks for the tabular data in Table 1, as well as the
ancillary formatting files associated with the document (BibTeX and LaTeX style files), and encoded
binary data chunks for the PNG images in Figs. 1 & 2.

A more complicated example is the Rmarkdown source document for Wain et al. (2021), publicly
available on github. In this case, we wished to provide a permanent public record of the methods used
in the paper and ensure that results could be verified, while at the same time respecting confidentiality
agreements with respect to fine scale fishing activity data used in the paper. To achieve this we
integrated the fine scale data in the Rmarkdown source document as an encrypted GPG data chunk.
This approach may have value for a wide number of other studies using sensitive economic, social
or medical data. To provide a complete record of the paper in a single document, we also integrated
the Rmarkdown source document for the online supplementary materials into a data chunk within
the Rmarkdown source document for the paper itself. As this supplementary materials document
contains Rmarkdown chunks that would otherwise confuse the knitting process if integrated as raw
text inside a data chunk, we base64 encoded this source document before including it in a data chunk.
The document also contains data chunks for small data tables and for exporting to external files the
ancillary formatting files required for knitting the document (BibTeX references, the LaTeX style file,
the CSL citation style file, etc.). Finally, during the knitting process, the document also generates a
lightweight version of itself that does not include the main data chunk, using the functionality of the
knitrdata package to remove large data chunks. Overall, knitrdata provided a convenient way of
generating a single document that contained all the necessary information for generating the final
publication, thereby demonstrating computational reproducibility for the publication.

The uses of data chunks tend to fall into one of four general, not mutually-exclusive use cases:

1) Integration of ancillary formatting files into the Rmarkdown source document, thereby reducing
the number of external files needed to knit a document

2) Inclusion of small- to medium-sized tabular data used in analyses and/or for tables

3) Inclusion of larger data sets using encoded binary data

4) Inclusion of confidential data using GPG-encrypted data chunks

Though the first of these use cases, integration of ancillary formatting files, can also be achieved
with the cat language engine that is included with the knitr package (Xie, Dervieux, and Riederer
2020), knitrdata provides functionality that make this task easier and more secure. First, knitrdata
allows for integrity checks on chunk contents that can control for unintentional modification of chunk
contents (see the section on data integrity below). Second, RStudio add-ins provided by the knitrdata
package facilitate the integration of data into Rmarkdown source documents and the use of integrity
checks. Finally, encoding of text documents permits integrating files that contain Rmarkdown chunks
or other formatting that would otherwise be problematic within a cat chunk.

The second of these use cases, tabular data, can also in principle be achieved using other tools in
R, such as a textConnection as shown above or via functionality in the tibble package (Miiller and
Wickham 2022). Nevertheless, the use of data chunks is generally more ergonomic and flexible for
anything but the smallest data tables as it allows the user to format data exactly as it would be in an
external CSV file, without additional markup or the need to escape quotation marks. As an example,
the information contained in Table 1 was implemented in the source document for this paper as a data
chunk as it contains lots of quotations and formatting that would have been tedious to include using
other approaches.

The third and fourth use cases for data chunks, involving encoded binary data, are unique to
knitrdata and allow for integration of complex data sets that would otherwise be very difficult to
include in a Rmarkdown source document.

Workflow

When and in what ways to use the functionality provided by knitrdata during the development of
a Rmarkdown source document requires some thought and depends to some degree on the project
goals. If the goal is to create a final Rmarkdown source document that demonstrates computational
reproducibility of a set of results, then it may not be necessary or practical to use data chunks during
the development stages of the project as the use of data chunks necessarily weighs down a Rmarkdown
source document with information (e.g., binary data) that may not be immediately useful to authors
during development. In this case, it may be best to work initially as one has always done, relying
on external files for data and formatting. External data and formatting files can be incorporated in
data chunks at the end of development when it is time to generate a final archival/public version of a
Rmarkdown source document.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://github.com/dmkaplan2000/knitrdata_examples/blob/e5f59b7475a542bef41c60e8ee6652f656c9e377/2020-knitrdata.Rmd
https://github.com/dmkaplan2000/knitrdata_examples/blob/e5f59b7475a542bef41c60e8ee6652f656c9e377/wain.et.al.2020.standalone.Rmd
https://github.com/dmkaplan2000/knitrdata_examples/blob/e5f59b7475a542bef41c60e8ee6652f656c9e377/wain.et.al.2020.standalone.Rmd
https://CRAN.R-project.org/package=tibble

CONTRIBUTED RESEARCH ARTICLE

14

On the other hand, if the objective of using knitrdata also includes reducing the complexity of
collaborating on a Rmarkdown source document by reducing the number of external files necessary
for knitting a document, then certain types of data chunks can be incorporated in a Rmarkdown
source document during the initial phases of development with little impact on authors. Small- to
medium-sized tabular data sets can be incorporated and this can have the benefit of making the tabular
data visually available during the development process. Similarly, most ancillary formatting files can
be placed at the very end of the Rmarkdown source document as these are only used after all chunks
have been processed and, therefore, will not encumber the development process. Larger data sets, and
in particular binary data sets, are a bit more problematic as they necessarily appear in the Rmarkdown
source document before the data is used for analyses and will introduce significant amounts of text
that are not human readable into the Rmarkdown source document. For this reason it may be best to
leave incorporation of these data until the final stages of development, though see the sections below
on file size and readability for workarounds to these issues.

This latter workflow involving incorporation of data chunks in two distinct stages of development
is what was used when creating the source document for Wain et al. (2021). Small data tables and
formatting files were incorporated directly into the document from the start, but the larger data set
that was the basis for statistical analyses and the Rmarkdown source document for the supplementary
materials were only incorporated at the end of development to provide an archival source document
for the paper capable of demonstrating computational reproducibility.

Caveats and concerns

There are a number caveats and concerns with respect to the use of knitrdata, all of which have some
validity, but for which a number of simple approaches exist to limit their impact. Below, I discuss four
of them: file size, document readability, data integrity and security.

Won't this create huge Rmarkdown files?
Incorporation of large data sets into data chunks will significantly increase the file size of Rmarkdown

source documents, potentially making them more difficult to work with. Though it is unlikely to be
practical to place extremely large data sets in Rmarkdown source documents, there are many contexts

where data sets are sufficiently small so as to be included directly in a Rmarkdown source document.

For example, the 8 years of fine scale fishing data used in Wain et al. (2021) added about 2 MB to
the size of the Rmarkdown document when incorporated as a (compressed) RDS file, a size that is
manageable and well within the limits of typical email attachments. RStudio currently will not open
Rmarkdown documents larger than 5 MB in size, effectively limiting the amount of data that can be
placed in a document unless one is willing to forgo graphical editing tools (larger documents can be
rendered from the command line using the rmarkdown: : render function, but not the more convenient
and common “Knit” button of RStudio). Despite being in the era of big data, many scientific studies
use primary data sets that are smaller than this size limit. As for Wain et al. (2021), many experimental
or field studies may rely on data sets that are relatively small, and building a standalone Rmarkdown
source document for these studies is an effective approach to documenting all quantitative information
needed to reproduce results.

Won’t Rmarkdown source documents become unreadable?

Large amounts of encoded binary data are undoubtedly not pretty to look at, but readability is not
necessarily the primary benefit of using Rmarkdown. Rather, completeness and the articulation of
text and analyses are the strengths of Rmarkdown, benefits that data chunks enhance as opposed to
diminish. Many Rmarkdown documents are already a complex mix of text and code that is difficult to
read and manage without the tools RStudio and other editors provide to navigate the document, such
as the ability to jump between sections and chunks. data chunks are no different in this sense, and use
of informative chunk labels can greatly facilitate document navigation. Furthermore, RStudio includes
the possibility of hiding chunk contents with a single click (Fig. 2), which can be quite practical when
dealing with large data chunks. Once hidden, data chunk contents can be ignored, allowing one to
edit the document unhindered.

Won't a misplaced keystroke mess up my data?

It is possible to unintentionally corrupt a data chunk due to a misplaced keystroke, particularly if the
data is encoded and not readily human readable. However, the use of navigation tools and hiding

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

15

210

211~ ## RStudio addins for creating data chunks {#addins}

212

213+ " '{data insertdialogdatachunk, format = "binary", encoding = "base64", output.var = "insertdialeg", echo =

EALSE, mdSsum = "2cbcal®413739a943476bcf5c7ebe3a7", eval=TRUE,loader.function=png::readPNC}@&D" "

= b

[y

29
1430~ ‘B {data removedatachunk, format = "binary", encoding = "base64", output.var = "removedialog", echo = FALSE,
Ssum = "aB8d33ad839fee707d70916bb280c059a", eval=TRUE,loader.function=png: :readPNG} z
1131 1VBORWOKGgoAAAANSUREUGAAArMAAAL TCAYAAAAF E4pBAAAGRXpUWHRSYXcgeHIv
1132 ZmlsZSBOeXBLIGV4aWYAAHja7ZxZdhy9coTfsQovAfOwHIzn3B14+F4C3SSbFKkr
1133 3d9+syixya7qKiCHyIgESmb/97+0+5/+1NaiianU3HK2/IktNt/50drHn3a/0xvy
1134 9/tnBOuf735636y3A563Aq/hcaD@x6vrvI8+PvB2Dzc+v2/q84ivzws9IDzwvb4Pu
1138 r1/X6vR537 /ed/FSobYfPiRWvEnPCRANVFenT? /xFdhPU70u/nBRFKK3GIAPAN

210

211~ ## RStudio addins for creating data chunks {#addins}

212

213* '''{data insertdialogdatachunk, format = "binary", encoding = "base64", output.var = "insertdialog", echo =
FALSE, mdS5sum = "2cbcal0413739a943476bcf5c7ebe3a7", eval=TRUE,loader.function=png: :readPNG}@@" '’)

1129

1130+ "' "{data removedatachunk, format = "binary", encoding = "base64", output.var = "rehovediilog", echo = FALSE,
md5sum = "aB8d33ad839fee707d70916bb280c059a", eval=TRUE,loader.function=png::readPNji}E&D'}")

2412

2413~ "' {r addinfig,fig.cap="\\label{fig:addinfigure}The 'Insert filled data chunk' (a) and 'Remove chunks' (b)
RStudio addins included with knitrdata."}

2414 op = par(mfrow=c(1,2),mar=c(0.1,3.1,0.1,0.1),oma=rep(0.1,4))

24158

-)

Figure 2: Images demonstrating before (top) and after (bottom) a data chunk has been hidden from
view in the RStudio editor. The top image shows two base64-encoded data chunks, one of which is
hidden, whereas the other is visible. In the bottom image, both chunks have been hidden. The control
for hiding chunk contents (top) and an indicator of a hidden chunk (bottom) are highlighted with red
boxes.

of data chunk contents as described above (Fig. 2) can drastically reduce interaction with chunk
contents, thereby limiting the possibility for error. Furthermore, there are a number of methods to
validate chunk contents, the simplest of which is to do a MD5 sum check using functionality included
in knitrdata. A MD5 sum is a very large number (typically encoded in hexadecimal) derived from a
file’s contents that has a vanishingly small probability of being equal to that of another file if the files
are not identical. data chunks can include a md5sum chunk option that specifies a MD5 sum that will
be checked against that of the decoded chunk contents, generating an error if the two do not match.
In this way, data corruption can be swiftly identified and corrected. The Insert filled data chunk
RStudio add-in will by default calculate and include a MD5 sum check when inserting binary data
chunks (and such a check can be optionally requested for text data chunks) so that users can easily
benefit from these checks without having to worry about the details.

Are there security concerns when using knitrdata?

Any time one runs code from a third party, there are security risks. Typically, code can write files
to disk, potentially modifying essential files or installing malicious software. Rmarkdown source
documents using the functionality of knitrdata are no different in this sense, though the practical risks
may be more important as knitrdata may encourage users to knit entire documents to gain access to
raw data and arbitrary data may be encoded in formats that are not human readable. Reducing these
risks involves responsibilities for both the authors and the users of Rmarkdown source documents.
For authors, the primary responsibilities are to assure that source documents cannot be modified by
third parties between the author and the user, and to use best practices when carrying out file input
and output during the knitting process. Integrity of source documents can be protected by using
reputable websites with established security protocols for publishing Rmarkdown source documents,
including, but not limited to, github, Zenodo and the Dryad. Authors can also publish MD5 sums
for Rmarkdown source documents so users can verify the integrity of those documents, though the
security of those MD5 sums is only as strong as the websites on which MD5 sums and Rmarkdown
source documents are published. Best practices for file input and output include using temporary files
and/or relative paths entirely within the base directory containing the Rmarkdown source document
when writing files to disk, using file names that are unique (e.g., avoiding generic names like data.csv)

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://github.com/
https://zenodo.org/
https://datadryad.org

CONTRIBUTED RESEARCH ARTICLE

16

and performing checks for the existence of files with the same name before writing information to
disk. The Insert filled data chunk RStudio add-in provided by knitrdata encourages the use of
file existence checks in the eval chunk option controlling whether or not to process data chunks that
write data to disk using the output.file chunk option, thereby avoiding overwriting existing files.

For users of Rmarkdown source documents, there are a number of simple steps one can take to
avoid the most severe security risks. Knitting Rmarkdown source documents from an unprivileged
user account and placing Rmarkdown source documents in new, empty directories can reduce the
risks of the most malicious attacks. Users should also familiarize themselves with the workings of
Rmarkdown source documents before knitting them and check for potentially problematic actions,
such as use of absolute file paths and /or communication with external internet resources. This includes
examination of the chunk options associated with data chunks (in particular, the output.file and
loader. function). If one is primarily interested in just the raw data contained in data chunks within
a Rmarkdown source document, then RStudio permits manual execution of individual chunks. This
includes execution of data chunks, which can be processed individually using the Run current chunk
button of RStudio once the knitrdata library has been loaded.

Conclusion

knitrdata provides a simple, but effective, tool for integrating arbitrary data into Rmarkdown source
documents. If used appropriately, this can help assure computational reproducibility of many scien-
tific documents by allowing one to integrate all relevant external files and data directly into a single
Rmarkdown source document. Anyone who has attempted to validate the results in a publication by
requesting the associated data has potentially encountered, if they managed to get the data, a set of
one or more data tables with limited metadata and only the publication itself as documentation of the
methods. Validating publication results under these conditions is often difficult and time consuming.
By encouraging the integration of data, code for carrying out analyses, and text interpreting results
in standalone Rmarkdown source documents, Rmarkdown with knitrdata can make it much easier
to understand, reproduce and validate the details of scientific analyses. This combination can be
particularly powerful when combined with other enhancements to Rmarkdown that make it possi-
ble to produce a wide variety of sophisticated scientific documents entirely within the confines of
Rmarkdown, such as bookdown (Xie 2022), rticles (Allaire, Xie, Dervieux, et al. 2022) and starticles
(Kaplan 2022) for producing books and scientific publications with Rmarkdown, citr (Aust 2019) for
bibliographic citations, and kableExtra (Zhu 2021) for producing sophisticated data tables.

Online supporting information

The Rmarkdown source documents for this publication and Wain et al. (2021) are available online
at https://github.com/dmkaplan2000/knitrdata_examples. Additional examples and the package
vignette are available in the knitrdata package itself.

Acknowledgements

I'would like to thank my colleagues at the MARBEC laboratory in Sete, France for numerous conversa-
tions that encouraged me to develop the knitrdata package. I would also like to thank Yihui Xie for
advice and encouragement regarding the development of the package. The handling editor and an
anonymous reviewer provided valuable feedback that significantly improved the manuscript.

References

Allaire, JJ, Yihui Xie, Christophe Dervieux, R Foundation, Hadley Wickham, Journal of Statistical
Software, Ramnath Vaidyanathan, et al. 2022. Rticles: Article Formats for r Markdown. https:
//github.com/rstudio/rticles.

Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wick-
ham, Joe Cheng, Winston Chang, and Richard Iannone. 2022. Rmarkdown: Dynamic Documents for r.
https://CRAN.R-project.org/package=rmarkdown.

Aust, Frederik. 2019. Citr: RStudio Add-in to Insert Markdown Citations. https://github.com/crsh/
citr.

Cassey, Phillip, and Tim M. Blackburn. 2006. “Reproducibility and Repeatability in Ecology.” BioScience
56 (12): 958-59. https://doi.org/10.1641/0006-3568(2006)56%5B958:RARIE%5D2.0.CO; 2.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=bookdown
https://CRAN.R-project.org/package=rticles
https://CRAN.R-project.org/package=starticles
https://CRAN.R-project.org/package=citr
https://CRAN.R-project.org/package=kableExtra
https://github.com/dmkaplan2000/knitrdata_examples
https://github.com/rstudio/rticles
https://github.com/rstudio/rticles
https://CRAN.R-project.org/package=rmarkdown
https://github.com/crsh/citr
https://github.com/crsh/citr
https://doi.org/10.1641/0006-3568(2006)56%5B958:RARIE%5D2.0.CO;2

CONTRIBUTED RESEARCH ARTICLE 17

Csérdi, Gabor, Jim Hester, Hadley Wickham, Winston Chang, Martin Morgan, and Dan Tenenbaum.
2021. Remotes: R Package Installation from Remote Repositories, Including GitHub. https://CRAN.R-
project.org/package=remotes.

Kaplan, David M. 2020a. Knitrdata: Data Language Engine for Knitr / Rmarkdown. https://github.com/
dmkaplan2000/knitrdata.

. 2020b. “Using Knitrdata to Create Standalone Rmarkdown Documents in Rstudio.” https://www.youtube.com/watch?v

. 2022. Starticles: A Generic, Publisher-Independent Template for Writing Scientific Documents in
Rmarkdown. https://github.com/dmkaplan2000/starticles.

Lowndes, Julia S. Stewart, Benjamin D. Best, Courtney Scarborough, Jamie C. Afflerbach, Melanie
R. Frazier, Casey C. O’'Hara, Ning Jiang, and Benjamin S. Halpern. 2017. “Our Path to Better
Science in Less Time Using Open Data Science Tools.” Nature Ecology & Evolution 1 (6): 1-7.
https://doi.org/10.1038/s41559-017-0160

Miiller, Kirill, and Hadley Wickham. 2022. Tibble: Simple Data Frames. https://CRAN.R-project.org/
package=tibble.

Ooms, Jeroen. 2022. Gpg: GNU Privacy Guard for r. https://github.com/jeroen/gpg.

Powers, Stephen M., and Stephanie E. Hampton. 2019. “Open Science, Reproducibility, and Trans-
parency in Ecology.” Ecological Applications 29 (1): €01822. https://doi.org/10.1002/eap.1822.

Wain, Gwenaélle, Lorelei Guéry, David Michael Kaplan, and Daniel Gaertner. 2021. “Quantifying
the Increase in Fishing Efficiency Due to the Use of Drifting FADs Equipped with Echosounders
in Tropical Tuna Purse Seine Fisheries.” ICES Journal of Marine Science 78 (1): 235-45. https:
//doi.org/10.1093/icesjms/fsaa216.

Xie, Yihui. 2014. “Knitr: A Comprehensive Tool for Reproducible Research in R.” In Implementing
Reproducible Computational Research, edited by Victoria Stodden, Friedrich Leisch, and Roger D.
Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.

. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC.

https://yihui.org/knitr/.

. 2022. Bookdown: Authoring Books and Technical Documents with r Markdown. https://CRAN.R-
project.org/package=bookdown.

Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Markdown Cookbook. 1st edition. The R
Series. Boca Raton, Florida: CRC Press.

Zhu, Hao. 2021. kableExtra: Construct Complex Table with Kable and Pipe Syntax. https://CRAN.R-
project.org/package=kableExtra.

David M. Kaplan

MARBEC

Univ Montepllier, CNRS, Ifremer, IRD
Sete, France

Institute de Recherche pour le Developpement (IRD)
UMR MARBEC

av. Jean Monnet

CS 30171

34203 Sete cedex, France
https://www.davidmkaplan.fr
ORCiD: 0000-0001-6087-359X
david.kaplan@ird. fr

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=remotes
https://CRAN.R-project.org/package=remotes
https://github.com/dmkaplan2000/knitrdata
https://github.com/dmkaplan2000/knitrdata
https://github.com/dmkaplan2000/starticles
https://doi.org/10.1038/s41559-017-0160
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://github.com/jeroen/gpg
https://doi.org/10.1002/eap.1822
https://doi.org/10.1093/icesjms/fsaa216
https://doi.org/10.1093/icesjms/fsaa216
http://www.crcpress.com/product/isbn/9781466561595
https://yihui.org/knitr/
https://CRAN.R-project.org/package=bookdown
https://CRAN.R-project.org/package=bookdown
https://CRAN.R-project.org/package=kableExtra
https://CRAN.R-project.org/package=kableExtra
https://www.davidmkaplan.fr
https://orcid.org/0000-0001-6087-359X
mailto:david.kaplan@ird.fr

CONTRIBUTED RESEARCH ARTICLE

18

netgwas: An R Package for Network-Based

Genome Wide Association Studies
by Pariya Behrouzi, Danny Arends and Ernst C. Wit

Abstract Graphical models are a powerful tool in modelling and analysing complex biological
associations in high-dimensional data. The R-package netgwas implements the recent methodological
development on copula graphical models to (i) construct linkage maps, (ii) infer linkage disequilibrium
networks from genotype data, and (iii) detect high-dimensional genotype-phenotype networks. The
netgwas learns the structure of networks from ordinal data and mixed ordinal-and-continuous data.
Here, we apply the functionality in netgwas to various multivariate example datasets taken from
the literature to demonstrate the kind of insight that can be obtained from the package. We show
that our package offers a more realistic association analysis than the classical approaches, as it
discriminates between direct and induced correlations by adjusting for the effect of all other variables
while performing pairwise associations. This feature controls for spurious interactions between
variables that can arise from conventional approaches in a biological sense. The netgwas package uses
a parallelization strategy on multi-core processors to speed-up computations.

1 Introduction

Graphical models are commonly used in statistics and machine learning to model complex dependency
structures in multivariate data (Lauritzen, 1996; Hartemink et al., 2000; Lauritzen and Sheehan, 2003;
Jordan, 2004; Friedman, 2004; Dobra et al., 2004; Edwards et al., 2010; Behrouzi et al., 2018; Vinciotti
et al., 2022) where each node in the graph represents a random variable and edges represent conditional
dependence relationships between pairs of variables. Therefore, the absence of an edge between two
nodes indicates that the two variables are conditionally independent. The netgwas package contains
an implementation of undirected graphical models to address the three key and interrelated goals
in genetics association studies: (i) building linkage maps, (ii) reconstructing linkage disequilibrium
networks, and (iii) detecting genotype-phenotype networks (see Fig 1). Below we provide a brief
introduction for each section of netgwas.

A linkage map describes the linear order of genetic markers within linkage groups (chromosomes).
It is the first requirement for estimating the genetic background of phenotypic traits in quantitative trait
loci (QTL) studies and are commonly used in QTL studies to link phenotypic traits to the underlying
genetics of the population. In practice, many software packages for performing QTL analysis require
linkage maps (Lander et al., 1987; Broman et al., 2003; Yang et al., 2008; Taylor et al., 2011; Huang et al.,
2012; Broman et al., 2019). Most organisms are categorized as diploid or polyploid by comparing the
copy number of each chromosome. Diploids have two copies of each chromosome (like humans).
Polyploid organisms have more than two copies of each chromosome (like most crops). Polyploidy
is common in plants and in different crops such as apple, potato, and wheat, which contain three
(triploid), four (tetraploid), and six (hexaploid) copies from each of their chromosomes, respectively.
Despite the importance of polyploids, statistical tools for their map construction are underdeveloped
(Grandke et al., 2017; Bourke et al., 2018). Most software packages such as R/qtl (Broman et al., 2003),
OneMap (Margarido et al., 2007), Pheno2Geno (Zych et al., 2015), and MSTmap (Wu et al., 2008; Taylor and
Butler, 2017) contain functionality to only construct linkage maps for diploid species. Packages such
as MAPMAKER (Lander et al., 1987), TetraploidSNPMap (Hackett et al., 2017), and polymapR (Bourke et al.,
2018) have the functionality to construct polyploid linkage maps but focus mainly on a specific type
of polyploid species (e.g. tetraploids). All the aforementioned packages contain methods that use
pairwise estimation of recombination frequencies and LOD (logarithm of the odds ratio) scores (Wang
et al., 2016) that often require manual interaction. This often leads to an underpowered approach and
confounding of correlated genotypes by failing to correct for intermediate markers (Behrouzi and Wit,
2019b). In contrast, the netgwas R package uses a multivariate approach to construct linkage maps
for diploid and polyploid species in a unified way. This is achieved by utilising the pairwise Markov
property between any two genetic markers and constructing the linkage map by simultaneously
assessing the complete set of pairwise comparisons. This often leads to an improved marker order
over more conventional methods.

The linkage map, which can be constructed using the first key function of netgwas in Fig 1, provides
the genetic basis for the second key function which detects the patterns of linkage disequilibrium
and segregation distortion in a population. Segregation distortion (SD) refers to any deviation from
expected segregation ratios based on Mendelian rules of inheritance. And linkage disequilibrium
(LD) refers to non-random relations between loci (locations) on the same or different chromosomes.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Data Method Algorithm Analysis Results
* Ordinal; 4 N Graph selection ;-—-7(0_ Genetic linkage map
genotypingdata . |
) . Gaussian copula + Monte Carlo == Yisualization N ; ;
°r2\lon-GaL_155|§n; “-al graphical models Gibbs sampling » + Marker-markerinteractions
phenotyping data o (GCGM)far [» network
o Mixed-ordinal- | —-—"] graphstructure .- *Approximation
continuous; —T learning approach Traits interactions netwark
multi-trait ; ; v
o . R Comrunity detection
multlltjlom Man-paranormal ¥ Marker-trait interactions
(e?\?irlo_nment) Crdering algorithms network

Figure 1: Configuration of the netgwas package. Depending on the data type different functions can
be used. Each color represents one main function of the package. The three main functions are: i)
netmap() (in green) constructs linkage maps for bi-parental species with any ploidy level, ii) netsnp()
(in blue) detects the conditional dependent short- and long-range linkage disequilibrium structure of
genomes and iii) netphenogeno() (in black) reconstructs association networks between phenotypes
and genetic markers.

Revealing the structures of LD is important for association mapping study as well as for studying
the genomic architecture of a genome. Various methods have been published in the literature for
measuring statistical associations between alleles at different loci, for instance see Hedrick (1987);
Mangin et al. (2012); Clarke et al. (2011); Bush and Moore (2012); Kaler et al. (2020). Most of these
measures are based on an exhaustive genome scan for pairs of loci and the r2 measure, the square
of the loci correlation. The drawback of such approaches is that association testing in the genome-
scale is underpowered, so that weak long-range LD will go undetected. Furthermore, they do not
simultaneously take the information of more than two loci into account to make full and efficient use of
modern multi-loci data. The netgwas package contains functionality to estimate pairwise interactions
between different loci in a genome while adjusting for the effect of other loci to efficiently detect short-
and long-range LD patterns in diploid and polyploid species (Behrouzi and Wit, 2019a). Technically,
this requires estimating a sparse adjacency matrix from multi-loci genotype data, which usually
contains a large number of markers (loci), where the number of markers can far exceed the number
of individuals. The non-zero patterns of the adjacency matrix created by the functions in netgwas
shows the structures of short— and long-range LD of the genome. The strength of associations between
distant loci can be calculated using partial correlations. Furthermore, the methods implemented in
netgwas already account for the correlation between markers, while associating them to each other
and thereby avoids the problem of population structure (that is physically unlinked markers are
correlated).

A major problem in genetics is the association between genetic markers and the status of a disease
(trait or phenotype). Genome-wide association studies are among the most important approaches
for further understanding of genetics underlying complex traits (Welter et al., 2013; Kruijer et al.,
2020). However, in genome-wide association methods genetic markers are often tested individually
for association with the phenotype. Since genome-wide scans analyze thousands or even millions of
markers, the issue of multiple testing is usually addressed by using a stringent significance threshold
(Panagiotou et al., 2011). Such methods work only if the associations are strong enough to pass the
stringent threshold. However, even if that is the case, this type of analysis has several limitations,
which have been discussed extensively in the literature (Hoggart et al., 2008; He and Lin, 2010; Rakitsch
et al.,, 2012; Buzdugan et al., 2016). Particularly, the main issue of this type of analysis is when we test
the association of the phenotype to each genetic marker individually, and ignore the effects of all other
genetic markers. This leads to failures in the identification of causal loci. If we consider two correlated
loci, of which only one is causal for the phenotype, both may show a marginal association, but only
the causal locus will be detected by our method. The methods implemented in the netgwas package
tackle this issue by using Gaussian copula graphical model (Klaassen and Wellner, 1997; Hoff, 2007),
which accounts for the correlation between markers, while associating them to the phenotypes. As it is
shown in Klasen et al. (2016), this key feature avoids the need to correct for population structure or any
genetic background, as the method implemented in the netgwas package simultaneously associates all
markers to the phenotype. In contrast, most GWAS methods rely on population structure correction to
avoid false genotype-phenotype associations due to their single-loci approach (Yu et al., 2006; Kang
et al., 2008, 2010; Lippert et al., 2011).

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

20

2 Technical details

Graphical models combine graph theory and probability theory to create networks that model complex
probabilistic relationships. Undirected graphical models represent the joint probability distribution
of a set of variables via a graph G = (V,E), where V = {1,2,..., p} specifies the set of random
variables and E C V x V represents undirected edges (i,j) € E < (j,i) € E. The pattern of edges
in the graph represents the conditional dependencies between the variables; the absence of an edge
between two nodes indicates that any statistical dependency between these two variables is mediated
via some other variable or set of variables. The conditional dependencies between variables, which are
represented by edges between nodes, are specified via parameterized conditional distributions. We
refer to the pattern of edges as the structure of the graph. In this paper, the goal is to learn the graph
structure from ordinal data and mixed ordinal-and-continuous data.

Sparse latent graphical model. A p-dimensional copula C is a multivariate distribution with uniform
margins on [0, 1]. Any joint distribution function can be written in terms of its marginals and a copula
which encodes the dependence structure. Here we consider a subclass of joint distributions encoded

by the Gaussian copula F(y1,...,¥p) = ®p (dfl(Fl 1)), 2 (Fp(yp)) | Q) where @, (. | Q) is

the cumulative distribution function (CDF) of p-variate Gaussian distribution with correlation matrix

); @ is the univariate standard normal CDF; and Fis the CDF of j-th variable, Y] forj=1,...,p.

Note that y; and y;» are independent if and only if ;7 = 0.
A Gaussian copula can be written in terms of latent variables Z: Let F]fl (y) =inf{y: F(x) >y,x €

R} be the pseudo-inverse of the marginals. Then a Gaussian copula is defined as Y;; = Fj_1 (@(Zi))

where Z ~ N,(0,Q) and Y = (Y3,...,Yp) and Z = (Zy,...,Z,) represent the non-Gaussian observed
variables and Gaussian latent variables, respectively. Without lose of generality, we assume that
Z;’s have unit variances of 0j; = 1 for j = 1,..., p. Thus, Z;’s marginally follow standard Gaussian
distribution. Each observed variable Y; is discretized from its latent counterpart Z;. For the j-th
latent variable (j = 1,..., p), we assume that the range (—oo, c0) splits into K; disjointed intervals
O L0 << D 0
if Z; falls in the interval (t](K_l),tEK)). Let the parameter D = {t](.k) j=1...,pk=1,...,K}

by a set of thresholds —co = ¢ < t;77 = oo such that Y; = k if and only

holds the boundaries for the truncation points and z(3) = [z(1), ..., z("] where z() = (gi), . ,zg)).

In order to learn the graph structures, our objective is to estimate the precision matrix ® = 01

from 7 independent observations y(1:) = [y(1), ..., y("], where y(!) = (ygi), ... ,yg,i)). The conditional

Algorithm 1 Monte Carlo Gibbs sampling for estimating R in (1)

Input: A data set containing the variables Y(¥) fori =1...,n.

Output: Mean of the conditional expectation, R = 1 f; E(Z(i)Z(i)T|y(i);D,®(m_1)) in (1).
i=1

1: Foreachj = {1,...,p} generate the latent data from Y; = F]fl (®(Z;)), where F; and ®
define the empirical marginals and the CDF of standard normal distribution, respectively
fori=1...,nandj=1,...,p;

2: Estimate D, vectors of lower and upper truncation points, whose boundaries come from
YO fori=1...,n;

3: fori=1,...,ndo

4: Sample from a p-variate truncated normal distribution with the boundaries in Line 2
above;
5. for N iterations do
7)1
*
6: Estimate RN = E(Zil)Z,((l)T\y(i), @(m)), where Z,(f) = : e RNxp;
7N
*

7. endfor o
8. Update R() = LzW 70T,
9: end for

10: Calculate R = +

Z

=
It
~)

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

21

independence between two variables given other variables is equivalent to the corresponding element
in the precision matrix being zero, i.e. 6;; = 0; or put another way, a missing edge between two
variables in a graph G represents conditional independence between the two variables given all other
variables.

In the classical low-dimensional setting of p smaller than #, it is natural to implement a maximum
likelihood approach to obtain the inverse of the sample covariance matrix. However, in modern
applications the dimension p is routinely far larger than n, meaning that the inverse sample covari-
ance matrix does not exist. Motivated by the sparseness assumption of the graph we tackle the
high-dimensional inference problem for discrete Y’s by a penalized expectation maximization (EM)
algorithm as

QO |81 = [1ogdet(®) - tr(R@)] 1)

NI

and

P
oM = arg max Q(e|6"-1) —) Po(10)51), 2)
© A
where m is the iteration number within the EM algorithm. The last term in equation (2) represents

different penalty functions. Here we impose the sparsity by means of L penalty, on the jj’-th element
of the precision matrix.

_ n .) N oA A
We compute the conditional expectation R = % v E(Z(Z)Z(1>T | y(’);D,G(m*1)> in equation
i=1

(1) using two different approaches: numerically through a Monte Carlo (MC) sampling method as
explained in algorithm 1, and through a first order approximation based on algorithm 2. The most
flexible and generally applicable approach for obtaining a sample in each iteration of an MCEM
algorithm is through a Markov chain Monte Carlo (MCMC) routine like Gibbs and Metropolis —
Hastings samplers (Metropolis et al., 1953; Hastings, 1970; Geman and Geman, 1984). Alternatively,
the conditional expectation in equation (1) can be computed by using an efficient approximation
approach which calculates elements of the empirical covariance matrix using the first and second
(:]12 jz(i}T and variance 0’12,]- =
1-—)ij,,j)j:]lﬁ jf.,jl,]- (see Behrouzi and Wit (2019a) for details). The two proposed approaches are
practical when some observations are missing. For example, if genotype information for genotype j
is missing, it is still possible to draw Gibbs samples for Z; or approximate the empirical covariance

matrix, as the corresponding conditional distribution is Gaussian.

moments of a truncated normal distribution with mean y;; = ﬁj/,]-ﬁ

The optimization problem in (2) can be solved efficiently in various ways by using glasso or
CLIME approaches (Friedman et al., 2008; Hsieh et al., 2011). Convergence of the EM algorithm for
penalized likelihood problems has been proved in Green (1990). Our experimental study shows that
the algorithm usually converges after several iterations (< 10). Note that the sparsity of the estimated
precision matrix in Equation (2) is controlled by a vector of penalty parameter p. We follow Foygel
and Drton (2010) in using the extended Bayesian information criterion (eBIC) to select a suitable
regularization parameter p* to produce a sparse graph with a sparsity pattern corresponding to C:)p»«.
Alternatively, instead of using the EM algorithm, a nonparanormal skeptic approach can be used to
estimate graph structure through Spearman’s rho and Kendall’s tau statistics; details can be found in
Liu et al. (2012).

Extension to linkage map construction

Here we convert the estimated network to a one-dimensional map using two different approaches.
Depending on the type of (experimental) population (i.e. inbred or outbred), we order markers
based on dimensionality reduction or based on bandwidth reduction, which both result in an one-
dimensional map.

In inbred populations, loci in the genome of the progenies can be assigned to their parental
homologues, resulting in a simpler conditional independence relationship between neighboring
markers. Here, we use multidimensional scaling (MDS) to project markers in a p-dimensional space
onto a one-dimensional map while attempting to maintain pairwise distances. Let G(V@, E@D) bea
sub—graph on the set of unordered d markers, where v = {1,...,d},d < p and the edge set E (@)
represents all the links among d markers. We calculate the distance matrix D as follows

o —log(rij) ifi#j
D’f‘{ 0 ifi =], @)

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

22

9“
rij = -, 4)
0iibjj
where 0;; is the ij-th element of the precision matrix @p*. We aim to construct a configuration of d
data points in a one-dimensional Euclidean space by using information about the distances between
the d nodes. In this regards, we define a sequential ordering L of d elements such that the distance D
between them is similar to D. We consider a metric multi-dimensional scaling

= arg mm Z Z i ®)

i=1j=1

that minimizes the so called mapping error E across all sequential orderings (Sammon, 1969).

We propose a different ordering algorithm for outbred populations. In these populations, mating
of two non-homozygous parents result in markers in the genome of progenies that cannot easily
be mapped into their parental homologues. To order markers in outbred populations, we use the

Cuthill-McKee (RCM) algorithm (Cuthill and McKee, 1969) to permute the sparse matrix @f)d) that
has a symmetric sparsity pattern into a band matrix form with a small bandwidth. The bandwidth
of the associated adjacency matrix A is defined as f = max,, £ |i — j|. The algorithm produces a

permutation matrix P such that PAPT has a smaller bandwidth than matrix A does. The bandwidth
decreases by moving the non-zero elements of the matrix A closer to the main diagonal. The way to
move the non-zero elements is determined by relabeling the nodes in graph G(Vj, E;) in consecutive
order. Moreover, all of the nonzero elements are clustered near the main diagonal.

3 Package design and functionality

The netgwas R package implements the Gaussian copula graphical models (Behrouzi and Wit, 2019a)
for (i) constructing linkage maps in diploid and polyploid species and learning (ii) linkage disequilib-
rium networks and (iii) genotype-phenotype networks. Below, we illustrate the three main functions
using a diploid A.thaliana population, a tetraploid potato, and maize NAM populations. Given that
the computational cost for the usual size of GWAS data (> 10°) is expensive, we use small data sets to
explain the functionality of the package. All the results can be replicated using the functions in the
netgwas package (see Supplementary Materials).

Algorithm 2 Approximation of the conditional expectation in (1)

Input: A (n x p) data matrix Y, where Y](.i) = Fj’1 (dD(Z](i))) the F; and @ define the empirical
marginals and the CDF of standard normal, respectively fori =1...,nandj=1,...,p;

Output: The conditional expectation R = % i E(Z(i)Z(i)T|y(i);ﬁ,®);
i=1
1: Initialize E(z](l) | v 0) ~ E(z](.l) | y](-l);ﬁ), E((z;®)? | y);D,0) =~
E((z")? | y\"; D), and E(z}”z@ | y1;D,8) ~ E(z

i=1,...,nandj,j = ,..,p,
2: In1t1ahze r;p for 1 < j,j’ < p using the Line 1 above, then estimate ¢) by maximizing (2);

fori=1,...,ndo
if j = ' then
Calculate E((D)2 | y] @)forj=1,...,p;

else A
Calculate E ((@) |y);D,0) and then

(()(1)|y(l)])@) EG [y0;D,8)E(z)) | y?;D,8) fori =1,...,n and
j= 1. P
8 end if
9: end for o o
10: Caleulate 7y = £ 0y E(zf)2" | y);D,8) for1 < j = < p.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

23

Linkage map construction

This module reconstructs linkage maps for diploid and polyploid organisms. Diploid organisms
contain two copies of each chromosome, one from each parent, whereas polyploids contain more than
two copies of each chromosome. In polyploids the number of chromosome sets reflects their level of
ploidy: triploids have three copies, tetraploids have four, pentaploids have five, and so forth.

Typically, mating is between two parental lines that have recent common biological ancestors; this
is called inbreeding. If they have no common ancestors up to roughly 4-6 generations, then this is
called outcrossing. In both cases the genomes of the derived progenies are random mosaics of the
genome of the parents. However, in the case of inbreeding parental alleles are distinguishable in the
genome of the progeny, in outcrossing this does not hold.

Some inbreeding designs, such as Doubled haploid (DH), lead to a homozygous population where
the derived genotype data include only homozygous genotypes of the parents namely AA and aa
(conveniently coded as 0 and 1) for diploid species. Other inbreeding designs, such as F2, lead to a
heterozygous population where the derived genotype data contain heterozygous genotypes as well as
homozygous ones, namely aa, Aa, and AA for diploid species, conveniently coded as 0, 1 and 2 which
correspond to the dosage of the reference allele A. We remark that the Gaussian copula graphical
models help us to keep heterozygous markers in the linkage map construction, rather than turn them
to missing values as most other methods do in map construction for recombinant inbred line (RIL)
populations.

Outcrossing or outbred experimental designs, such as full-sib families, derive from two non-
homozygous parents. Thus, the genome of the progenies includes a mixed set of many different
marker types containing fully informative markers and partially informative markers . Markers are
called fully informative when all of the resulting gamete types can be phenotypically distinguished
on the basis of their genotypes; markers are called partially informative when they have identical
phenotypes (Wu et al., 2002).

netmap ()

The netmap() function handles various inbred and outbred mapping populations, including recombi-
nant inbred lines (RILs), F2, backcross, doubled haploid, and full-sib families, among others. Not all
existing methods for linkage mapping support all inbreeding and outbreeding experimental designs.
However, our proposed algorithm constructs a linkage map for any type of experimental design of
biparental inbreeding and outbreeding. Also, it covers a wide range of possible population types.
Argument cross in the map function must be specified to choose an ordering method. In inbred
populations, markers in the genome of the progenies can be assigned to their parental homologous,
resulting in a simpler conditional independence pattern between neighboring markers. In the case
of inbreeding, we use multidimensional scaling (MDS). A metric MDS is a classical approach that
maps the original high-dimensional space to a lower dimensional space, while attempting to maintain
pairwise distances. An outbred population derived from mating two non-homozygous parents results
in markers in the genome of progenies that cannot be easily assigned to their parental homologues.
Neighboring markers that vary only on different haploids will appear as independent, therefore requir-
ing a different ordering algorithm. In that case, we use the reverse Cuthill-McKee (RCM) algorithm
(Cuthill and McKee, 1969) to order markers.

The function can be called with the following arguments

netmap(data, method = "npn", cross = NULL, rho = NULL, n.rho = NULL, rho.ratio = NULL,
min.m = NULL, use.comu = FALSE, ncores = "all”, verbose = TRUE)

The main task of this function is to construct a linkage map based on conditional (in)dependence
relationships between markers, which can be estimated using the methods, “gibbs”, “approx”, and
“npn”. The estimation procedure relies on maximum penalized log-likelihood, where the argument
rho, a decreasing sequence of non-negative numbers, controls the sparsity levels, which corresponds
to the last term in Equation (2). Leaving the input as rho = NULL, the program automatically computes
a sequence of rho based on n.rho and rho.ratio. The argument n. rho specifies the number of regu-
larization parameters (the default is 6) and rho.ratio determines the ratio between the consecutive
elements of rho. Depending on the population type, inbred or outbred, different algorithms are
applied to order markers in the genome. If it is known, the user can specify an expected minimum
number of markers in a linkage group (LG) via the argument min.m. Furthermore, linkage groups can
be identified either using the fast greedy community detection algorithm (Newman, 2004) or simply
each disconnect sub-networks can form a linkage group. The ncores = "all” automatically detects
number of available cores and runs the computations in parallel on (available cores -1).

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

24

Unordered markers Ordered markers

markers

00 1500 -

500 1000 1500

markers markers

(a) (b)
Figure 2: Linkage map construction in tetraploid potato. A total of 156 F1 plants were genotyped
across 1972 genetic markers. (a) The estimated partial correlation matrix for the genotyping data. (b)
The estimated partial correlation matrix after ordering the genetic markers, where all the 12 potato
chromosomes are detected correctly.

The netmap () function returns an object of the S3 class type netgwasmap and plot.netgwasmap and
print.netgwasmap are summary method functions for this object class. The netgwasmap mainly holds
the estimated linkage map (in object map) and a list containing all output results (in object res) of the
regularization path rho.

buildMap()

The function buildMap() allows users to interact with the map construction procedure and to build
the linkage map on the manually selected penalty term. Whereas the function netmap() selects the
optimal penalty term p* using the eBIC method.

The function can be called via
buildMap(res, opt.index, min.m = NULL, use.comu = FALSE).

The argument opt . index can be chosen manually which is a number between one and the number
of penalty parameter n.rho in netmap(). In the default setting, the n.rho is 6. So, the opt. index can
get a value between 1 and 6. Like function netmap(), the argument min.m is an optional argument in
buildMap() function, where it keeps the clusters of markers that at least have a size of min.m member
of markers. The default value for this argument is 2. The use. comu argument is an alternative approach
to find linkage groups. The use.comu argument is an alternative approach to find linkage groups.

Detecting linkage disequilibrium networks

The function netsnp() reconstructs a high-dimensional linkage disequilibrium interactions network for

diploid and polyploid (GWAS) genotype data. Genetic viability can be considered as a phenotype.

This function detects the conditional dependent short- and long-range linkage disequilibrium structure

of genomes and thus reveals aberrant marker-marker associations that are due to epistatic selection.

In other words, this function detects intra— and inter-chromosomal conditional interactions networks
and can be called via

netsnp(data, method = "gibbs"”, rho = NULL, n.rho = NULL, rho.ratio = NULL,
ncores = "all", verbose = TRUE)

for any bi-parental genotype data containing at least two genotype states and possibly missing values.

The input data can be either an (n X p) genotype data matrix, an object of class netgwasmap, which is

an output of functions netmap() and buildMap(), or a simulated data from the function simgeno().

Depending on the dimension of the input data a suitable ‘method” and its related arguments can be
specified. The argument ncores determines the number of cores to use for the calculations. Using

ncores = "all"” automatically detects number of available cores and runs the computations in parallel.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

25

This function returns an S3 object of class "netgwas", which holds mainly the following objects:
(i) Theta a list of estimated (p x p) precision (inverse of variance-covariance) matrices that infer
the conditional independence relationships patterns among genetic loci, (ii) path which is a list of
estimated (p X p) adjacency matrices. This is the graph path corresponding to Theta, (iii) rho which
is a vector with n.rho dimension containing the penalties, and (iv) loglik contains the maximum
log-likelihood values along the graph path. To select an optimal graph the function selectnet() can
be used.

Reconstructing genotype-phenotype networks

Complex genetic traits are influenced by multiple interacting loci, each with a possibly small effect.
Our approach reduces the number of candidate genes from hundreds to much fewer genes. It is
of great interest to geneticists and biologist to discover a set of most effective genes that directly
affect a complex trait in GWAS. To overcome the limitations of traditional analysis, such as single-
locus association analysis (looking for main effects of single marker loci), multiple testing and QTL
analysis, we use the proposed mixed graphical model to study the simultaneous associations between
phenotypes and SNPs. Our method allows for a more accurate interpretation of findings, because it
adjusts for the effects of remaining variables -SNPs and phenotypes— while measuring the pairwise
associations, whereas the traditional methods use marginal associations to often analyze SNPs and
phenotypes one at a time .

Graphical modeling is a powerful tool for describing complex interaction patterns among variables
in high-dimensional data used frequently in microarray analysis (Butte et al., 2000). In our modelling
framework, a genotype—phenotype network is a complex network made up of interactions among;:
(i) genetic markers, (ii) phenotypes (e.g. disease), and (iii) between genetic markers and phenotypes.
The first problem in analyzing genotype-phenotype data is the mixed variable-types, where markers
are ordinal (counting the number of a major allele), and phenotypes (disease) can be measured in
continuous or discrete scales. We deal with mixed discrete-and-continuous variables by means of
copula. A second issue relates to the high-dimensional setting of the data, where thousands of genetic
markers are measured across a few samples; we deal with inferring potentially large networks with
only few biological samples. Fortunately, genotype-phenotype networks are intrinsically sparse, in
the sense that only few elements interact with each other. This sparsity assumption is incorporated
into our algorithm based on penalized graphical models. The proposed method is implemented in the
netphenogeno() function, where the input data can be an (1 x p) matrix or a data. frame where 7 is
the sample size and p is the dimension that includes marker data and phenotype measurements. One
may consider including more columns, like environmental variables.

The function is defined by

n

netphenogeno(data, method = "npn”, rho = NULL, n.rho = NULL, rho.ratio = NULL,
ncores = "all", em.iter = 5, em.tol = .001, verbose = TRUE)

and reconstructs genotype-phenotype interactions network for an input data of a genotype-phenotype
data matrix or a data.frame. Detecting interactions network among genotypes, phenotypes and
environmental factors is also possible using this function. Depending on the size of the input data,
the user may choose "gibbs", "approx", or "npn" method for learning the networks. For a medium (
~500) and a large number of variables we recommend to choose "gibbs" and "approx", respectively.
Choosing "npn" for a very large number of variables (>2000) is computationally efficient. The default
method is set to "npn". Like the function netsnp(), the netphenogeno() function returns an object of

class netgwas.

For objects of type ‘netgwas’ there are plot, print and summary methods available. The plotting
function plot.netgwas() provides a visualization plot to monitor the path of estimated networks for
a range of penalty terms. The functions plot.netgwasmap(), plot.select() and plot.simgeno()
visualize the corresponding network, the optimal graph and the results of model-based simulated
data, respectively.

To speed up computations in all the three key functions of the netgwas package, we use the
parallel package on the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org
to support parallel computing on a multi-core machine to deal with large inference problems. For the
optimizing the memory usage, we use the Matrix package (Bates et al., 2022) for sparse matrix output
when estimating and storing full regularization paths for large datasets. The use of these libraries
significantly improves the computational speed of the functions within the package.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

http://CRAN.R-project.org

CONTRIBUTED RESEARCH ARTICLE

Network Before ordering markers

markers

d %;% r-nérkers-
v M After ordering markers
1
&

markers

markers

Figure 3: Linkage map construction in A.thaliana using RILs (recombinant inbred lines) population
of 367 individuals and 90 genetic markers. The inferred network detects the five chromosomes of
A thaliana and the structure of associations among SNPs (single nucleotide polymorphisms) within
chromosomes. The left figures show the partial correlation matrix before and after ordering the SNPs.

4 Application to real datasets

Linkage map construction

In Fig 2 and Fig 3, we provide two examples output of building linkage map in outbred tetraploid
potato and inbred diploid A.thaliana datasets. The map construction was computed in about 7 minutes
for tetraploid potato data and in 0.6 seconds for A.thaliana data on an Intel i7 laptop with 16 GB RAM.

Linkage map construction in potato. For the sake of illustration, below we show the steps to
construct a linkage map for TetraPotato in netgwas. The tetraploid potato data are derived from a cross
between “Jacqueline Lee” and “MSG227-2”, where 156 F1 plants were genotyped across 1972 genetic
markers (Massa et al., 2015). Five allele dosages are possible in this full-sib autotetraploid mapping
population (AAAA, AAAB, AABB, ABBB, BBBB), where the genotypes are coded as {0,1,2,3,4}. This
dataset includes 0.07% missing observations.

data(tetraPotato)

Shuffle the order of markers

dat <- tetraPotato[, sample(ncol(tetraPotato))]
potato.map <- netmap(dat, cross = "outbred"”)
potato.map.ordered <- buildMap(potato.map, opt.index = 3)
potato.map.ordered

Number of linkage groups: 12

Number of markers per linkage group: 165 157 129 153 183 196 173 148 152 161 187 146

Total number of markers in the linkage map: 1950.(22 markers removed from the input genotype data)
Number of sample size: n = 156

Number of categories in dataset: 5 (0123 4)

The estimated linkage map is inserted in <OUTPUT NAME>$map

To visualize the network consider plot(<OUTPUT NAME>)

To visualize the other associated networks consider plot(<OUTPUT NAME>$allres)

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

27

plot(potato.map.ordered, vis = "unordered markers")
plot(potato.map.ordered, vis = "ordered markers")
map <- potato.map.ordered$map

The argument vis in the above plot function can be fixed to "interactive”, which it gives a
better network resolution particularly for a large number of nodes. Fig 2 visualizes a summary of its
mapping process, where Fig 2a shows the conditional dependence pattern between unordered SNP
markers in the Jacqueline Lee x MSG227-2 population. Fig 2b shows the structure of the selected
graph after ordering markers. All 12 potato chromosomes were detected correctly. The tetraploid
potato map construction was computed in about 7 minutes on an Intel i7 laptop with 16 GB RAM.

Linkage map construction in A.thaliana. In this example, we construct a linkage map for the
Arabadopsis thaliana data which are derived from a RIL cross between Columbia-0 (Col-0) and Cape
Verde Island (Cvi-0), where 367 individual plants were genotyped across 90 genetic markers (Simon
et al., 2008). The dataset CviCol contains 0.2% missing values and three possible genotype states,
where A and B denote parental homozygous loci, coded as 0 and 2, respectively and H denotes
heterozygous loci which coded as 1.

data(CviCol)

set.seed(1)

cvicol <- CviCol[,sample(ncol(CviCol))]

out <- netmap(cvicol, cross= "inbred", ncores= 1)
out$opt.index

[11 6

In the above code, the out$opt. index shows the index of the selected penalty term using the eBIC
method. If one is interested in building linkage map, for instance, on the 4th estimated network then
the buildMap() function can be used as follow

bm.thaliana <- buildMap(out, opt.index= 4)
bm.thaliana

Number of linkage groups: 5

Number of markers per linkage group: 24 14 17 16 19

Total number of markers in the linkage map: 90.

(0 markers removed from the input genotype data)

Number of sample size: n = 367

Number of categories in dataset: 3 (01 2)

The estimated linkage map is inserted in <OUTPUT NAME>$map
To visualize the network consider plot(<OUTPUT NAME>)

To visualize the other associated networks consider plot(<OUTPUT NAME>$allres)
To build a linkage map for your desired network consider buildMap() function

thalianaMap <- bm.thaliana$map
plot(bm.thaliana, vis= "summary")

The estimated linkage map in Fig 3 is consistent with the existing linkage map in A.thaliana (Simon
et al., 2008; Behrouzi and Wit, 2019b).

If required, detect.err () function detects genotyping errors. This function calculates the error
LOD score for each individual at each marker using Lincoln and Lander (1992) approach; large scores
show likely genotyping errors. Here, the qtl package (Broman et al., 2003) is used for identification of
genotyping errors, where the output gives a list of genotypes that might be in error, when the error
LOD scores are smaller than 4 they can probably be ignored (Broman, 2009). This function supports
doubled haploid (DH), backcross (BC), non-advanced recombinant inbred line population with n
generations of selfing (RILn) and advanced RIL (ARIL) population types.

The cal.pos() function calculates the genetic distance for diploid populations. It uses the qtl
package to calculate genetic distance using different distance functions. The netgwas2cross() func-
tion converts the map object to a cross object from qtl package, and vice versa using the function
cross2netgwas(). These two functions make netgwas flexible with respect to further genetic investi-
gation using qtl package. Furthermore, cross objects from the qtl package can also be analyzed using
netgwas package.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

28

partial correlation matrix

|partial corr|
— >=090
- 0.90-0.65
————— 065-0.35
- 035-0.10
0.10-0.00

(a) (b)

Figure 4: Short- and long-range linkage disequilibrium networks between 90 markers across the
A thaliana genome. (a) Each color corresponds to a different chromosome: yellow, white, orange, gray,
and blue represent chromosomes 1 to 5, respectively. Different edge colors show positive — and
negative — values of partial correlations. (b) Plots simultaneous marker-marker interactions across
the genome. Values represent partial correlations.

Genome wide association studies

Linkage disequilibrium networks in A.thaliana. We use the dataset CviCol to learn conditionally
dependent short- and long-range LD structure in A.thaliana genome. The aim here is to identify
associations between distant markers that are due to epistatic selection rather than gametic linkage.

data(CviCol)

set.seed(2)

out <- netsnp(CviCol)

sel <- selectnet(out)

Steps to visualize the selected network

cl <- c(rep("palegoldenrod”, 24), rep("white”,14), rep("tan1",17),

rep("gray”,16), rep(”"lightblue2”,19))

plot(sel, vis= "parcor.network”, sign.edg = TRUE, layout = NULL, vertex.color = cl)
plot(sel, vis= "image.parcorMatrix"”, xlab="markers"”, ylab="markers")

In Fig 4, our method finds that in Cvi x Col population some trans-chromosomal regions con-
ditionally interact. In particular, the bottom of chromosome 1 and the top of chromosome 5 do not
segregate independently of each other. Besides this, interactions between the tops of chromosomes 1
and 3 involve pairs of loci that also do not segregate independently. Bikard et al. (2009) studied this
genotype data extensively in their lab. They reported that the first interaction (between chr 1 and 5)
that our method finds causes arrested embryo development, resulting in seed abortion, and the latter
interaction (between chr 1 and 3) causes root growth impairment. In addition to these two regions, we
have discovered a few other trans-chromosomal interactions in the A.thaliana genome. In particular,
two adjacent markers, c1-13869 and ¢1-13926 in the middle of the chromosome 1, interact epistatically
with the adjacent markers, c3-18180 and ¢3-20729, at the bottom of chromosome 3. The sign of their
conditional correlation score is negative, indicating strong negative epistatic selection in F, population.
These markers therefore seem evolutionarily favored to come from the two different Fy grandparents.
This suggests some positive effect of the interbreeding of the two parental lines: it could be that the
paternal-maternal combination at these two loci protects against some underlying disorder, or that it
actively enhances the fitness of the resulting progeny. Regarding the computational time, this example
was run in 4 minutes on an Intel i7 laptop with 16 GB RAM.

Genotype-phenotype networks in A.thaliana. We apply our algorithm to the model plant Arabidop-
sis thaliana dataset, where the accession Kend-L (Kendalville-Lehle; Lehle-WT-16-03) is crossed with

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

29

Figure 5: Genotype—phenotype association networks of A.thaliana. This shows an example of multi-
loci multi-trait genome-wide association analysis. Red nodes show phenotypes; white, yellow, gray,
blue, and brown colors stand for chromosomes 1 to 5, respectively. Phenotypes measured in long
days (TLN-LD, RLN-LD, DTF-LD) conditionally dependent on a region on top of chromosome 5.
Phenotypes measured in short days (CLN-SD, RLN-SD, DTF-SD) are linked mostly to chromosomes 1,
2,and 5.

the common lab strain Col (Columbia) (Balasubramanian et al., 2009). The resulting lines were taken
through six rounds of selfing without any intentional selection. The resulting 282 KendC (Kend-L
x Col) lines were genotyped at 181 markers. Flowering time was measured for 197 lines of this
population both in long days, which promote rapid flowering in many A. thaliana strains, and in short
days. Flowering time was measured using days to flowering (DTF) as well as the total number of
leaves (TLN), partitioned into rosette and cauline leaves. In total, eight phenotypes were measured,
namely days to flowering (DTF), cauline leaf number (CLN), rosette leaf number (RLN), and total
leaf number (TLN) in long days (LD), and DTF, CLN, RLN, and TLN in short days (SD). Thus, the
final dataset consists of 197 observations for 189 variables (8 phenotypes and 181 genotypes - SNP
markers).

data(thaliana)
head(thaliana, n = 3)

DTF_LD CLN_LD ... DTF_SD CLN_SD RLN_SD TLN_SD snp1 ... snp181
[1,1 17.58 3.42 ... 56.92 12.42 50.92 63.33 2 ... 2
[2,] 17.00 2.58 ... 53.33 8.42 41.58 50.00 o ... 2
[3,] 27.50 8.08 ... 69.17 15.17 66.92 82.08 2 ... Q

set.seed(12)
out <- netphenogeno(thaliana)
sel <- selectnet(out)

Steps to visualize the network
cl <- c(rep("red”, 8), rep("white”,56), rep("yellow2",631),
rep("gray”,33), rep("lightblue2”,31), rep("salmon2",30))

id <- ¢("DTF_LD","”CLN_LD",”RLN_LD",”TLN_LD","DTF_SD","CLN_SD",
"RLN_SD", "TLN_SD","snpl16", "snp49","snp50", "snp6@","snp83",
"snp86", "snp113”,"snp150", "snp155”,"snp159","snp156",
"snp161"”,"snp158", "snp160@","snp162", "snp181")

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

30

plot(sel, vis= "interactive”, n.mem= c(8,56,31,33,31,30),
vertex.color= cl, label.vertex= "some"”, sel.nod.label= id,
edge.color= "gray"”, w.btw= 200, w.within= 20, tk.width = 900,
tk.height = 900)

The A.thaliana genotype-phenotype network in Fig 5 reveals those SNP markers that are directly affect
flowering phenotypes. For example, markers snp158, snp159, snpl60, and snp162 on chromosome
5 with the assay IDs 44607857, 44606159, 44607242, and 44607209 regulate the phenotype days to
flowering (DTF-LD). For the same phenotype, Balasubramanian et al. (2009) have reported a wider
range of markers (from snp158 to snpl62 with the assay ID 44607857 to 44607209) that associate
with DTF-LD. Our obtained smaller markers set is the result of controlling for all possible effects.
In particular, the proposed method finds that snp161 does not show any association with DTF-LD
after adjustments, but snp159, snp160 and snp162 on chromosome 5 do show an association with
DTF-LD, even after taking into account the effect of all other SNPs and phenotypes. Therefore, the
netphenogeno() function reduces the number of candidate SNPs and gives a small set of much more
plausible ones. Moreover, Balasubramanian et al. (2009) have reported that the TLN-SD phenotype is
associated with a region in chromosome 5, whereas our proposed method do not find any direct effect
between TLN-SD and the region in chromosome 5, only through the DTE-SD phenotype. Furthermore,
associations between phenotype CLN-LD and markers snp49 and snp50 have remained undetected in
the previous studies of this population. This example was run in about 4 minutes on an Intel i7 laptop
with 16 GB RAM.

In short, unlike traditional QTL analysis, the proposed method goes beyond the bivariate testing
of individual SNPs, which only look at marginal association, instead it uses a multivariate approach
which includes all the SNPs and phenotypes simultaneously.

Genotype-phenotype networks in maize. The high-dimensional genotypic and phenotypic maize
data used in this paper were downloaded from www.panzea.org. The data comprised three datasets:
a genotype data, and two phenotype datasets from the flowering time (Buckler et al., 2009) and the
leaf architecture (Tian et al., 2011). The SNP data included 1106 genetic markers for 194 diverse
maize recombinant inbred lines, which were derived from a cross between B73 and B97 from the
maize Nested Association Mapping (NAM) populations. The 194 maize lines were scored for their
flowering time using days to silking (DS), days to anthesis (DA), and the anthesis-silking interval (ASI)
phenotypes. The leaf related traits such as upper leaf angle (ULA), leaf length (LL) and leaf width
(LW) were also measured for all 194 maize lines.

Fig 6 reconstructs genotype—phenotype networks between the 6 phenotypes and 1106 SNPs. Five
SNPs on chromosome 1 (from 140 until i144) directly affect both DA and DS traits (related to flowering
time) after removing the effect of other variables. Moreover, a few SNPs on chromosome 1 (from i60
until i64) and on the beginning of chromosome 2 (1188 until i191) regulate DS. Two SNP markers (i762
and i763) on chromosome 7 affect DA, and chromosome 8 (i877 until i883) regulates ASI phenotype,
after adjustments. The two leaf related traits, ULA and LL, are linked together, but not to the LW.
Three SNPs 11064, 11062, and 11080 are yet conditionally associated to both LL and LW traits after
adjustments. Chromosomes 4 and 6 do not have any role in the studied flowering time and leaf
architecture traits.

Simulations and computational timing

The package generates simulated data in two ways

1. simgeno() function simulates genotype data based on a Gaussian copula graphical model.
An inbred genotype data can be generated for p number of SNP markers, for n number of
individuals, for k genotype states in a g-ploid species where g represents chromosome copy
number (or ploidy level of chromosomes). The simulated data mimic a genome-like graph
structure: First, there are g linkage groups (each of which represents a chromosome); then
within each linkage group adjacent markers, adjacent, are linked via an edge as a result of
genetic linkage. Also, with probability alpha a pair of non-adjacent markers in the same
chromosome are given an edge. Inter-chromosomal edges are simulated with probability beta.
These links represent long-range linkage disequilibriums. The corresponding positive definite
precision matrix © has a zero pattern corresponding to the non-present edges. The underlying
variable vector Z is simulated from either a multivariate normal distribution, Np (0, o1),ora
multivariate t-distribution with degrees of freedom d and covariance matrix @ . We generate
the genotype marginals using random cutoff-points from a uniform distribution, and partition
the latent space into k states. The function can be called with the following arguments

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

www.panzea.org

CONTRIBUTED RESEARCH ARTICLE

31

Figure 6: Genotype—phenotype networks for 1106 SNP markers and 6 phenotypes in mazie NAM
population, where flowering traits (DS, DA, ASI) are shown in @ and leaf traits (LW, LL, ULA) are in @,
respectively. SNPs are shown on chromosome 1 (snp1 - snp175) as O, chromosome 2 (snp176 - snp302)
as @, chromosome 3 (snp303 - snp432) as ®, chromosome 4 (snp433 - snp543) as ®, chromosome 5
(snp544 - snp682) as O, chromosome 6 (snp683 - snp760) as ®, chromosome 7 (snp761 - snp838) as O,
chromosome 8 (snp839 - snp944) as O, chromosome 9 (snp945 - snp1029) as ©, and chromosome 10
(snp1030 - snp1106) as ©. Blue edges show negative and red positive partial correlations.

set.seed(2)
sim <- simgeno(p = 90, n = 200, k = 3, g = 5, adjacent = 3, alpha = 0.1,
beta = 0.02, con.dist = "Mnorm”, d = NULL, vis = TRUE)

The output of the example is shown in Figure 7.

2. simRIL() function generates diploid recombinant inbred lines (RILs) using recombination
fraction and a CentiMorgan position of markers across the chromosomes. The function can be
called with the following arguments

set.seed(2)

ril <- simRIL(g = 5, d = 25, n = 200, cM = 100, selfing = 2)
rilsdatal1:3,]

M1.1 M2.1 M3.1 M4.1 M5.1 M6.1 M7.1 M8.1 ... M24.5 M25.5
ind1 (4] 0 Q 0] Q Q Q . Q 0
ind2 2 1 1 1 1 1 2 2 . 1 1
ind3 1 2 2 2 2 2 2 1 Q 0
ril$map
chr marker cM
1 1 M1.1 0.000000
2 1 M2.1 4.166667

124 5 M24.5 95.833333
125 5 M25.5 100.00000

where g and d represent the number of chromosomes and the number of markers in each
chromosome, respectively. The number of sample size can be specified by n. The arguments cM
and selfing show the length of chromosome based on centiMorgan position and the number of
selfing in the RIL population, respectively.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

32

Graph structure Adjacency Matrix

% o 2]
o
o8 ? 002 Q
B >y o ° - .
° o f %o <
0 o]
oo P %% E
o

R, L]
o e
o
09
o -] -
° .
o .. N
oo)
P et)
.... --.-

Figure 7: An example simulated (genotype) data using the function simgeno(). (left) Each node
presents an SNP marker and the colors correspond to a given number of linkage groups, (right) the
correspondent adjacency matrix. The connectivity between the pairs of non-adjacent markers in a
same linkage group can be controlled via the argument alpha and the inter-chromosomal edges with
beta.

markers

Computational timing. Fig 8 shows computational timing of netgwas for different number of
variables p and different sample sizes n. In this figure, we report computational timing in minutes
for the genetic map construction, which includes the graph estimation procedure and the ordering
algorithm. Note that the other two functions netsnp() and nethenogeno() include only the graph
estimation, so we have only considered netmap() function to cover the computational aspect of the
netgwas package. For the simulated data, we generated p = 1000, 2000, 3500, 5000 markers using
simRIL function, which evenly are distributed across 10 chromosomes, for different individuals
n = 100,200, 300. Fig 8 shows that computational time is not affected by sample size n and is roughly
proportional to p3, as long as p x max{n, p} elements can be stored in memory. The reported timing
is based on the result from a computer with an Intel Core i7-6700 CPU and 32GB RAM.

5 Conclusion and future directions

The netgwas package implements the methods developed by Behrouzi and Wit (2019b) and Behrouzi
and Wit (2019a) to (i) construct linkage maps for bi-parental species with any ploidy level, namely
diploid (2 sets), triploid (3 sets), tetraploid (4 sets) and so on; (ii) explore high-dimensional short- and
long-range linkage disequilibrium (LD) networks among pairs of SNP markers while controlling for
the effect of other SNPs. The inferred LD networks reveal epistatic interactions across a genome when
viability of the particular genetic recombination of the parental lines is considered as phenotype; (iii)
infer genotype-phenotype networks from multi-loci multi-trait data, where it measures the pairwise
associations with adjusting for the effect of other markers and phenotypes. Moreover, it detects
markers that directly are responsible for that phenotype (disease), and reports the strength of their
associations in terms of partial correlations. In addition, the package is able to reconstruct conditional
dependence networks among SNPs, phenotypes, and environmental variables.

The implemented method is based on copula graphical models that enables us to infer conditional
independence networks from incomplete non-Gaussian data, ordinal data, and mixed ordinal-and-
continuous data. The package uses a parallelization strategy on multi-core processors to speed-up
computations for large datasets. In addition, the code is memory-optimized, using the sparse matrix
data structure when estimating and storing full regularization paths for large data sets. The netgwas
package contains several functions for simulation and interactive network visualization. We note that
reproducibility of our results and all the example data used to illustrate the package is supported by
the open-source R package netgwas.

The netgwas and qtl2 (Broman et al., 2019) software are for high-dimensional genotype and
phenotype data. The qtl2 performs QTL analysis in multi-parental populations solely by genome scans
with single-QTL models. The function netphnogeno in netgwas uses a multivariate approach to detect
conditional interactions networks between genotypes and phenotypes. It uses network models to
detect multiple causal SNPs in a QTL region in bi-parental populations, while adjusting for the effect
of remaining QTLs. One of the primary directions for the future work is to extend our methodology for
multi-parental map construction and perform their QTL analysis. This would require the calculation
of genotype probabilities using hidden Markov models (Broman and Sen, 2009; Zheng et al., 2018)
before implementing the proposed Gaussian copula graphical model.

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

33

50 100 200

Minutes
2
I

10
1

T T T T
1000 2000 3500 5000

Total number of markers
Figure 8: The computational time of linkage map construction in netgwas for various simulated data
with different combinations of individuals # and the number of markers p, where they were distributed
evenly across 10 linkage groups. This shows that the computational time is roughly proportional to p?,
as long as p x max{n, p} elements can be stored in memory.

We will maintain and develop the package further. In the future we will include time component
into our model where the interest is to infer dynamic networks for longitudinal (phenotyping) data
and to learn changes of networks over time. Implementation of such model is desirable in many
fields, particularly in plant breeding where the main goal is to optimize yield using high-throughput
phenotypic data.

Acknowledgment

The authors are grateful to the associated editor and reviewers for their valuable comments that
improved the manuscript and the R package.

Bibliography

S. Balasubramanian, C. Schwartz, A. Singh, N. Warthmann, M. C. Kim, J. N. Maloof, O. Loudet,
G. T. Trainer, T. Dabi, J. O. Borevitz, et al. Qtl mapping in new arabidopsis thaliana advanced
intercross-recombinant inbred lines. PLoS One, 4(2):e4318, 2009. [p29, 30]

D. Bates, M. Maechler, and M. Jagan. Matrix: Sparse and Dense Matrix Classes and Methods, 2022. URL
https://CRAN.R-project.org/package=Matrix. R package version 1.4-1. [p25]

P. Behrouzi and E. C. Wit. Detecting epistatic selection with partially observed genotype data by using
copula graphical models. Journal of the Royal Statistical Society: Series C (Applied Statistics), 68(1):
141-160, 2019a. [p19, 21, 22, 32]

P. Behrouzi and E. C. Wit. De novo construction of polyploid linkage maps using discrete graphical
models. Bioinformatics, 35(7):1083-1093, 2019b. [p18, 27, 32]

P. Behrouzi, F. Abegaz, and E. C. Wit. Dynamic chain graph models for ordinal time series data. ArXiv
preprint ArXiv:1805.09840, 2018. [p18]

D. Bikard, D. Patel, C. Le Mette, V. Giorgi, C. Camilleri, M. J. Bennett, and O. Loudet. Divergent
evolution of duplicate genes leads to genetic incompatibilities within a. thaliana. Science, 323(5914):
623-626, 2009. [p28]

P. M. Bourke, G. van Geest, R. E. Voorrips, J. Jansen, T. Kranenburg, A. Shahin, R. G. Visser, P. Arens,
M. J. Smulders, and C. Maliepaard. polymapr-linkage analysis and genetic map construction from
f1 populations of outcrossing polyploids. Bioinformatics, 1:7,2018. [p18]

K. W. Broman. A brief tour of r/qtl. Disponivel http://fwww. rqtl. org/tutorials/rqtltour. pdf, 2009. [p27]

K. W. Broman and S. Sen. A Guide to QTL Mapping with R/qtl, volume 46. Springer, 2009. [p32]

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=Matrix

CONTRIBUTED RESEARCH ARTICLE

34

K. W. Broman, H. Wu, S. Sen, and G. A. Churchill. R/qtl: Qtl mapping in experimental crosses.
Bioinformatics, 19(7):889-890, 2003. [p18, 27]

K. W. Broman, D. M. Gatti, P. Simecek, N. A. Furlotte, P. Prins, 5. Sen, B. S. Yandell, and G. A. Churchill.
R/ qtl2: software for mapping quantitative trait loci with high-dimensional data and multiparent
populations. Genetics, 211(2):495-502, 2019. [p18, 32]

E. S. Buckler, J. B. Holland, P. J. Bradbury, C. B. Acharya, P. J. Brown, C. Browne, E. Ersoz, S. Flint-
Garcia, A. Garcia, J. C. Glaubitz, et al. The genetic architecture of maize flowering time. Science, 325
(5941):714-718, 2009. [p30]

W. S. Bush and]. H. Moore. Chapter 11: Genome-wide association studies. PLoS Computational Biology,
8(12):e1002822, 2012. [p19]

A.]. Butte, P. Tamayo, D. Slonim, T. R. Golub, and I. S. Kohane. Discovering functional relationships
between rna expression and chemotherapeutic susceptibility using relevance networks. Proceedings
of the National Academy of Sciences, 97(22):12182-12186, 2000. [p25]

L. Buzdugan, M. Kalisch, A. Navarro, D. Schunk, E. Fehr, and P. Bithlmann. Assessing statistical
significance in multivariable genome wide association analysis. Bioinformatics, 32(13):1990-2000,
2016. [p19]

G. M. Clarke, C. A. Anderson, F. H. Pettersson, L. R. Cardon, A. P. Morris, and K. T. Zondervan. Basic
statistical analysis in genetic case-control studies. Nature Protocols, 6(2):121-133, 2011. [p19]

E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In proceedings of the
1969 24th national conference, pages 157-172. ACM, 1969. [p22, 23]

A. Dobra, C. Hans, B. Jones, J. R. Nevins, G. Yao, and M. West. Sparse graphical models for exploring
gene expression data. Journal of Multivariate Analysis, 90(1):196-212, 2004. [p18]

D. Edwards, G. C. De Abreu, and R. Labouriau. Selecting high-dimensional mixed graphical models
using minimal aic or bic forests. BMC Bioinformatics, 11(1):1-13, 2010. [p18]

R. Foygel and M. Drton. Extended bayesian information criteria for gaussian graphical models.
Advances in neural information processing systems, 23, 2010. [p21]

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso.
Biostatistics, 9(3):432-441, 2008. [p21]

N. Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303(5659):
799-805, 2004. [p18]

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6):721-741, 1984. [p21]

F. Grandke, S. Ranganathan, N. van Bers,]. R. de Haan, and D. Metzler. Pergola: Fast and deterministic
linkage mapping of polyploids. BMC Bioinformatics, 18(1):12, 2017. [p18]

P.J. Green. On use of the em for penalized likelihood estimation. Journal of the Royal Statistical Society.
Series B (Methodological), pages 443-452, 1990. [p21]

C. A. Hackett, B. Boskamp, A. Vogogias, K. F. Preedy, and 1. Milne. Tetraploidsnpmap: software for
linkage analysis and qtl mapping in autotetraploid populations using snp dosage data. Journal of
Heredity, 108(4):438-442, 2017. [p18]

A.]. Hartemink, D. K. Gifford, T. S. Jaakkola, and R. A. Young. Using graphical models and genomic
expression data to statistically validate models of genetic regulatory networks. In Biocomputing
2001, pages 422-433. World Scientific, 2000. [p18]

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. 1970.
[p21]

Q. He and D.-Y. Lin. A variable selection method for genome-wide association studies. Bioinformatics,
27(1):1-8, 2010. [p19]

P. W. Hedrick. Gametic disequilibrium measures: proceed with caution. Genetics, 117(2):331-341, 1987.
[p19]

P. D. Hoff. Extending the rank likelihood for semiparametric copula estimation. The Annals of Applied
Statistics, 1(1):265-283, 2007. [p19]

The R Journal Vol. 14 /4, December 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

35

C.J. Hoggart, J. C. Whittaker, M. De Iorio, and D. J. Balding. Simultaneous analysis of all snps in
genome-wide and re-sequencing association studies. PLoS Genetics, 4(7):€1000130, 2008. [p19]

C.-]. Hsieh, I. S. Dhillon, P. K. Ravikumar, and M. A. Sustik. Sparse inverse covariance matrix
estimation using quadratic approximation. In Advances in Neural Information Processing Systems,
pages 2330-2338, 2011. [p21]

B. E. Huang, R. Shah, A. W. George, et al. dlmap: An r package for mixed model qtl and association
analysis. Journal of Statistical Software, 50(6):1-22, 2012. [p18]

M. I. Jordan. Graphical models. Statistical Science, 19(1):140-155, 2004. [p18]

A. S.Kaler, J. D. Gillman, T. Beissinger, and L. C. Purcell. Comparing different statistical models and
multiple testing corrections for association mapping in soybean and maize. Frontiers in Plant Science,
10:1794, 2020. [p19]

H. M. Kang, N. A. Zaitlen, C. M. Wad