
The Journal
Volume 12/2, December 2020

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial . 4

Contributed Research Articles

The biglasso Package: A Memory- and Computation-Efficient Solver for Lasso Model
Fitting with Big Data in R . 6

Six Years of Shiny in Research - Collaborative Development of Web Tools in R 20

A Fast and Scalable Implementation Method for Competing Risks Data with the R
Package fastcmprsk . 43

ordinalClust: An R Package to Analyze Ordinal Data 61

KSPM: A Package For Kernel Semi-Parametric Models 82

Comparing Multiple Survival Functions with Crossing Hazards in R 107

A Unified Algorithm for the Non-Convex Penalized Estimation: The ncpen Package . 120

TULIP: A Toolbox for Linear Discriminant Analysis with Penalties 134

fitzRoy - An R Package to Encourage Reproducible Sports Analysis. 155

Assembling Pharmacometric Datasets in R - The puzzle Package 163

RNGforGPD: An R Package for Generation of Univariate and Multivariate General-
ized Poisson Data . 173

Testing the Equality of Normal Distributed and Independent Groups’ Means Under
Unequal Variances by doex Package . 189

AQuadtree: an R Package for Quadtree Anonymization of Point Data. 209

miWQS: Multiple Imputation Using Weighted Quantile Sum Regression 226

User-Specified General-to-Specific and Indicator Saturation Methods 251

Kuhn-Tucker and Multiple Discrete-Continuous Extreme Value Model Estimation and
Simulation in R: The rmdcev Package . 266

NTS: An R Package for Nonlinear Time Series Analysis 293

Species Distribution Modeling using Spatial Point Processes: a Case Study of Sloth
Occurrence in Costa Rica . 311

A Graphical EDA Tool with ggplot2: brinton 322

MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of
Truncated Basis Functions . 343

Analyzing Basket Trials under Multisource Exchangeability Assumptions 360

NEWS AND NOTES 2

OpenLand: Software for Quantitative Analysis and Visualization of Land Use and
Cover Change . 373

FarmTest: An R Package for Factor-Adjusted Robust Multiple Testing. 389

News and Notes

Changes in R 3.6–4.0 . 403

Changes on CRAN . 408

News from the Bioconductor Project . 411

R Foundation News . 412

News from the Forwards Taskforce . 414

e-Rum2020: how we turned a physical conference into a successful virtual event . . . 417

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

NEWS AND NOTES 3

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications

regarding this publication should be addressed to the
editors. All articles are licensed under the Creative

Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Michael Kane, Yale University, USA

Executive editors:
Dianne Cook, Monash University, Australia

Catherine Hurley, Maynooth University, Ireland
Simon Urbanek, University of Auckland, New Zealand

R Journal Homepage:
http://journal.r-project.org/

Email of editors and editorial board:
r-journal@R-project.org

The R Journal is indexed/abstracted by EBSCO, DOAJ,
Thomson Reuters.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
http://journal.r-project.org/

CONTRIBUTED RESEARCH ARTICLE 4

Editorial
by Michael J. Kane

On behalf of the editorial board, I am pleased to present Volume 12 Issue 2 of the R Journal.
This is my third and final issue as the Editor-in-Chief. In the last year, we have made some
substantial changes to the journal that I believe will continue to increase our capacity to
support the growing data science and computational statistics communities, and continue to
raise the visibility of the journal. In the last few months we recruited 10 Associate Editors and
we are continuing the recruitment process. I’d like to publicly welcome our new Associate
Editors, and thank each of them for joining us, and for their contributions thus far to the
journal.

We have also been making substantial improvements to the R Journal infrastructure,
allowing us to more efficiently usher manuscripts through the review process. This effort
has been made possible through an investment by the R Consortium. Thanks very much
to Di Cook, Mitchell O’Hara-Wild, and Stephanie Kobakian for the new capabilities - they
have made my job a lot easier.

I’d also like to welcome Di as the new Editor-in-Chief of the journal. She has been an
instrumental member of the editorial team, she has provided me with insight and guidance
with regard to the journal. I look forward to seeing how the journal progresses under her
direction.

In this issue

News from the R Foundation and CRAN are included in this issue along an update on the
e-Rum2020 conference that was held earlier. In addition, this issue features 23 contributed
research articles that have been categorized below.

Papers focusing on health and clinical trial data

• A Fast and Scalable Implementation Method for Competing Risks Data with the R
Package fastcmprsk

• Assembling Pharmacometric Datasets in R - The puzzle Package

• Analyzing Basket Trials under Multisource Exchangeability Assumptions

• Comparing multiple survival functions with crossing hazards in R

Supervised and unsupervised model fitting

• The biglasso Package: A Memory- and Computation-Efficient Solver for Lasso Model
Fitting with Big Data in R

• User-Specified General-to-Specific and Indicator Saturation Methods

• miWQS: Multiple Imputation Using Weighted Quantile Sum Regression

• NTS: An R Package for Nonlinear Time Series Analysis

• ordinalClust: An R Package to Analyse Ordinal Data

• TULIP: A Toolbox for Linear Discriminant Analysis with Penalties

• A Unified Algorithm for the Non-Convex Penalized Estimation: The ncpen Package

• KSPM: A Package For Kernel Semi-Parametric Models

Probability distributions and processes

• Testing the Equality of Normally Distributed Groups’ Means Under Unequal Variances
by doex Package

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 5

• MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of
Truncated Basis Functions

• Kuhn-Tucker and Multiple Discrete-Continuous Extreme Value Model Estimation and
Simulation in R: The rmdcev Package

• Species Distribution Modeling using Spatial Point Processes: a Case Study of Sloth
Occurrence in Costa Rica

• AQuadtree: an R Package for Quadtree Anonymization of Point Data

• RNGforGPD: An R Package for Generation of Univariate and Multivariate General-
ized Poisson Data

• FarmTest: An R Package for Factor-Adjusted Robust Multiple Testing

Visualization, reproducibilty, and collaboration

• A Graphical EDA Tool with ggplot2: brinton

• Six Years of Shiny in Research; Collaborative Development of Web Tools in R

• fitzRoy: An R Package to Encourage Reproducible Sports Analysis

• OpenLand: Software for Quantitative Analysis and Visualization of Land Use and
Cover Change

Michael J. Kane
michael.kane@r-project.org
Yale University

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:michael.kane@r-project.org

CONTRIBUTED RESEARCH ARTICLE 6

The biglasso Package: A Memory- and
Computation-Efficient Solver for Lasso
Model Fitting with Big Data in R
by Yaohui Zeng and Patrick Breheny

Abstract Penalized regression models such as the lasso have been extensively applied to analyzing
high-dimensional data sets. However, due to memory limitations, existing R packages like glmnet
and ncvreg are not capable of fitting lasso-type models for ultrahigh-dimensional, multi-gigabyte
data sets that are increasingly seen in many areas such as genetics, genomics, biomedical imaging,
and high-frequency finance. In this research, we implement an R package called biglasso that tackles
this challenge. biglasso utilizes memory-mapped files to store the massive data on the disk, only
reading data into memory when necessary during model fitting, and is thus able to handle out-of-
core computation seamlessly. Moreover, it’s equipped with newly proposed, more efficient feature
screening rules, which substantially accelerate the computation. Benchmarking experiments show
that our biglasso package, as compared to existing popular ones like glmnet, is much more memory-
and computation-efficient. We further analyze a 36 GB simulated GWAS data set on a laptop with only
16 GB RAM to demonstrate the out-of-core computation capability of biglasso in analyzing massive
data sets that cannot be accommodated by existing R packages.

Introduction

The lasso model proposed by Tibshirani (1996) has fundamentally reshaped the landscape of high-
dimensional statistical research. Since its original proposal, the lasso has attracted extensive studies
with a wide range of applications to many areas, such as signal processing (Angelosante and Giannakis,
2009), gene expression data analysis (Huang and Pan, 2003), face recognition (Wright et al., 2009), text
mining (Li et al., 2015) and so on. The great success of the lasso has made it one of the most popular
tools in statistical and machine-learning practice.

Recent years have seen the evolving era of Big Data where ultrahigh-dimensional, large-scale data
sets are increasingly seen in many areas such as genetics, genomics, biomedical imaging, social media
analysis, and high-frequency finance (Fan et al., 2014). Such data sets pose a challenge to solving the
lasso efficiently in general, and for R specifically, since R is not naturally well-suited for analyzing
large-scale data sets (Kane et al., 2013). Thus, there is a clear need for scalable software for fitting
lasso-type models designed to meet the needs of big data.

In this project, we develop an R package, biglasso (Zeng and Breheny, 2016), to extend lasso model
fitting to Big Data in R. Specifically, sparse linear and logistic regression models with lasso and elastic
net penalties are implemented. The most notable features of biglasso include:

• It utilizes memory-mapped files to store the massive data on the disk, only loading data into
memory when necessary during model fitting. Consequently, it’s able to seamlessly handle
out-of-core computation.

• It is built upon pathwise coordinate descent algorithm and “warm start” strategy, which has
been proven to be one of fastest approaches to solving the lasso (Friedman et al., 2010).

• We develop new, hybrid feature screening rules that outperform state-of-the-art screening rules
such as the sequential strong rule (SSR) (Tibshirani et al., 2012), and the sequential EDPP rule
(SEDPP) (Wang et al., 2015) with additional 1.5x to 4x speedup.

• The implementation is designed to be as memory-efficient as possible by eliminating extra copies
of the data created by other R packages, making biglasso at least 2x more memory-efficient
than glmnet.

• The underlying computation is implemented in C++, and parallel computing with OpenMP is
also supported.

The methodological innovation and well-designed implementation have made biglasso a much
more memory- and computation-efficient and highly scalable lasso solver, as compared to existing
popular R packages like glmnet (Friedman et al., 2010), ncvreg (Breheny and Huang, 2011), and
picasso (Ge et al., 2015). More importantly, to the best of our knowledge, biglasso is the first R
package that enables the user to fit lasso models with data sets that are larger than available RAM,
thus allowing for powerful big data analysis on an ordinary laptop.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=biglasso
https://CRAN.R-project.org/package=picasso

CONTRIBUTED RESEARCH ARTICLE 7

Method

Memory mapping

Memory mapping (Bovet and Cesati, 2005) is a technique that maps a data file into the virtual memory
space so that the data on the disk can be accessed as if they were in the main memory. Technically,
when the program starts, the operating system (OS) will cache the data into RAM. Once the data are
in RAM, the computation is at the standard in-memory speed. If the program requests more data after
the memory is fully occupied, which is inevitable in the data-larger-than-RAM case, the OS will move
data that is not currently needed out of RAM to create space for loading in new data. This is called the
page-in-page-out procedure, and is automatically handled by the OS.

The memory mapping technique is commonly used in modern operating systems such as Windows
and Unix-like systems due to several advantages:

(1) it provides faster file read/write than traditional I/O methods since data-copy from kernel to user
buffer is not needed due to page caches;

(2) it allows random access to the data as if it were in the main memory even though it physically
resides on the disk;

(3) it supports concurrent sharing in that multiple processes can access the same memory-mapped
data file simultaneously, making parallel computing easy to implement in data-larger-than-RAM
cases;

(4) it enables out-of-core computing thanks to the automatic page-in-page-out procedure.

We refer the readers to Rao et al. (2010), Lin et al. (2014), and Bovet and Cesati (2005) for detailed
techniques and some successful applications of memory mapping.

To take advantage of memory mapping, biglasso creates memory-mapped big matrix objects
based upon the R package bigmemory (Kane et al., 2013), which uses the Boost C++ library and
implements memory-mapped big matrix objects that can be directly used in R. Then at the C++ level,
biglasso uses the C++ library of bigmemory for underlying computation and model fitting.

Efficient feature screening

Another important contribution of biglasso is our newly developed hybrid safe-strong rule, named
SSR-BEDPP, which substantially outperforms existing state-of-the-art ones in terms of the overall
computing time of obtaining the lasso solution path. Here, we describe the main idea of hybrid rules;
for the technical details, see Zeng et al. (2021).

Feature screening aims to identify and discard inactive features (i.e., those with zero coefficients)
from the lasso optimization. It often leads to dramatic dimension reduction and hence significant
computation savings. However, these savings will be negated if the screening rule itself is too
complicated to execute. Therefore, an efficient screening rule needs to be powerful enough to discard
a large portion of features and also relatively simple to compute.

Existing screening rules for the lasso can be divided into two types: (1) heuristic rules, such as
the sequential strong rule (SSR) (Tibshirani et al., 2012), and (2) safe rules, such as the basic and the
sequential EDPP rules (Wang et al., 2015), denoted here as BEDPP and SEDPP respectively. Safe rules,
unlike heuristic ones, are guaranteed to never incorrectly screen a feature with a nonzero coefficient.
Figure 1 compares the power of the three rules in discarding features. SSR, though most powerful
among the three, requires a cumbersome post-convergence check to verify that it has not incorrectly
discarded an active feature. The SEDPP rule is both safe and powerful, but is inherently complicated
and time-consuming to evaluate. Finally, BEDPP is the least powerful, and discards virtually no
features when λ is smaller than 0.45 (in this case), but is both safe and involves minimal computational
burden.

The rule employed by biglasso, SSR-BEDPP, as its name indicates, combines SSR with the simple
yet safe BEDPP rule. The rationale is to alleviate the burden of post-convergence checking for strong
rules by not checking features that can be safely eliminated using BEDPP. This hybrid approach
leverages the advantages of each rule, and offers substantial gains in efficiency, especially when
solving the lasso for large values of λ.

Table 1 summarizes the complexities of the four rules when applied to solving the lasso along a
path of K values of λ for a data set with n instances and p features. SSR-BEDPP can be substantially
faster than the other three rules when BEDPP is effective. Furthermore, it is important to note that
SSR (with post-convergence checking) and SEDPP have to scan the entire feature matrix at every
value of λ, while SSR-BEDPP only needs to scan the features not discarded by BEDPP. This advantage

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=bigmemory

CONTRIBUTED RESEARCH ARTICLE 8

0.0

0.2

0.4

0.6

0.8

1.0

0.20.40.60.81.0

λ λmax

P
er

ce
nt

 o
f d

is
ca

rd
ed

 fe
at

ur
es

Rule

SSR

SEDPP

BEDPP

Figure 1: Percent of features discarded.

of SSR-BEDPP is particularly appealing in out-of-core computing, where fully scanning the feature
matrix requires disk access and therefore becomes the computational bottleneck of the procedure.

Rule Complexity

SSR O(npK)
SEDPP O(npK)
BEDPP O(np)

SSR-BEDPP O(n ∑K
k |Sk|))

Table 1: Complexity of computing screening rules along the entire path of K values of λ. |Sk| denotes
the cardinality of Sk, the safe set of features not discarded by BEDPP screening.

The hybrid screening idea is straightforward to extend to other lasso-type problems provided that
a corresponding safe rule exists. For the biglasso package, we also implemented a hybrid screening
rule, SSR-Slores, for lasso-penalized logistic regression by combining SSR with the so-called Slores
rule (Wang et al., 2014), a safe screening rule developed for sparse logistic regression.

Implementation

Memory-efficient design

In penalized regression models, the feature matrix X ∈ Rn×p is typically standardized to ensure that
the penalty is applied uniformly across features with different scales of measurement. In addition,
standardization contributes to faster convergence of the optimization algorithm. In existing R pack-
ages such as glmnet, ncvreg, and picasso, a standardized feature matrix X̃ is calculated and stored,
effectively doubling memory usage. This problem is compounded by cross-validation, where these
packages also calculate and store additional standardized and unstandardized copies of X for each
fold. This approach does not scale up well for big data.

To make the memory usage more efficient, biglasso doesn’t store X̃. Instead, it saves only the
means and standard deviations of the columns of X as two vectors, denoted as c and s. Then wherever
x̃ij is needed, it is retrieved by “cell-wise standardization”, i.e., x̃ij = (xij − cj)/sj. Additionally, the
estimated coefficient matrix is sparse-coded in C++ and R to save memory space.

Simplification of computations

Cell-wise standardization saves a great deal of memory space, but at the expense of computational
efficiency. To minimize this, biglasso uses a number of computational strategies to eliminate redundant
calculations.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 9

We first note that the computations related to X̃ during whole model fitting process are mainly of
three types, and all can be simplified so that naïve cell-wise standardization can be avoided:

(1) x̃>j x̃∗ = ∑i
xij−cj

sj

xi∗−c∗
s∗ = 1

sjs∗

(
∑i xijxi∗ − ncjc∗

)
;

(2) x̃>i y = ∑i
xij−cj

sj
yi =

1
sj

(
∑i xijyi − cj ∑i yi

)
;

(3) x̃>j r = ∑i
xij−cj

sj
ri =

1
sj

(
∑i xijri − cj ∑i ri

)
;

where x̃j is the jth column of X̃, x̃∗ is the column corresponding to λmax, y is the response vector, and
r ∈ Rn is current residual vector.

Type (1) and (2) are used only for initial feature screening, and require only one-time execution.
Type (3) occurs in both the coordinate descent algorithm and the post-convergence checking. Since
the coordinate descent algorithm is fast to converge and only iterates over features in the active set A
of nonzero coefficients, whose size is much smaller than p, the number of additional computations
this introduces is small. Moreover, we pre-compute and store ∑i ri, which saves a great deal of
computation during post-convergence checking since r does not change during this step. As a result,
our implementation of cell-wise standardization requires only O(p) additional operations compared
to storing the entire standardized matrix.

Scalable cross-validation

Cross-validation is integral to lasso modeling in practice, as it is by far the most common approach
to choosing λ. It requires splitting the data matrix X into training and test sub matrices, and fitting
the lasso model multiple times. This procedure is also memory-intensive, especially if performed in
parallel.

Existing lasso-fitting R packages split X using the “slicing operator” directly in R (e.g., X[1:1000,]).
This introduces a great deal of overhead and hence is quite slow when X is large. Worse, the training
and test sub-matrices must be saved into memory, as well as their standardized versions, all of which
result in considerable memory consumption.

In contrast, biglasso implements a much more memory-efficient cross-validation procedure that
avoids the above issues. The key design is that the main model-fitting R function allows a subset of
X, indicated by the row indices, as input. To cope with this design, all underlying C++ functions are
enabled to operate on a subset of X given a row-index vector is provided.

Consequently, instead of creating and storing sub-matrices, only the indices of the training/test sets
and the descriptor of X (essentially, an external pointer to X) are needed for parallel cross validation
thanks to the concurrency of memory-mapping. The net effect is that only one memory-mapped data
matrix X is needed for K-fold parallel cross-validation, whereas other packages need up to 2K copies
of X: a copy and a standardized copy for each fold.

Parallel computation

Another important feature of biglasso is its parallel computation capability. There are two types of
parallel computation implemented in biglasso.

At the C++ level, single model fitting (as opposed to cross validation) is parallelized with OpenMP.
Though the pathwise coordinate descent algorithm is inherently sequential and thus does not lend
itself to parallelization, several components of the algorithm (computing c and s, matrix-vector
multiplication, post-convergence checking, feature screening, etc.) do, and are parallel-enabled in
biglasso.

Parallelization can also be implemented at the R level to run cross-validation in parallel. This im-
plementation is straightforward and also implemented by ncvreg and glmnet. However, as mentioned
earlier, the parallel implementation of biglasso is much more memory- and computation-efficient by
avoiding extra copies and the overhead associated with copying data to parallel workers. Note that
when cross-validation is run in parallel in R, parallel computing at C++ level for single model-fitting
is disabled to avoid nested parallelization.

Benchmarking experiments

In this section, we demonstrate that our package biglasso (1.2-3) is considerably more efficient at
solving for lasso estimates than existing popular R packages glmnet (2.0-5), ncvreg (3.9-0), and picasso
(0.5-4). Here we focus on solving lasso-penalized linear and logistic regression, respectively, over the

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 10

entire path of 100 λ values which are equally spaced on the scale of λ/λmax from 0.1 to 1. To ensure
a fair comparison, we set the convergence thresholds to be equivalent across all four packages. All
experiments are conducted with 20 replications, and the average computing times (in seconds) are
reported. The benchmarking platform is a MacBook Pro with Intel Core i7 @ 2.3 GHz and 16 GB RAM.

Memory efficiency

To demonstrate the improved memory efficiency of biglasso compared to existing packages, we
simulate a feature matrix with dimensions 1, 000× 100, 000. The raw data is 0.75 GB, and stored on
the hard drive as an R data file and a memory-mapped file. We used Syrupy1 to measure the memory
used in RAM (i.e., the resident set size, RSS) every 1 second during lasso-penalized linear regression
model fitting by each of the packages.

The maximum RSS during the model fitting is reported in Table 2. In the single fit case, biglasso
consumes 0.84 GB memory in RAM, 50% of that used by glmnet and 22% of that used by picasso.
Note that the memory consumed by glmnet, ncvreg, and picasso are respectively 2.2x, 2.1x, and 5.1x
larger than the size of the raw data.

More strikingly, biglasso does not require additional memory to perform cross-validation, unlike
other packages. For serial 10-fold cross-validation, biglasso requires just 27% of the memory used by
glmnet and 23% of that used by ncvreg, making it 3.6x and 4.3x more memory-efficient than glmnet
and ncvreg, respectively.

The memory savings offered by biglasso would be even more significant if cross-validation
were conducted in parallel. However, measuring memory usage across parallel processes is not
straightforward and not implemented in Syrupy.

Package picasso* ncvreg glmnet biglasso

Single fit 3.84 1.60 1.67 0.84
10-fold CV (1 core) - 3.74 3.18 0.87
* Cross-validation is not implemented in picasso.

Table 2: The maximum RSS (in GB) for a single fit and 10 fold cross-validation (CV) with the raw data
of 0.75 GB.

Computational efficiency: Linear regression

Simulated data

We now show with simulated data that biglasso is more scalable in both n and p (i.e., number of
instances and features). We adopt the same model in Wang et al. (2015) to simulate data: y = Xβ+ 0.1ε,
where X and ε are i.i.d. sampled from N(0, 1). We consider two different cases: (1) Case 1: varying p.
We set n = 1, 000 and vary p from 1,000 to 20,000. We randomly select 20 true features, and sample
their coefficients from Unif[-1, 1]. After simulating X and β, we then generate y according to the true
model; (2) Case 2: varying n. We set p = 10, 000 and vary n from 200 to 20,000. β and y are generated
in the same way as in Case 1.

Figure 2 compares the mean computing time of solving the lasso over a sequence of 100 λ values
by the four packages. In all the settings, biglasso (1 core) is uniformly 2x faster than glmnet and
ncvreg (which overlap in the figure), and 2.5x faster than picasso. Moreover, the computing time of
biglasso can be further reduced by half via parallel-computation of 4 cores. Using 8 cores doesn’t help
due to the increased overhead of communication between cores.

Real data

In this section, we compare the performance of the packages using diverse real data sets: (1) Breast
cancer gene expression data2 (GENE); (2) MNIST handwritten image data (MNIST) (LeCun et al.,
1998); (3) Cardiac fibrosis genome-wide association study data (GWAS) (Breheny, 2016); and (4) Subset
of New York Times bag-of-words data (NYT) (Dheeru and Karra Taniskidou, 2017). Note that for
data sets MNIST and NYT, a different response vector is randomly sampled from a test set at each
replication.

1https://github.com/jeetsukumaran/Syrupy
2http://myweb.uiowa.edu/pbreheny/data/bcTCGA.html

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://github.com/jeetsukumaran/Syrupy
http://myweb.uiowa.edu/pbreheny/data/bcTCGA.html

CONTRIBUTED RESEARCH ARTICLE 11

0

5

10

15

20

25

0 50000 100000 150000 200000

Number of features

C
om

pu
tin

g
tim

e
(s

)

Package

picasso

ncvreg

glmnet

biglasso (1 core)

biglasso (2 cores)

biglasso (4 cores)

biglasso (8 cores)

(a) Varying p, n = 1, 000.

0

5

10

15

20

25

0 5000 10000 15000 20000
Number of observations

C
om

pu
tin

g
tim

e
(s

)

Package
picasso

ncvreg

glmnet

biglasso (1 core)

biglasso (2 cores)

biglasso (4 cores)

biglasso (8 cores)

(b) Varying n, p = 10, 000.

Figure 2: Mean computing time (in seconds) of solving the lasso over a sequence 100 λ values as a
function of p (Left) and n (Right).

The size of the feature matrices and the average computing times are summarized in Table 3. In all
four settings, biglasso was fastest at obtaining solutions, providing 2x to 3.8x speedup compared to
glmnet and ncvreg, and 2x to 4.6x speedup compared to picasso.

Package GENE MNIST GWAS NYT
n = 536 n = 784 n = 313 n = 5, 000

p = 17, 322 p = 60, 000 p = 660, 495 p = 55, 000

picasso 1.50 (0.01) 6.86 (0.06) 34.00 (0.47) 44.24 (0.46)
ncvreg 1.14 (0.02) 5.60 (0.06) 31.55 (0.18) 32.78 (0.10)
glmnet 1.02 (0.01) 5.63 (0.05) 23.23 (0.19) 33.38 (0.08)

biglasso 0.54 (0.01) 1.48 (0.10) 17.17 (0.11) 14.35 (1.29)

Table 3: Mean (SE) computing time (seconds) for solving the lasso along a sequence of 100 λ values.

Computational efficiency: Logistic regression

Simulated data

Similar to Section 4.2, here we first illustrate that biglasso is faster than other packages in fit-
ting the logistic regression model with simulated data. The true data-generating model is: yi ∼
Bin(1, prob); logit(prob) = xiβ, where each entry of xi is i.i.d. sampled from standard Gaussian distri-
bution. Again, two cases – varying p and varying n – are considered. 20 true features are randomly
chosen and their coefficients are sampled from Unif[-1, 1].

Figure 3 summarizes the mean computing times of solving the lasso-penalized logistic regression
over a sequence of 100 values of λ by the four packages. In all the settings, biglasso (1 core) is around
1.5x faster than glmnet and ncvreg (which again largely overlap), and more than 3x faster than picasso.
Parallel computing with 4 cores using biglasso reduces the computing time by half.

Real data

We also compare the computing time of biglasso with other packages for fitting lasso-penalized
logistic regression based on four real data sets: (1) Subset of Gisette data set (Guyon et al., 2005); (2)
P53 mutants data set (Danziger et al., 2009); (3) Subset of NEWS20 data set (Keerthi and DeCoste,
2005); (4) Subset of RCV1 text categorization data set (Lewis et al., 2004). The P53 data set can be
found on the UCI Machine Learning Repository website3 (Lichman, 2013). The other three data sets
are obtained from the LIBSVM data repository site.4

3https://archive.ics.uci.edu/ml/datasets/p53+Mutants
4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://archive.ics.uci.edu/ml/datasets/p53+Mutants
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

CONTRIBUTED RESEARCH ARTICLE 12

0

10

20

30

40

50

60

0 50000 100000 150000 200000

Number of features

C
om

pu
tin

g
tim

e
(s

)

Package

picasso

ncvreg

glmnet

biglasso (1 core)

biglasso (2 cores)

biglasso (4 cores)

biglasso (8 cores)

(a) Varying p, n = 1, 000.

0

10

20

30

40

0 5000 10000 15000 20000

Number of observations

C
om

pu
tin

g
tim

e
(s

)

Package

picasso

ncvreg

glmnet

biglasso (1 core)

biglasso (2 cores)

biglasso (4 cores)

biglasso (8 cores)

(b) Varying n, p = 10, 000.

Figure 3: Mean computing time (in seconds) of solving the lasso-penalized logistic regression over a
sequence 100 λ values as a function of p (Left) and n (Right).

Table 4 presents the dimensions of the data sets and the mean computing times. Again, biglasso
outperforms all other packages in terms of computing time in all the real data cases. In particular, It’s
significantly faster than picasso with the speedup ranging from 2 to 5.5 times (for P53 data and RCV1
data, respectively). On the other hand, compared to glmnet or ncvreg, biglasso doesn’t provide as
much improvement in speed as in the linear regression case. The main reason is that safe rules for
logistic regression do not work as well as safe rules for linear regression: they are more computationally
expensive and less powerful in discarding inactive features.

Gisette P53 NEWS20 RCV1
Package n = 5, 000 n = 16, 592 n = 2, 500 n = 5, 000

p = 5, 000 p = 5, 408 p = 96, 202 p = 47, 236

picasso 6.15 (0.03) 19.49 (0.06) 68.92 (8.17) 53.23 (0.13)
ncvreg 5.50 (0.03) 10.22 (0.02) 38.92 (0.56) 19.68 (0.07)
glmnet 3.10 (0.02) 10.39 (0.01) 25.00 (0.16) 14.51 (0.04)

biglasso 2.02 (0.01) 9.47 (0.02) 18.84 (0.22) 9.72 (0.04)

Table 4: Mean (SE) computing time (in seconds) for solving the lasso-penalized logistic regression
along a sequence of 100 λ values on real data sets.

Validation

To validate the numerical accuracy of our implementation, we contrast the model fitting results from
biglasso to those from glmnet based on the following relative difference criterion:

RD(λ) =
Q̂(β̂B; λ)− Q̂(β̂G; λ)

Q̂(β̂G; λ)
, (1)

where β̂B and β̂G denote the biglasso and glmnet solutions, respectively. Four real data sets are
considered, including MNIST and GWAS for linear regression, and P53 and NEWS20 for logistic
regression. For the GWAS and P53 data sets, we obtain 100 RD values, one of each value of λ along
the regularization path. For the MNIST and NEWS20 data sets, we obtained solutions for 20 different
response vectors, each with a path of 100 λ values, resulting in 2,000 RD values.

Table 5 presents the summary statistics of RD(λ) for the 4 real data sets. For both linear and
logistic regression cases, all values of RD(λ) values are extremely close to zero, demonstrating that
biglasso and glmnet converge to solutions with virtually identical values of the objective function.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 13

Statistic Linear regression Logistic regression
MNIST GWAS P53 NEWS20

Minimum -7.7e-3 -3.9e-4 -6.4e-3 -1.6e-3
1st Quantile -1.6e-3 -2.7e-5 1.7e-5 -2.2e-4

Median -9.5e-4 1.6e-4 2.0e-4 -1.1e-4
Mean -1.1e-3 8.3e-4 2.2e-4 -1.2e-4

3rd Quantile -1.3e-4 1.3e-3 7.7e-4 1.0e-10
Maximum 4.2e-3 4.2e-3 2.0e-4 2.2e-3

Table 5: Summary statistics of RD(λ) based on real data sets.

Data analysis example

In this section, we illustrate the usage of biglasso with a real data set colon included in biglasso. The
colon data contains contains expression measurements of 2,000 genes for 62 samples from patients
who underwent a biopsy for colon cancer. There are 40 samples from positive biopsies (tumor samples)
and 22 from negative biopsies (normal samples). The goal is to identify genes that are predictive of
colon cancer.

biglasso package has two main model-fitting R functions as below. Detailed syntax of the two
functions can be found in the package reference manual.5

• biglasso: used for a single model fitting.

• cv.biglasso: used for performing cross-validation and selecting parameter λ.

We first load the data: X is the 62-by-2000 raw data matrix, and y is the response vector with 1
indicating tumor sample and 0 indicating normal sample.

R> library("biglasso")
R> data(colon)
R> X <- colon$X
R> y <- colon$y

Some information about X and y are as follows.

R> dim(X)
[1] 62 2000
R> X[1:5, 1:5]
Hsa.3004 Hsa.13491 Hsa.13491.1 Hsa.37254 Hsa.541

t 8589.42 5468.24 4263.41 4064.94 1997.89
n 9164.25 6719.53 4883.45 3718.16 2015.22
t 3825.71 6970.36 5369.97 4705.65 1166.55
n 6246.45 7823.53 5955.84 3975.56 2002.61
t 3230.33 3694.45 3400.74 3463.59 2181.42
R> y
[1] 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
[34] 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0

Set up the design matrix

It’s important to note that biglasso requires that the design matrix X must be a big.matrix object - an
external pointer to the data. This can be done in two ways:

• If the size of X is small, as in this case, a big.matrix object can be created via:

R> X.bm <- as.big.matrix(X)

X.bm is a pointer to the data matrix, as shown in the following output.

R> str(X.bm)
Formal class 'big.matrix' [package "bigmemory"] with 1 slot
..@ address:<externalptr>

5https://cran.r-project.org/web/packages/biglasso/biglasso.pdf

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://cran.r-project.org/web/packages/biglasso/biglasso.pdf

CONTRIBUTED RESEARCH ARTICLE 14

R> dim(X.bm)
[1] 62 2000
R> X.bm[1:5, 1:5]
Hsa.3004 Hsa.13491 Hsa.13491.1 Hsa.37254 Hsa.541

t 8589.42 5468.24 4263.41 4064.94 1997.89
n 9164.25 6719.53 4883.45 3718.16 2015.22
t 3825.71 6970.36 5369.97 4705.65 1166.55
n 6246.45 7823.53 5955.84 3975.56 2002.61
t 3230.33 3694.45 3400.74 3463.59 2181.42

• If the size of the data is large, the user must create a file-backed big.matrix object via the utility
function setupX in biglasso. Specifically, setupX reads the massive data stored on disk, and
creates memory-mapped files for that data set; this is demonstrated in the next section. A
detailed example can also be found in the package vignettes.6

Single fit and cross-validation

After the setup, we can now fit a lasso-penalized logistic regression model.

R> fit <- biglasso(X.bm, y, family = "binomial")

The output object fit is a list of model fitting results, including the sparse matrix beta. Each
column of beta corresponds to the estimated coefficient vector at one of the 100 values of λ.

In practice, cross-validation is typically conducted to select λ and hence the model with the best
prediction accuracy. The following code snippet conducts a 10-fold (default) cross-validation using
parallel computing with 4 cores.

R> cvfit <- cv.biglasso(X.bm, y, family = "binomial",
+ seed = 1234, nfolds = 10, ncores = 4)
R> par(mfrow = c(2, 2), mar = c(3.5, 3.5, 3, 1) ,mgp = c(2.5, 0.5, 0))
R> plot(cvfit, type = "all")

Figure 4 displays the cross-validation curves with standard error bars. The vertical, dashed, red
line indicates the λ value corresponding to the minimum cross-validation error.

Similar to glmnet and other packages, biglasso provides coef, predict, and plot methods for
both biglasso and cv.biglasso objects. Furthermore, cv.biglasso objects contain the biglasso fit to
the full data set, so one can extract the fitted coefficients, make predictions using it, etc., without ever
calling biglasso directly. For example, the following code displays the full lasso solution path, with a
red dashed line indicating the selected λ (Figure 5).

R> plot(cvfit$fit)
R> abline(v = log(cvfit$lambda.min), col = 2, lty = 2)

The coefficient estimates at the selected λ can be extracted via: coef:

R> coefs <- as.matrix(coef(cvfit))

Here we output only nonzero coefficients:

R> coefs[coefs != 0,]
(Intercept) Hsa.8147 Hsa.36689 Hsa.42949 Hsa.22762 Hsa.692.2

7.556421e-01 -6.722901e-05 -2.670110e-03 -3.722229e-04 1.698915e-05 -1.142052e-03
Hsa.31801 Hsa.3016 Hsa.5392 Hsa.1832 Hsa.12241 Hsa.44244

4.491547e-04 2.265276e-04 4.518250e-03 -1.993107e-04 -8.824701e-04 -1.565108e-03
Hsa.2928 Hsa.41159 Hsa.33268 Hsa.6814 Hsa.1660

9.760147e-04 7.131923e-04 -2.622034e-03 4.426423e-03 5.156006e-03

The predict method, in addition to providing predictions for a feature matrix X, has several
options to extract different quantities from the fitted model, such as the number and identity of the
nonzero coefficients:

R> as.vector(predict(cvfit, X = X.bm, type = "class"))
[1] 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0
[43] 0 1 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0
R> predict(cvfit, type = "nvars")
0.0522

6https://cran.r-project.org/web/packages/biglasso/vignettes/biglasso.pdf

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://cran.r-project.org/web/packages/biglasso/vignettes/biglasso.pdf

CONTRIBUTED RESEARCH ARTICLE 15

−1.5 −2.0 −2.5 −3.0 −3.5 −4.0

0.8

1.0

1.2

log(λ)

C
ro

ss
−

va
lid

at
io

n
er

ro
r ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●

0 1 4 7 9 11 14 20 20 24 26

Variables selected

−1.5 −2.0 −2.5 −3.0 −3.5 −4.0

0.0

0.1

0.2

0.3

0.4

log(λ)

 R
2

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●
●●●

●●●
●●●

●●
●●

0 1 4 7 9 11 14 20 20 24 26

Variables selected

−1.5 −2.0 −2.5 −3.0 −3.5 −4.0

0.0

0.2

0.4

0.6

0.8

log(λ)

S
ig

na
l−

to
−

no
is

e
ra

tio

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●●●●
●

●
●

●
●●●●

●
●

●
●

●
●●●

●●●●

0 1 4 7 9 11 14 20 20 24 26

Variables selected

−1.5 −2.0 −2.5 −3.0 −3.5 −4.0

0.15

0.20

0.25

0.30

0.35

0.40

log(λ)

P
re

di
ct

io
n

er
ro

r ●●●●●●

●●

●●●

●●

●●

●

●

●

●●●●

●●

●●●●●●●●

●●

●●●●●●●

●●●●●●

●●●●

●●●●

●●●●●●●●●●●●●●●●●

●

●

●●●

●●●●●

●●●●●●●●●●●●●●

●●●●

0 1 4 7 9 11 14 20 20 24 26

Variables selected

Figure 4: The cross-validation curves with standard error bars.

16
R> predict(cvfit, type = "vars")
Hsa.8147 Hsa.36689 Hsa.42949 Hsa.22762 Hsa.692.2 Hsa.31801 Hsa.3016 Hsa.5392

249 377 617 639 765 1024 1325 1346
Hsa.1832 Hsa.12241 Hsa.44244 Hsa.2928 Hsa.41159 Hsa.33268 Hsa.6814 Hsa.1660

1423 1482 1504 1582 1641 1644 1772 1870

In addition, the summary method can be applied to a cv.biglasso object to extract useful cross-
validation results:

R> summary(cvfit)
lasso-penalized logistic regression with n=62, p=2000
At minimum cross-validation error (lambda=0.0522):

Nonzero coefficients: 16
Cross-validation error (deviance): 0.77
R-squared: 0.41
Signal-to-noise ratio: 0.70
Prediction error: 0.177

Application: Big Data case

Perhaps the most important feature of biglasso is its capability of out-of-core computing. To demon-
strate this, we use it to analyze a simulated GWAS data set that consists of 3,000 observations and
1,340,000 features. Each feature cell is randomly assigned a value of 0 or 1 or 2. 200 features have
nonzero coefficients, where 100 of which being 0.5 and the rest being -0.5. The size of the resulting raw
feature matrix is over 36 GB data, which is more than 2x larger than the installed 16 GB RAM.

In this Big Data case, the data is stored in an external file on the disk. To use biglasso, memory-
mapped files are first created via the following command.

R> library("biglasso")
R> X <- setupX(filename = "X_3000_1340000_200_gwas.txt")

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 16

−1.5 −2.0 −2.5 −3.0 −3.5 −4.0

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

log(λ)

β̂

Figure 5: The solution path of lasso-penalized logistic regression model for the colon data.

This command creates two files in the current working directory:

• a memory-mapped file cache of the data, "X_3000_1340000_200_gwas.bin";

• a descriptor file, "X_3000_1340000_200_gwas.desc", that contains the backingfile description.

Note that this setup process takes a while if the data file is large. However, this only needs to
be done once, during data processing. Once the cache and descriptor files are generated, all future
analyses using biglasso can use the X object. In particular, should one close R and open a new R
session at a later date, X can be seamlessly retrieved by attaching its descriptor file as if it were already
loaded into the main memory:

R> X <- attach.big.matrix("X_3000_1340000_200_gwas.desc")

The object X returned from setupX or attach.big.matrix is a big.matrix object that is ready to be
used for model fitting. Details about big.matrix and its related functions such as attach.big.matrix
can be found in the reference manual of bigmemory package (Kane et al., 2013).

Note that the object X that we have created is a big.matrix object and is therefore stored on disk,
not in RAM, but can be accessed as if it were a regular R object:

R> str(X)
Formal class 'big.matrix' [package "bigmemory"] with 1 slot
..@ address:<externalptr>

R> dim(X)
[1] 3000 1340000
R> X[1:10, 1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 0 1 1 2 2 2 1 0
[2,] 0 1 2 1 0 0 1 2 0 2
[3,] 2 2 2 1 1 0 0 1 0 0
[4,] 1 2 1 1 1 0 2 2 0 1
[5,] 0 0 0 0 2 2 0 1 0 2
[6,] 2 0 0 0 1 2 1 0 0 0
[7,] 1 0 1 2 1 1 2 0 2 2
[8,] 2 2 0 2 2 0 0 0 0 2

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 17

[9,] 0 2 2 2 0 0 2 0 2 2
[10,] 1 0 2 1 0 1 1 0 1 0
R> table(y)
y

0 1
1487 1513

Here we fit both sparse linear and logistic regression models with the lasso penalty over the entire
path of 100 λ values equally spaced on the scale of λ/λmax. The ratio of λmin/λmax is set to be 0.05 for
both models. Parallel computation with 4 cores is applied:

R> fit <- biglasso(X, y, ncores = 4)
R> fit <- biglasso(X, y, family = "binomial", ncores = 4)

The above code, which solves the full lasso path for a 36 GB feature matrix, required 147 minutes
for the linear regression fit and 151 minutes for the logistic regression fit on an ordinary laptop with 16
GB RAM installed. Figure 6 depicts the lasso solution path for the sparse linear regression model. The
following code extracts the nonzero coefficient estimates and the number of selected variables of the
lasso model when λ = 0.04:

R> coefs <- as.matrix(coef(fit, lambda = 0.04))
R> coefs[coefs != 0,]
(Intercept) V1 V4 V71 V76 V78

4.917257e-01 -1.396769e-03 -1.198865e-02 -5.289779e-04 -1.475436e-03 -5.829812e-05
V86 V97 V115 V127 V136 V152

-1.283901e-03 -3.437698e-03 1.672246e-04 1.012488e-03 5.913265e-03 9.485837e-03
V157 V161 V176 V185 V118862 V160312

1.992574e-04 1.654802e-03 1.731413e-03 2.411654e-04 4.871443e-03 -6.270115e-05
V273843 V406640 V437742 V559219 V607177 V688790

-2.395813e-03 -5.189343e-03 6.079211e-03 -1.438325e-03 2.635234e-05 -3.645285e-04
V814818 V849229 V916411 V981866 V1036672 V1036733

-3.611999e-04 9.293857e-03 2.637108e-03 -3.130641e-04 6.890073e-05 2.010702e-03
V1110042 V1170636 V1279721

-8.323210e-04 -1.539764e-03 -3.729763e-05
R> predict(fit, lambda = 0.04, type = "nvars")
0.04
32

Conclusion

We developed a memory- and computation-efficient R package biglasso to extend lasso model fitting
to Big Data. The package provides functions for fitting regularized linear and logistic regression
models with both lasso and elastic net penalties. Equipped with the memory-mapping technique and
more efficient screening rules, biglasso is not only is 1.5x to 4x times faster than existing packages, but
consumes far less memory and, critically, enables users to fit lasso models involving data sets that are
too large to be loaded into memory.

Bibliography

D. Angelosante and G. B. Giannakis. Rls-weighted lasso for adaptive estimation of sparse signals. In
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3245–3248, 2009. [p6]

D. P. Bovet and M. Cesati. Understanding the Linux kernel. O’Reilly, 2005. [p7]

P. Breheny. Marginal false discovery rates for penalized regression models. arXiv preprint
arXiv:1607.05636, 2016. [p10]

P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression, with
applications to biological feature selection. Annals of Applied Statistics, 5(1):232–253, 2011. [p6]

S. A. Danziger, R. Baronio, L. Ho, L. Hall, K. Salmon, G. W. Hatfield, P. Kaiser, and R. H. Lathrop.
Predicting positive p53 cancer rescue regions using most informative positive (mip) active learning.
PLoS computational biology, 5(9):e1000498, 2009. [p11]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 18

−3.0 −3.5 −4.0 −4.5 −5.0 −5.5 −6.0

−0.02

−0.01

0.00

0.01

0.02

log(λ)

β̂

Figure 6: The solution path of the sparse linear regression model for the 36 GB GWAS data.

D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml. [p10]

J. Fan, F. Han, and H. Liu. Challenges of big data analysis. National Science Review, 1(2):293–314, 2014.
[p6]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1, 2010. [p6]

J. Ge, X. Li, M. Wang, T. Zhang, H. Liu, and T. Zhao. picasso: Pathwise Calibrated Sparse Shooting
Algorithm, 2015. URL https://CRAN.R-project.org/package=picasso. R package version 0.5-4.
[p6]

I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003 feature selection challenge.
In Advances in neural information processing systems, pages 545–552, 2005. [p11]

X. Huang and W. Pan. Linear regression and two-class classification with gene expression data.
Bioinformatics, 19(16):2072–2078, 2003. [p6]

M. J. Kane, J. Emerson, and S. Weston. Scalable strategies for computing with massive data. Journal of
Statistical Software, 55(14):1–19, 2013. [p6, 7, 16]

S. S. Keerthi and D. DeCoste. A modified finite newton method for fast solution of large scale linear
svms. Journal of Machine Learning Research, 6(Mar):341–361, 2005. [p11]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324, 1998. [p10]

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization
research. Journal of machine learning research, 5(Apr):361–397, 2004. [p11]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://CRAN.R-project.org/package=picasso

CONTRIBUTED RESEARCH ARTICLE 19

Y. Li, A. Algarni, M. Albathan, Y. Shen, and M. A. Bijaksana. Relevance feature discovery for text
mining. IEEE Transactions on Knowledge and Data Engineering, 27(6):1656–1669, 2015. [p6]

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml. [p11]

Z. Lin, M. Kahng, K. M. Sabrin, D. H. P. Chau, H. Lee, and U. Kang. Mmap: Fast billion-scale graph
computation on a pc via memory mapping. In IEEE International Conference on Big Data, pages
159–164, 2014. [p7]

S. T. Rao, E. Prasad, and N. Venkateswarlu. A critical performance study of memory mapping on
multi-core processors: An experiment with k-means algorithm with large data mining data sets.
International Journal of Computers and Applications, 1(9):90–98, 2010. [p7]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B, 58(1):267–288, 1996. ISSN 00359246. [p6]

R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani. Strong rules for
discarding predictors in lasso-type problems. Journal of the Royal Statistical Society Series B, 74(2):
245–266, 2012. [p6, 7]

J. Wang, J. Zhou, J. Liu, P. Wonka, and J. Ye. A safe screening rule for sparse logistic regression. In
Advances in Neural Information Processing Systems, pages 1053–1061, 2014. [p8]

J. Wang, P. Wonka, and J. Ye. Lasso screening rules via dual polytope projection. Journal of Machine
Learning Research, 16:1063–1101, 2015. [p6, 7, 10]

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via sparse rep-
resentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):210–227, 2009.
[p6]

Y. Zeng and P. Breheny. biglasso: Extending Lasso Model Fitting to Big Data, 2016. URL https:
//CRAN.R-project.org/package=biglasso. R package version 1.3-1. [p6]

Y. Zeng, T. Yang, and P. Breheny. Hybrid safe–strong rules for efficient optimization in lasso-type
problems. Computational Statistics & Data Analysis, 153:107063, 2021. ISSN 0167-9473. [p7]

Yaohui Zeng
Department of Biostatistics
University of Iowa
N301 CPHB 145 North Riverside Drive
Iowa City, IA 52242, United States of America
Email: yaohui.zeng@gmail.com

Patrick Breheny
Department of Biostatistics
University of Iowa
N336 CPHB 145 North Riverside Drive
Iowa City, IA 52242, United States of America
E-mail: patrick-breheny@uiowa.edu
URL: http://myweb.uiowa.edu/pbreheny/index.html

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://archive.ics.uci.edu/ml
https://CRAN.R-project.org/package=biglasso
https://CRAN.R-project.org/package=biglasso
mailto:yaohui.zeng@gmail.com
mailto:patrick-breheny@uiowa.edu
http://myweb.uiowa.edu/pbreheny/index.html

CONTRIBUTED RESEARCH ARTICLE 20

Six Years of Shiny in Research -
Collaborative Development of
Web Tools in R
by Peter Kasprzak, Lachlan Mitchell, Olena Kravchuk and Andy Timmins

Abstract The use of Shiny in research publications is investigated over the six and
a half years since the appearance of this popular web application framework for R,
which has been utilised in many varied research areas. While it is demonstrated
that the complexity of Shiny applications is limited by the background architecture,
and real security concerns exist for novice app developers, the collaborative benefits
are worth attention from the wider research community. Shiny simplifies the
use of complex methodologies for people of different specialities, at the level of
proficiency appropriate for the end user. This enables a diverse community of users
to interact efficiently, and utilise cutting edge methodologies. The literature reviewed
demonstrates that complex methodologies can be put into practice without insisting
on investment in professional training, for a comprehensive understanding from all
participants. It appears that Shiny opens up concurrent benefits in communication
between those who analyse data and other disciplines, that would enrich much of
the peer-reviewed research.

Introduction

Data is the backbone of research. With the rise of automated data gathering tools,
data size and complexity of analysis have driven a growing gap between research
disciplines and the required data analysis. Another issue is the fact that different
approaches to the same data can compromise validity, as seen in an analysis on
effect sizes in observational studies, which found that varied methodological work-
flows could reverse conclusions regarding the studied intervention (Donoho, 2017).
Collaborative learning which employs common task frameworks can help interpret,
quantify, and possibly cap methodological variation across disciplines (Donoho,
2017). Software such as Matlab Moler and Mathworks (2012), Minitab Arend (2010),
Genstat Payne et al. (2007) and SPSS Landau and Everitt (2004) have attempted to
bridge this gap by creating more user friendly interfaces that either make coding
more intuitive and easier to learn, or use drop down menus and radio button
selection to bypass the command line. Current analytical software, such as those
mentioned above, each have their own limitations which include non publication
ready quality graphics, non-intuitive drop down menus, restrictive interfacing
with other software, price point (including the cost of licensing the proprietary
software) and the difficulties that inevitably occur when colleagues attempt to
run code originating from other software on their preferred platform. Despite
its own weaknesses, which include a very steep learning curve and non-intuitive
programming language, R (R Core Team, 2019) has grown to become the most
popular programming language for statistics and biological data analysis, spawning
over 14,000 free to use packages over a wide range of subject material (Li et al.,
2018).

While code of any language can be shared easily between users, general use
requires a level of familiarity with the specific program. Transforming a piece

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 21

of R code into a interactive app capable of use by a broad audience recently re-
quired either knowledge of other coding languages (Gunuganti, 2018), or consul-
tation/collaboration with a computer scientist/app developer and the added time
and cost justified. Specialist apps that benefit only a small number of people often
do not meet cost/benefit benchmarks, which means that many useful advancements
have stalled due to experience requirements with data analysis software, or an un-
derstanding of the underlying theory for day to day use, constituting a complexity
barrier (DePalma, 2013). Shiny can generalise R code for all levels of users, bringing
the latest advancements in methodology measurably closer to everyone. This does
create new issues relating to data security, as novice app developers will now require
a knowledge of web internet protocols for secure data transfers to be assured.

The increased use of technology, sensors and other data capture devices have
brought an interesting issue to light. Researchers and practitioners without a back-
ground in data analysis now have the ability to gather large amounts of data (LaZerte
et al., 2017). Limited options exist for those without data analysis training to correctly
analyse data gathered from the field and experiments, which has arguably led to
issues impacting experimental reproducibility. A Nature survey of 1,576 researchers
from the disciplines of chemistry, physics and engineering, earth and environment,
biology, medicine and other, found more than 50% surveyed believed that low sta-
tistical power or poor analysis was a strong contributor to irreproducibility (Baker,
2016). In the same survey more than 90% of respondents believed that a better un-
derstanding of statistics was required to drive reproducibility of research. Learning
analytical methodologies and programs is a non-trivial task, and subcontracted
analysis, even within house, generally comes with a wait for results. Purchasing
proprietary software can be inflexible and often expensive which takes resources
away from research, and open source software is dependent on a minimum level
of computer literacy, and the ability to test the software to ensure correct results is
essential (LaZerte et al., 2017).

Open source and free, Shiny has grown in popularity with the first Shiny
Developer Conference held in January 2016 and a growing use in peer reviewed
academic papers. While the number of papers has steadily increased each year,
Shiny remains an incompletely explored topic, with the potential for Shiny to make
a significant positive contribution to the general field of science not yet properly
examined. To the best of our knowledge this is the first Shiny review.

The rest of this review is organised as follows. Section 2 details the literature
search, the keywords and findings. Section 3 presents the technical aspects of Shiny,
including hosting costs and security, along with restrictions. Section 4 discusses
the use of Shiny in research with relevant examples from the literature, and finally
section 5 gives the conclusion along with the authors opinion.

Algorithms/methods for literature search

A thorough search for Shiny results in the academic literature was undertaken
to investigate the growth from 2012 - 2018 in research, and which publications
and subject areas were represented. The focus of this paper is the use of Shiny to
bridge specialist academic and theoretical innovations, and its role in disseminating
knowledge to government, industry and the general community, therefore, it is
acknowledged that this is a non-exhaustive list of Shiny case uses. We acknowledge
that the literature search is not fully comprehensive, as newspaper articles, blogs and
other non-academic areas were filtered, which makes this review biased towards

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Shiny

CONTRIBUTED RESEARCH ARTICLE 22

an academic standpoint. The search was conducted with four major data bases.
Web of Science and Scopus were used due to their reputation as multi-disciplinary
databases, with Google Scholar and the University of Adelaide (UofA) utilised
as their algorithms search the entire document and all fields for keywords. The
keywords used in all searches were of the form "Shiny Web Application" OR "Shiny
Web App", with an exact search not suitable in this case, and "R" not included
to avoid the inevitable non-related hits. The search was then filtered by year to
span 2012 - 2018 and the document type was limited to Dissertations, Articles,
Conference proceedings and Reviews (where allowed), to investigate the use of
Shiny in the research literature only. Books were excluded from the search due to
the small number of published materials. A separate search conducted for books
showed that as of 2016, only two books were written on the use of Shiny, with
both being structured as instructional manuals. Beeley (2013) takes the beginner
from their first application and walks them through the major concepts to more
complicated applications, while Moon (2016) uses Shiny to teach ggplot2 (Wickham,
2016) graphics. As of 2018 a Google search for "Shiny Web Application Books"
yielded seven results, including one second edition release.

The UofA search engine is powered by ExLibris Primo, which includes all
resources owned or subscribed to by the library and selected free and open access
resources. It includes 345 databases, and links to the major collections of articles and
eBooks totalling over 50 million items, which can expand out to 100s of millions.
The UofA search was conducted with the terms "Shiny web app OR Shiny web
application" and returned 5,251 results with 1,391 peer reviewed articles, 3,456
dissertations, 18 reviews and 119 conference proceedings, which are broken into
results by journal title, subject tag and languages published in, displayed in Figure 1.

The search in Scopus used TITLE-ABS-KEY(Shiny AND web AND app*) AND
PUBYEAR > 2012 AND PUBYEAR < 2019 as its search terms, with the same
document limitations. The decision was made to only check the title, abstract
and keywords as too many irrelevant results were being returned when including
other fields, with a final result of 155 items. These were restricted once again to
articles (114), conference papers (38), conference reviews (2), and reviews (1). These
are broken into number of records published by year, journal title and subject tag
displayed in Figure 2. There were 154 records published in English, with one record
published in Spanish.

The Web of Science search returned 144 results using the search criteria ALL =
(Shiny Web App*) and filtered to the same time frame. Choices of document criteria
included Articles and Proceedings papers which resulted in 110 Articles and 34
Proceedings papers, with dissertations not returned in this search. These are once
again broken into publications per year, journal title and subject tag displayed in
Figure 3.

Again the predominate language was English with 142 records, one Spanish,
and one Portuguese record found.

The Google Scholar search terms used first were [Shiny web app | application]
which returned 16,400 results. A range of additional terms were used to narrow
down results including, "security OR complexity OR architecture OR hosting", with
"Shiny" being a required keyword, which returned approximately 10,400 results.
Unfortunately by record 135 irrelevant results were found that did not contain the
required term "Shiny", which appeared to be an error in the algorithm. Given that
the search returned over 100% more results than the UofA search, it was decided
to not use these results to create this paper, as the UofA search utilised the Google
Scholar databases.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 23

Figure 1: Summary of UofA search results partitioned into number of results by
journal for records > 3 with abbreviations given in Table 1, results by subject tag
with abbreviations given in Table 2, and published languages.

Shiny is a relatively novel tool with the total number of papers found quite
small in comparison to larger bodies of work. Assuming the UofA library search
completely covers the other 3 databases (which it is advertised to do), there is an
approximate total of 5,000 unique peer reviewed pieces of work utilising Shiny
since 2012, an average of over 700 papers per year. All searches showed that
Bioinformatics journals published the largest number of Shiny papers, however,
the vast majority of papers were published by a diverse range of titles, in a diverse
range of fields. This indicates that Shiny is a flexible tool and not area specific. Only
the Scopus search returned slightly different information with Computer Science,
Biochemistry, Mathematics, and Other subjects tags registering the largest number
of relevant hits. On closer inspection, while Bioinformatics did not register as
a subject heading, the journal that published the greatest number of papers was
Bioinformatics, followed by BMC Bioinformatics, which suggests that there is simply
a difference in subject labelling. Far more papers were found by keyword searches
in the body of the document, as evidenced by the total numbers of papers found
by the library search from the UofA. This suggests that Shiny has been utilised as
a general tool, and not as a new discovery in the later years. The vast majority of
all papers were written in English, with some European countries represented, but
very few Chinese papers.

The results of the search algorithms are reasonably reproducible, with some
fluctuation occurring depending on the sources of publications, and performance of
the search engine. In our experience the fluctuation is less than 10%. Google scholar

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 24

Figure 2: Summary of Scopus search results partitioned into number of published
results by year, journal title for records > 2 with abbreviations given in Table 1 and
results by subject tag with abbreviations given in Table 2.

significantly alters the number of found papers depending on sorting. If sorting by
relevance is checked then 127,000 results are found. Sorting by date reduces this
number to what is stated above.

A subset of 600 papers was chosen for thorough reading to inform this report.
These were the top 600 results returned by the UofA records search when sorted via
relevance. The relevance ranking employed by ExLibris Primo is comprised of four
main criteria.

1. Degree of match: Fields such as title, author and subject field are given a
higher ranking, along with order of the query terms and completeness of
phrases.

2. Academic significance: Citations and journal impact factor.

3. Type of search: Primo infers if the search is broad-topic or specific-topic, with
broad topic searches amplifying overview material such as reference articles.

4. Publication date: Newer material is given preference.

The papers that discussed Shiny generally had "Shiny" in the title and/or the
subject fields, increasing their relevance score. Earlier papers were more likely to
discuss Shiny, with newer papers more likely to mention Shiny in the text only. The
relevance search yielded a high number of the older papers as high relevance, along
with a very broad range of use cases. The limit of 600 papers was an empirical cut off

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 25

Figure 3: Summary of WOS search results partitioned into number of published
results by year, journal title for records > 2 with abbreviations given in Table 1 and
results by subject tag > 2 with abbreviations given in Table 2.

point, as this was the stage that papers had ceased discussing Shiny, and were only
stating its use. It was decided that enough use cases had been examined to make
comments regarding Shiny’s relatively widespread use in the academic work. 445
original applications were introduced in these papers, which utilised 373 unique R
packages. 229 unique peer reviewed journals were represented with 55 published in
Bioinformatics, 31 published in PLoS ONE, and 21 published in BMC Bioinformatics.
The final subset of papers that most thoroughly discussed the implementation of
Shiny were chosen to create this report, and are given as references.

Technical aspects

Architectural overview

A Web application framework for R, Shiny was conceptualised by RStudio’s CTO
Joe Cheng and announced at the Joint Statistical Meeting conference in July of
2012 as a tool designed to help R programmers create interactive web applications,
reports and analysis without the need to know HTML, CSS, or JavaScript (Chang
et al., 2018).

The power of Shiny comes from the ability for an R user to quickly and simply
code a reactive framework. A reactive framework allows objects to be updated when
a source is changed, along with all connected objects. For example, in an imperative

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 26

programming paradigm such as the R language, setting the line

c = a + b

means that c is assigned the sum of previously defined terms a, b and will not
change when the values of a, b are changed without the variable c being re-evaluated.
Reactive programming allows the value of c to be updated almost instantaneously,
including all other variables and outputs dependent on c, whenever a or b is changed.
R completes this task with information travelling from input to output in a pull
fashion. A pull fashion is when c learns of the new value of a or b when c is called.
Shiny creates a system of alerts which flag changed expressions and the server
re-evaluates all flags in an event known as a flush (Grolemund, 2015). Using two
object classes called reactive values, such as a = reactive(), and observers, such as b
= plot(), Shiny creates a reactive context between the two objects known as a call-back
which is a command to re-evaluate the observer. Multiple observers can be linked
to the same reactive value and the server will queue up all call-backs and run each
call-back in the event of a flush (Grolemund, 2015).

This reactive framework allows user inputs to be evaluated via a UI (user in-
terface) with a series of easily coded widgets such as text boxes, radio buttons and
drop down menus from pre-programmed R code. Shiny then seamlessly updates
outputs of tables, plots and summaries. A non R user can change the values of a and
b via the user interface and explore the pre-coded results dependent on c.

A Shiny application has two main parts. A user interface object and a server
function. The user interface contains code for the layout and appearance of the
app, with default choices restricted in appearance. Layouts can be customised and
changes to the appearance can be made if the programmer has some knowledge of
HTML or CSS. For standard applications simple commands suffice and a knowledge
of HTML or CSS language is not required for tweaks. The server function houses all
the code that drives functionality of the application and can utilise all the built in
programs available to R and RStudio users.

Hosting

For a small number of applications and limited run hours the cost of hosting a Shiny
application is free, but it can become expensive quickly. Hosting on shinyapps.io
requires no system administration knowledge and comes with layers of security
and is supported by Shiny’s IT team. According to the RStudio pricing website
(Core Team, 2012), the platform is free for 5 applications and 25 active hours which
increases to $39 AUD a month for unlimited applications and 500 active hours, to
the top tier of $299 AUD a month, which allows for unlimited applications and
10,000 active hours. Shiny also has the option of Shiny server, Shiny Server Pro
or RStudio Connect. These require a level of system administration knowledge,
and also requires the apps to be hosted on a physical or virtual machine. RStudio
Server Pro costs $9,995 AUD per year (Core Team, 2012). RStudio connect allows
installation of software on a server behind your existing firewall and costs between
$14,995 AUD per year ($62 AUD per user/month) to $75,995 AUD per year ($6.25
AUD per user/month) for a larger, specified number of named users (Core Team,
2012). Shiny server prices were not available. For those with an in-depth knowledge
of internet security, it is possible, and more economical, to host the application
independently by their own means.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 27

Security

As Shiny is primarily a web technology, a very strong focus on application security
must be adhered to, with novices in computer science more likely to make critical
mistakes (Charpentier, 2013). A well-known concept in cryptography and web
security is unknown unknowns (Charpentier, 2013). Put simply, this refers to the fact
that a developer cannot build defences for attack vectors they are unfamiliar with.
For this reason, it is generally wise to leave the specifics of data security to experts
in the field, with the end-developer instead relying on the vetted work that has been
done for them.

For users of Shiny who elect to use shinyapps.io by RStudio, this is essentially
what happens. Once uploaded, the application is secured behind best practices
(Core Team, 2012). Unfortunately, this service is prohibitively expensive when
compared to hosting the server on a cloud platform like Amazon Web Services (AWS)
(Amazon, 2019) or Microsoft Azure (Microsoft, 2019), which requires application
security to be taken into the app creator’s hands. Certificates need to be created and
kept up-to-date, servers need to be configured for HTTPS amongst other security
protocols (Charpentier, 2013). Due to the local nature of R, this is likely to be a new
issue, requiring a new set of skills, for many data analysts operating on the platform.

Architectural issues

Curiously there are only a small number of papers that explicitly mentioned concerns
and limitations with respect to the use of Shiny to develop research focused apps.
A paper by Dwivedi and Kowalski (2018) was the first to include a limitations
section, emphasising the requirement for a fast internet connection when dealing
with large data sets. This could be mitigated with the use of cloud based resources
to store the data and host the app, with potentially faster network and processing
speeds available with respect to local connections. Guo (2018) found R package
updates a legitimate concern, as updates can occur without warning and crash an
application. A less serious issue, the lack of flexibility of the dashboard is born from
the simplification of creation, with Shiny’s dashboard not being as flexible as one
created in Java (Ge et al., 2018). There are however challenges with the use of Shiny,
with one of them being the background architecture.

While Shiny has many benefits, the architecture of Shiny will be a limiting
factor when building complex applications. Previously this concerned dismissed
with Joe Cheng stating more recently:

In the past, we’ve responded rather glibly to these requests: “Just
use functions!” (Cheng, 2019)

As of 2017 Shiny has made moves to address this issue with the creation of mod-
ulisation (Cheng, 2017), however, the more involved use cases would be handled
better by other computing languages, for the reasons detailed below. An analo-
gous way of conceptualising this would be in the difference between applets and
applications. Applets are generally small, discrete, and of low complexity, and are
developed to perform a small number of functions for a highly specific purpose.
Most Shiny products would fit this description quite well, while applications on
the other hand, are generally more complex (Fayram, 2011). They are built for a
number of different use cases, and tend to have relatively large codebases. Well
established and popular web application frameworks such as Angular and React

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 28

exist to fit these situations, containing much more general functionality than Shiny
with much less specific functionality (such as functions related to data visualization)
(Mitchell, 2018). None of this is to say that complex applications can not be created
with Shiny, just that it may not be the most mature solution for the task.

While Shiny will undoubtedly continue to evolve in much the same way as R
has, and many issues today will be gone tomorrow, a number of well-established
software development paradigms must be diverged from:

• Shiny actively encourages the use of single-file applications, generally refer-
ring to this singular file as app.R (Chang et al., 2018). Defining everything in a
singular file works well for prototypes, but quickly falls apart as an applica-
tion grows and increases in complexity. In general, code is compartmentalised
into files which contain the logic for a single component. By allowing a single
file to grow monolithic in size, code readability and re-usability is challenged,
consequently making it harder to add additional components in the future
(Fayram, 2011).

• Shiny insists on a reactive data-driven model over the more traditional and
common event-driven model. While not necessarily a flaw in and of itself,
many novice developers consider reactivity in programming to be a non-
trivial concept (Fayram, 2011). Considering that Shiny, by nature, is aimed
towards data analysts rather than computer scientists, it can increase the initial
difficulty hurdle that beginners have to overcome. To further this issue, a bug
has existed in RStudio since at least February 2018 that prevents automatic
reloading from working with sourced files. When using multiple files like
this, the server needs to be manually stopped and restarted between every
change, making for a tedious development cycle. Concerns on the subject
have not been addressed by either the RStudio or Shiny core developers
(Hansen, 2018).

Both of the above points begin to cause major issues when put together. Encour-
agement of singular source files results in code quickly becoming unruly, threatening
flexibility. This heightened complexity of source code will invariably be replicated
within the reactive dependency graph, Shiny’s internal mapping of reactive nodes
and their relationships. In the event that something is not working as expected,
RStudio provides little to no internal tools for debugging this graph. A new addition
to CRAN in the form of Reactlog (Schloerke and Cheng, 2019) is a first attempt to
address this issue, which usually forces the developer to painstakingly debug the
graph by hand. As the application becomes increasingly complex, this process gets
closer and closer to impossible. Many of these cases are not as yet documented due
to Shiny being a burgeoning technology, and to the best of our knowledge, this is
the most in-depth look at the challenges in the peer reviewed literature.

A package, ShinyTester (Kohli, 2017), was added to CRAN https://cran.r-
project.org/ early in 2017. While it provides a promising first approach to debug-
ging tools for Shiny (such as the inclusion of a dependency graph visualiser), it
unfortunately seems to have been abandoned. Tools like this would likely alleviate
the above outlined concerns.

Data size

Shiny is designed foremost as a server technology, with applications intended to
be used remotely with a stable internet connection (R Core Team, 2017). Shiny

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Reactlog
https://CRAN.R-project.org/package=ShinyTester
https://cran.r-project.org/
https://cran.r-project.org/

CONTRIBUTED RESEARCH ARTICLE 29

applications must be built with upload and download requirements in the fore.
While Shiny applications can be run locally, doing so requires a base level of knowl-
edge of R that may make it a sub-optimal approach, and limits accessibility. This
is comparable to how mobile applications are generally shipped as pre-compiled
binaries, rather than as raw source that the user would need to compile and install
manually. One of the largest issues with this inherent reliance on connectivity is
the need for data to be uploaded and downloaded. Since Shiny has no inbuilt data
streaming functionality, it is not possible to work with parts of data while waiting
for the rest to upload (R Core Team, 2017). An entire transfer must be completed
before the dataset is made available to the application. This forces the application to
require pre-partitioned uploads, which may not be possible for all types of datasets.

It is quite common to see a dataset approaching gigabytes in size, especially
prevalent in areas such as genomic sequencing, which is generally technically un-
realistic for datasets of this size to be worked with remotely, and would include
extra data costs. If a large amount of bandwidth was made available to a single user,
this could open up your service to potential denial-of-service attacks by malicious
entities (Cloudflare, 2019). Furthermore, it may be legally unrealistic in terms of data
ownership. Users are often uncomfortable providing sensitive data to unknown
receivers, as there is no way for a Shiny app to prove that its not storing uploaded
information permanently for the developer’s own academic or financial gain (Kacha
and Zitouni, 2018).

Literature analysis

Complexity barrier

The pattern of peer reviewed work, as shown in Figure 1, Figure 2, and Figure 3
shows that Bioinformatics is a popular and growing area for Shiny apps. Areas
that traditionally have a lower focus on data analysis skills for researchers, such
as Biological Sciences, Education and Index Medicus, appear to have higher usage
levels. In the current literature Shiny is primarily used as a delivery/visualisation
tool, and is not the focus with many papers referencing the use of Shiny but not
discussing the merits. This trend becomes obvious in more recent papers, with much
of the best discussion occurring in earlier papers.

To investigate the uptake of Shiny we must first understand some of the fac-
tors that determine the uptake of innovation. These are stated by Rogers (2001)
as: (a) relative advantage, (b) compatibility, (c) complexity, (d) trialability and (e)
observability. Rogers (2001) defined complexity as

...the degree to which an innovation is perceived as difficult to understand and
use.

Analysis methods are a non-trivial skill and the complexity of new methodolo-
gies in data analysis are a major hurdle for their uptake in fields such as biology and
agriculture (DePalma et al., 2017). To drive innovation and uptake, tools must be
accessible and usable by all interested parties (Jahanshiri and Shariff, 2014; Klein
et al., 2017). Moraga (2017) noted in the area of public health, that while there had
been progress in methodology and analysis

...these methods are still inaccessible for many researchers lacking the adequate
programming skills to effectively use the required software.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 30

The first peer reviewed Shiny publications appeared in 2013, with the first two
dissertations contributing the most to this discussion, as they give a glimpse to
the vast potential for Shiny. The first dissertation using Shiny was published by
DePalma (2013) which allowed non-computer literate clinicians the ability to harness
powerful statistical methodologies in a robust framework, to conduct antimicrobial
susceptibility tests which determine an unknown pathogens susceptibility to various
antibiotics. DePalma (2013) noted that previously new methods have not been
adopted due to

...various computational difficulties and an absence of easy to use software for
clinicians.

Complex methodologies were able to be immediately used by end users without
an assumption of computational skills, to inform important medical checks. This
direct transfer of method is a concrete example of how Shiny is able to make complex
research available to all interested parties, regardless of knowledge level. Specialised
applications such as this would be difficult and costly to create without Shiny, and
without general use software the advanced methodology would stall in uptake due
to complexity barriers. This was later followed up with dBETS (diffusion Breakpoint
Estimation Testing Software) by DePalma et al. (2017) who once again acknowledged

...the computational complexities associated with these new approaches has
been a significant barrier for clinicians.

Shiny is a potential solution to the barrier of complexity for the uptake of new
methodologies.

Cross collaboration and dialogue

Cross collaboration between researchers and the easy dissemination of results is key
to external validity (Munafò et al., 2017). Shiny promotes collaboration by allowing
people with varying skill levels access to more complex methodologies. This has
a flow on benefit to promote the collaboration of practitioners with researchers,
or field researches with theorists, in order to create specialised, fit for purpose
applications. This is illustrated in a paper by Wages and Petroni (2018) which
designs and conducts Phase 1 dose finding trials using the continual reassessment
method, and was noted to

...facilitate more efficient collaborations within study teams.

Klein et al. (2017) underscores the requirement that

...facilitating the deployment of web applications for data analysis is important
to promote collaboration within the scientific community and between scientists
and stakeholders.

Further examples of Shiny being used to open discussion by using apps to bring
relevant parties with differing skills sets into collaboration include Díaz-Gay et al.
(2018) who stated

...analysis of somatic mutational signatures remains currently inaccessible for
a substantial proportion of the scientific community.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 31

As well as Whateley et al. (2015) who noted the knowledge gap between relevant
parties and

...demonstrates the use of the Shiny web framework to bridge that gap, al-
lowing for collaborative development of web tools that can be coded in the
widely-used and free R statistical computing language.

The ability to bridge the gap between researchers and the tools required for their
data analysis was mentioned by Chen et al. (2018) in the context of environmental
DNA. eDNA is becoming an essential tool in ecology and conservation biology and
is utilised by a range of people with varying skill levels with Kandlikar et al. (2018)
stating

Results from eDNA analyses can engage and educate natural resource man-
agers, students, community scientists and naturalists, but without significant
training in bioinformatics, it can be difficult for this diverse audience to interact
with eDNA results.

Shiny allows discipline specialists outside of computer science to code their own
apps, bridging the skill gap for other researchers (Niu, 2017). This was demonstrated
by an app called Armadillo Mapper (Feng et al., 2017), which was designed specifically
to decrease the time between synthesising distributional knowledge on a computer
and carrying out conservation efforts in the field. This encourages those without the
resources to conduct their own analysis, to closely collaborate with analysts to create
specialist applications. Rather than sending final data to an analyst for analysis,
discussion and collaboration is encouraged at the beginning of an experiment. This
enables low quality data due to issues such as pseudo-replication, low power and
confounding variables to be avoided at the design stage rather than the analysis
stage.

Flexibility to link other software

Shiny has the flexibility to bridge the gap between specialised data gathering tools
and available software. A Shiny app accompanying the R package rHyperSpec
(Laney, 2013) was created to take complex data generated by hyperspectral cameras
and link the data to available software packages in response to the problem of

...few free, open-source software packages that enable researchers to easily
process and analyse such data in a manner that maximizes inter-comparison
between studies.

This showcases the flexibility of Shiny applications being able to upload infor-
mation in various formats, make appropriate changes, and output the data in a form
usable by another, completely independent piece of equipment/software. Previ-
ously there were precious few options to link independent software/equipment,
especially without breaching warranty restrictions. Shiny shows tremendous flexi-
bility in working with existing infrastructure to help decrease costs, especially when
technologies are in their infancy.

Shiny gains flexibility and customisability directly from R. One of Shiny’s most
useful abilities is to wrap existing, or new, R packages for general consumption.
Beck (2014) created an app called Seed which bundled several R packages together
and used Shiny to host them on the web allowing

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=rHyperSpec

CONTRIBUTED RESEARCH ARTICLE 32

...user’s access to powerful R based functions and libraries through a simple
user interface.

In the Precision Agriculture (PA) space, farmers have access to a multitude of
proprietary sensors, few of which can be linked directly to analysis tools (Jayaraman
et al., 2016). Shiny’s highly customisable framework facilitates the linking of several
pieces of independent software, and can avoid manual data wrangling and transfer.
As an example, Jahanshiri and Shariff (2014) took data from existing PA sensors and
utilised R functions for its analysis and visualisation of results. Shiny has proved
more than useful in the results visualising area, with packages such as ShinyStan
(Gabry et al., 2018) created in order to visualise modelling parameters and results
from MCMC simulations.

Generalising complex methodologies

R packages can be thought of as a level of abstraction down from the mathematical
theory, as the packages can be used by those without a need to have full understand-
ing of the methodology. Shiny can be thought of as another level of abstraction
down again, as R packages can be utilised, without needing an understanding of R
itself. This ability to generalise analysis methodologies makes Shiny available to
any interested party, and is the mechanism that drives flexibility, dialogue and cross
collaboration.

There is an overarching requirement when making tools available to a broader
audience to ensure correct methodology. The first example of using Shiny to guide
and educate the user came from Assaad et al. (2014) who created two Shiny apps
intended to allow Microsoft Word users access to One Way Anova analysis and
post hoc tests. The app gave instructions to guide users through the process, which
greatly simplified the common statistical test, whilst promoting proper statistical
methodology. A real world example of protecting the end user comes from Hsu et al.
(2018), who created an app for proper randomisation when allocating participants
to a three-armed, double-blinded, randomized controlled trial (RCT) for depression.
One critical characteristic of the app was to ensure mistakes were not made when
properly balancing strata. A fail safe against experimental error was employed by
not allowing participants to have their experimental ID overwritten, which means
that any accidental changes after treatment has begun would not impact on the
treatment received.

Generalised applications must be flexible to differing individual parameters.
Shiny makes it a trivial task to allow parameters of a methodology to be changed
depending on individual circumstances. Shiny wrapped simulations were used to
explore humanitarian response and financial institution resiliency for earthquake
risk in Indonesia, with Hartell (2014) allowing the simulation to be tweaked by
individuals so that adjustments to calibration parameters could be made based
on specific interests or circumstances. Other apps that allowed the user to specify
parameters were created by Zhou et al. (2014) for detecting differential expression
in RNA sequencing and Yin (2014) who utilised Bayesian statistical modelling to
investigate the networks of epidemics transmission.

Shiny makes complex methodologies accessible to those who would previously
not be part of the conversation, most likely due to a lack of theoretical study, or lack
of familiarity with coding or analysis programs. Shiny was explicitly noted to help
increase engagement by LaZerte et al. (2017), who created FeedR in order to record
and visualise RFID data from ecological studies. The huge amount of data from

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ShinyStan

CONTRIBUTED RESEARCH ARTICLE 33

RFID quickly becomes overwhelming and requires specialist methods to cope. The
feedR Shiny app was created to wrap the paired R package in order that

...this framework will become a meeting point for science, education and com-
munity awareness...we aim to inspire citizen engagement while simultaneously
enabling robust scientific analysis (LaZerte et al., 2017).

Responsible and open research

Reproducibility of research is a critical cornerstone of responsible research practices.
Studies, such as Munafò et al. (2017), have indicated that reproducibility is not
at high enough levels, with results of a survey conducted by Baker (2016) and
published in Nature found

...more than 70% of researchers have tried and failed to reproduce another
scientist’s experiments and more than half have failed to reproduce their own
experiments.

Eight practices are argued for by Munafò et al. (2017), which includes promoting
transparency and open science to increase reproducibility. Open source software
such as Shiny can aid these objectives by creating a vessel to preserve code, and
allow a greater number of interested parties to critically evaluate methodologies
and results.

One benefit of Shiny wrapped code is that methodology comparisons become
much easier to conduct. Methodologies wrapped in Shiny applications can be
compared on a known data set under various conditions by the end user. This is a
powerful tool in the advancement of reproducible research. Shiny was explicitly
used in a dissertation by Parvandeh (2018) as a vessel to show the strategy and to
create reproducibility of results enhancing responsible and reproducible research
goals.

A Shiny app, or at least the code behind it is enduring. A paper from Sieriebri-
ennikov et al. (2014) included a Shiny application named Nematode Indicator Joint
Analysis (NINJA) 2.0, to automate manual calculations previously carried out using
spreadsheet software, which is time consuming and prone to errors. The aim for
NINJA to remain freely accessible was validated when it was later used by Burkhardt
et al. (2019) to aid nematode calculations in semi-arid wheat systems, 5 years after
its release. This suggests that maintaining a Shiny application is not overly difficult.
The benefit of Shiny’s easy maintenance and updating was mentioned for the first
time in a dissertation by Niu (2017), which highlighted the fact that only the source
code requires changing without having to download patches or modify individual
applications.

Shiny also appeared in conjunction with machine learning to explore early phase
drug discovery processes (Korkmaz et al., 2015), with Wojciechowski et al. (2015)
noticing the power of Shiny to disseminate the results of research, stating

Interactive applications, developed using Shiny for the R programming lan-
guage, have the potential to revolutionize the sharing and communication of
pharmacometric model simulations.

Free and open source software is ideally suited to disseminating the products
of research (LaZerte et al., 2017), which drives collaboration and was noted to

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 34

encourage local and direct monitoring of environmental data in Kenya (Mose et al.,
2017). LaZerte et al. (2017) also found that Shiny’s open source nature has another
important benefit which

...reduces financial barriers to its use and the open-source aspect permits and
encourages collaboration which can result in better, more powerful software.

Cross collaboration and use of open source Shiny will hopefully also help drive
data sharing. Yi et al. (2017) noted the utility and importance of data sharing
promoted by Shiny applications, which is also one of the key recommendations by
Munafò et al. (2017) in order to drive transparency and openness, and is currently a
policy by Science and Springer Nature journals.

An educational tool

The strengths shown by Shiny seems to fit very well in the educational sector and it
was no surprise that Shiny has been used as a teaching aid in order to get complex
ideas across to students (Williams and Williams, 2018). Educational tools such as
those by Arnholt (2018) help teach the concept of power in hypothesis tests, with
Williams and Williams (2018) creating a similar application for confidence intervals,
and an app by Courtney and Chang (2018) which normalises large datasets and
allows students to explore the results of differing transformations. There are other
benefits to using Shiny in the education sector. Kandlikar et al. (2018) created the
Shiny app ranacapa and found that

A key benefit of using ranacapa was that despite having no prior bioinformatics
experience, students could begin exploring the biodiversity in their samples in
a matter of minutes by using the online instance of the Shiny app.

This had the flow on effect of allowing teachers to focus more on the theory
instead of the inevitable problems when teaching new, more complex software and
provided a useful aid to self-learning (Kandlikar et al., 2018).

Conclusion

This review examined Shiny in peer reviewed publications from 2012 to 2018 and
mapped the growth through various research fields. A subset of 600 papers were
used to inform the bulk of the paper, with the authors personal experiences of
Shiny included. While Shiny is not a silver bullet solution to issues in the research
field, it confers the ability for specialised applications to be created cheaply and
easily, such that any level of end user maybe included, no matter the complexity
level of the methodology. This primary benefit creates a direct pathway for new
findings to be rapidly incorporated into established work flows. The flexibility of
Shiny means that apps can be tailored to exact specifications in all regards, with
changes and maintenance of the app made relatively easy as an ongoing product of
consultation further promoting collaboration. If an app is considered worthwhile
adopting to an existing work flow, widespread adoption across an entire workplace
is as simple as sharing the web address. This will have the inevitable knock on
effects of allowing fewer people to do more, which will necessarily mean existing
jobs have the potential of becoming obsolete. The argument that other jobs will be

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 35

created is true, but not necessarily within the same sector, or for the people whose
job has become obsolete. As we progress further into this technological world, this
argument will require mature debate and nuance to be resolved.

In the current literature, Shiny has been used primarily as a visualisation and
dissemination tool, with many papers not exploring the concurrent benefits and
challenges mentioned in this review. One benefit identified in the literature is the
opportunity to increase high value dialogue between people with different skill sets.
For example, field researchers, primary producers or marketers are able to sit down
with theoretical researchers/consultants to create highly customised applications
for up-coming experiments or daily work. Code published as a Shiny application
has the useful attribute of making methodology comparisons easy, which promotes
reproducible research and best practice standards.

With the ability to accelerate access to data analysis techniques comes the
paramount issue of data security for those not familiar with web protocols. It
is essential for those who host web based applications to become knowledgeable in
this area. Web security protocols are likely to be a new skill set for many R program-
mers, and a non-trivial task potentially constituting a bottle neck for widespread
Shiny uptake.

While the use of Shiny apps require minimal experience with computers, the
creation of a Shiny application is a different story. The lack of debugging tools, the
encouragement of single file applications, and the current implementation of the
reactive data-driven model will limit the complexity of future applications.

Other open source and proprietary options are currently available, however,
Shiny’s flexibility, customisability, and low cost is highly desirable. Open source
software comes with a minimum knowledge requirement barrier to entry, and
proprietary software can be expensive and inflexible to changing situations and cir-
cumstances. Maintenance is required with Shiny, although it is limited to updating
code when R packages or dependencies change, and can be done via the source code
for all users.

Shiny is one of the better tools available if one is an existing R programmer given
its inherited scope from R. It helps promotes open and reproducible research, and
offers a real pathway to making complicated methodologies usable to those outside
of research. The ability to provide an avenue to increase high value collaboration
and dialogue between interested parties with differing skills sets make Shiny a tool
worth exploring.

Acknowledgements

We would like to gratefully acknowledge the scholarship for the M.Phil program of
the first author from the Grains Research and Development Corporation (GRDC)
Australia.

Bibliography

Amazon. Amazon EC2 Pricing, 2019. URL https://aws.amazon.com/ec2/pricing/.
[p27]

D. Arend. Minitab 17 Statistical Software, 2010. [p20]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://aws.amazon.com/ec2/pricing/

CONTRIBUTED RESEARCH ARTICLE 36

A. T. Arnholt. Using a Shiny app to teach the concept of power. Teaching Statistics,
2018. URL https://doi.org/10.1111/test.12186. [p34]

H. I. Assaad, L. Zhou, R. J. Carroll, and G. Wu. Rapid publication-ready MS-
Word tables for one-way ANOVA. SpringerPlus, 3(1):474, 2014. URL https:
//doi.org/10.1186/2193-1801-3-474. [p32]

M. Baker. 1,500 scientists lift the lid on reproducibility. Nature News, 533(7604):452,
2016. URL https://doi.org/10.1038/533452a. [p21, 33]

D. Beck. Investigating the Use of Classification Models to Study Microbial Community
Associations with Bacterial Vaginosis. PhD thesis, University of Idaho, 2014. [p31]

C. Beeley. Web Application Development with R Using Shiny. Olton: Packt Publishing
Ltd, first edition, 2013. [p22]

A. Burkhardt, S. S. Briar, J. M. Martin, P. M. Carr, J. Lachowiec, C. Zabinski, D. W.
Roberts, P. Miller, and J. Sherman. Perennial crop legacy effects on nematode
community structure in semi-arid wheat systems. Applied Soil Ecology, 2019. URL
https://doi.org/10.1016/j.apsoil.2018.12.020. [p33]

W. Chang, J. Cheng, J. J. Allaire, Y. Xie, and J. McPherson. Shiny: Web Application
Framework for R, 2018. R package version 1.2.0. [p25, 28]

J. Charpentier. Web application Security. Technical Report Network Project, 7.5 hp,
Halmstad University, 2013. [p27]

Z. Chen, Y. Zheng, Z. Wang, M. Kutner, W. J. Curran, and J. Kowalski. Interactive
calculator for operating characteristics of phase I cancer clinical trials using stan-
dard 3+3 designs. Contemporary Clinical Trials Communications, 12:145–153, 2018.
URL https://doi.org/10.1016/j.conctc.2018.10.006. [p31]

J. Cheng. Shiny - Modularizing Shiny app code, 2017. URL https://shiny.rstudio.
com/articles/modules.html. [p27]

J. Cheng. Shiny - Modularizing Shiny app code, 2019. URL http://shiny.rstudio-
staging.com/articles/modules.html. [p27]

Cloudflare. What Is a Distributed Denial-of-Service (DDoS) Attack?,
2019. URL https://www.cloudflare.com/en-au/learning/ddos/what-is-a-
ddos-attack/. [p29]

R. Core Team. RStudio Pricing, 2012. URL https://www.rstudio.com/pricing/.
[p26, 27]

M. G. R. Courtney and K. C. Chang. Dealing with non-normality: An introduction
and step-by-step guide using R. Teaching Statistics, 40(2):51–59, 2018. URL https:
//doi.org/10.1111/test.12154. [p34]

G. DePalma. Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric
Variation of the Errors-in-Variables Model. PhD thesis, Purdue University, 2013. [p21,
30]

G. DePalma, J. Turnidge, and B. A. Craig. Determination of disk diffusion suscepti-
bility testing interpretive criteria using model-based analysis: Development and
implementation. Diagnostic Microbiology and Infectious Disease, 87(2):143–149, 2017.
URL https://doi.org/10.1016/j.diagmicrobio.2016.03.004. [p29, 30]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1111/test.12186
https://doi.org/10.1186/2193-1801-3-474
https://doi.org/10.1186/2193-1801-3-474
https://doi.org/10.1038/533452a
https://doi.org/10.1016/j.apsoil.2018.12.020
https://doi.org/10.1016/j.conctc.2018.10.006
https://shiny.rstudio.com/articles/modules.html
https://shiny.rstudio.com/articles/modules.html
http://shiny.rstudio-staging.com/articles/modules.html
http://shiny.rstudio-staging.com/articles/modules.html
https://www.cloudflare.com/en-au/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/en-au/learning/ddos/what-is-a-ddos-attack/
https://www.rstudio.com/pricing/
https://doi.org/10.1111/test.12154
https://doi.org/10.1111/test.12154
https://doi.org/10.1016/j.diagmicrobio.2016.03.004

CONTRIBUTED RESEARCH ARTICLE 37

M. Díaz-Gay, M. Vila-Casadesús, S. Franch-Expósito, E. Hernández-Illán, J. J. Lozano,
and S. Castellví-Bel. Mutational Signatures in Cancer (MuSiCa): A web applica-
tion to implement mutational signatures analysis in cancer samples. BMC Bioin-
formatics, 19(1):224, 2018. URL https://doi.org/10.1186/s12859-018-2234-y.
[p30]

D. Donoho. 50 Years of Data Science. Journal of Computational and Graphical Statistics,
26(4):745–766, 2017. URL https://doi.org/10.1080/10618600.2017.1384734.
[p20]

B. Dwivedi and J. Kowalski. shinyGISPA: A web application for characterizing
phenotype by gene sets using multiple omics data combinations. PLoS ONE, 13
(2), 2018. URL https://doi.org/10.1371/journal.pone.0192563. [p27]

D. Fayram. Functional Programming Is Hard, That’s Why It’s Good,
2011. URL https://www.pixelstech.net/article/1318920938-Functional-
Programming-Is-Hard-That-s-Why-It-s-Good. [p27, 28]

X. Feng, M. C. Castro, E. Linde, and M. Papeş. Armadillo Mapper: A Case Study
of an Online Application to Update Estimates of Species’ Potential Distribu-
tions. Tropical Conservation Science, 10, 2017. URL https://doi.org/10.1177/
1940082917724133. [p31]

J. Gabry, S. D. Team, M. Andreae, M. Betancourt, B. Carpenter, Y. Gao, A. Gelman,
B. Goodrich, D. Lee, D. Song, and R. Trangucci. Shinystan: Interactive Visual and
Numerical Diagnostics and Posterior Analysis for Bayesian Models, 2018. [p32]

S. X. Ge, E. W. Son, and R. Yao. iDEP: An integrated web application for differential
expression and pathway analysis of RNA-Seq data. BMC Bioinformatics, 19, 2018.
URL https://doi.org/10.1186/s12859-018-2486-6. [p27]

G. Grolemund. Shiny - How to understand reactivity in R, 2015. URL https:
//shiny.rstudio.com/articles/understanding-reactivity.html. [p26]

A. Gunuganti. Application Development Framework for R/Shiny. In PharmaSUG
2018 Conference Proceedings, volume AD-24, page 9. PharmaSUG, 2018. [p21]

J. Guo. Developing a Visualization Tool for Unsupervised Machine Learning Techniques on
*Omics Data. PhD thesis, University of Washington, 2018. [p27]

K. Hansen. Rstudio - Reload Shiny App when using source’ed modules without
restart, 2018. URL https://stackoverflow.com/questions/50169896/reload-
shiny-app-when-using-sourceed-modules-without-restart. [p28]

J. Hartell. Earthquake Risk in Indonesia: Parametric Contingent Claims for Humanitarian
Response and Financial Institution Resiliency. PhD thesis, University of Kentucky,
2014. [p32]

K. J. Hsu, K. Caffey, D. Pisner, J. Shumake, S. Risom, K. L. Ray, J. A. J. Smits, D. M.
Schnyer, and C. G. Beevers. Attentional bias modification treatment for depression:
Study protocol for a randomized controlled trial. Contemporary Clinical Trials, 75:
59–66, 2018. URL https://doi.org/10.1016/j.cct.2018.10.014. [p32]

E. Jahanshiri and A. R. M. Shariff. Developing web-based data analysis tools for
precision farming using R and Shiny. IOP Conference Series: Earth and Environmen-
tal Science, 20(1), 2014. URL https://doi.org/10.1088/1755-1315/20/1/012014.
[p29, 32]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1186/s12859-018-2234-y
https://doi.org/10.1080/10618600.2017.1384734
https://doi.org/10.1371/journal.pone.0192563
https://www.pixelstech.net/article/1318920938-Functional-Programming-Is-Hard-That-s-Why-It-s-Good
https://www.pixelstech.net/article/1318920938-Functional-Programming-Is-Hard-That-s-Why-It-s-Good
https://doi.org/10.1177/1940082917724133
https://doi.org/10.1177/1940082917724133
https://doi.org/10.1186/s12859-018-2486-6
https://shiny.rstudio.com/articles/understanding-reactivity.html
https://shiny.rstudio.com/articles/understanding-reactivity.html
https://stackoverflow.com/questions/50169896/reload-shiny-app-when-using-sourceed-modules-without-restart
https://stackoverflow.com/questions/50169896/reload-shiny-app-when-using-sourceed-modules-without-restart
https://doi.org/10.1016/j.cct.2018.10.014
https://doi.org/10.1088/1755-1315/20/1/012014

CONTRIBUTED RESEARCH ARTICLE 38

P. P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, and A. Zaslavsky.
Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt.
Sensors, 16(11):1884, 2016. URL https://doi.org/10.3390/s16111884. [p32]

L. Kacha and A. Zitouni. An Overview on Data Security in Cloud Computing. pages
250–261, 2018. URL https://doi.org/10.1007/978-3-319-67618-0_23. [p29]

G. S. Kandlikar, Z. J. Gold, M. C. Cowen, R. S. Meyer, A. C. Freise, N. J. Kraft,
J. Moberg-Parker, J. Sprague, D. J. Kushner, and E. E. Curd. Ranacapa: An R
package and Shiny web app to explore environmental DNA data with exploratory
statistics and interactive visualizations. F1000Research, 7, 2018. URL https:
//doi.org/10.12688/f1000research.16680.1. [p31, 34]

T. Klein, A. Samourkasidis, I. N. Athanasiadis, G. Bellocchi, and P. Calanca. we-
bXTREME: R-based web tool for calculating agroclimatic indices of extreme
events. Computers and Electronics in Agriculture, 136:111–116, 2017. URL https:
//doi.org/10.1016/j.compag.2017.03.002. [p29, 30]

A. Kohli. Shinytester: Functions to minimize bonehead moves while working
with ’shiny’, 2017. URL https://CRAN.R-project.org/package=ShinyTester. R
package version 0.1.0. [p28]

S. Korkmaz, G. Zararsiz, and D. Goksuluk. MLViS: A Web Tool
for Machine Learning-Based Virtual Screening in Early-Phase of Drug
Discovery and Development. PLoS One; San Francisco, 10(4), 2015.
URL https://doi.org/http://dx.doi.org.proxy.library.adelaide.edu.au/
10.1371/journal.pone.0124600. [p33]

S. Landau and B. Everitt. A Handbook of Statistical Analyses Using SPSS. Chapman &
Hall/CRC, 2004. [p20]

C. M. Laney. Toward New Data and Information Management Solutions for Data-Intensive
Ecological Research. PhD thesis, The University of Texas at El Paso, 2013. [p31]

S. E. LaZerte, M. W. Reudink, K. A. Otter, J. Kusack, J. M. Bailey, A. Woolverton,
M. Paetkau, A. de Jong, and D. J. Hill. Feedr and animalnexus.ca: A paired
R package and user-friendly Web application for transforming and visualizing
animal movement data from static stations. Ecology and Evolution, 7(19):7884–7896,
2017. URL https://doi.org/10.1002/ece3.3240. [p21, 32, 33, 34]

J. Li, B. Cui, Y. Dai, L. Bai, and J. Huang. BioInstaller: A comprehensive R package to
construct interactive and reproducible biological data analysis applications based
on the R platform. PeerJ, 6, 2018. URL https://doi.org/10.7717/peerj.5853.
[p20]

Microsoft. Pricing – Linux Virtual Machines | Microsoft Azure, 2019. URL https:
//azure.microsoft.com/en-au/pricing/details/virtual-machines/linux/.
[p27]

E. Mitchell. Shiny applications without Shiny, 2018. URL http://washstat.org/
presentations/20181024/Mitchell.pdf. [p28]

C. Moler and Mathworks. MATLAB 8.0 and Statistics Toolbox 8.1, 2012. [p20]

K.-M. Moon. Learn ggplot2 Using Shiny App. Number 2197-5736 in Use R! Springer,
2016. [p22]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.3390/s16111884
https://doi.org/10.1007/978-3-319-67618-0_23
https://doi.org/10.12688/f1000research.16680.1
https://doi.org/10.12688/f1000research.16680.1
https://doi.org/10.1016/j.compag.2017.03.002
https://doi.org/10.1016/j.compag.2017.03.002
https://CRAN.R-project.org/package=ShinyTester
https://doi.org/http://dx.doi.org.proxy.library.adelaide.edu.au/10.1371/journal.pone.0124600
https://doi.org/http://dx.doi.org.proxy.library.adelaide.edu.au/10.1371/journal.pone.0124600
https://doi.org/10.1002/ece3.3240
https://doi.org/10.7717/peerj.5853
https://azure.microsoft.com/en-au/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-au/pricing/details/virtual-machines/linux/
http://washstat.org/presentations/20181024/Mitchell.pdf
http://washstat.org/presentations/20181024/Mitchell.pdf

CONTRIBUTED RESEARCH ARTICLE 39

P. Moraga. SpatialEpiApp: A Shiny web application for the analysis of spatial and
spatio-temporal disease data. Spatial and Spatio-temporal Epidemiology, 23:47–57,
2017. URL https://doi.org/10.1016/j.sste.2017.08.001. [p29]

V. N. Mose, D. Western, and P. Tyrrell. Application of open source tools for biodi-
versity conservation and natural resource management in East Africa. Ecological
Informatics, 2017. URL https://doi.org/10.1016/j.ecoinf.2017.09.006. [p34]

M. R. Munafò, B. A. Nosek, D. V. M. Bishop, K. S. Button, C. D. Chambers, N. Percie
du Sert, U. Simonsohn, E.-J. Wagenmakers, J. J. Ware, and J. P. A. Ioannidis. A
manifesto for reproducible science. Nature Human Behaviour, 1(1), 2017. URL
https://doi.org/10.1038/s41562-016-0021. [p30, 33, 34]

B. Niu. Mass Spectrometry-Based Structural Proteomics: Methodology and Application of
Fast Photochemical Oxidation of Proteins (FPOP). PhD thesis, Washington University
in St. Louis, 2017. [p31, 33]

S. Parvandeh. Epistasis Network and Machine Learning Methods for the Analysis of
Biological Large Data. PhD thesis, The University of Tulsa, 2018. [p33]

R. Payne, D. Murray, S. Harding, D. Baird, and D. Soutar. GenStat, 2007. [p20]

R Core Team. Shiny Welcome to Shiny, 2017. URL https://shiny.rstudio.com/
tutorial/written-tutorial/lesson1/. [p28, 29]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2019. [p20]

M. Rogers. Evolution: Diffusion of Innovations. In N. J. Smelser and P. B. Baltes,
editors, International Encyclopedia of the Social & Behavioral Sciences, pages 4982–
4986. Pergamon, 2001. URL https://doi.org/10.1016/B0-08-043076-7/03094-
1. [p29]

B. Schloerke and J. Cheng. Reactlog: Reactivity Visualizer for ’shiny’, 2019. [p28]

B. Sieriebriennikov, H. Ferris, and R. G. M. de Goede. NINJA: An automated
calculation system for nematode-based biological monitoring. European Journal of
Soil Biology, 61:90–93, 2014. URL https://doi.org/10.1016/j.ejsobi.2014.02.
004. [p33]

N. A. Wages and G. R. Petroni. A web tool for designing and conducting phase
I trials using the continual reassessment method. BMC Cancer, 18, 2018. URL
https://doi.org/10.1186/s12885-018-4038-x. [p30]

S. Whateley, J. D. Walker, and C. Brown. A web-based screening model for climate
risk to water supply systems in the northeastern United States. Environmental
Modelling & Software, 73:64–75, 2015. URL https://doi.org/10.1016/j.envsoft.
2015.08.001. [p31]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,
2016. ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p22]

I. J. Williams and K. K. Williams. Using an R shiny to enhance the learning experience
of confidence intervals. Teaching Statistics, 40(1):24–28, 2018. URL https://doi.
org/10.1111/test.12145. [p34]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1016/j.sste.2017.08.001
https://doi.org/10.1016/j.ecoinf.2017.09.006
https://doi.org/10.1038/s41562-016-0021
https://shiny.rstudio.com/tutorial/written-tutorial/lesson1/
https://shiny.rstudio.com/tutorial/written-tutorial/lesson1/
https://doi.org/10.1016/B0-08-043076-7/03094-1
https://doi.org/10.1016/B0-08-043076-7/03094-1
https://doi.org/10.1016/j.ejsobi.2014.02.004
https://doi.org/10.1016/j.ejsobi.2014.02.004
https://doi.org/10.1186/s12885-018-4038-x
https://doi.org/10.1016/j.envsoft.2015.08.001
https://doi.org/10.1016/j.envsoft.2015.08.001
https://ggplot2.tidyverse.org
https://doi.org/10.1111/test.12145
https://doi.org/10.1111/test.12145

CONTRIBUTED RESEARCH ARTICLE 40

J. Wojciechowski, A. M. Hopkins, and R. N. Upton. Interactive Pharmacometric
Applications Using R and the Shiny Package. CPT: Pharmacometrics & Systems
Pharmacology, 4(3):146–159, 2015. URL https://doi.org/10.1002/psp4.21. [p33]

L. Yi, H. Pimentel, and L. Pachter. Zika infection of neural progenitor cells perturbs
transcription in neurodevelopmental pathways. PLoS One; San Francisco, 12
(4), 2017. URL https://doi.org/http://dx.doi.org.proxy.library.adelaide.
edu.au/10.1371/journal.pone.0175744. [p34]

J. Yin. Bayesian Statistical Modeling in Epidemics and the Contact Networks That Transmit
Them. PhD thesis, The University of Iowa, 2014. [p32]

X. Zhou, H. Lindsay, and M. D. Robinson. Robustly detecting differential expression
in RNA sequencing data using observation weights. Nucleic Acids Research, 42(11),
2014. URL https://doi.org/10.1093/nar/gku310. [p32]

Peter Kasprzak
University of Adelaide
School of Agriculture Food and Wine, PMB 1, Glen Osmond, SA 5064
Australia
peter.kasprzak@adelaide.edu.au

Lachlan Mitchell
University of Adelaide
School of Agriculture Food and Wine, PMB 1, Glen Osmond, SA 5064
Australia
lachlan.mitchell@icloud.com

Olena Kravchuk
University of Adelaide
School of Agriculture Food and Wine, PMB 1, Glen Osmond, SA 5064
Australia
olena.kravchuk@adelaide.edu.au

Andy Timmins
University of Adelaide
School of Agriculture Food and Wine, PMB 1, Glen Osmond, SA 5064
Australia
andy.timmins@adelaide.edu.au

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1002/psp4.21
https://doi.org/http://dx.doi.org.proxy.library.adelaide.edu.au/10.1371/journal.pone.0175744
https://doi.org/http://dx.doi.org.proxy.library.adelaide.edu.au/10.1371/journal.pone.0175744
https://doi.org/10.1093/nar/gku310
mailto:peter.kasprzak@adelaide.edu.au
mailto:lachlan.mitchell@icloud.com
mailto:olena.kravchuk@adelaide.edu.au
mailto:andy.timmins@adelaide.edu.au

CONTRIBUTED RESEARCH ARTICLE 41

Appendix

Table 1: Table of journal abbreviations

Journal Abbreviation
2nd Symposium On Lapan Ipb Satellite Lisat For Food
Security And Environmental Monitoring

Food Sec Envir

Bioinformatics Bioinfo
Bioinformatics (Oxford England) Bioinfo (OE)
Bmc Bioinformatics BMC Bioinfo
Bmc Cancer BMC Cancer
Environmental Earth Sciences Envir Earth Sci
Environmental Modelling And Software Envir Mod Soft
F1000research F1000
Frontiers In Psychology Front Psych
Gigascience Giga
Iop Conference Series Earth And Environmental Sci-
ence

Earth Envir Sci

Journal Of Pharmacokinetics And Pharmacodynamics Pharma
Journal Of Physics Conference Series Physics
Lecture Notes In Artificial Intelligence AI
Natural Hazards Nat Haz
Nature Communications Nat Com
Nucleic Acids Research Nuc Acids Res
Peerj Peerj
PloS ONE PloS ONE
Procedia Environmental Sciences Envir Sci
R Journal R Journal
Scientific Reports Sci Rep
Source Code For Biology And Medicine Bio Med
Springerplus Springerplus
Statistics In Medicine Stat Med
Studies In Health Technology And Informatics Health Tech Info
Wellcome Open Research Well Open Res
Workshop And International Seminar On Science Of
Complex Natural Systems

Complex Nat Sys

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 42

Table 2: Table of abbreviations for subject tag

Subject Abbreviation
Agricultural Biological Sciences Ag Biol Sci
Agriculture Multidisciplinary Ag Multi
Arts Humanities Art Hum
Automation Control Systems Auto Cont Sys
Biochemical Research Methods Biochem Res Meth
Biochemistry Genetics Molecular Biology Biochem Gen Molec Biol
Biochemistry Molecular Biology Biochem Molec Biol
Biotechnology Applied Microbiology Biotech App Micro
Business Management Accounting Bus Man Acc
Chemical Engineering Chem Eng
Chemistry Chemistry
Communication and the Arts Comm & Arts
Computational Biology Comp Biology
Computer Science Comp Sci
Computer Science Artificial Intelligence Comp Sci AI
Computer Science Information Systems Comp Sci Info Sys
Computer Science Interdisciplinary Applications Comp Sci Inter App
Computer Science Theory Methods Comp Sci Theor Meth
Decision Sciences Dec Sci
Earth Planetary Sciences Earth Plan Sci
Education Scientific Disciplines Ed Sci Disc
Energy Energy
Engineering Engineering
Engineering Electrical Electronic Eng Elec Elct
Engineering Environmental Eng Env
Environmental Science Envir Sci
Environmental Sciences Env Sci
Evolutionary Biology Evol Biol
Genetics Heredity Genet Hered
Health Care Sciences Services Health Care Sci Ser
Health Professions Health Prof
Immunology Microbiology Immun Micro
Materials Science Mat Sci
Mathematical Computational Biology Math Comp Biol
Mathematics Mathematics
Medical Informatics Med Info
Medicine Medicine
Medicine Research Experimental Med Res Exp
Multidisciplinary Multidisciplinary
Multidisciplinary Sciences Multi Disc Sci
Neuroscience Neuro
Oncology Oncology
Pharmacology Pharmacy Pharm Pharmacy
Pharmacology Toxicology Pharmaceutics Pharm Tox
Physics Astronomy Phys Astro
Psychology Psychology
Public Environmental Occupational Health Pub Envir Occ
Remote Sensing Rem Sens
Social Sciences Soc Sci
Statistics Probability Stat Prob
Veterinary Vet

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 43

A Fast and Scalable Implementation
Method for Competing Risks Data with
the R Package fastcmprsk
by Eric S. Kawaguchi, Jenny I. Shen, Gang Li, and Marc A. Suchard

Abstract Advancements in medical informatics tools and high-throughput biological experimentation
make large-scale biomedical data routinely accessible to researchers. Competing risks data are typical
in biomedical studies where individuals are at risk to more than one cause (type of event) which can
preclude the others from happening. The Fine and Gray (1999) proportional subdistribution hazards
model is a popular and well-appreciated model for competing risks data and is currently implemented
in a number of statistical software packages. However, current implementations are not computation-
ally scalable for large-scale competing risks data. We have developed an R package, fastcmprsk, that
uses a novel forward-backward scan algorithm to significantly reduce the computational complexity
for parameter estimation by exploiting the structure of the subject-specific risk sets. Numerical studies
compare the speed and scalability of our implementation to current methods for unpenalized and
penalized Fine-Gray regression and show impressive gains in computational efficiency.

Introduction

Competing risks time-to-event data arise frequently in biomedical research when subjects are at risk for
more than one type of possibly correlated events or causes and the occurrence of one event precludes
the others from happening. For example, one may wish to study time until first kidney transplant
for kidney dialysis patients with end-stage renal disease. Terminating events such as death, renal
function recovery, or discontinuation of dialysis are considered competing risks as their occurrence
will prevent subjects from receiving a transplant. When modeling competing risks data the cumulative
incidence function (CIF), the probability of observing a certain cause while taking the competing risks
into account, is oftentimes a quantity of interest.

The most commonly-used model to draw inference about the covariate effect on the CIF and
to predict the CIF dependent on a set of covariates is the Fine-Gray proportional subdistribution
hazards model (Fine and Gray, 1999). Various statistical packages for estimating the parameters of the
Fine-Gray model are popular within the R programming language (Ihaka and Gentleman, 1996). One
package, among others, is the cmprsk package. The riskRegression package, initially implemented
for predicting absolute risks (Gerds et al., 2012), uses a wrapper that calls the cmprsk package to
perform Fine-Gray regression. Scheike and Zhang (2011) provide timereg that allows for general
modeling of the cumulative incidence function and includes the Fine-Gray model as a special case.
The survival package also performs Fine-Gray regression but does so using a weighted Cox (Cox,
1972) model. Over the past decade, there have been several extensions to the Fine-Gray method that
also result in useful packages. The crrSC package allows for the modeling of both stratified (Zhou
et al., 2011) and clustered (Zhou et al., 2012) competing risks data. Kuk and Varadhan (2013) propose a
stepwise Fine-Gray selection procedure and develop the crrstep package for implementation. Fu et al.
(2017) then introduce penalized Fine-Gray regression with the corresponding crrp package.

A contributing factor to the computational complexity for general Fine-Gray regression implemen-
tation is parameter estimation. Generally, one needs to compute the log-pseudo likelihood and its first
and second derivatives with respect to its regression parameters for optimization. Calculating these
quantities is typically of order O(n2), where n is the number of observations in the dataset, due to the
repeated calculation of the subject-specific risk sets. With current technological advancements making
large-scale data from electronic health record (EHR) data systems routinely accessible to researchers,
these implementations quickly become inoperable or grind-to-a-halt in this domain. For example,
Kawaguchi et al. (2020) reported a runtime of about 24 hours to fit a LASSO regularized Fine-Gray
regression on a subset of the United States Renal Data Systems (USRDS) with n = 125, 000 subjects
using an existing R package crrp. To this end, we note that for time-to-event data with no competing
risks, Simon et al. (2011), Breheny and Huang (2011), and Mittal et al. (2014), among many others, have
made significant progress in reducing the computational complexity for the Cox (1972) proportional
hazards model from O(n2) to O(n) by taking advantage of the cumulative structure of the risk set.
However, the counterfactual construction of the risk set for the Fine-Gray model does not retain the
same structure and presents a barrier to reducing the complexity of the risk set calculation. To the best
of our knowledge, no further advancements in reducing the computational complexity required for
calculating the subject-specific risk sets exists.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=fastcmprsk
https://CRAN.R-project.org/package=cmprsk
https://CRAN.R-project.org/package=riskRegression
https://CRAN.R-project.org/package=timereg
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=crrSC
https://CRAN.R-project.org/package=crrstep
https://CRAN.R-project.org/package=crrp

CONTRIBUTED RESEARCH ARTICLE 44

The contribution of this work is the development of an R package fastcmprsk which implements
a novel forward-backward scan algorithm (Kawaguchi et al., 2020) for the Fine-Gray model. By taking
advantage of the ordering of the data and the structure of the risk set, we can calculate the log-pseudo
likelihood and its derivatives, which are necessary for parameters estimation, in O(n) calculations
rather than O(n2). As a consequence, our approach is scalable to large competing risks datasets and
outperforms competing algorithms for both penalized and unpenalized parameter estimation.

The paper is organized as follows. In the next section, we briefly review the basic definition of the
Fine-Gray proportional subdistribution hazards model, the CIF, and penalized Fine-Gray regression.
We highlight the computational challenge of lineaizing estimation for the Fine-Gray model and intro-
duce the forward-backward scan algorithm of Kawaguchi et al. (2020) in Section 2.3. Then in Section
2.4, we describe the main functionalities of the fastcmprsk package that we developed for R which
utilizes the aforementioned algorithm for unpenalized and penalized parameter estimation and CIF
estimation. We perform simulation studies in Section 2.5 to compare the performance of our proposed
method to some of their popular competitors. The fastcmprsk package is readily available on the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=fastcmprsk.

Preliminaries

Data structure and model

We first establish some notation and the formal definition of the data generating process for competing
risks. For subject i = 1, . . . , n, let Ti, Ci, and εi be the event time, possible right-censoring time,
and cause (event type), respectively. Without loss of generality assume there are two event types
ε ∈ {1, 2} where ε = 1 is the event of interest (or primary event) and ε = 2 is the competing risk.
With the presence of right-censoring we generally observe Xi = Ti ∧ Ci, δi = I(Ti ≤ Ci), where
a ∧ b = min(a, b) and I(·) is the indicator function. Letting zi be a p-dimensional vector of time-
independent subject-specific covariates, competing risks data consist of the following independent
and identically distributed quadruplets {(Xi, δi, δiεi, zi)}n

i=1. Assume that there also exists a τ such
that 1) for some arbitrary time t, t ∈ [0, τ] ; 2) Pr(Ti > τ) > 0 and Pr(Ci > τ) > 0 for all i = 1, . . . , n,
and that for simplicity, no ties are observed.

The CIF for the primary event conditional on the covariates z = (z1, . . . , zp) is F1(t; z) = Pr(T ≤
t, ε = 1|z). To model the covariate effects on F1(t; z), Fine and Gray (1999) introduced the now
well-appreciated proportional subdistribution hazards (PSH) model:

h1(t|z) = h10(t) exp(z′β), (1)

where

h1(t|z) = lim
∆t→0

Pr{t ≤ T ≤ t + ∆t, ε = 1|T ≥ t ∪ (T ≤ t ∩ ε 6= 1), z}
∆t

= − d
dt

log{1− F1(t; z)}

is a subdistribution hazard (Gray, 1988), h10(t) is a completely unspecified baseline subdistribution
hazard, and β is a p× 1 vector of regression coefficients. As Fine and Gray (1999) mentioned, the risk
set associated with h1(t; z) is somewhat unnatural as it includes subjects who are still at risk (T ≥ t)
and those who have already observed the competing risk prior to time t (T ≤ t ∩ ε 6= 1). However,
this construction is useful for direct modeling of the CIF.

Parameter estimation for unpenalized Fine-Gray regression

Parameter estimation and large-sample inference of the PSH model follows from the log-pseudo
likelihood:

l(β) =
n

∑
i=1

∫ ∞

0

[
z′i β− ln

{
∑
k

ŵk(u)Yk(u) exp
(
z′kβ
)}]

ŵi(u)dNi(u), (2)

where Ni(t) = I(Xi ≤ t, εi = 1), Yi(t) = 1− Ni(t−), and ŵi(t) is a time-dependent weight based
on the inverse probability of censoring weighting (IPCW) technique (Robins and Rotnitzky, 1992).
To parallel Fine and Gray (1999), we define the IPCW for subject i at time t as ŵi(t) = I(Ci ≥
Ti ∧ t)Ĝ(t)/Ĝ(Xi ∧ t), where G(t) = Pr(C ≥ t) is the survival function of the censoring variable C
and Ĝ(t) is the Kaplan-Meier estimate for G(t). We can further generalize the IPCW to allow for
dependence between C and z.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=fastcmprsk

CONTRIBUTED RESEARCH ARTICLE 45

Let β̂mple = arg minβ{−l(β)} be the maximum pseudo likelihood estimator of β. Fine and
Gray (1999) investigate the large-sample properties of β̂mple and prove that, under certain regularity
conditions,

√
n(β̂mple − β0)→ N(0, Ω−1ΣΩ−1), (3)

where β0 is the true value of β, Ω is the limit of the negative of the partial derivative matrix of the
score function evaluated at β0, and Σ is the variance-covariance matrix of the limiting distribution of
the score function. We refer readers to Fine and Gray (1999) for more details on Ω and Σ. This variance
estimation procedure is implemented in the cmprsk package.

Estimating the cumulative incidence function

An alternative interpretation of the coefficients from the Fine-Gray model is to model their effect
on the CIF. Using a Breslow-type estimator (Breslow, 1974), we can obtain a consistent estimate for
H10(t) =

∫ t
0 h10(s)ds through

Ĥ10(t) =
1
n

n

∑
i=1

∫ t

0

1
Ŝ(0)(β̂, u)

ŵi(u)dNi(u),

where Ŝ(0)(β̂, u) = n−1 ∑n
i=1 ŵi(u)Yi(u) exp(z′i β̂). The predicted CIF, conditional on z = z0, is then

F̂1(t; z0) = 1− exp
{∫ t

0
exp(z′0 β̂)dĤ10(u)

}
.

We refer the readers to Appendix B of Fine and Gray (1999) for the large-sample properties of F̂1(t; z0).
The quantities needed to estimate

∫ t
0 dĤ10(u) are already precomputed when estimating β̂. Fine and

Gray (1999) proposed a resampling approach to calculate confidence intervals and confidence bands
for F̂1(t; z0).

Penalized Fine-Gray regression for variable selection

Oftentimes reserachers are interested in identifying which covariates have an effect on the CIF. Pe-
nalization methods (Tibshirani, 1996; Fan and Li, 2001; Zou, 2006; Zhang et al., 2010) offer a popular
way to perform variable selection and parameter estimation simultaneously through minimizing the
objective function

Q(β) = −l(β) +
p

∑
j=1

pλ(|β j|), (4)

where l(β) is defined in (2), pλ(|β j|) is a penalty function where the sparsity of the model is controlled
by the non-negative tuning parameter λ. Fu et al. (2017) recently extend several popular variable
selection procedures - LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), adaptive LASSO (Zou,
2006), and MCP (Zhang, 2010) - to the Fine-Gray model, explore its asymptotic properties under
fixed model dimension, and develop the R package crrp (Fu, 2016) for implementation. Parameter
estimation in the crrp package employs a cyclic coordinate algorithm.

The sparsity of the model depends heavily on the choice of the tuning parameters. Practically,
finding a suitable (or optimal) tuning parameter involves applying a penalization method over a
sequence of possible candidate values of λ and finding the λ that minimizes some metric such as the
Bayesian information criterion (Schwarz, 1978) or generalized cross validation measure (Craven and
Wahba, 1978). A more thorough discussion on tuning parameter selection can partially be found in
Wang et al. (2007); Zhang et al. (2010); Wang and Zhu (2011); Fan and Tang (2013); Fu et al. (2017); Ni
and Cai (2018).

Parameter estimation in linear time

Whether interest is in fitting an unpenalized model or a series of penalized models used for variable
selection, one will need to minimize the negated log-pseudo (or penalized log-pseudo likelihood.
While current implementations can readily fit small to moderately-sized datasets, where the sample
size can be in the hundreds to thousands, we notice that these packages grind to a halt for large-scale
data such as, electronic health records (EHR) data or cancer registry data, where the number of

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 46

observations easily exceed tens of thousands, as illustrated later in Section 2.5.1 (Table 2) on some
simulated large competing risks data.

The primary computational bottleneck for estimating the parameters of the Fine-Gray model
is due to the calculation of the log-pseudo likelihood and its derivatives, which are required for
commonly-used optimization routines. For example, the cyclic coordinate descent algorithm requires
the score function

l̇j(β) =
n

∑
i=1

I(δiεi = 1)zij −
n

∑
i=1

I(δiεi = 1)
∑k∈Ri

zkjw̃ik exp(ηk)

∑k∈Ri
w̃ik exp(ηk)

, (5)

and the Hessian diagonals

l̈jj(β) =
n

∑
i=1

I(δiεi = 1)

∑k∈Ri
z2

kjw̃ik exp(ηk)

∑k∈Ri
w̃ik exp(ηk)

−
{

∑k∈Ri
zkjw̃ik exp(ηk)

∑k∈Ri
w̃ik exp(ηk)

}2
 , (6)

where
w̃ik = ŵk(Xi) = Ĝ(Xi)/Ĝ(Xi ∧ Xk), k ∈ Ri,

Ri = {y : (Xy ≥ Xi) ∪ (Xy ≤ Xi ∩ εy = 2)} and ηk = z′kβ for optimization. While the algorithm
itself is quite efficient, especially for estimating sparse coefficients, direct evaluation of (5) and (6)
will require O(n2) operations since for each i such that δiεi = 1 we must identify all y ∈ {1, . . . , n}
such that either Xy ≥ Xi or (Xy ≤ Xi ∩ εy = 2). As a consequence, parameter estimation will be
computationally taxing for large-scale data since runtime will scale quadratically with n. We verify
this in Section 2.5 for the cmprsk and crrp packages. To the best of our knowledge, prior to Kawaguchi
et al. (2020), previous work on reducing the computational of parameter estimation from O(n2) to a
lower order has not been developed.

Before moving forward we will first consider the Cox proportional hazards model for right-
censored data, which can be viewed as a special case of the Fine-Gray model when competing risks
are not present (i.e. Ri = {y : Xy ≥ Xi}, w̃ik = 1 for all k ∈ Ri, and εi = 1 whenever δi = 1). Again,
direct calculation of quantities such as the log-partial likelihood and score function will still require
O(n2) computations; however, one can show that when event times are arranged in decreasing order,
the risk set is monotonically increasing as a series of cumulative sums. Once we arrange the event
times in decreasing order, these quantities can be calculated in O(n) calculations. The simplicity of the
data manipulation and implementation makes this approach widely adopted in several R packages
for right-censored data including the survival, glmnet, ncvreg, and Cyclops packages.

Unfortunately, the risk set associated with the Fine-Gray model does not retain the same cumulative
structure. Kawaguchi et al. (2020) propose a novel forward-backward scan algorithm that reduces the
computational complexity associated with parameter estimation from O(pn2) to O(pn), allowing for
the analysis of large-scale competing risks data in linear time. Briefly, the risk set Ri partitions into two
disjoint subsets: Ri(1) = {y : Xy ≥ Xi} and Ri(2) = {y : (Xy ≤ Xi ∩ εy = 2)}, were Ri(1) is the set of
observations that have an observed event time after Xi and Ri(2) is the set of observations that have
observed the competing event before time Xi. Since Ri(1) and Ri(2) are disjoint, the summation over
k ∈ Ri can be written as two separate summations, one over Ri(1) and one over Ri(2). The authors
continue to show that the summation over Ri(1) is a series of cumulative sums as the event times
decrease while the summation over Ri(2) is a series of cumulative sums as the event times increase.
Therefore, by cleverly separating the calculation of both summations, (5), (6), and consequently (2)
are available in O(n) calculations. We will show the computational advantage of this approach for
parameter estimation over competing R packages in Section 2.5.

The fastcmprsk package

We utilize this forward-backward scan algorithm of Kawaguchi et al. (2020) for both penalized and un-
penalized parameter estimation for the Fine-Gray model in linear time. Furthermore, we also develop
scalable methods to estimate the predicted CIF and its corresponding confidence interval/band. For
convenience to researchers and readers, a function to simulate two-cause competing risks data is also
included. Table ?? provides a summary of the currently available functions provided in fastcmprsk.
We briefly detail the use of some of the key functions below.

Simulating competing risks data

Researchers can simulate two-cause competing risks data using the simulateTwoCauseFineGrayModel
function in fastcmprsk. The data generation scheme follows a similar design to that of Fine and

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=Cyclops

CONTRIBUTED RESEARCH ARTICLE 47

Function name Basic description
Modeling functions
fastCrr Fits unpenalized Fine-Gray regression and

returns an object of class "fcrr"
fastCrrp Fits penalized Fine-Gray regression and

returns an object of class "fcrrp"

Utilities
Crisk Creates an object of class "Crisk" to be used as the

response variable for fastCrr and fastCrrp
varianceControl Options for bootstrap variance for fastCrr.
simulateTwoCauseFineGrayModel Simulates two-cause competing risks data

S3 methods for "fcrr"
AIC Generic function for calculating AIC
coef Extracts model coefficients
confint Computes confidence intervals for parameters in the model
logLik Extracts the model log-pseudo likelihood
predict Predict the cumulative incidence function given newdata

using model coefficients.
summary Print ANOVA table
vcov Returns bootstrapped variance-covariance matrix

if variance = TRUE.

S3 methods for "fcrrp"
AIC Generic function for calculating AIC
coef Extracts model coefficients for each tuning parameter λ.
logLik Extracts the model log-pseudo likelihood for each tuning

parameter λ.
plot Plot coefficient path as a function of λ

Table 1: Currently available functions in fastcmprsk (v.1.1.0).

Gray (1999) and Fu et al. (2017). Given a design matrix Z = (z′1, . . . , z′n), β1, and β2, let the cu-
mulative incidence function for cause 1 (the event of interest) be defined as F1(t; zi) = Pr(Ti ≤
t, εi = 1|zi) = 1 − [1 − π{1 − exp(−t)}]exp(z′i β1), which is a unit exponential mixture with mass
1− π at ∞ when zi = 0 and where π controls the cause 1 event rate. The cumulative incidence
function for cause 2 is obtained by setting Pr(εi = 2|zi) = 1 − Pr(εi = 1|zi) and then using
an exponential distribution with rate exp(z′i β2) for the conditional cumulative incidence function
Pr(Ti ≤ t|εi = 2, zi). Censoring times are independently generated from a uniform distribution
U(umin, umax) where umin and umax control the censoring percentage. Appendix .1 provides more details
on the data generation process. Below is a toy example of simulating competing risks data where
n = 500, β1 = (0.40,−0.40, 0,−0.50, 0, 0.60, 0.75, 0, 0,−0.80), β2 = −β1, umin = 0, umax = 1, π = 0.5,
and where Z is simulated from a multivariate standard normal distribution with unit variance. This
simulated dataset will be used to illustrate the use of the different modeling functions within fastcm-
prsk. The purpose of the simulated dataset is to demonstrate the use of the fastcmprsk package and
its comparative estimation performance to currently-used packages for unpenalized and penalized
Fine-Gray regression. Runtime comparisons between the different packages are reported in Section
2.5.

R> #### Need the following packages to run the examples in the paper
R> install.packages("cmprsk")
R> install.packages("crrp")
R> install.packages("doParallel")
R> install.packages("fastcmprsk")
R> ###

R> library(fastcmprsk)
R> set.seed(2019)
R> N <- 500 # Set number of observations

R> # Create coefficient vector for event of interest and competing event

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 48

R> beta1 <- c(0.40, -0.40, 0, -0.50, 0, 0.60, 0.75, 0, 0, -0.80)
R> beta2 <- -beta1

R> # Simulate design matrix
R> Z <- matrix(rnorm(nobs * length(beta1)), nrow = N)

R> # Generate data
R> dat <- simulateTwoCauseFineGrayModel(N, beta1, beta2,
+ Z, u.min = 0, u.max = 1, p = 0.5)

R> # Event counts (0 = censored; 1 = event of interest; 2 = competing event)
R> table(dat$fstatus)

0 1 2
241 118 141

R> # First 6 observed survival times
R> head(dat$ftime)

[1] 0.098345608 0.008722629 0.208321175 0.017656904 0.495185038 0.222799124

fastCrr: Unpenalized parameter estimation and inference

We first illustrate the coefficient estimation from (1) using the Fine-Gray log-pseudo likelihood. The
fastCrr function returns an object of class "fcrr" that estimates these parameters using our forward-
backward scan algorithm and is syntactically similar to the coxph function in survival. The formula
argument requires an outcome of class "Crisk". The Crisk function produces this object by calling
the Surv function in survival, modifying it to allow for more than one event, and requires four
arguments: a vector of observed event times (ftime), a vector of corresponding event/censoring
indicators (fstatus), the value of fstatus that denotes a right-censored observation (cencode) and the
value of fstatus that denotes the event of interest (failcode). By default, Crisk assumes that cencode
= 0 and failcode = 1. The variance passed into fastCrr is a logical argument that specifies whether
or not the variance should be calculated with parameter estimation.

cmprsk package
R> library(cmprsk)
R> fit1 <- crr(dat$ftime, dat$fstatus, Z, failcode = 1, cencode = 0,
+ variance = FALSE)

fastcmprsk package
R> fit2 <- fastCrr(Crisk(dat$ftime, dat$fstatus, cencode = 0, failcode = 1) ~ Z,
+ variance = FALSE)

R> max(abs(fit1$coef - fit2$coef)) # Compare the coefficient estimates for both methods

[1] 8.534242e-08

As expected, the fastCrr function calculates nearly identical parameter estimates to the crr function.
The slight difference in numerical accuracy can be explained by the different methods of optimization
and convergence thresholds used for parameter estimation. Convergence within the cyclic coordinate
descent algorithm used in fastCrr is determined by the relative change of the coefficient estimates.
We allow users to modify the maximum relative change and maximum number of iterations used for
optimization within fastCrr through the eps and iter arguments, respectively. By default, we set eps
= 1E-6 and iter = 1000 in both our unpenalized and penalized optimization methods.

We now show how to obtain the variance-covariance matrix for the parameter estimates. The
variance-covariance matrix for β̂ via (3) can not be directly estimated using the fastCrr function. First,
the asymptotic expression requires estimating both Ω and Σ, which can not be trivially calculated
in O(pn) operations. Second, for large-scale data where both n and p can be large, matrix calcula-
tions, storage, and inversion can be computationally prohibitive. Instead, we propose to estimate
the variance-covariance matrix using the bootstrap (Efron, 1979). Let β̃(1), . . . β̃(B) be bootstrapped
parameter estimates obtained by resampling subjects with replacement from the original data B times.
Unless otherwise noted, the size of each resample is the same as the original data. For j = 1, . . . , p and

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 49

k = 1, . . . , p, we can estimate the covariance between β̂ j and β̂k by

Ĉov(β̂ j, β̂k) =
1

B− 1

B

∑
b=1

(β̃
(b)
j − β̄ j)(β̃

(b)
k − β̄k), (7)

where β̄ j =
1
B ∑B

b=1 β̃
(b)
j . Therefore, with σ̂2

j = Ĉov(β̂ j, β̂ j), a (1− α)× 100% confidence interval for β j
is given by

β̂ j ± z1−α/2σ̂j, (8)

where z1−α/2 is the (1− α)× 100th percentile of the standard normal distribution. Since parameter
estimation for the Fine-Gray model is done in linear time using our forward-backward scan algorithm,
the collection of parameter estimates obtained by bootstrapping can also be obtained linearly. The
varianceControl function controls the parameters used for bootstrapping, that one then passes into
the var.control argument in fastCrr. These arguments include B, the number of bootstrap samples
to be used, and seed, a non-negative numeric integer to set the seed for resampling.

R> # Estimate variance via 100 bootstrap samples using seed 2019.
R> vc <- varianceControl(B = 100, seed = 2019)
R> fit3 <- fastcmprsk::fastCrr(Crisk(dat$ftime, dat$fstatus) ~ Z, variance = TRUE,
+ var.control = vc,
+ returnDataFrame = TRUE)
returnDataFrame = TRUE is necessary for CIF estimation (next section)

R> round(sqrt(diag(fit3$var)), 3) # Standard error estimates rounded to 3rd decimal place

[1] 0.108 0.123 0.085 0.104 0.106 0.126 0.097 0.097 0.104 0.129

The accuracy of the bootstrap variance-covariance matrix compared to the asymptotic expression
depends on several factors including the sample size and number of bootstrap samples B. Our
empirical evidence in Section 2.5.1 show that B = 100 bootstrap samples provided a sufficient estimate
of the variance-covariance matrix for large enough n in our scenarios. In practice, we urge users to
increase the number of bootstrap samples until the variance is stable if they can computationally afford
to. Although this may hinder the computational performance of fastCrr for small sample sizes, we
find this to be a more efficient approach for large-scale competing risks data.

We adopt several S3 methods that work seamlessly with the "fcrr" object that is outputted from
fastCrr. The coef method returns the estimated regression coefficient estimates β̂:

R> coef(fit3) # Coefficient estimates

[1] 0.192275755 -0.386400287 0.018161906 -0.397687129 0.105709092 0.574938015
[7] 0.778842652 -0.006105756 -0.065707434 -0.996867883

The model pseudo log-likelihood can also be extracted via the logLik function:

R> logLik(fit3) # Model log-pseudo likelihood
[1] -590.3842

Related quantities to the log-pseudo likelihood are information criteria, measures of the quality
of a statistical model that are used to compare alternative models on the same data. These criterion
are computed using the following formula: −2l(β̂) + k× |β̂|0, where k is a penalty factor for model
complexity and |β̂|0 corresponds to the number of parameters in the model. Information criteria can
be computed for a fcrr object using AIC and users specify the penalty factor using the k argument. By
default k = 2 and corresponds to the Akaike information criteria (Akaike, 1974).

R> AIC(fit3, k = 2) # Akaike's Information Criterion
[1] 1200.768

R> # Alternative expression of the AIC
R> -2 * logLik(fit3) + 2 * length(coef(fit3))
[1] 1200.768

If the variance is set to TRUE for the fastCrr model fit, we can extract the bootstrap variance-
covariance matrix using vcov. Additionally, conf.int will display confidence intervals, on the scale of
β̂, and the level argument can be used to specify the confidence level. By default level = 0.95 and
corresponds to 95% confidence limits.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 50

R> vcov(fit3)[1:3, 1:3] # Variance-covariance matrix for the first three estimates

[,1] [,2] [,3]
[1,] 0.0116785745 0.0031154634 0.0007890851
[2,] 0.0031154634 0.0150597898 0.0004681825
[3,] 0.0007890851 0.0004681825 0.0072888011

R> confint(fit3, level = 0.95) # 95 % Confidence intervals

2.5% 97.5%
x1 -0.01953256 0.4040841
x2 -0.62692381 -0.1458768
x3 -0.14916899 0.1854928
x4 -0.60197206 -0.1934022
x5 -0.10199838 0.3134166
x6 0.32827237 0.8216037
x7 0.58798896 0.9696963
x8 -0.19610773 0.1838962
x9 -0.26995659 0.1385417
x10 -1.24897861 -0.7447572

Lastly, summary will return an ANOVA table for the fitted model. The table presents the log-
subdistribution hazard ratio (coef), the subdistribution hazard ratio (exp(coef)), the standard error
of the log-subdistribution hazards ratio (se(coef)) if variance = TRUE in fastCrr, the corresponding
z-score (z value), and two-sided p-value (Pr(|z|)). When setting conf.int = TRUE, the summary
function will also print out the 95% confidence intervals (if variance = TRUE when running fastCrr).
Additionally the pseudo log-likelihood for the estimated model and the null pseudo log-likelihood
(when β̂ = 0) are also reported below the ANOVA table.

R> # ANOVA table for fastCrr
R> summary(fit3, conf.int = TRUE) # conf.int = TRUE allows for 95% CIs to be presented

Fine-Gray Regression via fastcmprsk package.

fastCrr converged in 24 iterations.

Call:
fastcmprsk::fastCrr(Crisk(dat$ftime, dat$fstatus) ~ Z, variance = TRUE,

var.control = vc, returnDataFrame = TRUE)

coef exp(coef) se(coef) z value Pr(>|z|)
x1 0.19228 1.212 0.1081 1.779 7.5e-02
x2 -0.38640 0.679 0.1227 -3.149 1.6e-03
x3 0.01816 1.018 0.0854 0.213 8.3e-01
x4 -0.39769 0.672 0.1042 -3.816 1.4e-04
x5 0.10571 1.111 0.1060 0.997 3.2e-01
x6 0.57494 1.777 0.1259 4.568 4.9e-06
x7 0.77884 2.179 0.0974 7.998 1.3e-15
x8 -0.00611 0.994 0.0969 -0.063 9.5e-01
x9 -0.06571 0.936 0.1042 -0.631 5.3e-01
x10 -0.99687 0.369 0.1286 -7.750 9.1e-15

exp(coef) exp(-coef) 2.5% 97.5%
x1 1.212 0.825 0.981 1.498
x2 0.679 1.472 0.534 0.864
x3 1.018 0.982 0.861 1.204
x4 0.672 1.488 0.548 0.824
x5 1.111 0.900 0.903 1.368
x6 1.777 0.563 1.389 2.274
x7 2.179 0.459 1.800 2.637
x8 0.994 1.006 0.822 1.202
x9 0.936 1.068 0.763 1.149
x10 0.369 2.710 0.287 0.475
Pseudo Log-likelihood = -590

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 51

Null Pseudo Log-likelihood = -675
Pseudo likelihood ratio test = 170 on 10 df.

Since standard error estimation is performed via bootstrap and resampling, it is easy to use multiple
cores to speed up computation. Parallelization is seamlessly implemented using the doParallel
package (Calaway et al., 2019). Enabling usage of multiple cores is done through the useMultipleCores
argument within the varianceControl function. To avoid interference with other processes, we allow
users to set up the cluster on their own. We provide an example below.

R> library(doParallel)

R> n.cores <- 2 # No. of cores
R> myClust <- makeCluster(n.cores)

R> # Set useMultipleCores = TRUE to enable parallelization
R> vc = varianceControl(B = 1000, useMultipleCores = TRUE)

R> registerDoParallel(myClust)
R> fit3 <- fastCrr(Crisk(dat$ftime, dat$fstatus) ~ Z, variance = TRUE,
+ var.control = vc)
R> stopCluster(myClust)

Cumulative incidence function and interval/band estimation

The CIF is also available in linear time in the fastcmprsk package. Fine and Gray (1999) propose a
Monte Carlo simulation method for interval and band estimation. We implement a slightly different ap-

proach using bootstrapping for interval and band estimation in our package. Let F̃(1)
1 (t; z0), . . . , F̃(B)

1 (t; z0)
be the bootstrapped predicted CIF obtained by resampling subjects with replacement from the original
data B times and let m(·) be a known, monotone, and continuous transformation. In our current im-
plementation we let m(x) = log{− log(x)}; however, we plan on incorporating other transformations
in our future implementation. We first estimate the variance function σ2(t; z0) of the transformed CIF
through

σ̂2(t; z0) =
1
B

B

∑
b=1

[
m{F̃(b)

1 (t; z0)} − m̄{F̃1(t; z0)}
]2

, (9)

where m̄{F̃1(t; z0)} = 1
B ∑B

b=1 m{F̃(b)
1 (t; z0)}. Using the functional delta method, we can now construct

(1− α)× 100% confidence intervals for F1(t; z0) by

m−1 [m{F̂1(t; z0)} ± z1−α/2σ̂(t; z0)
]

. (10)

Next we propose a symmetric global confidence band for the estimated CIF F̂1(t; z0), t ∈ [tL, tU]
via bootstrap. We first determine a critical region C1−α(z0) such that

Pr

 sup
t∈[tL ,tU]

|m{F̂1(t; z0)} −m{F1(t; z0)}|√
V̂ar[m{F̂1(t; z0)}]

≤ C1−α(z0)

 = 1− α. (11)

While Equation (9) estimates V̂ar[m{F̂1(t; z0)}] we still need to find C1−α(z0) by the bootstrap (1− α)th

percentile of the distribution of the supremum in the equation above. The algorithm is as follows:

1. Resample subjects with replacement from the original data B times and estimate F̃(b)
1 (t; z0) for

b = 1, . . . , B and σ̂2(t; z0) using (9).
2. For the bth bootstrap sample , b ∈ {1, . . . , B}, calculate

C(b) = sup
t∈[tL ,tU]

|m{F̃(b)
1 (t; z0)} −m{F̂1(t; z0)}|

σ̂(t; z0)
.

3. Estimate C1−α(z0) from the sample (1− α)th percentile of the B values of C(b), denoted by
Ĉ1−α(z0).

Finally, the (1− α)× 100% confidence band for F1(t; z0), t ∈ [tL, tU] is given by

m−1 [m{F̂1(t; z0)} ± Ĉ1−α(z0)σ̂(t; z0)
]

. (12)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=doParallel

CONTRIBUTED RESEARCH ARTICLE 52

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
.1

0
.2

0
.3

0
.4

Time

E
s
ti
m

a
te

d
 C

IF

Figure 1: Estimated CIF (solid line) and corresponding 95% confidence intervals (dotted lines) between
tL = 0.2 and tU = 0.9 given a covariate vector z0 using the coefficient and baseline estimates from our
toy example.

Similar to estimating the variance-covariance matrix for the coefficient estimates β̂, specifying
the number of bootstrap samples, seed for reputability, and multicore functionality for estimating
the variance of the CIF can be done through the varianceControl function. One can perform CIF
estimation and interval/band estimation using the predict function by specifying a vector z0 in
the newdata argument and the fitted model from fastCrr. To calculate the CIF, both the Breslow
estimator of the cumulative subdistribution hazard and the (ordered) model data frame need to be
returned values within the fitted object. This can be achieved by setting both the getBreslowJumps and
returnDataFrame arguments within fastCrr to TRUE. Additionally, for confidence band estimation
one must specify a time interval [tL, tU]. The user can specify the interval range using the tL and
tU arguments in predict. Figure 1 illustrates the estimated CIF and corresponding 95% confidence
interval, obtained using 100 bootstrap samples, over the range [0.2, 0.9] given covariate entries z0
simulated from a standard random normal distribution.

R> set.seed(2019)
R> # Make sure getBreslowJumps and returnDataFrame are set to TRUE
R> fit4 <- fastCrr(Crisk(dat$ftime, dat$fstatus, cencode = 0, failcode = 1) ~ Z,
+ variance = FALSE,
+ getBreslowJumps = TRUE, # Default = TRUE
+ returnDataFrame = TRUE) # Default is FALSE for storage purposes

R> z0 <- rnorm(10) # New covariate entries to predict
R> cif.point <- predict(fit4, newdata = z0, getBootstrapVariance = TRUE,
+ type = "interval", tL = 0.2, tU = 0.9,
+ var.control = varianceControl(B = 100, seed = 2019))

R> plot(cif.point) # Figure 1 (Plot of CIF and 95% C.I.)

fastCrrp: Penalized Fine-Gray regression in linear time

We extend our forward-backward scan approach for for penalized Fine-Gray regression as described
in Section 2.2.4. The fastCrrp function performs LASSO, SCAD, MCP, and ridge (Hoerl and Kennard,
1970) penalization. Users specify the penalization technique through the penalty argument. The
advantage of implementing this algorithm for penalized Fine-Gray regression is two fold. Since the

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 53

−3.0 −2.5 −2.0 −1.5 −1.0

−
1

.0
−

0
.5

0
.0

0
.5

Solution path for LASSO−penalized regression

log10(λn)

β
j

Figure 2: Path plot for LASSO-penalized Fine-Gray regression using our toy example. The tuning
parameter λ varies between the log-spaced interval [0.001, 0.1]. The y-axis corresponds to the estimated
value for β̂ j and the x-axis corresponds to λ (on the log10 scale).

cyclic coordinate descent algorithm used in the crrp function calculates the gradient and Hessian
diagonals in O(pn2) time, as opposed to O(pn) using our approach, we expect to see drastic differences
in runtime for large sample sizes. Second, as mentioned earlier, researchers generally tune the strength
of regularization through multiple model fits over a grid of candidate tuning parameter values. Thus
the difference in runtime between both methods grows larger as the number of candidate values
increases. Below we provide an example of performing LASSO-penalized Fine-Gray regression using
a prespecified grid of 25 candidate values for λ that we input into the lambda argument of fastCrrp.
If left untouched (i.e. lambda = NULL), a log-spaced interval of λ will be computed such that the
largest value of λ will correspond to a null model. Figure 2 illustrates the solution path for the
LASSO-penalized regression, a utility not directly implemented within the crrp package. The syntax
for fastCrrp is nearly identical to the syntax for crrp.

R> library(crrp)
R> lam.path <- 10^seq(log10(0.1), log10(0.001), length = 25)

R> # crrp package
R> fit.crrp <- crrp(dat$ftime, dat$fstatus, Z, penalty = "LASSO",
+ lambda = lam.path, eps = 1E-6)

R> # fastcmprsk package
R> fit.fcrrp <- fastCrrp(Crisk(dat$ftime, dat$fstatus) ~ Z, penalty = "LASSO",
+ lambda = lam.path)

R> # Check to see the two methods produce the same estimates.
R> max(abs(fit.fcrrp$coef - fit.crrp$beta))

[1] 1.110223e-15

R> plot(fit.fcrrp) # Figure 2 (Solution path)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 54

−1

0

1

2

3.0 3.2 3.4 3.6

log10(Sample size)

lo
g

1
0
(S

e
c
o

n
d
s
)

Method

crr (var)

crr (no var)

fastCrr (var)

fastCrr (no var)

Figure 3: Runtime comparison between fastCrr and crr with and without variance estimation. Axes
are on the log10 scale. Solid and dashed lines represent the crrp and fastcmprsk implementation,
respectively. Square, and circle symbols denote variance and without variance calculation, respectively.
Variance estimation for crr is performed using the asymptotic expression of the variance-covariance
estimator. Variance estimation for fastCrr is performed using 100 bootstrap samples. Reported
runtime are averaged over 100 Monte Carlo runs.

Simulation studies

This section provides a more comprehensive illustration of the computational performance of the
fastcmprsk package over two popular competing packages cmprsk and crrp. We simulate datasets
under various sample sizes and fix the number of covariates p = 100. We generate the design matrix,
Z from a p-dimensional standard normal distribution with mean zero, unit variance, and pairwise
correlation corr(zi, zj) = ρ|i−j|, where ρ = 0.5 simulates moderate correlation. For Section 2.5.1, the
vector of regression parameters for cause 1, the cause of interest, is β1 = (β∗, β∗, . . . , β∗), where β∗ =
(0.40,−0.40, 0,−0.50, 0, 0.60, 0.75, 0, 0,−0.80). For Section 2.5.2, β1 = (β∗, 0p−10). We let β2 = −β1.
We set π = 0.5, which corresponds to a cause 1 event rate of approximately 41%. The average censoring
percentage for our simulations varies between 30− 35%. We use simulateTwoCauseFineGrayModel to
simulate these data and average runtime results over 100 Monte Carlo replicates. We report timing on
a system with an Intel Core i5 2.9 GHz processor and 16GB of memory.

Comparison to the crr package

In this section, we compare the runtime and estimation performance of the fastCrr function to crr.
We vary n from 1, 000 to 500, 000 and run fastCrr and crr both with and without variance estimation.
We take 100 bootstrap samples, without parallelization, to obtain the bootstrap standard errors with
fastCrr. As shown later in the section (Tables 3 and 4), 100 bootstrap samples suffices to produce a
good standard error estimate with close-to-nominal coverage for large enough sample sizes in our
scenarios. In practice, we recommend users to increase the number of bootstrap samples until the
variance estimate becomes stable, when computationally feasible.

Figure 3 depicts how fast the computational complexities of fastCrr (dashed lines) and crr
(solid lines) increase as n increases as measured by runtime (in seconds). It shows clearly that the
computational complexity of crr increases quadratically (solid line slopes ≈ 2) while that of fastCrr
is linear (dashed line slopes ≈ 1). This implies that the computational gains of fastCrr over crr are
expected to grow exponentially as the sample size increases.

We further demonstrates the computational advantages of fastCrr over crr for large sample size

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 55

Table 2: Runtime comparison of crr versus fasrCrr for large n scenarios. The dashes (“–") indicate
that runtime could not be completed within 72 hours. Variance estimation for fastCrr is calculated
using B = 100 bootstrap samples.

Sample size n
50,000 100,000 500,000

crr without variance 6 hours 24 hours –
crr with variance 54 hours – –
fastCrr without variance 5 seconds 12 seconds 50 seconds
fastCrr with variance 7 minutes 14 minutes 69 minutes

Table 3: Standard error estimates for various different values of β1j (j = 1, 2, 3). Empirical: Standard
deviation of the 100 Monte Carlo estimates of β̂1j; Bootstrap: The average of the 100 Monte Carlo
estimates of the bootstrap standard error for β̂1j using B = 100 bootstrap samples; Asymptotic: The
average of 100 Monte Carlo estimates of the standard error estimate for β̂1j using the asymptotic
variance-covariance matrix defined in (3).

Std. Err. Est. n = 1000 2000 3000 4000

β11 = 0.4 Empirical 0.06 0.05 0.04 0.03
Bootstrap 0.10 0.05 0.04 0.03
Asymptotic 0.07 0.04 0.03 0.03

β12 = −0.4 Empirical 0.10 0.05 0.04 0.03
Bootstrap 0.11 0.06 0.04 0.04
Asymptotic 0.08 0.05 0.04 0.03

β13 = 0 Empirical 0.09 0.06 0.04 0.03
Bootstrap 0.11 0.06 0.04 0.04
Asymptotic 0.07 0.05 0.04 0.03

data in Table 2 by comparing their runtime on a single simulated data with n varying from 50, 000
to 500, 000 using a system with an Intel Xeon 2.40GHz processor and 256GB of memory. It is seen
that fastCrr scales well to large sample size data, whereas crr eventually grinds to a halt as n grows
large. For example, for n = 500, 000, it only takes less than 1 minute for fastCrr to finish, while crr
did not finish in 3 days. Because the forward-backward scan allows us to efficiently compute variance
estimates through bootstrapping, we have also observed massive computational gains in variance
estimation with large sample size data (7 minutes for fastCrr versus 54 hours for crr). Furthermore,
since parallelization of the bootstrap procedure was not implemented in these timing reports, we
expect multicore usage to further decrease the runtime of the variance estimation for fastCrr

We also performed a simulation to compare the bootstrap procedure for variance estimation to the
estimate of the asymptotic variance provided in (3) used in crr. First, we compare the two standard
error estimates with the empirical standard error of β̂1. For the jth coefficient, the empirical standard
error is calculated as the standard deviation of β̂1j from the 100 Monte Carlo runs. For the standard
error provided by both the bootstrap and the asymptotic variance-covariance matrix, we take the
average standard error of β̂1j over the 100 Monte Carlo runs. Table 3 compares the standard errors for
β̂1j for j = 1, 2, 3. When n = 1000, the average standard error using the bootstrap is slightly larger than
the empirical standard error; whereas, the standard error from the asymptotic expression is slightly
smaller. These differences diminish and all three estimates are comparable when n ≥ 2000. This
provides evidence that both the bootstrap and asymptotic expression are adequate estimators of the
variance-covariance expression for large datasets.

Additionally, we present in Table 4 the coverage probability (and standard errors) of the 95%
confidence intervals for β11 = 0.4 using the bootstrap (fastCrr) and asymptotic (crr) variance estimate.
The confidence intervals are wider for the bootstrap approach when compared to confidence intervals
produced using the asymptotic variance estimator, especially when n = 1000. However, both methods
are close to the nominal 95% level as n increases. We observe similar trends across the other coefficient
estimates.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 56

Table 4: Coverage probability (and standard errors) of 95% confidence intervals for β11 = 0.4. Con-
fidence intervals for crr are calculated using the asymptotic expression of the variance-covariance
estimator. Confidence intervals for fasrCrr are calculated using the bootstrap variance-covariance
estimator using 100 bootstrap samples.

n = 1000 2000 3000 4000

crr 0.93 (0.03) 0.90 (0.03) 0.93 (0.03) 0.95 (0.02)
fastCrr 1.00 (0.00) 0.98 (0.02) 0.95 (0.02) 0.95 (0.02)

0

1

2

3.0 3.2 3.4 3.6

log10(Sample size)

lo
g

1
0
(S

e
c
o

n
d
s
)

Method: Penalty

crrp: MCP

crrp: SCAD

crrp: LASSO

fastCrrp: MCP

fastCrrp: SCAD

fastCrrp: LASSO

Figure 4: Runtime comparison between the crrp and fastcmprsk implementations of LASSO, SCAD,
and MCP penalization. Solid and dashed lines represent the crrp and fastcmprsk implementation,
respectively. Square, circle, and triangle symbols denote the penalties MCP, SCAD, and LASSO,
respectively. Axes are on the log10 scale. Reported runtime are averaged over 100 Monte Carlo runs.

Comparison to the crrp package

As mentioned in Section 2.2.4, Fu et al. (2017) provide an R package crrp for performing penalized
Fine-Gray regression using the LASSO, SCAD, and MCP penalties. We compare the runtime between
fastCrrp with the implementation in the crrp package. To level comparisons, we modify the source
code in crrp so that the function only calculates the coefficient estimates and BIC score. We vary
n = 1000, 1500, . . . , 4000, fix p = 100, and employ a 25-value grid search for the tuning parameter.
Figure 4 illustrates the computational advantage the fastCrrp function has over crrp.

Similar to the unpenalized scenario, the computational performance of crrp (solid lines) increases
quadratically while fasrCrrp (dashed lines) increases linearly, resulting in a 200 to 300-fold speed up
in runtime when n = 4000. This, along with the previous section and a real data analysis conclusion
in the following section, strongly suggests that for large-scale competing risks datasets (e.g. EHR
databases), where the sample size can easily exceed tens to hundreds of thousands, analyses that may
take several hours or days to perform using currently-implemented methods are available within
seconds or minutes using the fastcmprsk package.

Discussion

The fastcmprsk package provides a set of scalable tools for the analysis of large-scale competing
risks data by developing an approach to linearize the computational complexity required to estimate
the parameters of the Fine-Gray proportional subdistribution hazards model. Multicore use is also

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 57

implemented to further speed up methods that require bootstrapping and resampling. Our simulation
results show that our implementation results in a up to 7200-fold decrease in runtime for large sample
size data. We also note that in a real-world application, Kawaguchi et al. (2020) record a drastic
decrease in runtime (≈ 24 hours vs. ≈ 30 seconds) when comparing the proposed implementation
of LASSO, SCAD, and MCP to the methods available in crrp on a subset of the United States Renal
Data Systems (USRDS) where n = 125, 000. The package implements both penalized and unpenalized
Fine-Gray regression and we can conveniently extend our forward-backward algorithm to other
applications such as stratified and clustered Fine-Gray regression.

Lastly, our current implementation assumes that covariates are densely observed across subjects.
This is problematic in the sparse high-dimensional massive sample size (sHDMSS) domain (Mittal
et al., 2014) where the number of subjects and sparsely-represented covariates easily exceed tens of
thousands. These sort of data are typical in large comparative effectiveness and drug safety studies
using massive administrative claims and EHR databases and typically contain millions to hundreds
of millions of patient records with tens of thousands patient attributes, which such settings are
particularly useful for drug safety studies of a rare event such as unexpected adverse events (Schuemie
et al., 2018) to protect public health. We are currently extending our algorithm to this domain in a
sequel paper.

Acknowledgements

We thank the referees and the editor for their helpful comments that improved the presentation of the
article. Marc A. Suchard’s work is partially supported through the National Institutes of Health grant
U19 AI 135995. Jenny I. Shen’s work is partly supported through the National Institutes of Health
grant K23DK103972. The research of Gang Li was partly supported by National Institutes of Health
Grants P30 CA-16042, UL1TR000124-02, and P50 CA211015.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 58

Data generation scheme

We describe the data generation process for the simulateTwoCauseFineGrayModel function. Let n, p,
Zn×p, β1, β2, umin, umax and π be specified. We first generate independent Bernoulli random variables to
simulate the cause indicator ε for each subject. That is, εi ∼ 1 + Bern{(1− π)exp(z′i β1)} for i = 1, . . . , n.
Then, conditional on the cause, event times are simulated from

Pr(Ti ≤ t|εi = 1, zi) =
1− [1− π{1− exp(−t)}]exp(z′i β1)

1− (1− π)exp(z′i β1)

Pr(Ti ≤ t|εi = 2, zi) = 1− exp{−t exp(z′i β2)},

and Ci ∼ U(umin, umax). Therefore, for i = 1, . . . , n, we can obtain the following quadruplet {(Xi, δi, δiεi, zi)}
where Xi = min(Ti, Ci), and δi = I(Xi ≤ Ci). Below is an excerpt of the code used in simulateTwoCauseFineGrayModel
to simulate the observed event times, cause and censoring indicators.

#START CODE
...
...
...
nobs, Z, p = pi, u.min, u.max, beta1 and beta2 are already defined.
Simulate cause indicators here using a Bernoulli random variable
c.ind <- 1 + rbinom(nobs, 1, prob = (1 - p)^exp(Z %*% beta1))

ftime <- numeric(nobs)
eta1 <- Z[c.ind == 1,] %*% beta1 #linear predictor for cause on interest
eta2 <- Z[c.ind == 2,] %*% beta2 #linear predictor for competing risk

Conditional on cause indicators, we simulate the model.
u1 <- runif(length(eta1))
t1 <- -log(1 - (1 - (1 - u1 * (1 - (1 - p)^exp(eta1)))^(1 / exp(eta1))) / p)
t2 <- rexp(length(eta2), rate = exp(eta2))
ci <- runif(nobs, min = u.min, max = u.max) # simulate censoring times

ftime[c.ind == 1] <- t1
ftime[c.ind == 2] <- t2
ftime <- pmin(ftime, ci) # X = min(T, C)
fstatus <- ifelse(ftime == ci, 0, 1) # 0 if censored, 1 if event
fstatus <- fstatus * c.ind # 1 if cause 1, 2 if cause 2
...
...
...

Bibliography

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19(6):716–723, 1974. [p49]

P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression, with
applications to biological feature selection. The Annals of Applied Statistics, 5(1):232, 2011. [p43]

N. Breslow. Covariance analysis of censored survival data. Biometrics, 30(1):89–99, 1974. doi: 10.2307/
2529620. [p45]

R. Calaway, S. Weston, and D. Tenenbaum. doParallel: Foreach Parallel Adaptor for the ’parallel’ Package,
2019. URL https://CRAN.R-project.org/package=doParallel. R package version 1.0.14. [p51]

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 34(2):187–220, 1972. doi: 10.1007/978-1-4612-4380-9_37. [p43]

P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numerische Mathematik, 31(4):
377–403, Dec 1978. ISSN 0945-3245. doi: 10.1007/BF01404567. [p45]

B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):1–26, 1979.
doi: 10.1214/aos/1176344552. [p48]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=doParallel

CONTRIBUTED RESEARCH ARTICLE 59

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal
of the American Statistical Association, 96(456):1348–1360, 2001. doi: 10.1198/016214501753382273.
[p45]

Y. Fan and C. Y. Tang. Tuning parameter selection in high dimensional penalized likelihood. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 75(3):531–552, 2013. doi: 10.1111/rssb.
12001. [p45]

J. P. Fine and R. J. Gray. A proportional hazards model for the subdistribution of a competing risk.
Journal of the American Statistical Association, 94(446):496–509, 1999. doi: 10.1080/01621459.1999.
10474144. [p43, 44, 45, 46, 51]

Z. Fu. crrp: Penalized Variable Selection in Competing Risks Regression, 2016. URL https://CRAN.R-
project.org/package=crrp. R package version 1.0. [p45]

Z. Fu, C. R. Parikh, and B. Zhou. Penalized variable selection in competing risks regression. Lifetime
Data Analysis, 23(3):353–376, 2017. doi: 10.1007/s10985-016-9362-3. [p43, 45, 47, 56]

T. A. Gerds, T. H. Scheike, and P. K. Andersen. Absolute risk regression for competing risks: in-
terpretation, link functions, and prediction. Statistics in Medicine, 31(29):3921–3930, 2012. doi:
10.1002/sim.5459. [p43]

R. J. Gray. A class of k-sample tests for comparing the cumulative incidence of a competing risk. The
Annals of Statistics, 16(3):1141–1154, 1988. doi: 10.1214/aos/1176350951. [p44]

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55–67, 1970. doi: 10.1080/00401706.1970.10488634. [p52]

R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of Computational and
Graphical Statistics, 5(3):299–314, 1996. URL https://doi.org/10.1080/10618600.1996.10474713.
[p43]

E. S. Kawaguchi, J. I. Shen, M. A. Suchard, and G. Li. Scalable algorithms for large competing risks
data. Journal of Computational and Graphical Statistics, accepted pending a minor revision, 2020. [p43, 44,
46, 57]

D. Kuk and R. Varadhan. Model selection in competing risks regression. Statistics in Medicine, 32(18):
3077–3088, 2013. doi: 10.1002/sim.5762. [p43]

S. Mittal, D. Madigan, R. S. Burd, and M. A. Suchard. High-dimensional, massive sample-size
cox proportional hazards regression for survival analysis. Biostatistics, 15(2):207–221, 2014. doi:
10.1093/biostatistics/kxt043. [p43, 57]

A. Ni and J. Cai. Tuning parameter selection in cox proportional hazards model with a diverging
number of parameters. Scandinavian Journal of Statistics, 45(3):557–570, 2018. doi: 10.1111/sjos.12313.
[p45]

J. M. Robins and A. Rotnitzky. Recovery of information and adjustment for dependent censoring using
surrogate markers. In AIDS epidemiology, pages 297–331. Springer, 1992. doi: 10.1007/978-1-4757-
1229-2_14. [p44]

T. H. Scheike and M.-J. Zhang. Analyzing competing risk data using the r timereg package. Journal of
Statistical Software, 38(2), 2011. doi: 10.18637/jss.v038.i02. [p43]

M. J. Schuemie, P. B. Ryan, G. Hripcsak, D. Madigan, and M. A. Suchard. Improving reproducibility by
using high-throughput observational studies with empirical calibration. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128):20170356, 2018. doi:
10.1098/rsta.2017.0356. [p57]

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978. doi:
10.1214/aos/1176344136. [p45]

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for cox’s proportional hazards
model via coordinate descent. Journal of Statistical Software, 39(5):1, 2011. [p43]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 58(1):267–288, 1996. doi: 10.1.1.35.7574. [p45]

H. Wang, R. Li, and C.-L. Tsai. Tuning parameter selectors for the smoothly clipped absolute deviation
method. Biometrika, 94(3):553–568, 2007. doi: 10.1093/biomet/asm053. [p45]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=crrp
https://CRAN.R-project.org/package=crrp
https://doi.org/10.1080/10618600.1996.10474713

CONTRIBUTED RESEARCH ARTICLE 60

T. Wang and L. Zhu. Consistent tuning parameter selection in high dimensional sparse linear regression.
Journal of Multivariate Analysis, 102(7):1141–1151, 2011. doi: 10.1016/j.jmva.2011.03.007. [p45]

C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of
Statistics, 38(2):894–942, 2010. doi: 10.1214/09-aos729. [p45]

Y. Zhang, R. Li, and C.-L. Tsai. Regularization parameter selections via generalized information
criterion. Journal of the American Statistical Association, 105(489):312–323, 2010. doi: 10.1198/jasa.2009.
tm08013. [p45]

B. Zhou, A. Latouche, V. Rocha, and J. Fine. Competing risks regression for stratified data. Biometrics,
67(2):661–670, 2011. doi: 10.1111/j.1541-0420.2010.01493.x. [p43]

B. Zhou, J. Fine, A. Latouche, and M. Labopin. Competing risks regression for clustered data.
Biostatistics, 13(3):371–383, 2012. doi: 10.1093/biostatistics/kxr032. [p43]

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101
(476):1418–1429, 2006. doi: 10.1198/016214506000000735. [p45]

Eric S. Kawaguchi
University of Southern California
Department of Preventive Medicine
2001 N. Soto St. Los Angeles, CA 90032, USA
eric.kawaguchi@med.usc.edu

Jenny I. Shen
The Lundquist Institute at Harbor-UCLA Medical Center
Division of Nephrology and Hypertension
1124 W. Carson St.
Torrance, CA 90502, USA
jshen@lundquist.org

Gang Li
University of California, Los Angeles
Departments of Biostatistics and Computational Medicine
Los Angeles, CA 90095, USA
vli@ucla.edu

Marc A. Suchard
University of California, Los Angeles
Departments of Biostatistics, Computational Medicine, and Human Genetics
Los Angeles, CA 90095, USA
msuchard@ucla.edu

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:eric.kawaguchi@med.usc.edu
mailto:jshen@lundquist.org
mailto:vli@ucla.edu
mailto:msuchard@ucla.edu

CONTRIBUTED RESEARCH ARTICLE 61

ordinalClust: An R Package to Analyze
Ordinal Data
by Margot Selosse, Julien Jacques and Christophe Biernacki

Abstract Ordinal data are used in many domains, especially when measurements are collected
from people through observations, tests, or questionnaires. ordinalClust is an innovative R package
dedicated to ordinal data that provides tools for modeling, clustering, co-clustering and classifying
such data. Ordinal data are modeled using the BOS distribution, which is a model with two meaningful
parameters referred to as "position" and "precision". The former indicates the mode of the distribution
and the latter describes how scattered the data are around the mode: the user is able to easily interpret
the distribution of their data when given these two parameters. The package is based on the co-
clustering framework (when rows and columns are simultaneously clustered). The co-clustering
approach uses the Latent Block Model (LBM) and the SEM-Gibbs algorithm for parameter inference.
On the other hand, the clustering and the classification methods follow on from simplified versions
of the SEM-Gibbs algorithm. For the classification process, two approaches are proposed. In the
first one, the BOS parameters are estimated from the training dataset in the conventional way. In the
second approach, parsimony is introduced by estimating the parameters and column-clusters from the
training dataset. We empirically show that this approach can yield better results. For the clustering
and co-clustering processes, the ICL-BIC criterion is used for model selection purposes. An overview
of these methods is given, and the way to use them with the ordinalClust package is described using
real datasets. The latest stable package version is available on the Comprehensive R Archive Network
(CRAN).

Introduction

Ordinal data is a specific kind of categorical data occurring when the levels are ordered (Agresti,
2012). Some common contexts for the collection of ordinal data include satisfaction surveys, aptitude
and personality tests and psychological questionnaires. In the present work, an ordinal variable is
represented by x and it is considered to have m levels that are written (1, ..., m).

Thus far, ordinal data have received more attention from a supervised point of view. For example:
a marketing firm investigating which factors influence the size of a soda (small, medium, large or extra
large) that people order at a fast-food chain. These factors may include which type of sandwich is
ordered (burger or chicken), whether or not fries are also ordered, and the consumer’s age. In this case,
an observation consists in factors of different types and the variable to predict is an ordinal variable.
Several software can analyze ordinal data in a regression framework. The cumulative link model
(CLM) assumes that:

logit (p (x ≤ µ)) = log p(x≤µ)
1−p(x≤µ)

= β0 (µ) + βtt,

where x is the ordinal variable, µ is one of its levels, t are the covariates, and β0 (1) ≤ β0 (2) ≤
. . . ≤ β0 (m) . In the absence of covariates, it is equivalent to a multinomial model. CLMs are a
powerful model class for ordinal data since observations are handled as categorical, their ordered
nature is exploited and the regression framework enables interpretable analyses. In R, several packages
implement this kind of models. The package MASS (Venables and Ripley, 2002) implements the
CLM with standard link functions, while VGAM (Yee, 2010), rms (Jr, 2019), brms (Bürkner, 2017) and
ordinal (Christensen, 2015) bring additional functions and features. Other contributions implement
algorithms for ordinal data classification. For instance, the ordinalForest package (Hornung, 2019a,b)
uses ordinal forests and monmlp (Cannon, 2017) uses neural networks, both to predict ordinal response
variables. Finally, the ocapis package (Heredia-Gómez et al., 2019) implements several methods (such
as CMLs, Support Machine, Weighted k-Nearest-Neighbor) to classify and preprocess ordinal data.

However, the focus of these techniques differs from ours in two ways. Firstly, they work in a
supervised framework (classification). Secondly, they work with datasets for which the variables to
predict are ordinal responses: the other variables are of various types. Our goal is to provide a tool for
unsupervised and supervised tasks, and for datasets comprised only of ordinal variables only (in the
classification context, the response is categorical). From an unsupervised point a view, the Latent Gold
Software J. Vermunt (2005) is – to our knowledge – the only software that uses the CMLs to cluster the
data. Nevertheless, the implementation of this method is known to be computationally expensive. In
addition, it is not provided through a user-friendly R package.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ordinalClust
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=VGAM
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=brms
https://CRAN.R-project.org/package=ordinal
https://CRAN.R-project.org/package=ordinalForest
https://CRAN.R-project.org/package=monmlp
https://CRAN.R-project.org/package=ocapis

CONTRIBUTED RESEARCH ARTICLE 62

Other contributions have defined clustering algorithms with ordinal variables. In McParland
and Gormley (2013), the authors propose a model-based technique by considering the probability
distribution of ordinal data as a discretization of an underlying continuous variable. This approach is
implemented in the clustMD package (McParland and Gormley, 2017), which is generally more for
heterogeneous data. In Ranalli and Rocci (2016), the categorical variables are seen as a discretization of
an underlying finite mixture of Gaussians. In other works, the authors use the multinomial distribution
to model the data. For instance in the case of Giordan and Diana (2011), the multinomial distribu-
tion and a cluster tree are used, whereas Jollois and Nadif (2009) apply a constrained multinomial
distribution. However, these contributions do not provide a way to co-cluster and classify ordinal
data. Furthermore, they are not always available as an R package (except in the case of McParland
and Gormley (2013)). More recently, Corneli et al. (2020) proposed a method to co-cluster ordinal data
modeled via latent Gaussian random variables. Their package ordinalLBM (Corneli et al., 2019) is
available on CRAN.

Finally, the CUB (Combination of a discrete Uniform and a shifted Binomial random variable)
model (D’Elia and Piccolo, 2005) is widely used to analyze ordinal datasets. For instance, Corduas
(2008) proposes a clustering algorithm based on a mixture of CUB models. In the CUB model, an
answer is interpreted as the result of a cognitive process where the decision is intrinsically continuous
but is expressed on a discrete scale of m levels. This approach interprets the choice of the respondent
as a weighted combination of two components. The first component reflects a personal feeling and
is expressed by a shifted binomial random variable. The second component reflects an intrinsic
uncertainty and is expressed by a uniform random variable. Many extensions for the CUB model
have been defined and the CUB package (Maria Iannario, 2018) implements the associated statistical
methods.

More recently, Biernacki and Jacques (2016) proposed the so-called Binary Ordinal Search model,
referred to as the "BOS" model. It is a probability distribution specific to ordinal data that is parame-
terized with meaningful parameters (µ, π), linked to a position and precision role, respectively. This
work also describes how the BOS distribution can be used to perform clustering on multivariate
ordinal data. Jacques and Biernacki (2018) then employed this distribution coupled to the Latent
Block Model (Govaert and Nadif, 2003) in order to carry out a co-clustering on ordinal data. The
co-clustering task consists of simultaneously clustering the rows and the columns of the data matrix. It
is a useful way of clustering the data while introducing parsimony, and providing more interpretable
partitions. The authors in Jacques and Biernacki (2018) showed that their algorithm can easily deal
with missing values. However, this model could not take ordinal data with different numbers of levels
into account. Selosse et al. (2019) used an extension of the Latent Block Model to overcome this issue.
These works have proved their proficiency and also provide efficient techniques to perform clustering
and co-clustering of ordinal data. The purpose of the ordinalClust package is to offer a complete tool
for analyzing ordinal data by implementing these methods. Furthermore, it presents a novel approach
for classifying ordinal datasets with categorical responses. The present document gives an overview of
the underlying methods and illustrates usage of ordinalClust through concrete examples. The paper
is organized as follows. In the section "Statistical methods", the notation and models are described.
The section "Application to the patients quality of life analysis in oncology" presents the functions
of ordinalClust and details a use case for psychological survey datasets. The section "Conclusion"
discusses the limits of ordinalClust and future work for the package.

Statistical methods

Data Notation

A dataset of ordinal data will be written as x =
(

xij

)
i,j

, with 1 ≤ i ≤ N and 1 ≤ j ≤ J, N and J

denoting the number of individuals and the number of variables, respectively. Furthermore, a dataset
can contain missing data. While dealing with this aspect, the dataset will be expressed by x = (x̌, x̂),
with x̌ being the observed data and x̂ being the missing data. Consequently an element of x will be
annotated as follows: x̌ij, whether xij is observed, x̂ij otherwise.

The BOS model

The BOS model (Biernacki and Jacques, 2016) is a probability distribution for ordinal data parame-
terized by a position parameter µ ∈ {1, ..., m} and a precision parameter π ∈ [0, 1]. It was built on
the assumption that an ordinal variable is the result of a stochastic binary search algorithm within
the ordered table (1, ..., m). This distribution rises from a uniform distribution when π = 0 to a more
peaked distribution around the mode µ when π grows, and reaches a Dirac distribution at the mode µ

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=clustMD
https://CRAN.R-project.org/package=ordinalLBM
https://CRAN.R-project.org/package=CUB

CONTRIBUTED RESEARCH ARTICLE 63

when π = 1. Figure 1 illustrates the shape of the BOS distribution with different values of µ and π. In
Biernacki and Jacques (2016) it is shown that the BOS distribution is a polynomial function of π with
degree m− 1 whose coefficients depend on the position parameter µ. For a univariate ordinal variable,
the path in a stochastic binary search can be seen as a latent variable. Therefore, an efficient way to
perform the maximum likelihood estimation is through the EM algorithm (Dempster et al., 1977).

Figure 1: BOS distribution p (x; µ, π): shapes for m = 5 and for different values of µ and π.

The co-clustering model

Notation With this being in a co-clustering context, it is assumed that there are G row-clusters and
H column-clusters inherent to the x matrix. It is therefore useful to introduce g (or h) which represents
the gth (or hth) row-cluster (or column-cluster), with 1 ≤ g ≤ G (or 1 ≤ h ≤ H). In addition, the sums
and the products related to rows, columns, row-clusters and column-clusters will be subscripted using
the letters i, j, g and h respectively. Therefore, the sums and products will be written as ∑

i
, ∑

j
, ∑

g
and ∑

h
,

and ∏
i

, ∏
j

, ∏
g

and ∏
h

.

Latent Block Model Let us consider the data matrix x =
(

xij

)
i,j

. It is assumed that there are

G row-clusters and H column-clusters that correspond to a partition v =
(

vig

)
i,g

and a partition

w =
(

wjh

)
j,h

respectively, with 1 ≤ g ≤ G and 1 ≤ h ≤ H. We have noted that vig = 1 if i belongs to

cluster g, whereas vig = 0 otherwise, and wjh = 1 when j belongs to cluster h, but wjh = 0 otherwise.
Each element xij is considered to be generated under a parameterized probability density function

p
(

xij; αgh

)
. Here, g denotes the cluster of row i, and h denotes the cluster of column j, while αgh

represents the parameters of a probability density function of block (g, h), a block being the crossing
of both a row-cluster and a column-cluster. Figure 2 is an example of co-clustering performed on an
ordinal data matrix.

The univariate random variables xij are assumed to be conditionally independent given the row
and column partitions v and w. Therefore, the conditional probability density function of x given v
and w can be written as:

p (x|v, w; α) = ∏
i,j,g,h

p
(

xij; αgh

)vigwjh
,

where α =
(

αgh

)
g,h

is the distribution’s parameters of block (g, h). Any univariate distribution can

be used with respect to the kind of data (e.g: Gaussian, Bernoulli, Poisson...). In the ordinalClust

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 64

Figure 2: Left: original dataset made of ordinal data with m = 5. Right: a co-clustering is performed
with G = H = 2, the rows and columns are sorted by row-clusters and column clusters, which
emphasizes a structure in the dataset.

package, the BOS distribution is employed, thus αgh =
(

µgh, πgh

)
. For convenience, the label of

row i is also denoted by vi = (vi1, ..., viG) ∈ {0, 1}G. Similarly, the label of column j is denoted by

wj =
(

wj1, ..., wiH

)
∈ {0, 1}H . These latent variables v and w are assumed to be independent so

p (v, w; γ, ρ) = p (v; γ) p (w; ρ) with:

p (v; γ) = ∏
i,g

γ
vig
g and p (w; ρ) = ∏

j,h
ρ

wjh

h ,

with the knowledge that γg = p
(

vig = 1
)

with g ∈ {1, ..., G} and ρh = p
(

wjh = 1
)

with h ∈
{1, ..., H}. This implies that, for all i, the distribution of vi is the multinomial distributionM (γ1, ..., γG)
and does not depend on i. In a similar way, for all j, the distribution of wj is the multinomial distribu-
tionM (ρ1, ..., ρH) and does not depend on j. From these considerations, the parameters of the latent
block model are defined as θ = (γ, ρ, µ, π), with γ = (γ1, ..., γG) and ρ = (ρ1, ..., ρH) as the mixing

proportions of the rows and columns; µ =
(

µgh

)
g,h

and π =
(

πgh

)
g,h

are the distribution parameters

of the blocks. Therefore, if V and W are the sets of all possible labels v and w, the probability density
function p (x; θ) of x can be written as:

p (x; θ) = ∑
(v,w)∈V×W

∏
i,g

γ
vig
g ∏

j,h
ρ

wjh

h ∏
i,j,g,h

p
(

xij; αgh

)vigwjh
. (1)

Model Inference In the co-clustering context, tha im of the inference is to maximize the observed
log-likelihood l (θ; x̌) = ∑

x̂
log p (x; θ). The EM-algorithm (Dempster et al., 1977) is a very well

known technique for maximizing parameters with latent variables. However, with respect to the
co-clustering case, it is not computationally tractable. Indeed, this method requires computation
of the expectation of the complete data log-likelihood. Nevertheless, this expression contains the

probability p
(

vig = 1, wjh = 1|x, θ
)

, which needs to take into account all the possible values for vi′

and wj′ with i′ 6= i and j′ 6= j. The E-step would require calculation of GN × H J terms for each
value of the data matrix. Using the values from the section "Application to the patients quality of
life analysis in oncology", i.e., G = 3, H = 3, N = 117 and J = 28, it would result in computation
of 3117 × 328 ≈ 1× 1069 terms. There are different alternatives to the EM algorithm, such as the
variational EM algorithm, the SEM-Gibbs algorithm or other algorithms linked to a Bayesian inference.
The SEM-Gibbs version is used because it is known to avoid spurious solutions (Keribin et al., 2010).
Furthermore, it easily handles missing values x̂ in x, which is an important advantage, particularly
with real datasets. The SEM-algorithm is made of two iteratively repeated steps that are detailed in

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 65

Algorithm 1.

Data: x, G, H
Result: A sequence (v, w, θ, x̂)(q) for q ∈ {1, ..., nbSEM}
Initialization of x̂, v, w and θ by x̂(0), v(0), w(0) and θ(0), respectively;
for q in 1:nbSEM do

1. SE-step.
1.1 Sample the row partitions for all 1 ≤ i ≤ N, 1 ≤ g ≤ G:

p
(

vig = 1|x(q−1), w(q−1); θ(q−1)
)

∝ γ
(q−1)
g ∏

j,h
p
(

xij; µ
(q−1)
gh , π

(q−1)
gh

)w(q−1)
jh .

1.2 Sample the column partitions for all 1 ≤ j ≤ J, 1 ≤ h ≤ H:

p
(

wjh = 1|x, v(q); θ(q−1)
)

∝ ρ
(q−1)
h ∏

i,g
p
(

xij; µ
(q−1)
gh , π

(q−1)
gh

)v(q)ig .

1.3 Generate the missing data:

p
(

x̂(q)ij |x̌, v(q), w(q); θ(q−1)
)
= ∏

g,h
p
(

x̂ij; µgh
(q−1), πgh

(q−1)
)v(q)ig wgh

(q)

.

2. M-step.
2.1 Update the mixing proportions:

ρ
(q)
h =

1
J ∑

j
w(q)

jh and γ
(q)
h =

1
N ∑

i
v(q)ig .

2.2 Update the parameters µ(q) and π(q) (see Biernacki and Jacques (2016)).

end
Algorithm 1: SEM-Gibbs for co-clustering on ordinal data.

Initializations The ordinalClust package provides three modes for value initialization. It is set
through the argument init, which can take values 'random', 'kmeans' or 'randomBurnin'. The first
value randomly initializes v(0) and w(0) with the multinomial distributionM (1/G, . . . , 1/G) and
M (1/H, . . . , 1/H), respectively. The second argument (by default) value consists of performing a
Kmeans algorithm (Hartigan and Wong, 1979) on the rows and on the columns.

The third one, 'randomBurnin' is a bit more complex and requires additional arguments for the
algorithm. It aims at avoiding a degeneracy of the algorithm that leads to empty clusters, knowing
that the degeneracy event arises more often at the early stage of the algorithm (thus during the burn-in
period. This starts with a first random initialization. However, for the first nbSEMburn iterations
(nbSEMburn < nbSEM), whenever a row-cluster gets empty, a percentage percentRandomB of the row
partitions are resampled from the multinomial distribution M (1/G, . . . , 1/G). Similarly when a
column-cluster gets empty, a percentage of the column partitions are resampled from the multinomial
distributionM (1/H, . . . , 1/H).

Estimation of model parameters and partitions The first iterations of the SEM-Gibbs are called the
burn-in period, which means that the parameters are not yet stable. Consequently, only the iterations
that occur after this burn-in period are taken into account and are referred to as the "sampling
distribution" hereafter. While the final estimation of the position parameters µ̂ are the mode of the
sampling distributions, the final estimations of the continuous parameters (π̂, γ̂, ρ̂) are the mean of
the sample distribution. This leads to a final estimation of θ that is called θ̂. Then, a sample of (x̂, v, w)
is generated through several SE-steps (step 1. from Algorithm 1) with θ fixed to θ̂. The final partitions
(v̂, ŵ) and the missing observations x̂ are estimated by the mode of their sample distribution.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 66

Model Selection To determine how many row-clusters and how many column-clusters are necessary,
an adaptation of the ICL criterion (Biernacki et al., 2000), called ICL-BIC, is proposed in Jacques and
Biernacki (2018). In practice, the algorithm must be executed with all the (G, H) to test, and the highest
ICL-BIC is retained.

The clustering model

The clustering model described in this section is a particular case of the co-clustering model, in which
each feature is in its own cluster (H = J). Consequently, w is no longer a latent variable since each

feature represents a cluster of size 1. Let us define a multivariate ordinal variable xi =
(

xij

)
j

with

1 ≤ j ≤ J. Conditionally to cluster g, the distribution of xi is assumed to be:

p
(

xi|vig = 1; µg, πg

)
= ∏

j
p
(

xij; µgj, πgj

)
,

where µg =
(

µgj

)
j

and πg =
(

πgj

)
j

with 1 ≤ j ≤ J. This conditional independence hypothesis

assumes that conditional to belonging to row-cluster g, the J ordinal responses of an individual

are independently drawn from J univariate BOS models of parameters
(

µgj, πgj

)
j∈{1,...,J}

. Further-

more, as in the co-clustering case, the distribution of vi is assumed to be a multinomial distribution
M (γ1, ..., γG) and not dependent on i. In this configuration, the parameters of the clustering model

are defined as θ = (γ, α), with αgj =
(

µgj, πgj

)
being the position and precision BOS parameters of

the row-cluster g and ordinal variable j. Consequently, with a matrix x =
(

xij

)
i,j

of ordinal data, the

probability density function p (x; θ) of x is written as:

p (x; θ) = ∑
v∈V

∏
i,g

γ
vig
g ∏

i,j,g
p
(

xij; µgj, πgj

)vig
. (2)

To infer the parameters of this model, the SEM-Gibbs Algorithm 1 is used with the part in 1.2 removed
from the SE-step. The part in 1.3 relating to missing value imputation also remains. It is noted here
that clustering can also be achieved by using the co-clustering model in section "The co-clustering
model", and by considering the resulting v partition as the outcome. As a matter of fact, in this case,
the co-clustering is a parsimonious version of the clustering procedure.

The classification model

By considering a classification task with a categorical variable to predict from ordinal data, the
configuration encountered is a particular case where v is known for all i ∈ {1, ..., N} and for all
g ∈ {1, ..., G}. In ordinalClust, two classification models are provided.

Multivariate BOS model This first model is similar to the clustering model: each variable represents
a column-cluster of size 1, thus w is not a latent variable. This model assumes that, conditional on
the class of the observations, the J variables are independent. Since the row classes are observed,
the algorithm only needs to estimate the parameter θ that maximizes the log-likelihood l (θ; x̌). The
probability density function p (x, v; θ) is therefore expressed as below:

p (x, v; θ) = ∏
i,g

γ
vig
g ∏

i,j,g
p
(

xij; αgj

)vig
. (3)

The inference of this model’s parameters only requires the M-step of Algorithm 1. However, if there
are missing data, the SE-step made of the part in 1.3 only is also required.

Parsimonious BOS model This model is a parsimonious version of the first model. Parsimony
is introduced by grouping the features into H clusters (as in the co-clustering model). The main
hypothesis is that given the row-cluster partitions and the column-cluster partitions, the realization of
xij is independent from the other ones. In practice the number H of column-clusters is chosen with a
training dataset and a validation dataset. Consequently, the probability density function p (x, v; θ) is

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 67

x =


 x1

 ...

 xD


, with xd =

(
xd

ij

)
i=1,...,N; j=1,...,Jd

.

Figure 3: Data set matrix x when the ordinal data has D numbers of levels.

annotated:

p (x, v; θ) = ∑
w∈W

∏
i,g

γ
vig
g ∏

j,h
ρ

wjh

h ∏
i,j,g,h

p
(

xij; αgh

)vigwjh
. (4)

To infer this model’s parameters, Algorithm 1 is used with an SE-step only containing the part in 1.2,
and the entire M-step. Again, if there are missing data, the SE-step made of the part in 1.3 is also
required.

Handling ordinal data with several numbers of levels

The Latent Block Model as described before cannot take variables with different numbers of levels m
into account. Indeed, the distributions of variables with different numbers of levels are not defined on
the same support. This implies that it is impossible to gather two variables with different m within a
same block.

In Selosse et al. (2019), a constrained Latent Block Model is provided. Although it does not allow
ordinal features with different numbers of levels to be gathered in a same column-cluster, it is able
to take into account the fact that there are several numbers of levels and to perform a co-clustering
on more diverse datasets. The matrix x is considered to contain D different numbers of levels. Its
representation is seen as D matrices placed side by side, such that the dth table is a N × Jd matrix
written as xd and composed of ordinal data with numbers of levels md (see Figure 3).

The model relies on the following hypothesis:

p
(

x1, ...xD|v, w1, ..., wD) = p
(

x1|v, w1)× ...× p
(

xD|v, wD),
with wd the column partition of xd. This means that there is independence between the D blocks,
knowing their row and column partitions: the realization of the univariate random variable xd

ij will
not depend on the column partitions of the other blocks than d.

In this case, the SEM-Gibbs algorithm is slightly changed: in the SE-step, a sampling step is
appended for every additional xd. For further details on this adapted SEM-Gibbs algorithm, see
Selosse et al. (2019).

Application to the patients quality of life analysis in oncology

This section explains how to use the implementation of the methods described before through the
ordinalClust package. Users should be aware that the code provided was run with R 3.5.3, and that the
results could be different with another version. If users wish to use a version of R≥ 3.6.0 and reproduce
the same results as in the paper, they should run the command RNGkind(sample.kind='Rounding')
before running the code.

Data sets

The datasets included were part of the QoLR package (Anota et al., 2017). They contain responses to
the well known "EORTC QLQ-C30" (European Organization for Research and Treatment of Cancer
(EORTC) Quality of Life Questionnaire (QLQ-C30)), provided to patients affected by breast cancer.
Furthermore, for all questions, the most positive answer is given by a level "1". For example, for
question: "During the past week, did you feel irritable?" with possible responses: "Not at all." "A little."
"Quite a bit." "Very much.", the following level numbers are assigned to the replies: 1 "Not at all.", 2 "A
little.", 3 "Quite a bit.", 4 "Very much.", because it is perceived as more negative to have felt irritable.
Two datasets are available:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 68

• dataqol is a dataframe with 117 lines such that each line represents a patient and the columns
contain information about the patient:

– Id: patient Id,
– q1-q28: responses to 28 questions with the number of levels equals to 4,
– q29-q30: responses to 2 questions with the number of levels equals to 7.

• dataqol.classif is a dataframe with 40 lines such that a line represents a patient, and the
columns contain information about the patient:

– Id: patient Id,
– q1-q28: responses to 28 questions with the number of levels equals to 4,
– q29-q30: responses to 2 questions with the number of levels equals to 7,
– death: if the patient passed away (2) or not (1).

The datasets contain missing values, coded as NA: in dataqol, 1.1% are missing values and 3.6% in
dataqol.classif. To load the package and its datasets, the following commands must be executed:

library(ordinalClust)
data("dataqol")
data("dataqol.classif")

Then, a seed is set so that users can obtain results identical to this document:

set.seed(1)

Users must define how many SEM-Gibbs iterations (nbSEM) and how many burn-in iterations (nbSEMburn)
are needed for Algorithm 1. The section "Setting the SEMburn and nbSEMburn arguments" provides
an empirical way of checking correctness of these values. Moreover, the nbindmini argument must
be defined: it indicates the minimum number of elements that must be present in a block. Finally,
the init argument indicates how to initialize the algorithm. It can be set to "kmeans", "random" or
"randomBurnin".

nbSEM <- 150
nbSEMburn <- 100
nbindmini <- 1
init <- "randomBurnin"
percentRandomB <- c(50, 50)

Here, percentRandom is a vector because it defines two percentages: the percentage of rows that
will be resampled if a row-cluster is emptied, and the percentage of columns that will be resampled if
a column-cluster is emptied.

Performing classification

In this section, the dataqol.classif dataset is used. The aim is to predict the death variable from the
ordinal data that corresponds to the patients answers. The following commands show how to setup
the classification configuration. First, the x ordinal data matrix (the responses to the questionnaires) is
defined, as well as the v vector, which is the variable death to predict.

x <- as.matrix(dataqol.classif[,2:29])
v <- dataqol.classif$death

ordinalClust provides two classification models. The first model (chosen by the option kc=0) is a
multivariate BOS model with the assumption that, conditional on the class of the observations, the
features are independent as in Equation 3. The second model introduces parsimony by grouping the
features into clusters and assuming that the features of a cluster have a common distribution, as in
Equation 4. This latter is a novel approach for classification. The number H of clusters of features is
defined with the argument kc = H. H is selected using a training dataset and a validation dataset:

sampling datasets for training and to predict
nb.sample <- ceiling(nrow(x)*7/10)
sample.train <- sample(1:nrow(x), nb.sample, replace=FALSE)

x.train <- x[sample.train,]
x.validation <- x[-sample.train,]

v.train <- v[sample.train]
v.validation <- v[-sample.train]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 69

We also indicate how many classes there are, and how many levels the ordinal data have:

classes
kr <- 2
levels
m <- 4

The training can be performed using the function bosclassif. In the code below, several kc parameters
are tested. When kc = 0, the multivariate model is used: all variables are considered to be independent.
When kc >0, the parsimonious model is used: the variables are grouped into kc groups. To classify
new observations, the predict function is used: it takes as arguments the result from bosclassif and
the observations to classify. In the following example, we store in the preds matrix the predictions
resulting from the classifications performed with different kc.

kcol <- c(0, 1, 2, 3, 4)
preds <- matrix(0, nrow = length(kcol), ncol = nrow(x.validation))

for(kc in 1:length(kcol)){
classif <- bosclassif(x = x.train, y = v.train, kr = kr, kc = kcol[kc],

m = m, nbSEM = nbSEM, nbSEMburn = nbSEMburn,
nbindmini = nbindmini, init = init,
percentRandomB = percentRandomB)

new.prediction <- predict(classif, x.validation)
if(!is.character(new.prediction)){

preds[kc,] <- new.prediction@zr_topredict
}

}

Then the preds matrix can be formatted to a dataframe:

preds <- as.data.frame(preds)
row.names <- paste0("kc = ", kcol)
rownames(preds) <- row.names

preds
v.validation

> preds
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

kc=0 2 1 2 2 2 2 1 1 1 2 1 2
kc=1 2 1 2 1 2 2 1 2 1 1 2 2
kc=2 2 1 2 2 2 2 1 2 1 2 2 2
kc=3 2 1 2 1 2 2 1 2 1 2 1 2
kc=4 1 1 2 1 1 1 1 2 1 2 1 2
> v.validation
[1] 2 1 1 1 1 1 1 2 1 1 1 2

Table 1 shows the sensitivity and specificity for each different kc. The code to get these values is
available in the Appendix "Specificity and sensitivity". First of all, the results are globally satisfying
since the sensitivities and specificities are quite high. We observe that the parsimonious models (when
kc = 1,2,3,4) have better results than the multivariate model (kc = 0). The two parsimonious models
kc = 1 and kc = 3 obtain the best results. This illustrates the interest of introducing parsimonious
models in a supervised context. However, users should be aware that the dataset is small, and the
number of observations used here is too low to draw definitive conclusions.

Performing clustering

Clustering setting. This section uses the dataqol dataset, plotted in Figure 4.

The purpose of clustering is to emphasize information regarding the rows of a data matrix. First,
the x ordinal matrix is loaded, which corresponds to the patients’ responses:

set.seed(1)
x <- as.matrix(dataqol[,2:29])

The clustering is obtained using the bosclust function:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 70

Table 1: Sensitivity and specificity for different kc.

sensitivity specificity

kc = 0 0.67 0.44

kc = 1 1.00 0.56

kc = 2 1.00 0.33

kc = 3 1.00 0.56

kc = 4 0.78 0.67

Figure 4: Plot of the dataqol dataset. The rows represent the patients, the columns represent the
questions they answered to. A cell is the response of a patient to a question. The more black the cell is,
the more negative the answer.

clust <- bosclust(x = x, kr = 3, m = 4,
nbSEM = nbSEM, nbSEMburn = nbSEMburn,
nbindmini = nbindmini, init = init)

The outcome can be plotted using the plot function:

plot(clust)

Figure 5 represents the clustering result. We count the clusters from the bottom to the top. Among
the 3 row-clusters, the first one (at the bottom) stands out as the lightest. This means that the patients
from this cluster globally chose levels close to 1, which is the most positive answer. In contrast, the
third row-cluster (at the top) is darker, which implies the patients from this group answered in a more
negative way.

Clusters interpretation. The parameters are obtained with the command clust@params:

> clust@params
[[1]]
[[1]]$mus

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,] 1 1 1 1 1 1 1 1 1 2 1 2 1 1
[2,] 2 2 1 1 1 2 1 1 2 2 1 3 2 1
[3,] 3 4 3 3 1 4 3 2 3 4 2 4 3 4

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 71

Figure 5: Clustering obtained when following the example provided.

[,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
[1,] 1 1 1 2 1 1 1 2 1 1 1 1
[2,] 1 1 1 2 2 1 2 2 1 2 1 1
[3,] 1 1 1 4 3 3 3 3 2 2 2 3

[,27] [,28]
[1,] 1 1
[2,] 1 1
[3,] 4 1

[[1]]$pis
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.8079608 0.6673682 0.961979 0.7770536 1 0.9619790 1.0000000 0.8852379
[2,] 0.3946294 0.3736864 0.722322 0.4690402 1 0.3567357 0.5546162 0.6402318
[3,] 0.4319502 0.5928978 0.347433 0.4930463 1 0.2718517 0.5888644 0.3310052

[,9] [,10] [,11] [,12] [,13] [,14] [,15]
[1,] 0.9246885 0.5903583 0.6951631 0.5438752 0.9226941 0.4932884 0.8825371
[2,] 0.4767814 0.6937982 0.1481492 0.1859040 0.1176366 0.6624020 0.7916167
[3,] 0.3220447 0.7079570 0.4084469 0.5779180 0.5745136 0.1691940 0.3161048

[,16] [,17] [,18] [,19] [,20] [,21] [,22]
[1,] 0.8036703 0.7364791 0.6643935 1.0000000 0.9619790 0.6951631 0.5681893
[2,] 0.3054584 0.8394348 0.5440131 0.3395749 0.4757433 0.4142450 0.3805989
[3,] 0.1255990 0.4281432 0.5470879 0.4280508 0.2300193 0.5776385 0.2632960

[,23] [,24] [,25] [,26] [,27] [,28]
[1,] 0.4905033 0.5510665 0.8167944 0.7477762 0.8521366 0.9226941
[2,] 0.3870155 0.4064222 0.6484691 0.4666815 0.3530825 0.6599010
[3,] 0.4183768 0.4709545 0.1959082 0.5465595 0.6419857 0.4174326

clust@params is a list: when the data have D numbers of levels as in Figure 3, the list is D−long. Here
the data has only one number of levels, so clust@params has one element. Each element of the list has
two attributes, pis and mus. They indicate the π and µ values for each row-cluster and each column.
Here, we see that, as observed with Figure 5, the first row-cluster has globally lower parameters µ,
which means that people from this cluster globally answered in a more positive way to the questions.
We also note that the π parameters for the fifth variable (the fifth question) are all equal to 1. This
means that the dispersion around the position µ is null. When observing the µ parameters for the fifth
variables, they are also all equal to 1. This means that everybody answered in a positive way to this
question. The fifth question of the EORTC QLQ-C30 questionnaire is "Do you need help with eating,
dressing, washing yourself or using the toilet?". Therefore, we know that none of the participants had
problems getting ready and eating the week before they answered the questionnaire.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 72

Choosing G. In the example above, the choice for G was made by performing several clustering
with G = (2, 3, 4). Using the command clust@icl, we can find out which result has the highest ICL
value. The G with the highest ICL-BIC was retained, that is to say G = 3. The code to perform these
clusterings is available in the Appendix "ICL search for clustering".

Performing co-clustering

Co-clustering setting. Once again, this section uses the dataqol dataset. The co-clustering is per-
formed using the boscoclust function:

set.seed(1)
coclust <- boscoclust(x = x, kr = 3, kc = 3, m = 4,

nbSEM = nbSEM, nbSEMburn = nbSEMburn,
nbindmini = nbindmini, init = init)

As in the clustering context, the result can be plotted with the command below, as in Figure 6.

plot(coclust)

Figure 6: Co-clustering obtained when following the example provided.

In this case, the algorithm highlights a structure amid the rows, as for the clustering Figure 5. In
addition, it also reveals a structure inherent to the columns: for example, the third column-cluster is
lighter than the others, consequently, these questions were globally responded to in a more positive
way.

Co-clusters interpretation. Once again, the parameters of the co-clustering are available through
the command coclust@params:

> coclust@params
[[1]]
[[1]]$mus

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 2 1
[3,] 3 3 1

[[1]]$pis
[,1] [,2] [,3]

[1,] 0.8496224 0.6266097 0.9426305
[2,] 0.4876194 0.5340329 0.7722278
[3,] 0.2638594 0.3044552 0.3623779

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 73

In order to find out which questions belong to the third column-cluster (the one whose correspond-
ing blocks are lighter), we need the command coclust@zc, which indicates the column-cluster of each
column. coclust@zc is also a list of length D (when we have different numbers of levels). Here, D = 1
so we need coclust@zc[[1]]:

which(coclust@zc[[1]] == 3)
[1] 3 5 8 15 17 25 28

We know that questions 3, 5, 8, 15, 17, 25 and 28 are globally the ones that were answered the more
positively. Here is the list of these questions in the EORTC QLQ C30:

• 3. Do you have any trouble taking a short walk outside of the house?

• 5. Do you need help with eating, dressing, washing yourself or using the toilet?

• 8. During the past week, were you short of breath?

• 15. During the past week, have you vomited??

• 17. During the past week, have you had diarrhea?

• 25. During the past week, have you had difficulty remembering things?

• 28. During the past week, has your physical condition or medical treatment caused you financial
difficulties?

Choosing G and H. In the examples above, the choice for G and H were made by performing several
co-clusterings with G = (2, 3, 4) and H = (2, 3, 4). In both cases, the couple (G, H) with the highest
ICL-BIC value was retained, i.e., for (G, H) = (3, 3). The code to search the highest ICL value is given
in the Appendix "ICL search for co-clustering"1.

Missing values.

In this section we use the dataqol dataset. It has 1.1% missing values (40 elements are missing in the
matrix). The SEM-algorithm can handle these values since at each Expectation step (see Algorithm 1,
which computes the expectation of the missing values. The following code obtains the index of the
missing values and prints their values imputed by the clustering (or co-clustering) algorithm in the
Section "Performing co-clustering" (or the Section "Performing clustering").

missing <- which(is.na(x))
missing

values.imputed.clust <- clust@xhat[[1]][missing]
values.imputed.clust

values.imputed.coclust <- coclust@xhat[[1]][missing]
values.imputed.coclust

> missing
[1] 148 177 278 352 380 440 450 559 996 1058 1496 1513 1611 1883 1981
[16] 2046 2047 2050 2085 2285 2402 2450 2514 2517 2518 2663 2754 2785 2900 2902
[31] 2982 2986 3060 3152 3366 3367 3368 3520 3572 3602
> values.imputed.clust
[1] 4 4 4 1 1 1 4 4 1 4 4 4 4 1 4 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 1 1 1 4 1 1 1
> values.imputed.coclust
[1] 2

We see that the co-clustering and the clustering algorithm had different values imputed for the
missing data.

Comparison of clustering and co-clustering.

Co-clustering as parsimonious clustering. Co-clustering can be seen as a parsimonious way of
performing clustering, which is why these two techniques are compared here. For example, the
interpretation of row-clusters is more precise with the co-clustering. Indeed, in Figure 5, the row-
clusters can be seen as a group of people who globally replied positively, a group of people who

1In case of several numbers of levels, testing all the possible values for (G, H1, ..., HD) can be tedious. In such
cases, users are invited to implement a specific heuristic strategy as in Selosse et al. (2019).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 74

replied negatively, and a third group that replied in between. On the other hand, in Figure 6, an
inherent structure of the data is better highlighted and adds more information: for each row-cluster, it
is also easy to detect the questions that were replied to negatively. Co-clustering can therefore be seen
as a more efficient way of performing clustering. Furthermore the interpretation of the parameters
was easier with the co-clustering result because it only had 18 parameters: kr× kc for π and kr× kc
for µ. The clustering result had 168 parameters (kr× J for π and kr× J for µ), which is a lot to process
for the user.

ARI values on row partitions The Adjusted Rand Index (Rand, 1971) was computed on row parti-
tions of co-clustering and clustering results, using the package mclust Scrucca et al. (2016).

mclust::adjustedRandIndex(coclust@zr, clust@zr)

The value obtained is 0.41, meaning that co-clustering creates a row partition related to that created
by the clustering, without being identical.

Setting the SEMburn and nbSEMburn arguments

The SEM-algorithm can be slow at reaching its stationary state, depending on the dataset. After having
chosen arbitrary nbSEM and nbSEMburn arguments (in practice at least higher than 50), the stability of
the algorithm has to be verified. For this reason, all the functions of the ordinalClust package also
return parameters estimations at each iteration of the SEM-algorithm. Indeed, the pichain, rhochain
and paramschain slots represent the γ, ρ and α values, respectively, for each iteration. As a result, the
evolution of the parameters can be analyzed and users can be confident that the returned parameters
are well estimated. In the co-clustering case, for example, the evolution of the parameters can be
visualized through a plot:

par(mfrow=c(3,3))
for(kr in 1:3){

for(kc in 1:3){
toplot <- rep(0, nbSEM)
for(i in 1:nbSEM){

toadd <- coclust@paramschain[[1]]$pis[kr,kc,i]
toplot <- c(toplot, toadd)

}
plot.default(toplot, type = "l",ylim = c(0,1),

col = "hotpink3", main = "pi",
ylab = paste0("pi_", kr, kc, "values"),
xlab = "SEM-Gibbs iterations")

}
}

In Figure 7, we observe that the parameters reach their stationary state before the 100th iteration.
In this case, a burn-in period of 100 iterations (corresponding to nbSEMburn=100) is therefore enough.
The total number of iterations corresponds to the argument nbSEM=150, so 50 iterations are used to
approximate the parameters.

Handling data with different numbers of levels

If users wish to execute one of the functions described previously on variables with different m, then
they should use the same function with some changes to the arguments definitions. Let us assume that
the data is made of D different numbers of levels. First of all, the columns of matrix matrix x must be
grouped by same number of levels m[d]. The additional changes for the arguments to pass are listed
below:

• m must be a vector of length D. The dth element indicates the number of levels for the dth group
of variables.

• kc must be a vector of length D. The dth element indicates the number of column-clusters for
the dth group of variables.

• idx_list is a new vector argument of length D. The dth item of the vector indicates the index of
the first column that have the number of levels m[d].

An example on the dataqol dataset is available in the Appendix "Handling different numbers of
levels".

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mclust

CONTRIBUTED RESEARCH ARTICLE 75

Figure 7: Evolution of π parameters through SEM-Gibbs iterations, in the clustering example. We
observe that the parameters have reached a stationary state with time.

Conclusion

The ordinalClust package presented in this paper implements several methods for analyzing ordinal
data. First, it implements a clustering and co-clustering framework based on the Latent Block Model,
coupled with a SEM-Gibbs algorithm and the BOS distribution. Moreover, it defines a novel approach
to classify ordinal data. For the classification method, two models are proposed, so that users can
introduce parsimony in their analyses. Similarly, it has been shown that the co-clustering method
provides a parsimonious way of performing clustering. The framework is able to handle missing values
which is notably relevant in the case of real datasets. Finally, these techniques are also implemented
in the case of dataset with ordinal data with several numbers of levels. The package ordinalClust is
available on the Comprehensive R Archive Network (CRAN), and is still under active development. A
future work will implement the method defined in Gelman and Rubin (1992), to automatically define
the number of iterations of the SEM-Gibbs algorithm.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 76

Bibliography

A. Agresti. Analysis of ordinal categorical data. Wiley Series in Probability and Statistics, pages 397–405.
John Wiley & Sons, Inc., 2012. [p61]

A. Anota, M. Savina, C. Bascoul-Mollevi, and F. Bonnetain. Qolr: An r package for the longitudinal
analysis of health-related quality of life in oncology. Journal of Statistical Software, Articles, 77(12):
1–30, 2017. [p67]

C. Biernacki and J. Jacques. Model-Based Clustering of Multivariate Ordinal Data Relying on a
Stochastic Binary Search Algorithm. Statistics and Computing, 26(5):929–943, 2016. [p62, 63, 65]

C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering with the integrated
completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell., 22(7):719–725, 2000. [p66]

P.-C. Bürkner. brms: An r package for bayesian multilevel models using stan. Journal of Statistical
Software, Articles, 80(1):1–28, 2017. ISSN 1548-7660. [p61]

A. J. Cannon. monmlp: Multi-Layer Perceptron Neural Network with Optional Monotonicity Constraints,
2017. R package version 1.1.5. [p61]

R. H. B. Christensen. ordinal—regression models for ordinal data, 2015. R package version 2015.6-28.
[p61]

M. Corduas. A statistical procedure for clustering ordinal data. Quaderni di statistica, 10:177–189, 2008.
[p62]

M. Corneli, C. Bouveyron, and P. Latouche. ordinalLBM: Co-Clustering of Ordinal Data via Latent
Continuous Random Variables, 2019. [p62]

M. Corneli, C. Bouveyron, and P. Latouche. Co-clustering of ordinal data via latent continuous random
variables and not missing at random entries. Journal of Computational and Graphical Statistics, 0(ja):
1–39, 2020. [p62]

A. D’Elia and D. Piccolo. A mixture model for preferences data analysis. Computational Statistics &
Data Analysis, 49(3):917–934, June 2005. [p62]

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of he Royal Statistical Society, series B, 39(1):1–38, 1977. [p63, 64]

A. Gelman and D. Rubin. Inference from iterative simulation using multiple sequences. Statistical
Science, 7(4):457–472, 1992. ISSN 08834237. [p75]

M. Giordan and G. Diana. A clustering method for categorical ordinal data. Communications in Statistics
- Theory and Methods, 40(7):1315–1334, 2011. [p62]

G. Govaert and M. Nadif. Clustering with block mixture models. Pattern Recognition, 36:463–473, 2003.
[p62]

J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. JSTOR: Applied Statistics, 28(1):
100–108, 1979. [p65]

M. C. Heredia-Gómez, S. García, P. A. Gutiérrez, and F. Herrera. Ocapis: R package for ordinal
classification and preprocessing in scala. Progress in Artificial Intelligence, 2019. ISSN 2192-6360.
[p61]

R. Hornung. ordinalForest: Ordinal Forests: Prediction and Variable Ranking with Ordinal Target Variables,
2019a. R package version 2.3-1. [p61]

R. Hornung. Ordinal forests. Journal of Classification, pages 1–14, 2019b. [p61]

J. M. J. Vermunt. Technical Guide for Latent GOLD 4.0: Basic and Advanced. Statistical Innovations Inc.
Belmont, Massachussetts, 2005. [p61]

J. Jacques and C. Biernacki. Model-based co-clustering for ordinal data. Computational Statistics & Data
Analysis, 123:101 – 115, 2018. ISSN 0167-9473. [p62, 66]

F.-X. Jollois and M. Nadif. Classification de données ordinales : modèles et algorithmes. In 41èmes
Journées de Statistique, SFdS, Bordeaux, Bordeaux, France, 2009. [p62]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 77

F. E. H. Jr. rms: Regression Modeling Strategies, 2019. R package version 5.1-3.1. [p61]

C. Keribin, G. Govaert, and G. Celeux. Estimation d’un modèle à blocs latents par l’algorithme SEM.
In 42èmes Journées de Statistique, Marseille, France, 2010. [p64]

R. S. Maria Iannario, Domenico Piccolo. CUB: A Class of Mixture Models for Ordinal Data, 2018. R
package version 1.1.3. [p62]

D. McParland and I. C. Gormley. Clustering ordinal data via latent variable models. In B. Lausen,
D. Van den Poel, and A. Ultsch, editors, Algorithms from and for Nature and Life: Classification and Data
Analysis, pages 127–135. Springer International Publishing, Switzerland, 2013. [p62]

D. McParland and I. C. Gormley. clustMD: Model Based Clustering for Mixed Data, 2017. R package
version 1.2.1. [p62]

M. Ranalli and R. Rocci. Mixture models for ordinal data: A pairwise likelihood approach. Statistics
and Computing, 26(1-2):529–547, Jan. 2016. ISSN 0960-3174. [p62]

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical Association, 66(336):846–850, 1971. [p74]

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: clustering, classification and density
estimation using Gaussian finite mixture models. The R Journal, 8(1):205–233, 2016. [p74]

M. Selosse, J. Jacques, C. Biernacki, and F. Cousson-Gélie. Analysing a quality-of-life survey by using
a coclustering model for ordinal data and some dynamic implications. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 68(5):1327–1349, 2019. [p62, 67, 73]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth edition,
2002. ISBN 0-387-95457-0. [p61]

T. W. Yee. The vgam package for categorical data analysis. J Stat Softw, 2010. [p61]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Appendix

Specificity and sensitivity

The following code computes the specificities, and sensitivities obtained with the different kc in the
section "Performing classification":

library(caret)

actual <- v.validation - 1

specificities <- rep(0,length(kcol))
sensitivities <- rep(0,length(kcol))

for(i in 1:length(kcol)){
prediction <- unlist(as.vector(preds[i,])) - 1
u <- union(prediction, actual)
conf_matrix <- table(factor(prediction, u),factor(actual, u))
sensitivities[i] <- recall(conf_matrix)
specificities[i] <- specificity(conf_matrix)

}

sensitivities
specificities

> sensitivities
[1] 0.6666667 1.0000000 1.0000000 1.0000000 0.7777778
> specificities
[1] 0.4444444 0.5555556 0.3333333 0.5555556 0.6666667

ICL search for clustering

set.seed(1)

library(ordinalClust)
data("dataqol")
M <- as.matrix(dataqol[,2:29])

nbSEM <- 150
nbSEMburn <- 100
nbindmini <- 2
init <- "randomBurnin"
percentRandomB <- c(50)
icl <- rep(0,3)

for(kr in 2:4){
object <- bosclust(x = M, kr = kr, m = 4, nbSEM = nbSEM,

nbSEMburn = nbSEMburn, nbindmini = nbindmini,
percentRandomB = percentRandomB, init = init)

if(length(object@icl)) icl[kr-1] <- object@icl
}
icl

> icl
[1] -3713.311 -3192.351 0

We see that the clustering algorithm could not find a solution without an empty cluster for kr = 4.
The highest icl is for kr = 3.

ICL search for co-clustering

set.seed(1)
library(ordinalClust)

CONTRIBUTED RESEARCH ARTICLE 79

data("dataqol")
M <- as.matrix(dataqol[,2:29])

nbSEM <- 150
nbSEMburn <- 100
nbindmini <- 2
init <- "randomBurnin"
percentRandomB <- c(50, 50)
icl <- matrix(0, nrow = 3, ncol = 3)

for(kr in 2:4){
for(kc in 2:4){

object <- boscoclust(x = M,kr = kr, kc = kc, m = 4, nbSEM = nbSEM,
nbSEMburn = nbSEMburn, nbindmini = nbindmini,
percentRandomB = percentRandomB, init = init)

if(length(object@zr)){
icl[kr-1, kc-1] <- object@icl

}
}

}

icl

> icl
[,1] [,2] [,3]

[1,] -3529.423 0.000 -3503.235
[2,] 0.000 -3373.573 0.000
[3,] 0.000 -3361.628 -3299.497

We note that the co-clustering algorithm could not find a solution without an empty cluster for
(kr,kc) = (2,3),(3,2),(3,4),(4,2). The highest ICL-BIC is obtained when (kr,kc) = (3,3).

Handling different numbers of levels

The following code shows how to handle different numbers of levels in a co-clustering context. It may
take several minutes due to the high number of levels of the two last columns.

set.seed(1)

library(ordinalClust)

loading the real dataset
data("dataqol")

loading the ordinal data
x <- as.matrix(dataqol[,2:31])

defining different number of categories:
m <- c(4,7)

defining number of row and column clusters
krow <- 3
kcol <- c(3,1)

configuration for the inference
nbSEM <- 20
nbSEMburn <- 15
nbindmini <- 2
init <- 'random'

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 80

d.list <- c(1,29)

Co-clustering execution
object <- boscoclust(x = x,kr = krow, kc = kcol, m = m,

idx_list = d.list, nbSEM = nbSEM,
nbSEMburn = nbSEMburn, nbindmini = nbindmini,
init = init)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 81

Margot Selosse
Université de Lyon, Lyon 2, ERIC EA 3083.
5 Avenue Pierre Mendés France, 69500 Bron
France
margot.selosse@gmail.com

Julien Jacques
Université de Lyon, Lyon 2, ERIC EA 3083.
5 Avenue Pierre Mendés France, 69500 Bron
France
julien.jacques@univ-lyon2.fr

Christophe Biernacki
Inria, Université de Lille, CNRS Université Lille - UFR de Mathématiques - Cité Scientifique - 59655 Villeneuve
d’Ascq Cedex
France
christophe.biernacki@inria.fr

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:margot.selosse@gmail.com
mailto:julien.jacques@univ-lyon2.fr
mailto:christophe.biernacki@inria.fr

CONTRIBUTED RESEARCH ARTICLE 82

KSPM: A Package For Kernel
Semi-Parametric Models
by Catherine Schramm, Sébastien Jacquemont, Karim Oualkacha, Aurélie Labbe and Celia M.T.
Greenwood

Abstract Kernel semi-parametric models and their equivalence with linear mixed models provide
analysts with the flexibility of machine learning methods and a foundation for inference and tests of
hypothesis. These models are not impacted by the number of predictor variables, since the kernel
trick transforms them to a kernel matrix whose size only depends on the number of subjects. Hence,
methods based on this model are appealing and numerous, however only a few R programs are
available and none includes a complete set of features. Here, we present the KSPM package to fit
the kernel semi-parametric model and its extensions in a unified framework. KSPM allows multiple
kernels and unlimited interactions in the same model. It also includes predictions, statistical tests,
variable selection procedure and graphical tools for diagnostics and interpretation of variable effects.
Currently KSPM is implemented for continuous dependent variables but could be extended to binary
or survival outcomes.

Introduction

In the last decades, the popularity and accessibility of machine learning has increased as a result
of both the availability of big data and technical progress in computer science. The flexibility of
machine learning methods enables avoidance of assumptions about functional relationships, such as
strong linear or additive hypotheses, that are often involved in classical statistical models. However,
this flexibility and adaptability also limits the capacity to interpret results or make inference. When
understanding and inference are required, simpler statistical models are often preferred, as they are
easy to understand and implement. Methods from the machine learning field might better model
complex relationships, and yet would be more attractive if the results could be made interpretable.
With this goal in mind, Liu et al. (2007) clearly demonstrated the under-appreciated equivalence
between a machine learning tool and a classical statistic model through the link between kernel
semi-parametric models – developed first in the machine learning field – and more classical linear
mixed models. This equivalence allows analysts to take advantage of knowledge advances in both
the machine learning domain and the traditional statistical inference domain, including hypotheses
testing, when using kernel semi-parametric models (Table 1).

Features of kernel models

from traditional statistical models from machine learning models

• Inference, confidence/prediction inter-
vals

• Tests, p values

• Information criteria (variable selection)

• Interpretation via estimation of func-
tional form of variable effects on out-
come

• No need to explicitly define
outcome-predictors relationship

• May deal with a large amount of
data (big data and fat data)

• Potential for reinforcement learn-
ing

Table 1: Features of kernel models combine features from traditional statistical models and features
from machine learning models.

The kernel semi-parametric model assumes that the outcome is related to the set of variables
through an unknown smooth function, which is simply approximated by computing the similarity
matrix between subjects according to the set of variables and a chosen kernel function (i.e., the kernel
trick). Matrix size depends only on the number of subjects, making kernel models particularly suited
to datasets where the number of features is very large (p >> n). The equivalence between kernel

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 83

semi-parametric models and linear mixed models motivates a score test, which is simple to implement,
for the simultaneous effect of all variables on the outcome.

Methods based on the kernel semi-parametric model and its extensions are appealing and nu-
merous, but only a few programs are available, and none includes a complete set of the features that
correspond to recent developments. Table 2 gives some examples of existing R packages according to
their features of interest.

A
dj

us
tm

en
t

U
se

r’
s

ow
n

ke
rn

el

Si
ng

le
ke

rn
el

te
st

Te
st

of
in

te
ra

ct
io

n

Pr
ed

ic
ti

on
s

In
te

rp
re

ta
ti

on
pl

ot

D
ia

gn
os

ti
c

pl
ot

s

V
ar

ia
bl

e
se

le
ct

io
n

coxme X X
SKAT X X
SPA3G X
KRLS X X
e1071 X

KSPM X X X X X X X X

Table 2: Features incorporated in KSPM (Schramm, 2020), as well as in several other R packages for
kernel nonparametric or semiparametric models: coxme (Therneau, 2018), SKAT (Lee et al., 2017),
KRLS (Hainmueller and Hazlett, 2017), e1071 (Meyer et al., 2018) and SPA3G (Li and Cui, 2012a).
Adjustment refers to models including a kernel for adjusting the model on correlation structure
similarly to a random factor. User’s own kernel refers to a kernel function explicitly defined by the
user of the package, in contrast to traditional kernel functions that are already implemented in the
package. Single kernel test refers to the test of the joint effect of a set of variables on the outcome.
Test of interaction refers to the interaction between two sets of variables and its effect on the outcome.
Predictions refers to the possibility of displaying predictions with confidence and prediction intervals.
Interpretation plot refers to graphical tools for interpretation of individual effects of each variable in
the kernel on the outcome. Diagnostic plots refers to graphical tools based on residuals and leverage
measures to check the validity conditions of a model and identify outlier samples. Variable selection
refers to the implementation of a variable selection procedure.

Several packages in Table 2 were developed in the genetics field where interest often lies in testing
the contribution of a group of variables (variants) simultaneously, notably through the sequence
kernel association test (SKAT) for single nucleotide polymorphisms (Wu et al., 2011; Chen et al., 2016).
Extensions from single to multiple kernel model were motivated by (i) interaction tests (Li and Cui,
2012b; Wang et al., 2017; Ge et al., 2015; Marceau et al., 2015) and (ii) estimating the conditional effect
of one set of variables after adjusting for another set of variables, or after adjusting for population
structure (Oualkacha et al., 2013). The latter goal may be achieved easily using the lmekin() function
from the coxme package under mixed model theory where kinship matrix corresponds to the kernel
matrix measuring similarity between subjects, and defines the covariance matrix of the random effect
term.

In the machine learning field, packages like e1071 have been developed to perform accurate
predictions and they focus on a single kernel function. Traditionally, model interpretation has remained
an outstanding challenge of the machine learning field. However it has been recently demonstrated
that the kernel semi-parametric models can be used to interpret effects of variables on the outcome
through a graphical tool based on derivatives (Hainmueller and Hazlett, 2013) and this is implemented
in the KRLS package. When the kernel function and the corresponding approximated smooth function
are differentiable with respect to the variable of interest, pointwise derivatives capture the effect of
this variable on the outcome.

Since researchers may be interested in all of these features, we have consolidated them in the
R package KSPM. The package and a vignette including detailed examples are available from the
comprehensive R archive network (CRAN) at https://CRAN.R-project.org/package=KSPM. Our
package, currently designed for continuous outcomes and normal errors, fits kernel semi-parametric
models and their extensions in a unified framework incorporating all the previously described model
fitting features and tests. It allows multiple kernels and unlimited interactions in the same model.
Although most popular kernel functions are available in the package, the user also has the option of

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=KSPM
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=SKAT
https://CRAN.R-project.org/package=KRLS
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=SPA3G

CONTRIBUTED RESEARCH ARTICLE 84

designing and using his/her own kernel functions. Furthermore, whenever interest lies in prediction
or making inference from the model, diagnostic assessments of the model may be performed through
graphical tools to detect data points with large residuals or high leverage that may greatly influence
the results. Finally, we have also included a variable selection procedure based on Akaike’s and
Bayesian information criteria (AIC and BIC). These last two options are not included in other software
packages.

The KSPM package is a new tool for semi-parametric regression. It is not competing with other R
packages for semi- or non-parametric regression models since either our methods or our objectives are
different. Indeed, the estimation method involved in KSPM is based on regularized least squares in
the kernel Hilbert space and should not be confused with local kernel smoothing based on Nadaraya-
Watson estimator (np package, Racine and Hayfield (2020)). Similarly, KSPM is also different from
other smoothing methods connecting regression segments through knots among which we may cite
splines (mgcv package, Wood (2020)).

However, since the kernel semi-parametric model is equivalent to a linear mixed effect model,
our package could be compared to lme4 (Bates et al., 2019) or nlme (Pinheiro et al., 2019) packages
for linear mixed effect models. Although it is possible to obtain similar inference from any variables
involved in a linear part of each model, and to obtain similar predictions from both overall models, loss
function maximization are different. Moreover, KSPM has the advantage of being easier-to-use as the
user does not need to compute kernel matrix nor matrix of interactions and provides interpretations
for variable effects that cannot be obtained with traditional packages.

Kernel semi-parametric models

Single kernel semi-parametric model

Let Y = (Y1, ..., Yn)> be a n × 1 vector of continuous outcomes where Yi is the value for subject i
(i = 1, ..., n), and X and Z are n× p and n× q matrices of predictors, such that Y depends on X and
Z = (z.1, ..., z.q) as follows:

Y = Xβ + h(Z) + e (1)

where β is a p× 1 vector of regression coefficients for the linear parametric part, h(.) is an unknown
smooth function and e is an n × 1 vector of independent and homoscedastic errors such as ei ∼
N (0, σ2). Throughout this article, Xβ will be referred to as the linear part of the model and we assume
that X contains an intercept. h(Z) will be referred to as the kernel part. The function h(.) need not be
explicitly specified but it is assumed to lie in Hk, the function space generated by a kernel function
k(., .) which is, by definition, symmetric and positive definite. We note that K, the n× n Gram matrix
of k(., .) such that Kij = k(zi., zj.), represents the similarity between subjects i and j according to Z. Of
note, in the estimation process, h(.) will be expressed as a linear combination of k(., .) (see Equation (7)).
See "Fitting the kernel semi-parametric model with kspm" for straightforward coding.

The multiple kernel semi-parametric model

Now suppose there are L matrices Z1, ..., ZL of dimension n× q1, ..., n× qL respectively. Keeping a
similar notation, Y can be assumed to depend on X and Z1, ..., ZL as follows:

Y = Xβ +
L

∑
`=1

h`(Z`) + e (2)

where ∀` ∈ {1, ..., L}, h` is an unknown smooth function from Hk` , the function space generated
by a kernel function k`(., .) whose Gram matrix is noted K`. We assume ∀` 6= m, h`(Z`) 6= hm(Zm)
either because Z` 6= Zm or k`(., .) 6= km(., .) or both. Note that when L = 1, the model corresponds to
Equation (1).

Suppose there is an interaction between two sets of variables represented by Z1 and Z2, n× q1 and
n× q2 matrices, and Y depends on X, Z1 and Z2 as follows:

Y = Xβ + h1(Z1) + h2(Z2) + h12(Z1, Z2) + e (3)

where h1(.), h2(.) and h12(., .) are unknown smooth functions from Hk1
, Hk2 and Hk12

respectively.
The h12(., .) function represents the interaction term if its associated kernel function k12(., .) is defined
as the product of kernel functions k1(., .) and k2(., .) as follows:

k12

(
(Z1, Z2)i, (Z1, Z2)j

)
= k1(z1i., z1j.)× k2(z2i., z2j.) (4)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=np
https://CRAN.R-project.org/package=mgcv
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=nlme

CONTRIBUTED RESEARCH ARTICLE 85

such that K12 = K1 � K2 where � is the Hadamard product (Ge et al., 2015). Model (3) is a particular
case of the multiple kernel semi-parametric model (2) with L = 3, Z3 = (Z1, Z2), q3 = q1 + q2 and h3
= h12. Of notes, in KSPM, different kernel choices can be made for k1(., .) and k2(., .). Obviously, this
2-way interaction model could be generalized to higher order interaction terms in a similar manner.

Link with linear mixed models

As shown by Liu et al. (2007), model (2) is equivalent, without additional conditions, to the following
linear mixed model:

Y = Xβ +
L

∑
`=1

h` + e (5)

where ∀` ∈ {1, ..., L}, h` ∼ N (0, τ`K`) with K` is a matrix of similarity between subjects as defined
in model (2). Throughout the paper, we denote the variance parameters as θ = (τ1, ..., τL, σ2) and

Σθ =
L
∑
`=1

τ`K` + σ2 I, the variance-covariance matrix of Y, where I is the n× n identity matrix.

Estimation of parameters

The parameter estimates can be obtained either by maximizing the penalized log-likelihood associated
with the kernel semi-parametric model (2), or the log-likelihood derived from the corresponding linear
mixed model (5) (Liu et al., 2007). Even though the latter option may be computationally less time-
consuming, we implemented the KSPM package using a penalized log-likelihood associated with the
kernel semi-parametric model, because this method leads to an estimation of h useful for prediction,
and also leads to suitable approaches for interpretation through kernel derivatives. Estimation of
parameters is obtained by maximizing the penalized log-likelihood function:

l(β, h) = −1
2

n

∑
i=1

(
Yi − X>i β−

L

∑
`=1

h`(Z`i)

)2

− 1
2

L

∑
`=1

λ` ‖ h` ‖2
Hk`

(6)

where λ1, ..., λL are tuning parameters associated with each smooth function h1(.), ..., hL(.) and
‖ . ‖2

Hk`
defines the inner product on Hk` space. According to the Representer theorem (Kimeldorf

and Wahba, 1971), the functions h1, ..., hL satisfying Equation (6) can be expressed as:

∀` ∈ {1, ..., L} , h`(.) =
n

∑
i=1

α`ik(., Z`i) (7)

where ∀` ∈ {1, ..., L}, α` = (α`1, ..., α`n)
> is a n× 1 vector of unknown parameters. Estimating the

kernel semi-parametric model parameters consists in estimating α1, ..., αL and β. Then, estimators of
h1(.), ..., hL(.) are deduced from α̂1, ..., α̂L.

In KSPM, we estimate penalization parameters by minimizing the mean sum of squares of the
leave-one-out errors (LOOE). An advantage of LOOE compared to other cross-validation methods is
that we do not need to recompute new model(s), because its value may be derived directly from the
primary model parameters:

∀i ∈ {1, ..., n} , LOOEi(λ1, ..., λL) =
Yi − Ŷi
1− Hii

(8)

where Hii is the ith diagonal element of the Hat matrix H such as Ŷ = HY.

Penalization parameters and tuning parameters, if applicable, are estimated simultaneously during
the optimization algorithm, by minimizing the LOOE. If only one parameter needs to be estimated,
the convexity of the function to be minimized makes the problem easier and the convergence faster. In
that case, KSPM uses the standard optimize() function from the basic R package, based on the golden
section search algorithm (Brent, 2013). When several hyperparameters need to be estimated, the
resulting function to be minimized may not be convex. Hence, more complex optimization algorithms
should be envisaged, and KSPM uses the DEoptim() function from the DEoptim package (Ardia et al.,
2020) based on the differential evolution algorithm (Mullen et al., 2009). Given the random nature of
the algorithm, it would be safe to apply the algorithm several times to ensure convergence toward the
global minimum.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=DEoptim

CONTRIBUTED RESEARCH ARTICLE 86

Tests of hypotheses in KSPM

For either a single kernel or a multiple kernel semi-parametric model, a standard test of interest is
H0 : h`(.) = 0, i.e., there is no effect, singly or jointly, of a set of variables on the outcome. Following
Liu et al. (2007), this test is equivalent to H0 : τ` = 0, a test of the variance component in the linear
mixed model (5) using the REML-based score test. The corresponding test statistic Q` follows a mixture
of independent chi-square distributions with one degree of freedom (Zhang and Lin, 2003). The KSPM
package uses exact distribution of Q` in single kernel model but in multiple kernel model, we use
Davies’ method to approximate this distribution (Davies, 1980). Based on similar methodology, KSPM
also provides the global test for multiple kernel semi-parametric models H0 : h1(.) = ... = hL(.) = 0
i.e., H0 : τ1 = ... = τL = 0.

Interpretation of variable effects

A kernel represents similarity between subjects through combining a set of variables in a possibly
complex way, that may include their possible interactions. Hence the general effect of a kernel on an
outcome is hard to see and difficult to interpret. Nevertheless, the marginal effect of each variable
in the kernel may be illustrated using a partial derivative function (Hainmueller and Hazlett, 2013).
Indeed, the derivative measures how the change in a variable of interest impacts the outcome in an
intuitively understandable way. When a variable’s effect is linear, the interpretation is straightforward
since the derivative corresponds to standard slope (β) coefficients. In kernel semi-parametric models,
we are simultaneously modeling a set of variables. Therefore, when exploring the effect of any one
variable of interest, the other variables in the kernel must be taken into account. Thus, plotting
pointwise derivatives of the prediction for each subject against the value of the variable of interest
may help in interpreting the effect of this variable on the outcome. Although a variable-level summary
statistic may be obtained by averaging the pointwise derivatives across subjects (Hainmueller and
Hazlett, 2013), we did not implement this option in KSPM because the average can mask relevant
variability. For example, when positive and negative derivatives occur for the same variable, the
average may be zero.

The choice of kernel functions

In any kernel semi-parametric model, the smooth unknown function h`(.) is approximated using basis
functions fromHk` . Since the inner product of the basis functions corresponds to the kernel function
k`(., .), the choice of the kernel determines the function space used to approximate h`(.). The KSPM
package includes the most popular kernel functions, described below. The linear kernel function
k(Zi, Zj) = Z>i Zj assumes that variables have a linear effect on outcome. It generates a linear function
space so that the kernel semi-parametric model leads to a penalized multiple linear model using an L2

norm (equivalent to a ridge regression). The polynomial kernel function k(Zi, Zj) = (ρ Z>i Zj + γ)d

assumes that dth-order products of the variables have a linear effect on the outcome, and is equivalent
to a dth-order interaction model. The Gaussian kernel function k(Zi, Zj) = exp(− ‖ Zi − Zj ‖2

/ρ) generates the infinite function space of radial basis functions. The sigmoid kernel function
k(Zi, Zj) = tanh(ρ Z>i Zj + γ) and the inverse quadratic kernel k(Zi, Zj) = (‖ Zi − Zj ‖2 +γ)−1/2 are
also often cited in the literature. Finally, we propose also the equality kernel k(Zi, Zj) = 1 if Zi =
Zj and 0 otherwise. Of note, users can define their own kernel function in KSPM by providing the
corresponding kernel matrix. Some kernel functions, such as the linear or polynomial kernels, make
assumptions about the shape of the effect of the variables on the continuous outcome, whereas other
kernels like the gaussian may, in theory, handle all types of effects, regardless of their complexity.
Indeed, in contrast to the linear and polynomial kernels, the gaussian kernel function captures a kernel
space of infinite size leading to higher flexibility for approximation of h(.). If true effects are linear,
the linear kernel and gaussian kernel should converge toward similar results. However, in practice, if
sample size is low or noise is large, the gaussian kernel will tend to retain a sinusoidal shape to the fit
even when the truth is linear.

Kernel functions often involve tuning parameters; above, the parameters ρ and γ were used to
indicate these kernel specific parameters. In practice, these tuning parameters are usually chosen by
the user. However, if user does not provide a value for these parameters, the KSPM package estimates
them at the same time as the penalization parameter(s), by minimizing the mean sum of squares of
LOOE. The choice of tuning parameters may strongly impact the results and modify the smoothness
of the ĥ(.) function leading to overfitting or underfitting. For example, with a ρ value that is too large,
the Gaussian kernel tends to lose its non-linear properties, whereas with ρ too small, it is very sensitive
to noise.

In general, the choice of tuning parameters may strongly impact the results With that in mind,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 87

sensitivity analyses may include a comparison of results obtained with different values for these
parameters. Also, comparing models based on information criteria such as AIC and BIC may help to
choose the kernel function and its tuning parameter(s).

Package presentation

The KSPM package provides an R interface to perform kernel semi-parametric models and is available
from the comprehensive R archive network (CRAN) at https://CRAN.R-project.org/package=KSPM.
The package is called through the main function kspm() taking data and model hyperparameters as
inputs, fitting the model, and returning a model fit object of class "kspm".

Fitting the kernel semi parametric model with kspm

The main function of the package, kspm(), can fit the single or multiple kernel semi-parametric models
described in the earlier, as detailed below:

kspm(response,linear,kernel,data,...)

The argument response indicates a continuous outcome variable. It can be specified as a string
corresponding to the column name associated with the response in the dataset provided in the data
argument, as a vector of length n, or as a n× 1 matrix containing the continuous values of the outcomes.
Of note, kspm does not deal with multivariate outcomes, and if an n× r (> 1) matrix is provided, only
the first column is used. Argument linear specifies the linear part of the model and could be either
a formula, a vector of length n if only one variable is included in the linear part, or an n× p design
matrix containing the p variables included in the linear part. By default, an intercept is added. To
remove the intercept term, the user should use the formula specification and add the term -1, as usual.
kernel specifies the kernel part of the model. Its argument should be a formula of Kernel object(s),
described below. For a multiple kernel semi-parametric model, Kernel objects are separated by the
usual signs "+", "*" and ":" to specify addition and interaction between kernels.

The Kernel object regroups all information about a kernel including the choice of kernel function
and its parameters. It is specified using the Kernel function as follows:

Kernel(x,kernel.function,scale,rho,gamma,d)

Argument x represents either the variables included in the kernel part of the model, or a kernel
Gram matrix. In the latter case, the user should specify kernel.function = "gram.matrix" and all
other arguments are not used. When x represents the variables included in the kernel part, it may be
specified as a formula, a vector, or a matrix, and kernel.function indicates which kernel function
should be used (e.g., "gaussian", "polynomial", ...). scale is a boolean indicating if variables should
be scaled before computing the gram matrix. The need for other arguments depends on the choice
of kernel function: rho and gamma are tuning parameters and d is the highest order in a polynomial
kernel function; these parameters correspond to the ρ, γ and d introduced earlier. It is worth noting
that in a multiple kernel model, KSPM allows kernel objects to follow different formats.

Different options were considered for the interface with respect to specification of the linear and
kernel parts of the model. We decided to use an interface with separate formulae for the two parts.
This structure makes it straightforward to manage variables coming from different sources or data
structures within the package. For example, genetic data or high dimensional genomic data are often
provided in a matrix format, whereas other variables and phenotypes are saved in vectors or data
frames with meaningful variable names. This diversity of data source and format cannot be handled
by a unique formula. If data elements are assembled from different sources, they should include
the same individuals or observations (i = 1, .., n), with identical ordering; if not, kspm will return an
error. It is worth noting that the KSPM package does tolerate observations containing missing values,
although these observations will be removed prior to model fitting.

The function kspm returns an object of class "kspm" with summary() and plot() commands avail-
able, the first giving estimates and p-values and the second displaying diagnostic plots.

Methods applicable to objects of the class "kspm"

An object of class "kspm" results from a kernel semi-parametric model fit. It contains obviously
estimated coefficients, fitted values and residuals, but also information about kernels such as n× n
kernel matrices, hyperparameters, penalization parameters.

The "kspm" object can be summarized or viewed using commands and methods very similar to
those implemented in "lm" or "glm".

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 88

> methods(class = "kspm")
[1] case.names coef confint cooks.distance deviance
[6] extractAIC fitted logLik nobs plot
[11] predict print residuals rstandard sigma
[16] summary variable.names
see '?methods' for accessing help and source code

Predictions

A predict() command has been implemented for the class "kspm".

predict.kspm(object,newdata.linear,newdata.kernel,interval,level)

where object refers to a "kspm" object. If a new dataset is not specified, predict.kspm will return
the fitted values from the original data. If predict.kspm is applied to a new dataset, all variables
used in the original model should be provided in the newdata.linear and newdata.kernel arguments.
newdata.linear should be a data frame, a vector or design matrix of variables used in the linear
part. newdata.kernel is a list containing data frames, vectors and/or design matrices for each kernel.
Formats depend on the ones previously used in model specification as shown in Table 3. For simplicity,
users may follow the list returned by the info.kspm() function.

kernel specifications new data specification

formula of q variables a data.frame with columns names corresponding to variables in-
cluded in the formula. Number of rows is n?, number of columns
is q

vector a vector of length n?

design matrix n× q a matrix n? × q
kernel matrix n× n a matrix n? × n where cell i, j represents the similarity between

new subject i and jth subject included in the model.

Table 3: How new data should be specified in predict.kspm, depending on original model specifica-
tions for n? new subjects. The first column refers to how the kernel is specified in the current model.
The second column refers to how the new data should be specified in the predict.kspm function.

In predict.kspm, interval can be either "none", "confidence", or "prediction" according to
whether the user wants a confidence or prediction interval. The level of confidence/prediction interval
is specified using the level argument. By default, level = 0.95 is used.

Variable selection procedures for the single kernel semi-parametric model

A variable selection procedure algorithm has been implemented for the class "kspm". It is similar to
the step() command existing for other regression packages.

stepKSPM(object,linear.lower,linear.upper,kernel.lower,kernel.lower,k,direction)

As before, object refers to a "kspm" object. However, in contrast to the generality allowed for fitting
a single kernel semi-parametric model, here the Kernel object should not be specified with the Gram
matrix option. The arguments of linear.lower, linear.upper, kernel.lower and kernel.lower are
formulae corresponding to the desired boundaries for the smallest and largest numbers of variables to
be included. As is standard in many R packages, all variables in the linear.lower and kernel.lower
formulae cannot be removed from the model and variables that are not in the linear.upper and
kernel.upper formulae cannot be added to the model. The procedure to select variables is based
on AIC or BIC depending on the value of k. If k is set to 2, AIC is used, if k is set to ln(n), BIC is
used instead. The direction argument may be "forward" for a forward selection, "backward" for
a backward selection and "both" for a stepwise selection. Our package was implemented so that
variable selection for the linear part and the kernel part of the model may be done simultaneously.
However, it is also possible to perform the variable selection procedure on each part separately by
giving the appropriate formula to linear.lower, linear.upper, kernel.lower and kernel.lower.

Of note, as for the standard stepAIC() function, this procedure can only be used on complete
observations. Thus missing data should be removed by the user prior to calling stepKSPM() so that
the number of observations is identical at each step.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 89

Graphical tools

The plot() method has been implemented for "kspm" and "derivatives.kspm" objects. The former
gives usual diagnostic plots including residual distribution, leverage, Cook’s distance,... The latter
gives interpretation plot from pointwise derivatives.

Example 1: the Movie ratings data

This first example illustrates the functions provided in KSPM included the model fit, the diagnotic
plot, the interpetation plot based on pointwise derivatives, the test of interaction as well as the variable
selection procedure.

The conventional and social media movies (CSM) dataset is available on the UCI machine learning
repository (https://archive.ics.uci.edu/ml/index.php) as well as in KSPM and is fully described
in Ahmed et al. (2015). It contains data on 232 movies from 2014 and 2015; the movies are described
in term of conventional features (sequel, budget in USD, gross income in USD, number of screens in
USA) as well as social media features (aggregate actor followers on Twitter, number of views, likes,
dislikes, comments of movie trailer on Youtube, sentiment score) in the aim of predicting ratings. In
all subsequent analyses, we used only the 187 entries without missing data.

> data("csm")
> head(csm)

Year Ratings Gross Budget Screens Sequel Sentiment Views Likes
1 2014 6.3 9130 4.0e+06 45 1 0 3280543 4632
2 2014 7.1 192000000 5.0e+07 3306 2 2 583289 3465
3 2014 6.2 30700000 2.8e+07 2872 1 0 304861 328
4 2014 6.3 106000000 1.1e+08 3470 2 0 452917 2429
5 2014 4.7 17300000 3.5e+06 2310 2 0 3145573 12163
7 2014 6.1 42600000 4.0e+07 3158 1 0 3013011 9595
Dislikes Comments Aggregate.Followers

1 425 636 1120000
2 61 186 12350000
3 34 47 483000
4 132 590 568000
5 610 1082 1923800
7 419 1020 8153000

Predict ratings using conventional features

In our first model, we assume a gaussian kernel function to fit the joint effect of the conventional
features on ratings. Here we do not provide any value for the ρ parameter. It will be estimated at the
same time as the penalization parameter by minimizing the LOOE. We also do not provide a linear
argument, meaning that only an intercept will be included in the linear part of the model.

> csm.fit1 <- kspm(response = "Ratings", kernel = ~Kernel(~Gross + Budget +
+ Screens + Sequel, kernel.function = "gaussian"), data = csm)
> summary(csm.fit1)

Call:
kspm(response = "Ratings", kernel = ~Kernel(~Gross + Budget +

Screens + Sequel, kernel.function = "gaussian"),
data = csm)

Sample size:
n = 187

Residuals:
Min Q1 Median Q3 Max

-3.0066 -0.4815 0.0109 0.5534 2.1228

Coefficients (linear part):
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.297723 1.058707 5.948505 1.427565e-08

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 90

Score test for non-parametric kernel:
lambda tau p-value

Ker1 0.04804093 16.13793 5.625602e-06

Residual standard error: 0.88 on 175.82 effective degrees of freedom
Multiple R-squared: 0.2643, Adjusted R-squared: 0.2217

The summary output gives information about the sample size used in the model, the residual
distribution, the coefficient for the linear part (similar to other regression R packages), and the
penalization parameter and score test associated with the kernel part. The kernel results indicate that
the conventional features are strongly associated with ratings. In such a complex model, the number
of free parameters – i.e., the standard definition of the degrees of freedom of a model – is undefined,
and we use instead the effective degrees of freedom of the model, which is not necessarily a whole
number. However, our definition for effective degrees of freedom is similar to the one used in linear
regression models and depends on the trace of the hat matrix. The ρ parameter may be extracted using
the following code:

> csm.fit1$kernel.info$Ker1$rho

par1
61.22

This value alone may not provide much information about linearity of the kernel function. How-
ever interpretation is feasible when comparing gaussian kernel functions with different ρ parameter
values, or when comparing the gaussian and linear kernel functions.

The plot() command may be applied to the model to display diagnostic plots. Figure 1 has been
generated using the following code:

> par(mfrow = c(2,2), mar = c(5, 5, 5, 2))
> plot(csm.fit1, which = c(1, 3, 5), cex.lab = 1.5, cex = 1.3, id.n = 7)
> hist(csm$Ratings, cex.lab = 1.5, main = "Histogram of Ratings", xlab =
+ "Ratings")

Outlier points are annotated and we can see movie 134 (Jurassic World) has high leverage. Also
of note, the lower tail of the residuals distribution is not as expected for a Normal distribution. The
histogram of ratings shows that the deviation could be due to the left skewed distribution of the
response variable.

The derivative function may help to interpret the effect of each variable individually on the
outcome. Indeed, the sign of the derivatives captures variational changes of the effect of the variable
on the outcome. To illustrate this feature, Figure 2 displays the derivatives for Gross income, Budget
and Screens. It has been generated with the following code:

> par(mfrow = c(1,2), mar = c(5,5,5,2))
> plot(derivatives(csm.fit1), subset = "Gross", cex.lab = 1.5, cex = 1.3,
+ main = "Pointwise derivatives according to Gross Income")
> plot(derivatives(csm.fit1), subset = "Screens", col = csm$Sequel,
+ cex.lab = 1.5, cex = 1.3, pch = 16, main = "Pointwise derivatives
+ according to Number of Screens \n and Sequel")
> legend("topleft", fill = palette()[1:7], legend = 1:7, title = "Sequel",
+ horiz = TRUE)

By default, the X-axis label gives the name of the variable and, in brackets, the kernel in which it is
included. When only one kernel is included in the kernel, it is named Ker1. Because genre and sequel
variables, even if they are numeric, refer to categorical variables, it is possible to easily highlight some
patterns of interaction between these variables and the others. Derivatives according to Gross income
are mostly positive meaning that higher Gross income is associated with higher ratings. However
the slope of this effect decreases as the gross income grows. It is difficult to interpret the derivatives
for Gross income higher than 2.5e+08 since this category includes only a few movies. Based on the
display in the right panel, whether a movie has sequels seems to interact with the effect of the number
of screens on the ratings. Indeed when the movie is the first or second release (Sequel = 1 or 2), the
derivatives are always negative meaning that as the number of screens on which the movie is released
increases, the ratings tend to decrease. However, this relationship seems to be stronger for the first
release than the second. No clear pattern can be observed for subsequent sequels. It is difficult to
know if this reveals an absence of effect or whether there are simply too few movies past sequel 2 in
these data.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 91

●

●
●

●

●

●

●
●

●
●●

●

●
●

●
●

● ●●●

●

●

●
●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●
●

● ●

●●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

5.5 6.0 6.5 7.0 7.5 8.0

−
3

−
2

−
1

0
1

2
3

Residuals vs Fitted

Fitted

R
es

id
ua

ls

55
142

159

128

15410727

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●●●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

55
142
159

128

15410727

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

● ●●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●
●
●
●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

0.0 0.2 0.4 0.6

−
3

−
2

−
1

0
1

2

Residuals vs Leverage

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

123

142
159154

14

145

134
0.5

0.5

1

1

Cook's distance

Histogram of Ratings

Ratings

F
re

qu
en

cy

3 4 5 6 7 8 9

0
10

20
30

40
50

Figure 1: Diagnostic plots of CSM data. Plots at the top left, top right and bottom left were obtained
with plot.kspm. They represent respectively residuals against fitted values, the normal Q-Q plot of
residuals and residuals against leverage with the Cook’s distance information. Plot at the bottom right
represents the distribution of ratings in the database.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 92

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08

−
0.

2
0.

0
0.

2
0.

4
0.

6

Pointwise derivatives according to Gross Income

Gross (Ker1)

D
er

iv
at

iv
es

 d
h/

d
G

ro
ss

 (
 K

er
1

)

0 1000 2000 3000 4000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Pointwise derivatives according to Number of Screens

 and Sequel

Screens (Ker1)

D
er

iv
at

iv
es

 d
h/

d
S

cr
ee

ns
 (

 K
er

1
) Sequel

1 2 3 4 5 6 7

Figure 2: Derivative plots on CSM data obtained with plot.derivatives. Each point corresponds to
an observation. Plot on the left represents the pointwise derivatives according to the Gross income
variable. Plot on the right represents the pointwise derivatives according to the Screens variable and
are colored according Sequel variable showing a probable interaction between Screens and Sequel.

To help in the choice of the kernel function, we may compare several models by using information
criteria. As an example, we fit a second model assuming a polynomial kernel function with fixed
tuning parameters (ρ = 1, γ = 1 and d = 2). This model can be compared to the previous one using
information criteria such as the AIC or BIC. By default the extractAIC() command gives the AIC.

> csm.fit2 <- kspm(response = "Ratings", kernel = ~Kernel(~Gross + Budget +
+ Screens + Sequel, kernel.function = "polynomial", rho = 1, gamma = 1,
+ d = 2), data = csm, level = 0)
> extractAIC(csm.fit1)

[1] 941.4521

> extractAIC(csm.fit2)

[1] 944.4618

Here, we concluded that gaussian kernel function fits our data better than the polynomial kernel
function, given the tuning parameters we considered.

Adding social media features to the model: a model with kernel interaction

Now, we assume a model with two kernel parts, one for conventional features and one for social
media features, as well as their interaction. We propose to use the gaussian kernel function for each
set of features, although different kernels could be used. The hyperparameters we chose are those
obtained for each kernel separately.

> csm.fit3 <- kspm(response = "Ratings", linear = NULL, kernel = ~Kernel(~
+ Gross + Budget + Screens + Sequel, kernel.function = "gaussian",
+ rho = 61.22) * Kernel(~ Sentiment + Views + Likes + Dislikes + Comments +
+ Aggregate.Followers, kernel.function = "gaussian", rho = 1.562652),
+ data = csm)

While the model is running, R returns a summary of the kernel part(s) and interaction(s) included
in the model.

--
The model includes the following kernels:
Ker1
Ker2
Ker1:Ker2

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 93

--
Details:
Ker1: ~Kernel(~Genre + Gross + Budget + Screens + Sequel,
kernel.function = "gaussian", rho = 55.5897)
Ker2: ~Kernel(~Sentiment + Views + Likes + Dislikes + Comments +
Aggregate.Followers, kernel.function = "gaussian", rho = 1.562652)
--

As defined by model (4), the summary() command will return the p value of tests H0 : h1(.) = 0,
H0 : h2(.) = 0 and H0 : h12(.) = 0. By default all tests are performed. However, if our interest lies only
in the test of interaction, the kernel.test option may be used to choose the test of interest and reduce
the computation time. If interest lies in the global test H0 : h1(.) = h2(.) = h12(.) = 0, the global.test
option should be set at TRUE.

> summary(csm.fit3, kernel.test = "Ker1:Ker2", global.test = TRUE)

Call:
kspm(response = "Ratings", linear = NULL, kernel = ~Kernel(~Gross +

Budget + Screens + Sequel, kernel.function = "gaussian",
rho = 61.22) * Kernel(~Sentiment + Views + Likes + Dislikes +
Comments + Aggregate.Followers, kernel.function = "gaussian",
rho = 1.562652), data = csm)

Sample size:
n = 187

Residuals:
Min Q1 Median Q3 Max

-1.4185 -0.3396 0.0112 0.3291 1.3597

Coefficients (linear part):
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.548524 1.256813 3.619095 0.0004324838

Score test for non-parametric kernel:
lambda tau p-value

Ker1:Ker2 187 0.00208359 0.7376828

Global test: p-value = 6e-04

Residual standard error: 0.62 on 121.17 effective degrees of freedom
Multiple R-squared: 0.7452, Adjusted R-squared: 0.6089

Adding social media features to the model improved the predictions as indicated by the adjusted
R2. However the smooth function associated with the kernel interaction does not significantly differ
from the null, leading to the conclusion that there is no interaction effect between conventional and
social media features on the ratings.

Suppose now, we want to predict the ratings that will be attributed to the three artificial movies
described in tables 4 and 5 below, according to the model csm.fit3.

Gross Budget Screens Sequel

Movie 1 5.0e+07 1.8e+08 3600 2
Movie 2 50000 5.2e+05 210 1
Movie 3 10000 1.3e+03 5050 1

Table 4: The conventional features of three artificial movies. Rows represent the new movies and
columns represent the features.

> newdata.Ker1 <- data.frame(Gross = c(5.0e+07, 50000, 10000),
+ Budget = c(1.8e+08, 5.2e+05, 1.3e+03), Screens = c(3600, 210, 5050),
+ Sequel = c(2, 1, 1))
> newdata.Ker2 <- data.frame(Sentiment = c(1, 2, 10), Views = c(293021,
+ 7206, 5692061), Likes = c(3698, 2047, 5025), Dislikes = c(768, 49,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 94

Sentiment Views Likes Dislikes Comments Aggregate.Followers

Movie 1 1 293021 3698 768 336 4530000
Movie 2 2 7206 2047 49 70 350000
Movie 3 10 5692061 5025 305 150 960000

Table 5: The social media features of three artificial movies. Rows represent the new movies and
columns represent the features.

+ 305), Comments = c(336, 70, 150), Aggregate.Followers = c(4530000,
+ 350000, 960000))
> predict(csm.fit3, newdata.kernel = list(Ker1 = newdata.Ker1, Ker2 =
+ newdata.Ker2), interval = "prediction")

fit lwr upr
1 4.682560 3.147755 6.217365
2 6.401853 5.100309 7.703396
3 6.128641 4.395417 7.861864

The output of the predict() function gives the predicted values (fit) and the lower (lwr) and
upper (upr) bounds of prediction intervals.

We may obtain the predictions for the original data directly from the model or from the predict()
function. With the latter, confidence intervals may be additionally obtained.

> pred <- csm.fit3$fitted.value
> pred <- predict(csm.fit3, interval = "confidence")
> plot(csm$Ratings, pred$fit, xlim = c(2, 10), ylim = c(2, 10),
+ xlab = "Observed ratings", ylab = "Predicted ratings", cex.lab = 1.3)
> abline(a = 0, b = 1, col = "red", lty = 2)

Figure 3: Predicted versus observed ratings in CSM dataset. Red dotted line represents a perfect
concordance between predictions and observations.

Figure (3) shows that for smaller values, the model overestimates the outcome. This is again
probably due to the left skewness of the outcome distribution.

An example of the variable selection procedure

Suppose we fit a single kernel semi-parametric model with a gaussian kernel to adjust the social media
features in the CSM data. The kernel part contains the set of social media features. We want to select
the relevant variables to be included in the kernel. We therefore can perform a stepwise variable
selection procedure based on AIC, while letting ρ vary at each iteration. To do so, we first fit the full
model including all features.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 95

> csm.fit4 <- kspm(response = "Ratings", kernel = ~Kernel(~ Sentiment + Views
+ + Likes + Dislikes + Comments + Aggregate.Followers, kernel.function =
+ "gaussian"), data = csm)

Then, we apply the stepKSPM() command on the full model as follows.

> stepKSPM(csm.fit4, kernel.lower = ~1, kernel.upper = ~ Sentiment + Views
+ + Likes + Dislikes + Comments + Aggregate.Followers, direction = "both",
+ k = 2, kernel.param = "change", data = csm)

At each iteration, R returns the current model, and the list of variables that may be added or
removed.

Start: AIC = 913.2
Linear part: ~ 1
Kernel part: ~ Sentiment + Views + Likes + Dislikes + Comments +

Aggregate.Followers

Part AIC
- Sentiment kernel 910.8282
<none> 913.1769
- Views kernel 913.9753
- Likes kernel 917.6532
- Comments kernel 921.2163
- Aggregate.Followers kernel 925.4491
- Dislikes kernel 969.4304

Step: AIC = 910.8
Linear part: ~ 1
Kernel part: ~ Views + Likes + Dislikes + Comments + Aggregate.Followers

Part AIC
- Views kernel 905.2908
<none> 910.8282
+ Sentiment kernel 913.1769
- Aggregate.Followers kernel 915.5481
- Likes kernel 916.8125
- Comments kernel 921.9627
- Dislikes kernel 970.3804

Step: AIC = 905.3
Linear part: ~ 1
Kernel part: ~ Likes + Dislikes + Comments + Aggregate.Followers

Part AIC
<none> 905.2908
+ Views kernel 910.8282
+ Sentiment kernel 913.9753
- Aggregate.Followers kernel 916.0224
- Comments kernel 917.8758
- Likes kernel 925.0230
- Dislikes kernel 968.2502

The final model includes the variables Likes, Dislikes, Comments and Aggregate.Followers.

Example 2: Consumption of energy data

Our second example illustrates how KSPM may be efficient with complex data as time series and
show how the choice of tuning parameters impacts the results.

The energy data is a set of data on energy consumption each hour on Ouessant island (France) from
September the 13th, 2015 to October the 4th, 2015, that were made publicly available by Electricité de

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 96

France at https://iles-ponant-edf-sei.opendatasoft.com. The data set also contains corresponding me-
teorologic data such as temperature (Celsius degrees), pressure (Pa) and humidity rate (g/m3). These
measures are collected by Meteo France every 3 hours and are publicly available on www.infoclimat.fr.
We obtained hourly values by linear interpolation. In total the data set contains 504 measurements.

> data("energy")
> head(energy)

power date T P HR hour hour.num
1 526.1667 2015-09-13 12.43333 1007.933 81.66667 01h 1
2 495.0000 2015-09-13 12.36667 1007.167 82.33333 02h 2
3 446.1667 2015-09-13 12.30000 1006.400 83.00000 03h 3
4 365.8333 2015-09-13 12.30000 1005.833 82.66667 04h 4
5 341.0000 2015-09-13 12.30000 1005.267 82.33333 05h 5
6 352.3333 2015-09-13 12.30000 1004.700 82.00000 06h 6

These data demonstrate strong periodicity depending on time of day (Figure 4). Of note, if data had
been collected for a period longer than one year, a second periodicity would be visible corresponding
to seasons.

Figure 4: Pattern of energy consumption over the entire data set from Ouessant island (Left) and on
the three first days (Right). The power is observed each hour and show a one day periodicity.

We will consider the 408 first measurements (17 days) as the training set. The others 4 days will be
used as a test set, where we want to predict the energy consumption.

> energy_train_ <- energy[1:408,]
> energy_test_ <- energy[409:504,]

Modeling

We fit a single kernel semi-parametric model to the training data. We assume that energy depends
linearly on temperature (T), and therefore this variable is included in the linear part of the model. The
other meteorologic data, as well as hours in 24-hour numeric format, are included in the kernel part of
the model. We used a gaussian kernel and we left the ρ parameter free to be estimated by the model.

> energy.fit1 <- kspm(response = "power", linear = ~T, kernel = ~Kernel(~
+ hour.num + P + HR, kernel.function = "gaussian") , data = energy_train_)
> energy.fit1$kernel.info$Ker1$rho

par1
0.7028723

Impact of the ρ parameter on derivatives and predictions

We recomputed the model using other values for the ρ parameter to explore sensitivity of the results
to this key kernel parameter. Values were chosen tenfold larger and smaller than the estimated value
of 0.70 in energy.fit1.

> energy.fit2 <- kspm(response = "power", linear = ~T, kernel = ~Kernel(~
+ hour.num + P + HR, kernel.function = "gaussian", rho = 7) , data =

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 97

+ energy_train_)
> energy.fit3 <- kspm(response = "power", linear = ~T, kernel = ~Kernel(~
+ hour.num + P + HR, kernel.function = "gaussian", rho = 0.07) , data =
+ energy_train_)

Figure 5 displays the predictions obtained on both the training and test data sets, as well as the
derivatives, as a function of the hours variable, for the three models energy.fit1, energy.fit2 and
energy.fit3 that differ only on the value of the tuning parameter ρ.

30
0

40
0

50
0

60
0

70
0

Time

P
ow

er

2015−09−13 2015−09−14 2015−09−15

30
0

40
0

50
0

60
0

70
0

Time

P
ow

er
2015−09−30 2015−10−01 2015−10−02

●
● ●

●

●

●

●

● ● ●

●

●

●
● ● ●

●

●

●

●
● ●

●

● ●
●

●

●

●

● ●
● ●

●

●

●
● ●

●

●

●

●
●

●
● ● ●

● ●
●

●

●

●

● ●
● ●

●

●

● ●
●

●

● ● ●
●

●
● ● ●

● ●
●

●

●

●

●

● ●
●

●

●
● ● ●

●

●

●

●
●

●
● ● ●

● ●
●

●

●

●

●
● ● ●

●

●

● ● ●
● ● ● ●

●

●
●

● ●

● ●
●

●

●

●
●

●

●
●

●

●

●
● ● ●

●

●
● ● ●

●
● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
● ●

●

●

● ●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

● ● ●

● ●
●

● ●
●

●

●

●

●

● ●
●

●
● ●

●

●
●

●

●
●

● ●
●

● ●

● ●
●

●

●

●

●
●

●

●
●

●
● ● ●

●
●

●

●
● ● ● ● ●

● ●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●
● ●

●
●

● ● ●

● ●
●

●

●

●

●

● ● ●

●

● ●
● ●

● ●

●

● ●
●

● ●
●

●
●

●

●

●

●

●

●
● ●

●

●

●
● ●

●
●

● ●
●

●

● ●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

● ● ●
●

●
●

● ●

●

●

●
●

●

●
●

●
●

●

●
● ●

●
●

●
● ●

●
●

●
●

●
●

●

●
●

●
●

● ● ●
●

●
●

● ●
●

●

●

●
● ●

●
●

●

●
●

●

●

●
●

●

● ●
●

●

● ●

● ●
●

●

●

●
●

● ● ● ●

●

−
10

00
0

50
0

10
00

hour.num (Ker1)

D
er

iv
at

iv
es

0h00 6h00 12h00 18h00

30
0

40
0

50
0

60
0

70
0

Time

P
ow

er

2015−09−13 2015−09−14 2015−09−15

30
0

40
0

50
0

60
0

70
0

Time

P
ow

er

2015−09−30 2015−10−01 2015−10−02

●
●

● ●

●
●

●

●

●

●
●

● ●

●

● ●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

● ●
● ●

●

●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●
●

●
● ● ●

● ●

●

●

●

●

●

●
●

●

● ●

●

● ●

●

● ●
●

●

● ●
●

●

●

●

●

● ●

●
●

●

●

● ● ●

● ●

●

●

● ●

● ●
●

● ●
●

●
●

●

●

●

●

●

●

●

● ● ●

● ●

●
●

●
●

● ● ●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

● ● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

● ●
●

●
●

●

● ●

●

● ●

●●

● ●

●

● ●

●

● ● ● ● ●

● ●
● ●

● ●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

● ●
●

●

●
● ●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
● ●

●
● ●

●

●
● ●

● ● ●
●

●
●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●
●

● ● ●
●

●
●

●

●

●
●

●

●

●

●
● ● ●

●
● ●

● ●

● ●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

● ●
●

●

● ●

● ●
●

● ●

● ●

●

●

●

●

●

−
10

00
0

50
0

10
00

hour.num (Ker1)

D
er

iv
at

iv
es

0h00 6h00 12h00 18h00

30
0

40
0

50
0

60
0

70
0

Time

P
ow

er

2015−09−13 2015−09−14 2015−09−15

30
0

40
0

50
0

60
0

70
0

Time

P
ow

er

2015−09−30 2015−10−01 2015−10−02

●

●

●

●

●

●
● ●

●
●

●
●

●
● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ● ● ●

●

●

●
● ● ●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

● ● ● ●
●

●

●
● ●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

● ● ●
●

●

●
● ● ●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●
● ● ●

●
●

●

●
● ●

●
● ● ●

●

●
●

● ●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

● ●
●

●
●

●
●

●
● ●

●

●

●

●

●
● ●

●
● ●

●

●

●
● ●

●
●

● ●
●

●

●
● ●

●

●

●
●

●
●

●

●
● ●

●

●

●
● ●

●

●

●

● ● ● ●
●

●

●

●

●

●

●

●
●

● ● ●
●

●
●

●
● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
● ● ●

●

●

●
●

● ●
●

●

●
●

● ● ●
● ●

●

●

●

●

●

●
●

● ●
●

●

●

● ● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

● ● ●
●

●

●
● ●

●
●

● ●
●

●

●
●

●

●
●

●

●

●

●
●

● ● ●
●

●
●

● ●
●

●
● ●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●
●

● ●
●

●

●

●
● ● ●

●
●

●

●

●

●

●
●

●

● ●
●

●

●
●

● ●
●

●

●
●

●
● ●

●
●

●
●

●

●

●

●
●

● ●
●

●
●

●
● ●

●

●

●

●
● ● ●

●
●

●

●

●

●

●

●
●

● ●
●

●
●

●

● ●
●

●

●

●

● ● ●
● ●

●

−
10

00
0

50
0

10
00

hour.num (Ker1)

D
er

iv
at

iv
es

0h00 6h00 12h00 18h00

True data
Predictions
Confidence intervals

True data
Predictions
Prediction intervals

●
Pointwise derivatives
 1 point = 1 measureLe

ge
nd

ρ
=

 7
ρ

=
 0

.0
7

ρ
=

 0
.7

Predictions on training data set Predictions on test data set Derivatives for hour.num

Figure 5: Predictions and derivatives obtained for different values of ρ in the energy dataset. Predic-
tions on training data set are displayed with confidence intervals, whereas predictions on test data
set are displayed with prediction intervals. The first row corresponds to the model energy.fit1 with
estimated ρ = 0.7. The second row corresponds to a tenfold smaller ρ = 0.07 (overfitting) and third
row corresponds to a tenfold larger ρ = 7 (underfitting). The last column shows how the choice of ρ
impacts the derivatives.

The first row of Figure 5 corresponds to the model with the value of ρ estimated by the model.
Predictions fit well for both the training and the test sets. The derivative graph shows that between
6h00 and 12h00 and between 18h00 and 23h00 the derivatives are positive. This result is coherent
with the increase of energy consumption during these times of the day (Figure 4-Right). Inversely
between 0h00 and 6h00 and between 12h00 and 18h00, the energy consumption decreases as showed
by negative values of derivatives. One might have expected that derivative values should be close
between 0h00 and 23h00 but the peak consumption observed at 23h00 everyday (Figure 4) is probably
associated with a sudden change in derivative values that is difficult to smooth accurately.

This example shows how a gaussian kernel function may handle complex functional data. However
the choice of the ρ parameter may influence the results. A higher ρ leads to a smoother approximation
of h(.) and worsens the predictions. Indeed, a higher ρ may perfectly fit the training data set, but
this corresponds to a case of model overfitting, which results in biased predictions in the test set. In
contrast, a lower ρ may lead to underfitting of training and test data sets. The choice of the ρ parameter
also impacts the derivatives; indeed a higher ρ induces more noise among the derivatives.

Example 3: Gene-gene interaction

This example shows how the interaction test may be applied to gene-gene interaction using standard
linear kernel and SNPs involved in genes.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 98

We simulated a data of 300 subjects and 9 SNPs, 6 belonging to gene A and 3 belonging to gene B,
using the glSim() function into the adegenet R package (Jombart and Ahmed, 2011). SNPs are coded
0, 1 or 2 according to the number of alleles of each type carried by the subject. A continuous outcome
was simulated as a linear combination of the interaction terms between the 6 SNPs of gene A and the
three SNPs of gene B, where the weight coefficients where randomly and uniformly chosen in the
interval [−2; 0]. We added an intercept of 100 and a normally distributed error of mean 0 and standard
deviation 15. Code details are available in Supplement S1.

Let y be the vector of continuous outcomes, geneA be the 300× 6 matrix of SNPs belonging to gene
A and geneB be the 300× 3 matrix of SNPs belonging to gene B.

We test the interaction between the genes using the code below. Of note, in this example, the data
are specified using vector and design matrices instead of using formulae and data frame as in previous
examples.

> gene.fit <- kspm(response = y, kernel = ~ Kernel(geneA, kernel = "linear")
+ * Kernel(geneB, kernel = "linear"))
> summary(gene.fit, kernel.test = "Ker1:Ker2")

Call:
kspm(response = y, kernel = ~Kernel(geneA, kernel = "linear") *

Kernel(geneB, kernel = "linear"))

Sample size:
n = 300

Residuals:
Min Q1 Median Q3 Max

-34.1111 -8.7300 -1.1659 9.7299 38.6887

Coefficients (linear part):
Estimate Std. Error t value Pr(>|t|)

(Intercept) 88.80183 0.8178659 108.5775 2.531469e-231

Score test for non-parametric kernel:
lambda tau p-value

Ker1:Ker2 199.4587 0.9862838 0.006646781

Residual standard error: 14.03 on 280.74 effective degrees of freedom
Multiple R-squared: 0.2387, Adjusted R-squared: 0.1892

The result suggests that genes A and B impact the continuous outcome y through their interaction.

Summary

This new KSPM package provides a flexible implementation of the kernel semi-parametric model and
its extensions in a unified framework, using nomenclatures similar to other regression R packages.
Thanks to the kernel trick, such a model is useful when interest lies in prediction and our predict()
command makes this easy. Nevertheless, inference is also possible through the confidence intervals
and tests provided by the package, such as through the summary() command. Moreover, we have pro-
vided many options for model diagnostics (residuals, leverage, ...), model interpretation (derivatives,
...) and model comparisons (AIC, stepwise, ...).

Model estimation for multiple kernel model is based on an iterative estimation of regression
parameters we develop and prove in Supplement S2. Penalization and tuning parameter estimation
involves optimize() and DEoptim() functions. The both integrate C code ensuring a faster convergence
of the algorithms. However, the overall KSPM algorithm includes inversion of n× n matrices, thereby
resulting in slower optimization as n increases. It would improve KSPM’s performance to combine
matrix inversion code and optimization code in a single efficient set of C code and we are considering
this for a future implementation. It is worth noting, however, that computation time is not severely
impacted by the number of predictors even if n << q.

In the KRLS package, Hainmueller and Hazlett (2013) proposed a marginal test for the individual
effect of each variable included in the kernel. We decided not to implement this test in our package since
the marginal effect may mask interesting but symmetric effects of a variable on the continuous outcome.
However, we have implemented a test of hypothesis based on variance components to test the joint

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=adegenet

CONTRIBUTED RESEARCH ARTICLE 99

effect of a set of variables on the continuous outcome. The distribution of this test statistic follows
a mixture of χ2 distributions that we approximated using Davies’ method (Davies, 1980), available
through the CompQuadForm package (de Micheaux, 2017; Duchesne and de Micheaux, 2010). The
distribution can also be approximated by a scaled chi-squared distribution using Satterthwaite’s
method where parameters are computed by moment matching. Schifano et al. (2012) compared the
two approximation methods on the type-I error rate in a single kernel semi-parametric model and
showed that the rate is inflated with Satterthwaite’s method when the α-level is low, and therefore
we recommend the Davies method. To assess global testing of multiple kernels, we implemented a
sum of the L single-kernel test statistics as an overall test statistic. In general, the computation of the
p value of this overall test involves the joint distribution of (Q1, ... QL). To derive analytical values for
the overall p value, one can use techniques similar to those used in Sun et al. (2019), which relied on a
copula-based model to approximate this joint distribution. This last option is not yet implemented in
KSPM.

For all our tests, the model has to be re-estimated under the null hypothesis for the kernel of
interest. If the resulting null model still contains one or more kernel part(s), we made the choice
to recompute penalization parameter(s), since this choice ensures an optimized model under the
null hypothesis. However, we have also decided to leave the kernel tuning parameters fixed when
re-estimating under the null. Indeed, a change in tuning parameters induces a change in the choice of
kernel functions - and thus in model assumptions - and hence, keeping the tuning parameters fixed
ensures comparability of model assumptions under the null and the alternative hypotheses.

In our KSPM package, we have also included an algorithm for selection of variables based on
these information criteria. Backward, forward or stepwise approaches can be chosen for single kernel
semi-parametric models. Although these concepts may be easily extended to the case of multiple
kernel models, such analyses require large computing times. Parallelization of such a process may
greatly increase the appeal of this procedure. For now, we recommend investigating variables within
a single kernel before starting to fit multiple kernel models.

In summary, the KSPM package is a flexible comprehensible option for studying the effects of
groups of variables on a continuous outcome. These tools may be extended to the case of binary or
survival outcomes in future work.

Acknowledgements

CS was supported by the Institute for Data Valorization (IVADO) fellowship. CG was supported
by the Ludmer Centre for Neuroinformatics and Mental Health, the Canadian Institutes for Health
Research, as well as the CIHR PJT 148620 grant. SJ is a recipient of a Canada Research Chair in
neurodevelopmental disorders, and a chair from the Jeanne et Jean Louis Levesque Foundation. This
research was enabled in part by support provided by Calcul Quebec (http://www.calculquebec.ca)
and Compute Canada (www.computecanada.ca). This work is supported by a grant from the Brain
Canada Multi-Investigator initiative and CIHR grant 159734 (SJ, CMTG). This work was also supported
by an NIH award U01 MH119690 granted (SJ) and U01 MH119739.

Bibliography

M. Ahmed, M. Jahangir, H. Afzal, A. Majeed, and I. Siddiqi. Using crowd-source based features
from social media and conventional features to predict the movies popularity. In IEEE International
Conference on Smart City/SocialCom/SustainCom (SmartCity), pages 273–278. IEEE, 2015. URL https:
//doi.org/10.1109/SmartCity.2015.83. [p89]

D. Ardia, K. Mullen, B. Peterson, and J. Ulrich. DEoptim: Global Optimization by Differential Evolution,
2020. URL https://CRAN.R-project.org/package=DEoptim. R package version 2.2-5. [p85]

D. Bates, M. Maechler, B. Bolker, and S. Walker. lme4: Linear Mixed-Effects Models using ’Eigen’ and S4,
2019. URL https://CRAN.R-project.org/package=lme4. R package version 1.1-21. [p84]

R. P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood Clifts, New
Jersey, 2013. [p85]

J. Chen, W. Chen, N. Zhao, M. C. Wu, and D. J. Schaid. Small sample kernel association tests for
human genetic and microbiome association studies. Genetic epidemiology, 40(1):5–19, 2016. URL
https://doi.org/10.1002/gepi.21934. [p83]

R. B. Davies. Distribution of a linear combination of chi-square random variables: Algorithm as 155.
Applied Statistics, 29(3):323–33, 1980. [p86, 99]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CompQuadForm
https://doi.org/10.1109/SmartCity.2015.83
https://doi.org/10.1109/SmartCity.2015.83
https://CRAN.R-project.org/package=DEoptim
https://CRAN.R-project.org/package=lme4
https://doi.org/10.1002/gepi.21934

CONTRIBUTED RESEARCH ARTICLE 100

P. L. de Micheaux. CompQuadForm: Distribution Function of Quadratic Forms in Normal Variables, 2017.
URL https://CRAN.R-project.org/package=CompQuadForm. R package version 1.4.3. [p99]

P. Duchesne and P. L. de Micheaux. Computing the distribution of quadratic forms: Further compar-
isons between the Liu-Tang-Zhang approximation and exact methods. Computational Statistics and
Data Analysis, 54:858–862, 2010. URL https://doi.org/10.1016/j.csda.2009.11.025. [p99]

T. Ge, T. E. Nichols, D. Ghosh, E. C. Mormino, J. W. Smoller, M. R. Sabuncu, and the Alzheimer’s
Disease Neuroimaging Initiative. A kernel machine method for detecting effects of interaction
between multidimensional variable sets: An imaging genetics application. Neuroimage, 109:505–514,
2015. URL https://doi.org/10.1016/j.neuroimage.2015.01.029. [p83, 85]

J. Hainmueller and C. Hazlett. Kernel regularized least squares: Reducing misspecification bias with a
flexible and interpretable machine learning approach. Political Analysis, 22(2):143–168, 2013. [p83,
86, 98]

J. Hainmueller and C. Hazlett. KRLS: Kernel-Based Regularized Least Squares, 2017. URL https://CRAN.R-
project.org/package=KRLS. R package version 1.0-0. [p83]

T. Jombart and I. Ahmed. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data.
Bioinformatics, 2011. URL https://doi.org/10.1093/bioinformatics/btr521. [p98]

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Journal of mathematical
analysis and applications, 33(1):82–95, 1971. URL https://doi.org/10.1016/0022-247X(71)90184-3.
[p85]

S. Lee, with contributions from Larisa Miropolsky, and M. Wu. SKAT: SNP-Set (Sequence) Kernel
Association Test, 2017. URL https://CRAN.R-project.org/package=SKAT. R package version 1.3.2.1.
[p83]

S. Li and Y. Cui. SPA3G: R Package for the Method of Li and Cui (2012), 2012a. URL https://CRAN.R-
project.org/package=SPA3G. R package version 1.0. [p83]

S. Li and Y. Cui. Gene-centric gene-gene interaction: A model-based kernel machine method. The
Annals of Applied Statistics, 6(3):1134–1161, 2012b. URL https://doi.org/10.1214/12-AOAS545.
[p83]

D. Liu, X. Lin, and D. Ghosh. Semiparametric regression of multidimensional genetic pathway data:
Least-squares kernel machines and linear mixed models. Biometrics, 63(4):1079–1088, 2007. URL
https://doi.org/10.1111/j.1541-0420.2007.00799.x. [p82, 85, 86, 105]

R. Marceau, W. Lu, S. Holloway, M. M. Sale, B. B. Worrall, S. R. Williams, F.-C. Hsu, and J.-Y. Tzeng.
A fast multiple-kernel method with applications to detect gene-environment interaction. Genetic
epidemiology, 39(6):456–468, 2015. URL https://doi.org/10.1002/gepi.21909. [p83]

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. e1071: Misc Functions of the
Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2018. URL https:
//CRAN.R-project.org/package=e1071. R package version 1.7-0. [p83]

K. M. Mullen, D. Ardia, D. L. Gil, D. Windover, and J. Cline. Deoptim: An R package for global
optimization by differential evolution. Journal of Statistical Software, 40(6):1–26, 2009. URL http:
//www.jstatsoft.org/v40/i06/. [p85]

K. Oualkacha, Z. Dastani, R. Li, P. E. Cingolani, T. D. Spector, C. J. Hammond, J. B. Richards, A. Ciampi,
and C. M. Greenwood. Adjusted sequence kernel association test for rare variants controlling for
cryptic and family relatedness. Genetic epidemiology, 37(4):366–376, 2013. URL https://doi.org/10.
1002/gepi.21725. [p83]

J. Pinheiro, D. Bates, and R-core. nlme: Linear and Nonlinear Mixed Effects Models, 2019. URL https:
//CRAN.R-project.org/package=nlme. R package version 3.1-140. [p84]

J. S. Racine and T. Hayfield. np: Nonparametric Kernel Smoothing Methods for Mixed Data Types, 2020.
URL https://CRAN.R-project.org/package=np. R package version 0.60-10. [p84]

E. D. Schifano, M. P. Epstein, L. F. Bielak, M. A. Jhun, S. L. Kardia, P. A. Peyser, and X. Lin. SNP
set association analysis for familial data. Genetic epidemiology, 36(8):797–810, 2012. URL https:
//doi.org/10.1002/gepi.21676. [p99]

C. Schramm. KSPM: Kernel Semi-Parametric Models, 2020. URL https://CRAN.R-project.org/
package=KSPM. R package version 0.2.1. [p83]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CompQuadForm
https://doi.org/10.1016/j.csda.2009.11.025
https://doi.org/10.1016/j.neuroimage.2015.01.029
https://CRAN.R-project.org/package=KRLS
https://CRAN.R-project.org/package=KRLS
https://doi.org/10.1093/bioinformatics/btr521
https://doi.org/10.1016/0022-247X(71)90184-3
https://CRAN.R-project.org/package=SKAT
https://CRAN.R-project.org/package=SPA3G
https://CRAN.R-project.org/package=SPA3G
https://doi.org/10.1214/12-AOAS545
https://doi.org/10.1111/j.1541-0420.2007.00799.x
https://doi.org/10.1002/gepi.21909
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
http://www.jstatsoft.org/v40/i06/
http://www.jstatsoft.org/v40/i06/
https://doi.org/10.1002/gepi.21725
https://doi.org/10.1002/gepi.21725
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=np
https://doi.org/10.1002/gepi.21676
https://doi.org/10.1002/gepi.21676
https://CRAN.R-project.org/package=KSPM
https://CRAN.R-project.org/package=KSPM

CONTRIBUTED RESEARCH ARTICLE 101

J. Sun, K. Oualkacha, C. M. Greenwood, and L. Lakhal-Chaieb. Multivariate association test for rare
variants controlling for cryptic and family relatedness. Canadian Journal of Statistics, 47(1):90–107,
2019. URL https://doi.org/10.1002/cjs.11475. [p99]

T. M. Therneau. coxme: Mixed Effects Cox Models, 2018. URL https://CRAN.R-project.org/package=
coxme. R package version 2.2-10. [p83]

C. Wang, J. Sun, B. Guillaume, T. Ge, D. P. Hibar, C. M. Greenwood, A. Qiu, and the Alzheimer’s
Disease Neuroimaging Initiative. A set-based mixed effect model for gene-environment interaction
and its application to neuroimaging phenotypes. Frontiers in neuroscience, 11:191, 2017. URL
https://doi.org/10.3389/fnins.2017.00191. [p83]

S. Wood. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation, 2020. URL
https://CRAN.R-project.org/package=mgcv. R package version 1.8-33. [p84]

M. C. Wu, S. Lee, T. Cai, Y. Li, M. Boehnke, and X. Lin. Rare-variant association testing for sequencing
data with the sequence kernel association test. The American Journal of Human Genetics, 89(1):82–93,
2011. URL https://doi.org/10.1016/j.ajhg.2011.05.029. [p83]

D. Zhang and X. Lin. Hypothesis testing in semiparametric additive mixed models. Biostatistics, 4(1):
57–74, 2003. URL https://doi.org/10.1093/biostatistics/4.1.57. [p86]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1002/cjs.11475
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=coxme
https://doi.org/10.3389/fnins.2017.00191
https://CRAN.R-project.org/package=mgcv
https://doi.org/10.1016/j.ajhg.2011.05.029
https://doi.org/10.1093/biostatistics/4.1.57

CONTRIBUTED RESEARCH ARTICLE 102

SUPPLEMENT

Supplement S1

We simulated a 300× 9 matrix representing the number of minor allele (0, 1 or 2) of 300 subjects for 9
SNPs, 6 belonging to gene A and 3 belonging to gene B, using the glSim() function into the adegenet
R package.

> library(adegenet)
> set.seed(78)
> SNPdata <- as.matrix(glSim(n.ind = 300, n.snp.nonstruc = 9, n.snp.struc = 0, k = 1,
LD = FALSE, ploidy = 2))

We may deduce two matrices, one with data belonging to gene A and one with data belonging to gene
B.

> geneA <- SNPdata[,1:6]
> geneB <- SNPdata[,7:9]

Then we computed the matrix of interactions between SNPs from gene A and SNPs from geneB.

> SNPdataAB <- matrix(NA, nrow = 300, ncol = 6*3)
> k <- 1
> for (i in 1:6) {

for (j in 1:3) {
SNPdataAB[,k] <- SNPdataA[,i] * SNPdataB[,j]
k <- k+1

}
}

A continuous outcome was simulated as a linear combination of the interaction terms between the
6 SNPs of gene A and the three SNPs of gene B, where the weight coefficients where randomly and
uniformly chosen in the interval [−2; 0] using the following code.

> beta <- as.matrix(runif(6*3,-2,0), nrow = 300)
> y <- 100 + SNPdataAB %*% beta + rnorm(n, 0, 15)

Of note, we added an intercept of 100 and a normally distributed error of mean 0 and standard
deviation 15.

Supplement S2

Estimating the kernel semi-parametric model parameters consists in estimating α1, ..., αL and β. Then,
estimators of h1(.), ..., hL(.) are deduced from α̂1, ..., α̂L. When there are multiple kernels, estimation is
iterative and so we proceed as follows. Partial derivatives of l(β, h) according to α1, ..., αL and β lead
to the following equations:

β̂ =

{
X>

(
I −

L

∑
`=1

K`G−1
` M`

)
X

}−1

X>
(

I −
L

∑
`=1

K`G−1
` M`

)
Y (9)

∀` ∈ {1, ..., L} , α̂` = G−1
` M`

(
Y− Xβ̂

)
(10)

where I is the n× n identity matrix and ∀` ∈ {1, ..., L}, G` and M` are computed using an iterative
process as described below:

• Re-order elements α1...L, K1...L and λ1...L such that the last is the `th element

• Note α(1), ..., α(L), K(1), ..., K(L) and λ(1), ..., λ(L) the re-ordered elements with α(L) = α`,
K(L) = K` and λ(L) = λ`

• Define iteratively M(0)...(L) and G(1)...(L) by M(0) = I the n × n identity matrix and ∀m ∈
{1, ..., L}:
G(m) = λ(m) I +M(m−1)K(m)

M(m) =
(

I −M(m−1)K(m)G−1
(m)

)
M(m−1)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 103

• Compute G` and M` as:
G` = G(L)
M` =M(L−1)

Whereas the parameter estimation for single kernel model has been largely demonstrated, the equa-
tions for computing multiple kernel parameters were not theoretically developed yet. Above, we
propose an iterative way to estimate the parameters for all kernel models. Below, we propose the
proof for equations (9) and (10).

Proof:

Partial derivatives of penalized likelihood (6) lead to equations below:
X>(Y− Xβ−

L

∑
`=1

K`α`) = 0

Y− Xβ−
L

∑
m=1

Kmαm − λ`α` = 0 ∀` ∈ {1, ..., L}
(11)

Proposition 1: ∀k ∈ {1, ..., L− 1} , α(k) = G−1
(k)M(k−1)

(
Y− Xβ−

L
∑

m=k+1
K(m)α(m)

)
Proposition 2: if proposition 1 is true until k, then

k

∑
j=1

K(m)α(m) = (I −M(k))

(
Y− Xβ−

L

∑
m=k+1

K(m)α(m)

)

(Proofs of propositions 1 and 2 are given below.)

Now, suppose proposition 1 and proposition 2 are true.

(11)⇒ Y− Xβ−
L

∑
m=1

K(m)α(m) − λ(L)α(L) = 0

⇔ Y− Xβ−
L−1

∑
m=1

K(m)α(m) − K(L)α(L) − λ(L)α(L) = 0

⇔ Y− Xβ− (I −M(L−1))
(

Y− Xβ− K(L)α(L)

)
− K(L)α(L) − λ(L)α(L) = 0

⇔
(

λ(L) I +M(L−1)K(L)

)
α(L) −M(L−1)(Y− Xβ) = 0

Then, α` = α(L) = G−1
(L)M(L−1) (Y− Xβ). Let G` and M` the n× n matrix defined as G` = G(L) and

M` =M(L−1), thus α` = G−1
` M` (Y− Xβ). All this process is done for each ` ∈ {1, ..., L}.

Now, we can derive the estimate for β.

(11)⇒ X>
(

Y− Xβ−
L

∑
`=1

K`α`

)
= 0

⇔ X>
(

Y− Xβ−
L

∑
`=1

K`G−1
` M`(Y− Xβ)

)
= 0

⇔ X>
(

I −
L

∑
`=1

K`G−1
` M`

)
Y = X>

(
I −

L

∑
`=1

K`G−1
` M`

)
Xβ

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 104

Thus β =

{
X>

(
I −

L
∑
`=1

K`G−1
` M`

)
X
}−1

X>
(

I −
L
∑
`=1

K`G−1
` M`

)
Y.

Proof of proposition 1:

• Proposition 1 is true for k = 1:

(11)⇒ Y− Xβ−
L

∑
m=1

K(m)α(m) − λ(1)α(1) = 0

⇔ Y− Xβ−
L

∑
m=2

K(m)α(m) − K(1)α(1) − λ(1)α(1) = 0

⇔ M(0)

(
Y− Xβ−

L

∑
m=2

K(m)α(m)

)
=
(

λ(1) I +M(0)K(1)

)
α(1)

⇔ G−1
(1)M(0)

(
Y− Xβ−

L

∑
m=2

K(m)α(m)

)
= α(1)

• If proposition 1 is true for k, then proposition 1 is true for k + 1:

According to proposition 2:

k

∑
m=1

K(m)α(m) = (I −M(k))

(
Y− Xβ−

L

∑
m=k+1

K(m)α(m)

)

= (I −M(k))

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)
− (I −M(k))K(k+1)α(k+1)

(11)⇒ Y− Xβ−
L

∑
m=1

K(m)α(m) − λ(k+1)α(k+1) = 0

⇔ Y− Xβ−
k

∑
m=1

K(m)α(m) − K(k+1)α(k+1) −
L

∑
m=k+2

K(m)α(m) − λ(k+1)α(k+1) = 0

⇔ −
(
(I −M(k))

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)
− (I −M(k))K(k+1)α(k+1)

)

+Y− Xβ− K(k+1)α(k+1) −
L

∑
m=k+2

K(m)α(m) − λ(k+1)α(k+1) = 0

⇔ M(k)

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)
−M(k)K(k+1)α(k+1) − λ(k+1)α(k+1) = 0

⇔ M(k)

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)
− G(k+1)α(k+1) = 0

⇔ G−1
(k+1)M(k)

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)
= α(k+1)

Proof of proposition 2:

• Proposition 2 is true for k = 1:

Suppose α(1) = G−1
(1)M(0)

(
Y− Xβ−

L
∑

m=2
K(m)α(m)

)
.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 105

1

∑
m=1

K(m)α(m) = K(1)α(1)

= K(1)G−1
(1)M(0)

(
Y− Xβ−

L

∑
m=2

K(m)α(m)

)

=
(

I −M(0) +M(0)K(1)G
−1
1 M(0)

)(
Y− Xβ−

L

∑
m=2

K(m)α(m)

)

=
(

I − (I −M(0)K(1)G
−1
1)M(0)

)(
Y− Xβ−

L

∑
m=2

K(m)α(m)

)

=
(

I −M(1)

)(
Y− Xβ−

L

∑
m=2

K(m)α(m)

)

• If proposition 2 is true for k, then proposition 2 is true for k + 1:

Suppose proposition 1 is true until k + 1, then ∀j ∈ {1, ..., k + 1},

α(j) = G−1
(j)M(j−1)

(
Y− Xβ−

L
∑

m=j+1
K(m)α(m)

)

k+1

∑
m=1

K(m)α(m) =
k

∑
m=1

K(m)α(m) + K(k+1)α(k+1)

= (I −M(k))

(
Y− Xβ−

L

∑
m=k+1

K(m)α(m)

)
+ K(k+1)α(k+1)

= (I −M(k))

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)
+M(k)K(k+1)α(k+1)

= (I −M(k))

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)
+M(k)K(k+1)G−1

(k+1)M(k)

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)

= (I −M(k) +MkK(k+1)G−1
(k+1)Mk)

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)

= (I − (I +M(k)K(k+1)G−1
(k+1))M(k))

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)

= (I −M(k+1))

(
Y− Xβ−

L

∑
m=k+2

K(m)α(m)

)

�

Of note, for L = 1, equations (9) and (10) correspond to those provided in Liu et al. (2007).

Catherine Schramm
Research center, Ste Justine Hospital
Montreal university
Lady Davis Institute for Medical Research, Jewish General Hospital
Montreal
Canada
ORCID: 0000-0002-1185-8809
cath.schramm@gmail.com

Sébastien Jacquemont
Research center, Ste Justine Hospital

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:cath.schramm@gmail.com

CONTRIBUTED RESEARCH ARTICLE 106

Montreal university
Montreal
Canada
ORCID: 0000-0001-6838-8767
sebastien.jacquemont@umontreal.ca

Karim Oualkacha
Department of Mathematics
Université du Quebec à Montreal
Canada
ORCID: 0000-0002-9911-079X
oualkacha.karim@uqam.ca

Aurélie Labbe
Department of decision sciences
HEC Montreal
Canada
aurelie.labbe@hec.ca

Celia M.T. Greenwood
Lady Davis Institute for Medical Research, Jewish General Hospital
Gerald Bronfman Department of Oncology, Department of Epidemiology, Biostatistics and Occupational Health,
and Department of Human Genetics, McGill University
Montreal
Canada
ORCID: 0000-0002-2427-5696
celia.greenwood@mcgill.ca

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:sebastien.jacquemont@umontreal.ca
mailto:oualkacha.karim@uqam.ca
mailto:aurelie.labbe@hec.ca
mailto:celia.greenwood@mcgill.ca

CONTRIBUTED RESEARCH ARTICLE 107

Comparing Multiple Survival Functions
with Crossing Hazards in R
by Hsin-wen Chang, Pei-Yuan Tsai, Jen-Tse Kao and Guo-You Lan

Abstract It is frequently of interest in time-to-event analysis to compare multiple survival functions
nonparametrically. However, when the hazard functions cross, tests in existing R packages do not
perform well. To address the issue, we introduce the package survELtest, which provides tests for
comparing multiple survival functions with possibly crossing hazards. Due to its powerful likelihood
ratio formulation, this is the only R package to date that works when the hazard functions cross. We
illustrate the use of the procedures in survELtest by applying them to data from randomized clinical
trials and simulated datasets. We show that these methods lead to more significant results than those
obtained by existing R packages.

Introduction

The nonparametric comparison of multiple survival functions is of interest in numerous biomedical set-
tings, such as clinical trials (Robert et al., 2015), preclinical studies (Liebl et al., 2015) and observational
studies (Loupy et al., 2013) with right-censored time-to-event endpoints. It has been implemented
in existing R packages using log-rank-type statistics. However, these log-rank-type tests can fail to
detect differences among survival curves when the hazard functions cross. For example, consider the
Kaplan–Meier (KM) estimated survival functions in Figure 1 for the treatment and control groups of
patients in a randomized clinical trial. There is a clear gap between the survival curves, which we
would expect to be detected by a reasonable statistical test. Nevertheless, the log-rank test provided
in the survival (Therneau et al., 2020) package returns a p-value of 0.07, indicating no significant
difference between the two survival functions at α = 0.05. Note that in this case the gap between
the survival curves shrinks then widens in the middle of the follow-up period, suggesting that the
estimated hazard functions may cross at some time point.

0 30 60 90 120 150 180
0.0

0.2

0.4

0.6

0.8

1.0

S
ur

vi
va

l p
ro

ba
bi

lit
y

Days

Figure 1: Estimated survival functions for treatment (solid line) versus control (dashed line) groups,
based on a randomized clinical trial for treatment of severe alcoholic hepatitis (Nguyen-Khac et al.,
2011).

The need to compare survival functions with crossing hazards has been documented in the
statistics literature (see, e.g., Pepe and Fleming, 1989; Yang and Prentice, 2010). There are many
practical situations in which the hazard functions cross, indicating that the instantaneous treatment
effect changes direction. For example, some treatments are initially harmful due to toxicity or other
complications, but may be beneficial later on. Other treatments can have short-term benefits but
produce side effects in the long run. Despite the varying instantaneous treatment effect, the cumulative
treatment effect can still be positive, as reflected by a positive difference between the treatment and
control survival functions throughout the follow-up period. It is important to be able to detect such a
difference, as the treatment would be worth considering in this case. To this end, an adaptive weighted

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=survival

CONTRIBUTED RESEARCH ARTICLE 108

log-rank test was implemented in the R package YPmodel (Sun and Yang, 2020), but this test involves
a parametric assumption on the hazard functions, is limited to two-sample comparisons, and cannot
deal with the general k-sample situation. Another method, the restricted mean survival time (RMST)
approach, was implemented in the R package survRM2 (Uno et al., 2020). However, to our knowledge
the RMST method can only deal with two-sample comparisons nonparametrically. For the k-sample
case, certain model-based assumptions still need to be made (see, e.g., Cronin et al., 2016).

To address this issue, the package survELtest (Chang, 2020) provides nonparametric tests that can
deal with general k-sample comparisons while accounting for possibly crossing hazards. It avoids the
pitfalls of log-rank-type statistics, in which negative and positive differences among the estimated
hazard functions cancel each other in a weighted sum (see Section Existing test statistics in R and
their pitfalls for more details). Further, the statistics are constructed using empirical likelihood (EL),
which has been shown to produce tests with optimal power (see, e.g., Kitamura et al., 2012). EL is
a nonparametric likelihood which does not assume that the data come from a particular parametric
family of distributions. It serves as the basis for constructing a nonparametric likelihood ratio (i.e., the
EL ratio), which leads to more efficient inference than Wald-type procedures such as log-rank-type
tests, as seen in the literature on parametric (see, e.g., Mukerjee, 1994) and nonparametric inference
(Bravo, 2003; Kitamura et al., 2012). There are R packages available for survival analysis using EL,
namely emplik (Zhou, 2020), emplik2 (Barton, 2018) and ELYP (Zhou, 2018), but they are limited to
inference regarding finite-dimensional parameters, whereas our package handles survival functions,
an infinite dimensional problem.

Our approach computes EL ratios at each observed uncensored time point, then summarizes them
into maximal-deviation-type and integral-type statistics. The statistical theory of this approach and
the empirical levels and powers in various simulation scenarios have been studied in Chang and
McKeague (2016; 2019), but these authors focused on the technical development of one-sided tests,
and did not provide a software package or an accessible guide for implementing the method. In this
paper we provide a general framework for both two-sided and one-sided testing, an accessible guide
to the R package survELtest, and a comparison with existing R packages (reviewed briefly in Section
Existing test statistics in R and their pitfalls) in applications to data from clinical trials and simulated
datasets.

For k-sample nonparametric testing under right censorship, to our knowledge all existing R
packages use log-rank-type statistics (see the CRAN Task View Survival), often referred to as the
weighted log-rank statistics. The package FHtest (Oller and Langohr, 2017) and the survdiff function
in the package survival consider the Fleming-Harrington Gρ family, which belongs to the class of
weighted log-rank statistics. The package clinfun (Seshan, 2018) adopts a permutation version of the
log-rank test. The package LogrankA (Richter-Dumke and Rau, 2013) provides a log-rank test based
on aggregated survival data. SurvivalTests in the coin (Hothorn et al., 2019) package implements
a reformulated weighted log-rank test as a linear rank test. The maxstat (Hothorn, 2017) package
performs tests using maximally selected log-rank statistics.

This paper is organized as follows. In the next section, we provide a brief review of k-sample
nonparametric methods used in existing R packages, their pitfalls, and the use of EL tests as a solution.
Section Program description describes our package functions, along with a flow chart showing the
procedure for using those functions. In Sections Application of supELtest to threearm data and
Application of intELtest to hepatitis data, we apply the proposed routines to datasets from clinical
trials, and obtain more significant results than the log-rank-type tests. Some concluding remarks
are made in Section Discussion. The availability of the program is given in Section Availability.
In the Appendix, we compare our procedures with more existing methods, including those in the
aforementioned packages YPmodel and survRM2, which cannot deal with the general k-sample case
nonparametrically.

Theoretical background

Existing test statistics in R and their pitfalls

This section briefly reviews the log-rank-type statistics in existing R packages, for testing whether
the k survival functions are the same. The null and alternative hypotheses are H0 : S1 = . . . = Sk
and H1 : H0 is not true, respectively, where Sj is the survival function of the j-th sample. To quantify
the discrepancy between the j-th sample (j = 1, . . . , k − 1) and other samples, a weighted sum of
differences between the estimated hazard function of the j-th sample and that of the pooled sample
is computed. The k− 1 weighted sums are then summarized using a quadratic form to obtain the
final log-rank-type statistic. Different choices of the weight lead to different log-rank-type statistics, of
which the commonly used log-rank test is a special case.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=YPmodel
https://CRAN.R-project.org/package=survRM2
https://CRAN.R-project.org/package=survELtest
https://CRAN.R-project.org/package=emplik
https://CRAN.R-project.org/package=emplik2
https://CRAN.R-project.org/package=ELYP
https://CRAN.R-project.org/view=Survival
https://CRAN.R-project.org/package=FHtest
https://CRAN.R-project.org/package=clinfun
https://CRAN.R-project.org/package=LogrankA
https://CRAN.R-project.org/package=coin
https://CRAN.R-project.org/package=maxstat

CONTRIBUTED RESEARCH ARTICLE 109

To illustrate the pitfalls of this formulation under crossing hazards, we restrict our attention to
k = 2 for simplicity. When k = 2, there is only one weighted sum involved, which can be expressed as

m

∑
i=1

vi

{
ĥ1 (ti)− ĥ2 (ti)

}
, (1)

where 0 < t1 < . . . < tm < ∞ are the (ordered) observed uncensored times, ĥj(ti) are the estimated
hazard functions at time ti for the j-th sample, and vi ≥ 0 is the corresponding weight at ti. When the
survival functions are different, the hazard functions can cross each other. In this case, there are both
positive differences (i.e., when ĥ1(·) > ĥ2(·)) and negative differences (i.e., when ĥ1(·) < ĥ2(·)) in (1).
These differences between the estimated hazard functions cancel out, leading to a smaller value of
the statistic and hence a less significant result. Consequently, the formulation can fail to detect the
difference between the survival curves.

EL ratio and test statistics

In the proposed package survELtest, we use a likelihood ratio statistic, namely a pointwise EL statistic,
to replace the estimated hazard difference in (1). This pointwise EL statistic quantifies, at each time
point, the difference in the multiple survival functions. It is always non-negative, as are all typical
likelihood ratio statistics, which prevents the problematic cancellation described in the previous
section. In the rest of Section Theoretical background, we provide a brief description of this approach.
More details can be found in Chang and McKeague (2016, 2019).

The pointwise EL statistic is constructed from the following likelihood ratio:

R (t) =
sup {L (S1, S2, . . . , Sk) : S1 (t) = S2 (t) = . . . = Sk (t)}

sup {L (S1, S2, . . . , Sk)}
, (2)

where L(S1, S2, . . . , Sk) is a nonparametric likelihood which does not assume that the data come
from a particular parametric family of distributions (Thomas and Grunkemeier, 1975). As in a usual
(parametric) likelihood ratio, the numerator of (2) maximizes the likelihood subject to the constraint
under H0, whereas the denominator maximizes the likelihood globally, as it corresponds to the
union of H0 and H1. We then use −2 logR(t) as our pointwise EL statistic; such transformation of
likelihood ratios has been widely used in the literature. A larger −2 logR(t) gives less evidence for
S1(t) = S2(t) = . . . = Sk(t).

For the desired simultaneous inference, we summarize the pointwise statistics in two ways. The
first, provided by the routine intELtest, takes a weighted sum:

I =
m

∑
i=1

wi {−2 logR (ti)} , (3)

where wi ≥ 0 is the weight at each ti. This is an integral-type statistic because the summation can
be written into a stochastic integral. The form of a weighted sum is similar to the components of the
log-rank-type statistics shown in the previous section. Here we avoid ad hoc choices of the weight wi
by setting equal weight for data with no ties. We do this because the EL statistic−2 logR(ti) implicitly
provides optimal (i.e., nonparametric-likelihood-optimized) weighting for contrasting the survival
functions. More details regarding the weighting schemes are given in Section Weight.

Another way to summarize the pointwise statistics is to take a maximum K = supi=1,...,m{−2 logR
(ti)}, which is provided by the function supELtest. Such maximal-deviation-type statistics have been
used in the classical Kolmogorov–Smirnov test, and are more sensitive to local differences amongst
survival curves (i.e., differences among survival curves that appear only in a short period of time). In
contrast, the integral-type statistic I in (3) is designed to detect moderate differences spread over a
sizable portion of the follow-up period. The choice between the two statistics should be guided by
prior knowledge and practical considerations. In particular, if prior knowledge does not suggest the
presence of local differences, we recommend I for general use. Otherwise K can be implemented to
exploit the additional knowledge of the existence of a local difference. For example, a local difference
is present when medical knowledge suggests that a treatment has a benefit in some localized time
interval, or when a pilot study shows that the difference among the KM estimated survival curves
appears only over a short period of time. In the latter case, the evidence would be even stronger if a
significant result was obtained from a statistical test that is sensitive to such local differences, such as
the maximal-deviation-type statistics described above.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 110

Two-step procedure for one-sided testing

So far, we have focused on two-sided testing. For one-sided testing, we consider the alternative
Ho

1 : S1 � S2 � . . . � Sk that there is an ordering among the survival functions, where f � g for
functions f (t) and g(t) of t means f (t) ≥ g(t) for all t with a strict inequality for some t. The EL
statistics are the same as the ones in the previous section, except that now we put an additional
constraint S1(t) ≥ S2(t) ≥ . . . ≥ Sk(t) in the denominator ofR(t) in (2).

The resulting EL test will be preceded by an initial test that excludes the possibility of crossings or
alternative orderings among the survival functions. The reason is due to the fact that for functional
parameters (e.g., survival functions), testing a one-sided alternative hypothesis usually involves certain
assumptions, such as that the functions are not crossed and that their ordering is as hypothesized.
These assumptions may be checked using the initial test, with the null hypothesis being that the
assumptions are not satisfied, versus the alternative that they are. If the null hypothesis of the initial
test is rejected, we conclude that the assumptions are satisfied and proceed to the EL test. Rejection
of the null hypothesis H0 of the EL test then gives support for H1. On the other hand, if the null
hypothesis of the initial test is not rejected, we conclude that the assumptions are not satisfied and do
not proceed to the EL test. The family-wise error rate of this two-step procedure has been shown to be
asymptotically controlled at the same α-level as the individual tests.

Weight

As mentioned in Section EL ratio and test statistics, we need to specify wi in (3). This can be done
by setting the value of the argument wt in the routine intELtest. The default is an objective weight
wi = di/n, where di denotes the number of events at each time point ti and n is the total sample size.
This simplifies to equal weight wi = 1/n when there are no ties (i.e., di = 1) in the data. This default
weight is specified by the option wt = "p.event".

Despite the default weight, we provide in intELtest two alternative options that have been used
for integral-type statistics in the literature. One option is wi = F̂(ti)− F̂(ti−1) for i = 1, . . . , m, where
F̂(t) = 1− Ŝ(t), Ŝ(t) is the pooled KM estimator, and t0 ≡ 0. This wi reduces to the objective weight
wi = di/n when there is no censoring (see, e.g., El Barmi and McKeague, 2013). The resulting I can be
seen as an empirical version of the expected negative two log EL ratio under H0. This weight can be
chosen via the option wt = "dF".

Another weight, proposed by Pepe and Fleming (1989), is wi = ti+1 − ti for i = 1, . . . , m, where
tm+1 ≡ tm. This approach gives more weight to the time intervals when there are fewer observed
uncensored times, but can be affected by extreme observations. This weight can be chosen via the
option wt = "dt".

Bootstrap critical values

Having computed the statistics, we need to calibrate the tests. Possible methods include bootstrapping
or simulating the limiting distributions. We choose the former for the following two reasons: (a) in
small samples, calibration using the bootstrap can perform better than using the limiting distribution
(Heller and Venkatraman, 1996). (b) in our experience the bootstrap can be more computationally
efficient, since the limiting distributions of I and K involve stochastic processes that depend on
unknown parameters.

Here we adopt a Gaussian multiplier bootstrap approach, which is commonly used instead of the
nonparametric bootstrap in survival analysis to avoid producing tied data in the bootstrap samples.
To form the bootstrap samples, the original data are perturbed using independent standard Gaussian
random variables, termed Gaussian multipliers (see, e.g., Parzen et al., 1997). We denote the number
of bootstrap samples as B, which is specified by the nboot argument (default is 1000). In cases when
m is too large for the computation to be handled with reasonable speed, we split the calculation of
the B bootstrap replications into nsplit parts, where nsplit = dm / nlimite (default nlimit = 200).
Here and in the sequel, if we do not specify which R function an option or argument applies to, then
the option or argument applies to all the functions provided by the survELtest package.

Since the bootstrap involves random sampling, the critical values will differ based on different
sets of bootstrap samples. To make the critical values reproducible, we set a seed for random number
generation via the seed option in our routines.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 111

User guide and numerical examples

Program description

The survELtest package can be installed along with survELtest using the following R code:

> install.packages("survELtest")

The following code loads the package:

> library(survELtest)

The main routines in survELtest are intELtest, supELtest, nocrossings, and ptwiseELtest. The
intELtest routine conducts testing based on the integrated EL statistics I in (3) that can detect
moderate differences among the survival curves over time. The supELtest routine conducts testing
based on the maximally selected EL statistics K that is more sensitive to differences locally in time. Each
routine gives a two- or one-sided test statistic, the critical value based on bootstrap, and the p-value
of the test. As mentioned in Section EL ratio and test statistics, the choice between the two routines
should be guided by prior knowledge and practical considerations regarding whether there is a local
difference among the survival curves. The choice between two-sided and one-sided testing should be
determined a priori as well, depending on the research question of interest. One-sided testing can
be specified by the option sided = 1 in both intELtest and supELtest, but should be preceded by
the initial test in nocrossings to exclude the possibility of crossings or alternative orderings among
the survival functions. While the first three routines provide simultaneous testing, ptwiseELtest
conducts pointwise testing to compare the survival curves at each time point. It can be used to
identify periods of local differences, after intELtest or supELtest test gives a significant result. A
flow chart of the procedure for using the survELtest package is given in Figure 2. Methods defined
for the objects produced by the main routines are provided for print and summary. In addition to the
aforementioned routines, survELtest contains four datasets: hepatitis, threearm, hazardcross and
hazardcross_Weibull, which will be analyzed in Sections Application of supELtest to threearm data,
Application of intELtest to hepatitis data, and the Appendix to illustrate the use of the routines.

A summary of the R code and the input arguments of the routines are given as follows. Among
the input arguments below, only the formula input is compulsory. The rest of the arguments can be
omitted if the default settings are used.

> intELtest(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2,
+ nboot = 1000, wt = "p.event", alpha = 0.05, seed = 1011, nlimit = 200)

> supELtest(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2,
+ nboot = 1000, alpha = 0.05, seed = 1011, nlimit = 200)

> nocrossings(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2,
+ nboot = 1000, alpha = 0.05, seed = 1011, nlimit = 200)

> ptwiseELtest(formula, data = NULL, group_order = NULL, t1 = 0, t2 = Inf, sided = 2,
+ nboot = 1000, alpha = 0.05, seed = 1011, nlimit = 200)

The time needed to run these functions depends on the total number n of observations, the number k
of samples, the speed of the processor and the amount of PC memory. For example, to run intELtest
with the default settings, it takes about 0.32 seconds on the dataset hepatitis with n = 174 and k = 2,
and 1.79 minutes on the dataset threearm with n = 664 and k = 3, on a desktop computer with Intel
i7-7700 CPU @ 3.60 GHz and 64 GB RAM.

• formula: a formula object, with a Surv object on the left of the ∼ operator and the grouping
variable on the right. The Surv object involves two variables: the observed survival and
censoring times, and the censoring indicator, which takes a value of 1 if the observed time is
uncensored and 0 otherwise. The grouping variable takes different values for different groups.
If not found in data described below, the variables in the formula should be already defined by
the user or in attached R objects.

• data: an optional data frame containing the variables in the formula: the observed survival and
censoring times, the censoring indicator, and the grouping variable. The default is the data
frame with three columns of variables taken from the formula: column 1 contains the observed
survival and censoring times, column 2 the censoring indicator, and column 3 the grouping
variable.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 112

Prior knowledge and
practical considerations

Two-
sided or

one-
sided?

Is there a
local dif-
ference?

nocrossings

supELtest intELtest

Is there a
signifi-

cant
result?

Conclude and interpret the result

Identify periods of significant point-
wise difference via ptwiseELtest

sided=1

yes no

Figure 2: Flow chart of the procedure for using the routines in the survELtest package.

• group_order: a k-vector containing the values of the grouping variable, with the j-th element
being the group hypothesized to have the j-th highest survival rates, j = 1, . . . , k. The default is
the vector of sorted grouping variables.

• t1: the first endpoint of a prespecified time interval, if any, to which the comparison of the
survival functions is restricted. The default value is 0.

• t2: the second endpoint of a prespecified time interval, if any, to which the comparison of the
survival functions is restricted. The default value is ∞.

• sided: 2 if two-sided test, and 1 if one-sided test. The default value is 2.

• nboot: the number of bootstrap replications in calculating critical values for the tests. The
default value is 1000.

• wt: the name of the weight to be used in the integrated EL statistics in intELtest: "p.event",
"dF", or "dt". The default is "p.event".

• alpha: the pre-specified significance level of the tests. The default value is 0.05.

• seed: the seed for the random number generator in R, for generating bootstrap samples needed
to calculate the critical values for the tests. The default value is 1011.

• nlimit: a number used to calculate nsplit = dm / nlimite, the number of parts into which
the calculation of the nboot bootstrap replications is split. The use of this variable can make
computation faster when the number of time points m is large. The default value for nlimit is
200.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 113

Application of supELtest to threearm data

In this section we apply the routines supELtest and ptwiseELtest to the dataset threearm provided
in the survELtest package, and compare the results with the log-rank-type tests for trend. The
dataset is obtained by resampling from a perturbed dataset of patients from a randomized clinical
trial for the treatment of major depression, where the perturbation is achieved by adding a random
U(−0.01`, 0.01`) variable to existing observations, ` is the smallest observation in the original data,
and the resampling is done by conditional bootstrapping with stratified survival and censoring
distributions using the censboot function in the package boot (Canty and Ripley, 2020). The original
data were analyzed by Chang and McKeague (2019), who observed a local difference among the
survival functions.

The purpose of analyzing the threearm dataset is to assess whether the survival functions of the
three arms are ordered: that is, whether the experimental treatment group (n1 = 262) is better than
the standard treatment group (n2 = 267), which is in turn superior to the placebo group (n3 = 135).
This question can be answered using the one-sided tests described in Section Two-step procedure for
one-sided testing. Since prior knowledge suggests that there is a local difference among the survival
functions, here we conduct the maximally selected EL test via supELtest.

The endpoint of the clinical trial is time (in days) to first remission. Because a shorter time to first
remission is desirable, a treatment with a lower value of the survival function is better in this dataset.
Based on this information, from the KM estimated survival curves in the left panel of Figure 3, it seems
that the three groups are similar initially but become ordered for the rest of the follow-up period.

0 10 20 30 40 50 60 70 80
0.0

0.2

0.4

0.6

0.8

1.0

S
ur

vi
va

l p
ro

ba
bi

lit
y

Time to remission (days)

0 10 20 30 40 50 60 70 80
0.00

0.02

0.04

0.06

Time to remission (days)

H
az

ar
d

fu
nc

tio
n

Figure 3: The KM estimated survival curves (left) and the estimated hazard functions (right) in the
threearm dataset: experimental treatment group (solid), standard treatment group (dashed) and
placebo group (two-dashed).

To see if the curves are statistically significantly ordered, we start with conducting the commonly
used log-rank-type tests. The trend test is needed for the one-sided research question. Using the
common choice c(3, 2, 1) for the score vector (see, e.g., Andersen et al., 1993, page 388), the log-rank
test for trend is implemented as follows:

> library(survival)
> dat = Surv(threearm[, 1], threearm[, 2])
> logrank = survdiff(dat ~ threearm[, 3])
> score_vec = 3 : 1
> logrankteststat = matrix(score_vec, nrow = 1, ncol = 3)
+ %*% (logrank$obs - logrank$exp) / sqrt(matrix(score_vec, nrow = 1, ncol = 3)
+ %*% (logrank$var) %*% matrix(score_vec, nrow = 3, ncol = 1))
> if(logrankteststat < 0){
+ pval = 2 * pnorm(logrankteststat)
+ }else{
+ pval = 2 * (1 - pnorm(logrankteststat))
+ }
> round(pval, 2)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=boot

CONTRIBUTED RESEARCH ARTICLE 114

[,1]
[1,] 0.04

As the log-rank test for trend gives a p-value of 0.04, we conclude that the three survival functions are
ordered at α = 0.05. The other extreme in the Gρ family can be implemented by setting survdiff(dat
∼ threearm[, 3], rho = 1) in the above code, which leads to a p-value of 0.08. These results mean
the weighted log-rank statistics in the entire Gρ family give a p-value that ranges from 0.04 to 0.08 for
the trend test.

Now we conduct the proposed one-sided testing for the threearm data. We anticipate a more
significant result than the log-rank-type tests, as there seems to be crossing among the estimated
hazard functions in the right panel of Figure 3, created using the function muhaz in the package muhaz
(Hess and Gentleman, 2019) with the default settings. The initial test and the maximally selected EL
test are implemented by the routines nocrossings and supELtest, respectively. (Note that if two-sided
testing is conducted instead, then the initial test is not needed.) To use the routines, we need to
specify two options: sided = 1 for the one-sided test, and group_order = c(3, 2, 1), since the
hypothesized order among the three arms with the survival rates ranging from the largest to the
smallest is the placebo (coded as 3 in the grouping variable), standard treatment (coded as 2), and
experiment treatment (coded as 1). The rest of the options are kept at their default values. The R code
for performing the initial test is as follows:

> nocrossings(Surv(threearm$time, threearm$censor) ~ threearm$group,
+ group_order = c(3, 2, 1), sided = 1)

Call:
nocrossings(formula = Surv(threearm$time, threearm$censor) ~ threearm$group,
group_order = c(3, 2, 1), sided = 1)

Decision = 1

A decision value of 1 means there is no crossing or alternative orderings among the survival functions.
Thus, we can proceed to the main (maximally selected EL) test in the second step:

> supELtest(Surv(threearm$time, threearm$censor) ~ threearm$group,
+ group_order = c(3, 2, 1), sided = 1)

Call:
supELtest(formula = Surv(threearm$time, threearm$censor) ~ threearm$group,
group_order = c(3, 2, 1), sided = 1)

One-sided maximally selected EL test statistic = 14.23, p = 0.004

As the maximally selected EL test gives a p-value < 0.01, we obtain the same conclusion—that the
three survival functions are significantly ordered—as the log-rank-type tests for trend, but with a
statistically more significant result. This finding is as we anticipated after seeing the crossing estimated
hazard functions in the right panel of Figure 3.

Since our procedure leads to the conclusion that the survival functions are ordered, it can be of
interest to identify periods of local differences for further clinical investigation. To this end, we can
use the routine ptwiseELtest for pointwise testing at each observed uncensored time point:

> ptwise = ptwiseELtest(Surv(threearm$time, threearm$censor) ~ threearm$group,
+ group_order = c(3, 2, 1), sided = 1)

The list of the time points at which the survival functions are ordered (i.e., decision == 1) is obtained
by

> round(ptwise$result_dataframe$time_pts[ptwise$result_dataframe$decision == 1], 2)

[1] 13.91 13.91 13.91 13.92 13.92 13.92 13.92 13.93 13.98 13.99 13.99 14.00 14.00
[14] 14.00 14.01 14.01 20.96 20.96 27.98 27.99 28.00 28.00 28.00 28.02 28.02 28.98
[27] 28.99 29.01 30.00 32.96 36.97 40.97 40.98 40.99 41.02 41.98 41.98 41.99 42.00
[40] 42.01 42.02 42.99 43.01 43.02 43.02 44.00 44.00 51.97 51.97 55.00 56.01 56.01
[53] 56.02 59.03 59.04 64.97 68.98 69.01

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=muhaz

CONTRIBUTED RESEARCH ARTICLE 115

From the result, we see there are local differences occurring near the time points 14, 21, 30, 40, 52, 56,
59, 65 and 69 days.

Application of intELtest to hepatitis data

Now we turn to our motivating example in the Introduction and demonstrate the use of intELtest
and its benefit over the log-rank-type tests. The corresponding dataset hepatitis is provided in the
survELtest package. The dataset was obtained by reconstructing survival and censoring information
(Guyot et al., 2012) based on digitizing the KM curves presented in Nguyen-Khac et al. (2011). It
contains survival data (in days, rounded to one decimal place) from patients in a randomized clinical
trial for the treatment of severe alcoholic hepatitis. The purpose of the clinical trial was to assess if the
treatment group (n1 = 85) had a significantly different survival rate than the control group (n2 = 89).

From the KM estimated survival curves in Figure 1, the survival rate of the treatment group seems
to be greater than that of the control group over the entire follow-up period. To see whether the
difference between the survival functions are statistically significant, we start with conducting the
commonly used two-sided log-rank test:

> library(survival)
> dat = Surv(hepatitis[, 1], hepatitis[, 2])
> logrank = survdiff(dat ~ hepatitis[, 3])
> round(1 - pchisq(logrank$chisq, df = 1), 2)

[1] 0.07

The log-rank test gives a p-value of 0.07, failing to detect a difference between the survival curves at
α = 0.05. The reason may be due to the crossing estimated hazard functions in Figure 4 (created using
the function muhaz in the package muhaz with the default settings). We also conduct another log-rank-
type test—the Peto and Peto’s modification of the Gehan-Wilcoxon test—by setting survdiff(dat ∼
hepatitis[, 3], rho = 1) in the above code, which leads to a p-value of 0.05. Since this test and the
log-rank test are the two extremes in the Gρ family, these results mean the weighted log-rank statistics
in the entire Gρ family give either insignificant or borderline significant conclusions.

0 30 60 90 120 150 180
0.000

0.005

0.010

Days

H
az

ar
d

fu
nc

tio
n

Figure 4: Estimated hazard functions for treatment (solid line) versus control (dashed line) groups.

Now we apply the proposed two-sided integrated EL test to the hepatitis data to see if we can
better detect a difference between the survival functions. The default options are used and the R code
is as simple as

> intELtest(Surv(hepatitis$time, hepatitis$censor) ~ hepatitis$group)

Call:
intELtest(formula = Surv(hepatitis$time, hepatitis$censor) ~ hepatitis$group)

Two-sided integrated EL test statistic = 1.42, p = 0.007

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 116

As the integrated EL test gives a p-value < 0.01, we conclude there is a significant difference between
the two survival functions at α = 0.05. The p-value is much smaller than those given by the previous
log-rank-type tests, which indicates that the integrated EL test is better at detecting the difference
between the survival curves.

Note the decision as to whether there is a significant discrepancy between the two survival
functions is totally different for the log-rank and the integrated EL tests at α = 0.05. It may be
tempting to pick the most significant result, but this practice is data snooping and has been shown
to be problematic. Instead, we recommend setting a primary method prior to the data analysis and
making the decision based on that method. Any other methods are treated as secondary, and their
results can serve an exploratory purpose for future work.

Discussion

In this paper we introduce the R package survELtest for comparing two or more survival functions
nonparametrically based on right-censored data. It is the only R package to date that utilizes the
powerful likelihood ratio formulation instead of log-rank-type statistics, thereby performing well
when the hazard functions cross. We provide both maximal-deviation-type and integral-type statistics,
for detecting local and cumulative differences among the survival functions, respectively.

The use of the software is illustrated using two data sets from randomized clinical trials, where the
estimated survival functions seem to be ordered, but the estimated hazard functions cross. In these
cases, our procedures lead to more significant results than the results obtained from the log-rank-type
tests. Specifically, in one of the examples, the original clinical trial concludes that there is no significant
difference between the treatment and the control groups (log-rank p = 0.07), whereas our test suggests
otherwise, based on a much smaller p-value < 0.01. We envision the survELtest package will be
valuable for finding more significant results in numerous biomedical settings involving the comparison
of multiple survival functions, especially in the presence of crossing hazards.

Availability

The package is available from the Comprehensive R Archive Network at https://CRAN.R-project.
org/package=survELtest. The development website is available at https://github.com/news11/
survELtest.

Acknowledgements

The research of Hsin-wen Chang was partially supported by Ministry of Science and Technology of
Taiwan under grants 106-2118-M-001-015-MY3 and MOST 109-2118-M-001-005-. The authors thank
Yu-Ju Wang for computational support and Shih-Hao Huang for helpful comments. The authors
declare that they have no conflict of interest.

Bibliography

P. K. Andersen, Ø. Borgan, R. D. Gill, and N. Keiding. Statistical Models Based on Counting Processes.
New York: Springer, 1993. URL https://doi.org/10.1007/978-1-4612-4348-9. [p113]

W. H. Barton. emplik2: Empirical Likelihood Ratio Test for Two Samples with Censored Data, 2018. URL
https://CRAN.R-project.org/package=emplik2. R package version: 1.21. [p108]

F. Bravo. Second-order power comparisons for a class of nonparametric likelihood-based tests.
Biometrika, 90(4):881–890, 2003. URL https://doi.org/10.1093/biomet/90.4.881. [p108]

A. Canty and B. Ripley. boot: Bootstrap Functions (Originally by Angelo Canty for S), 2020. URL
https://CRAN.R-project.org/package=boot. R package version: 1.3-25. [p113]

H.-w. Chang. survELtest: Comparing Multiple Survival Functions with Crossing Hazards, 2020. URL
https://CRAN.R-project.org/package=surELtest. R package version: 2.0.1. [p108]

H.-w. Chang and I. W. McKeague. Empirical likelihood based tests for stochastic ordering under right
censorship. Electronic Journal of Statistics, 10(2):2511–2536, 2016. URL https://doi.org/10.1214/16-
EJS1180. [p108, 109]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=survELtest
https://CRAN.R-project.org/package=survELtest
https://github.com/news11/survELtest
https://github.com/news11/survELtest
https://doi.org/10.1007/978-1-4612-4348-9
https://CRAN.R-project.org/package=emplik2
https://doi.org/10.1093/biomet/90.4.881
https://CRAN.R-project.org/package=boot
https://CRAN.R-project.org/package=surELtest
https://doi.org/10.1214/16-EJS1180
https://doi.org/10.1214/16-EJS1180

CONTRIBUTED RESEARCH ARTICLE 117

H.-w. Chang and I. W. McKeague. Nonparametric testing for multiple survival functions with non-
inferiority margins. Annals of Statistics, 47(1):205–232, 2019. URL https://doi.org/10.1214/18-
AOS1686. [p108, 109, 113]

A. Cronin, L. Tian, and H. Uno. strmst2 and strmst2pw: New commands to compare survival
curves using the restricted mean survival time. Stata Journal, 16(3):702–716, 2016. URL https:
//doi.org/10.1177/1536867X1601600310. [p108]

H. El Barmi and I. W. McKeague. Empirical likelihood based tests for stochastic ordering. Bernoulli, 19:
295–307, 2013. URL https://doi.org/10.3150/11-BEJ393. [p110]

P. Guyot, A. E. Ades, M. J. N. M. Ouwens, and N. J. Welton. Enhanced secondary analysis of survival
data: reconstructing the data from published Kaplan–Meier survival curves. BMC Medical Research
Methodology, 12(1):1–13, 2012. URL https://doi.org/10.1186/1471-2288-12-9. [p115]

G. Heller and E. S. Venkatraman. Resampling procedures to compare two survival distributions in the
presence of right-censored data. Biometrics, 52(4):1204–1213, 1996. URL https://doi.org/10.2307/
2532836. [p110]

K. Hess and R. Gentleman. muhaz: Hazard Function Estimation in Survival Analysis, 2019. URL
https://CRAN.R-project.org/package=muhaz. R package version: 1.2.6.1. [p114]

T. Hothorn. maxstat: Maximally Selected Rank Statistics, 2017. URL https://CRAN.R-project.org/
package=maxstat. R package version: 0.7-25. [p108]

T. Hothorn, H. Winell, K. Hornik, M. A. van de Wiel, and A. Zeileis. coin: Conditional Inference
Procedures in a Permutation Test Framework, 2019. URL https://CRAN.R-project.org/package=coin.
R package version: 1.3-1. [p108]

Y. Kitamura, A. Santos, and A. M. Shaikh. On the asymptotic optimality of empirical likelihood for
testing moment restrictions. Econometrica, 80(1):413–423, 2012. URL https://doi.org/10.3982/
ECTA8773. [p108]

M. Liebl, J. Windschmitt, A. S Besemer, A.-K. Schäfer, H. Reber, C. Behl, and A. Clement. Low-frequency
magnetic fields do not aggravate disease in mouse models of Alzheimer’s disease and amyotrophic
lateral sclerosis. Scientific Reports, 5:8585, 2015. URL https://doi.org/10.1038/srep08585. [p107]

A. Loupy, C. Lefaucheur, D. Vernerey, C. Prugger, J.-P. D. van Huyen, N. Mooney, C. Suberbielle,
V. Frémeaux-Bacchi, A. Méjean, F. Desgrandchamps, D. Anglicheau, D. Nochy, D. Charron, J.-P.
Empana, M. Delahousse, C. Legendre, D. Glotz, G. S. Hill, A. Zeevi, and X. Jouven. Complement-
binding anti-HLA antibodies and kidney-allograft survival. New England Journal of Medicine, 369
(13):1215–1226, 2013. URL https://doi.org/10.1056/NEJMoa1302506. [p107]

R. Mukerjee. Comparison of tests in their original forms. Sankhyā: The Indian Journal of Statistics, Series
A (1961-2002), 56(1):118–127, 1994. URL https://www.jstor.org/stable/25050974. [p108]

E. Nguyen-Khac, T. Thevenot, M.-A. Piquet, S. Benferhat, O. Goria, D. Chatelain, B. Tramier, F. Dewaele,
S. Ghrib, M. Rudler, N. Carbonell, H. Tossou, A. Bental, B. Bernard-Chabert, and J.-L. Dupas.
Glucocorticoids plus N-acetylcysteine in severe alcoholic hepatitis. New England Journal of Medicine,
365(19):1781–1789, 2011. URL https://doi.org/10.1056/NEJMoa1101214. [p107, 115]

R. Oller and K. Langohr. FHtest: Tests for Right and Interval-Censored Survival Data Based on the Fleming-
Harrington Class, 2017. URL https://CRAN.R-project.org/package=FHtest. R package version:
1.4. [p108]

M. I. Parzen, L. J. Wei, and Z. Ying. Simultaneous confidence intervals for the difference of two survival
functions. Scandinavian Journal of Statistics, 24(3):309–314, 1997. URL https://doi.org/10.1111/
1467-9469.t01-1-00065. [p110]

M. S. Pepe and T. R. Fleming. Weighted Kaplan–Meier statistics: a class of distance tests for censored
survival data. Biometrics, 45(2):497–507, 1989. URL https://doi.org/10.2307/2531492. [p107, 110]

J. Richter-Dumke and R. Rau. LogrankA: Logrank Test for Aggregated Survival Data, 2013. URL https:
//CRAN.R-project.org/package=LogrankA. R package version:1.0. [p108]

C. Robert, B. Karaszewska, J. Schachter, P. Rutkowski, A. Mackiewicz, D. Stroiakovski, M. Lichinitser,
R. Dummer, F. Grange, L. Mortier, V. Chiarion-Sileni, K. Drucis, I. Krajsova, A. Hauschild, P. Lorigan,
P. Wolter, G. V. Long, K. Flaherty, P. Nathan, A. Ribas, A.-M. Martin, P. Sun, W. Crist, J. Legos,
S. D. Rubin, S. M. Little, and D. Schadendorf. Improved overall survival in melanoma with
combined dabrafenib and trametinib. New England Journal of Medicine, 372(1):30–39, 2015. URL
https://doi.org/10.1056/NEJMoa1412690. [p107]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1214/18-AOS1686
https://doi.org/10.1214/18-AOS1686
https://doi.org/10.1177/1536867X1601600310
https://doi.org/10.1177/1536867X1601600310
https://doi.org/10.3150/11-BEJ393
https://doi.org/10.1186/1471-2288-12-9
https://doi.org/10.2307/2532836
https://doi.org/10.2307/2532836
https://CRAN.R-project.org/package=muhaz
https://CRAN.R-project.org/package=maxstat
https://CRAN.R-project.org/package=maxstat
https://CRAN.R-project.org/package=coin
https://doi.org/10.3982/ECTA8773
https://doi.org/10.3982/ECTA8773
https://doi.org/10.1038/srep08585
https://doi.org/10.1056/NEJMoa1302506
https://www.jstor.org/stable/25050974
https://doi.org/10.1056/NEJMoa1101214
https://CRAN.R-project.org/package=FHtest
https://doi.org/10.1111/1467-9469.t01-1-00065
https://doi.org/10.1111/1467-9469.t01-1-00065
https://doi.org/10.2307/2531492
https://CRAN.R-project.org/package=LogrankA
https://CRAN.R-project.org/package=LogrankA
https://doi.org/10.1056/NEJMoa1412690

CONTRIBUTED RESEARCH ARTICLE 118

V. E. Seshan. clinfun: Clinical Trial Design and Data Analysis Functions, 2018. URL https://CRAN.R-
project.org/package=clinfun. R package version: 1.0.15. [p108]

J. Sun and S. Yang. YPmodel: The Short-Term and Long-Term Hazard Ratio Model for Survival Data, 2020.
URL https://CRAN.R-project.org/package=YPmodel. R package version: 1.4. [p108]

T. M. Therneau, T. Lumley, E. Atkinson, and C. Crowson. survival: Survival Analysis, 2020. URL
https://CRAN.R-project.org/package=survival. R package version: 3.2-3. [p107]

D. R. Thomas and G. L. Grunkemeier. Confidence interval estimation of survival probabilities
for censored data. Journal of the American Statistical Association, 70:865–871, 1975. URL https:
//doi.org/10.1080/01621459.1975.10480315. [p109]

H. Uno, L. Tian, A. Cronin, C. Battioui, and M. Horiguchi. survRM2: Comparing Restricted Mean Survival
Time, 2020. URL https://CRAN.R-project.org/package=survRM2. R package version: 1.0-3. [p108]

S. Yang and R. Prentice. Improved logrank-type tests for survival data using adaptive weights.
Biometrics, 66(1):30–38, 2010. URL https://doi.org/10.1111/j.1541-0420.2009.01243.x. [p107]

M. Zhou. ELYP: Empirical Likelihood Analysis for the Cox Model and Yang-Prentice (2005) Model, 2018.
URL https://CRAN.R-project.org/package=ELYP. R package version: 0.7-5. [p108]

M. Zhou. emplik: Empirical Likelihood Ratio for Censored/Truncated Data, 2020. URL https://CRAN.R-
project.org/package=emplik. R package version: 1.1-1. [p108]

Hsin-wen Chang
Institute of Statistical Science
Academia Sinica
128 Academia Road, Section 2,
Nankang, Taipei 11529, Taiwan (R.O.C)
ORCiD: 0000-0003-4566-7047
hwchang@stat.sinica.edu.tw

Pei-Yuan Tsai
Institute of Statistical Science
Academia Sinica
Taipei, Taiwan (R.O.C)

Jen-Tse Kao
Institute of Statistical Science
Academia Sinica
Taipei, Taiwan (R.O.C)

Guo-You Lan
Department of Economics
National Chengchi University
Taipei, Taiwan (R.O.C)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=clinfun
https://CRAN.R-project.org/package=clinfun
https://CRAN.R-project.org/package=YPmodel
https://CRAN.R-project.org/package=survival
https://doi.org/10.1080/01621459.1975.10480315
https://doi.org/10.1080/01621459.1975.10480315
https://CRAN.R-project.org/package=survRM2
https://doi.org/10.1111/j.1541-0420.2009.01243.x
https://CRAN.R-project.org/package=ELYP
https://CRAN.R-project.org/package=emplik
https://CRAN.R-project.org/package=emplik
mailto:hwchang@stat.sinica.edu.tw

CONTRIBUTED RESEARCH ARTICLE 119

Appendix: Comparison of survELtest with other existing tests in two sim-
ulated datasets

Here we provide two more examples for comparing our procedures with other existing tests in the
literature, namely the log-rank test, the Peto and Peto’s modification of the Gehan-Wilcoxon test, the
adaptive weighted log-rank test implemented in the R package YPmodel, and the RMST method
implemented in the R package survRM2. Since the latter two methods cannot deal with the general
k-sample case nonparametrically, the examples provided here are restricted to the two-sample case.
For the first dataset hazardcross, the survival time is generated from the piecewise exponential model
displayed in the left panel of Figure 5. Since the difference between the true survival curves appears
only during [0, 6] but not later on, we use supELtest to detect such local differences. For the second
dataset hazardcross_Weibull, the survival time is generated from the Weibull model displayed in the
right panel of Figure 5. We use intELtest because the difference between the true survival curves is
spread over the entire follow-up period. For both datasets, the true hazard functions cross, but there is
an obvious gap between the survival curves. The censoring distributions are specified to be the same
in each arm, and uniform with administrative censoring at t = 10 and a censoring rate of 25% in the
first group. We use the default settings in implementing the tests given in the aforementioned two
packages.

The results are given in Table 1. Our tests provide more significant results in detecting the gap
between the survival curves than any of the other tests for both datasets.

0 5 10
0.0

0.5

1.0

S
ur

vi
va

l p
ro

ba
bi

lit
y

Time

0 5 10
0.0

0.5

1.0

Time

Figure 5: The true survival curves for generating hazardcross (left) and hazardcross_Weibull (right)
datasets: the first (solid) and second (dashed) groups.

Table 1: p-values from various tests for comparing the survival curves in the hazardcross and
hazardcross_Weibull datasets. EL denotes the suitable EL test implemented in the R package survEL-
test, PP denotes the Peto and Peto’s modification of the Gehan-Wilcoxon test, YP denotes the adaptive
weighted log-rank test implemented in the R package YPmodel, and dRMST and rRMST denote the
results in the R package survRM2 for the difference in and the ratio of RMST, respectively.

Datasets EL log-rank PP YP dRMST rRMST

hazardcross 0.037 0.106 0.060 0.096 0.126 0.130
hazardcross_Weibull 0.005 0.080 0.006 0.009 0.014 0.018

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 120

A Unified Algorithm for the Non-Convex
Penalized Estimation: The ncpen Package
by Dongshin Kim, Sangin Lee* and Sunghoon Kwon†

Abstract Various R packages have been developed for the non-convex penalized estimation but they
can only be applied to the smoothly clipped absolute deviation (SCAD) or minimax concave penalty
(MCP). We develop an R package, entitled ncpen, for the non-convex penalized estimation in order
to make data analysts to experience other non-convex penalties. The package ncpen implements a
unified algorithm based on the convex concave procedure and modified local quadratic approximation
algorithm, which can be applied to a broader range of non-convex penalties, including the SCAD and
MCP as special examples. Many user-friendly functionalities such as generalized information criteria,
cross-validation and ridge regularization are provided also.

Introduction

The penalized estimation has been one of the most important statistical techniques for high dimensional
data analysis, and many penalties have been developed such as the least absolute shrinkage and
selection operator (LASSO) (Tibshirani, 1996), smoothly clipped absolute deviation (SCAD) (Fan and
Li, 2001), and minimax concave penalty (MCP) (Zhang, 2010). In the context of R, many authors
released fast and stable R packages for obtaining the whole solution path of the penalized estimator
for the generalized linear model (GLM). For example, lars (Efron et al., 2004), glmpath (Park and
Hastie, 2007) and glmnet (Friedman et al., 2007) implement the LASSO. Packages such as plus (Zhang,
2010), sparsenet (Mazumder et al., 2011), cvplogit (Jiang and Huang, 2014) and ncvreg (Breheny and
Huang, 2011) implement the SCAD and MCP. Among them, glmnet and ncvreg are very fast, stable,
and well-organized, presenting various user-friendly functionalities such as the cross-validation and
`2-stabilization (Zou and Hastie, 2005; Huang et al., 2016b).

The non-convex penalized estimation has been studied by many researchers (Fan and Li, 2001;
Kim et al., 2008; Huang et al., 2008; Zou and Li, 2008; Zhang and Zhang, 2012; Kwon and Kim,
2012; Friedman, 2012). However, there is still a lack in research on the algorithms that exactly
implement the non-convex penalized estimators for the non-convexity of the objective function. One
nice approach is using the coordinate descent (CD) algorithm (Tseng, 2001; Breheny and Huang, 2011).
The CD algorithm fits quite well for some quadratic non-convex penalties such as the SCAD and
MC (Mazumder et al., 2011; Breheny and Huang, 2011; Jiang and Huang, 2014) since each coordinate
update in the CD algorithm becomes an easy convex optimization problem with a closed form solution.
This is the main reason for the preference of the CD algorithm implemented in many R packages such
as sparsenet and ncvreg. However, coordinate updates in the CD algorithm require extra univariate
optimizations for other non-convex penalties such as the log and bridge penalties (Zou and Li, 2008;
Huang et al., 2008; Friedman, 2012), which severely lowers the convergence speed. Another subtle
point is that the CD algorithm requires standardization of the input variables and need to enlarge the
concave scale parameter in the penalty (Breheny and Huang, 2011) to obtain the local convergence,
which may cause to lose an advantage of non-convex penalized estimation (Kim and Kwon, 2012) and
give much different variable selection performance (Lee, 2015).

In this paper, we develop an R package ncpen for the non-convex penalized estimation based on
the convex-concave procedure (CCCP) or difference-convex (DC) algorithm (Kim et al., 2008; Shen
et al., 2012) and the modified local quadratic approximation algorithm (MLQA) (Lee et al., 2016). The
main contribution of the package ncpen is that it encompasses most of existing non-convex penalties,
including the truncated `1 (Shen et al., 2013), log (Zou and Li, 2008; Friedman, 2012), bridge (Huang
et al., 2008), moderately clipped LASSO (Kwon et al., 2015), sparse ridge (Huang et al., 2016a; Kwon
et al., 2013) penalties as well as the SCAD and MCP and covers a broader range of regression models:
multinomial and Cox models as well as the GLM. Further, ncpen provides two unique options: the
investigation of initial dependent solution paths and non-standardization of input variables, which
allow the users more flexibility.

The rest of the paper is organized as follows. In the next section, we describe the algorithm
implemented in ncpen with major steps and details. Afterwards, the main functions and various
options in ncpen are presented with numerical illustrations. Finally, the paper concludes with remarks.

*Co-first author: D. Kim and S. Lee equally contributed to this work
†Corresponding author

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=lars
https://CRAN.R-project.org/package=glmpath
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=plus
https://CRAN.R-project.org/package=sparsenet
https://CRAN.R-project.org/package=cvplogit
https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=ncpen

CONTRIBUTED RESEARCH ARTICLE 121

An algorithm for the non-convex penalized estimation

We consider the problem of minimizing

Qλ (β) = L (β) +
p

∑
j=1

Jλ

(
|β j|
)

, (1)

where β = (β1, . . . , βp)T is a p-dimensional parameter vector of interest, L is a convex loss function
and Jλ is a non-convex penalty with tuning parameter λ > 0. We first introduce the CCCP-MLQA
algorithm for minimizing Qλ when λ is fixed, and then explain how to construct the whole solution
path over a decreasing sequence of λs by using the algorithm.

A class of non-convex penalties

We consider a class of non-convex penalties that satisfy Jλ (|t|) =
∫ |t|

0 ∇Jλ (s) ds, t ∈ R for some
non-decreasing function ∇Jλ and

Dλ (t) = Jλ (|t|)− κλ|t| (2)

is concave function, where κλ = limt→0+∇Jλ (t). The class includes most of existing non-convex
penalties: SCAD (Fan and Li, 2001),

∇Jλ (t) = λI [0 < t < λ] + {(τλ− t) / (τ − 1)} I [λ ≤ t < τλ]

for τ > 2, MCP (Zhang, 2010),

∇Jλ (t) = (λ− t/τ) I [0 < t < τλ]

for τ > 1, truncated `1-penalty (Shen et al., 2013),

∇Jλ (t) = λI [0 < t < τ]

for τ > 0, moderately clipped LASSO (Kwon et al., 2015),

∇Jλ (t) = (λ− t/τ) [0 < t < τ (λ− γ)] + γ [t ≥ τ (λ− γ)]

for τ > 1 and 0 ≤ γ ≤ λ, sparse ridge (Kwon et al., 2013),

∇Jλ (t) = (λ− t/τ) I [0 < t < τλ/ (τγ + 1)] + γtI [t ≥ τλ/ (τγ + 1)]

for τ > 1 and γ ≥ 0, modified log (Zou and Hastie, 2005).

∇Jλ (t) = (λ/τ) [0 < t < τ] + (λ/t) [t ≥ τ]

for τ > 0, and modified bridge (Huang et al., 2008)

∇Jλ (t) =
(
λ/2
√

τ
)
[0 < t < τ] + (λ/2

√
t) [t ≥ τ]

for τ > 0.

The moderately clipped LASSO and sparse ridge are simple smooth interpolations between the
MCP (near the origin) and the LASSO and ridge, respectively. The log and bridge penalties are
modified to be linear over t ∈ (0, τ] so that they have finite right derivative at the origin. See the plot
for graphical comparison of the penalties introduced here.

CCCP-MLQA algorithm

The CCCP-MLQA algorithm iteratively conducts two main steps: CCCP (Yuille and Rangarajan, 2003)
and MLQA (Lee et al., 2016) steps. The CCCP step decomposes the penalty Jλ as in (2) and then
minimizes the tight convex upper bound obtained from a linear approximation of Dλ. The MLQA
step first minimizes a quadratic approximation of the loss L and then modifies the solution to keep
descent property.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 122

−6 −4 −2 0 2 4 6

0
1

2
3

4
5

t

J(
t)

SCAD
MCP
truncated L1 penalty
clipped LASSO
sparse ridge
modified log
modified bridge

Figure 1: Plot of various penalties with λ = 1, τ = 3 and γ = 0.5.

Concave-convex procedure

The objective function Qλ in (1) can be rewritten by using the decomposition in (2) as

Qλ (β) = L (β) +
p

∑
j=1

Dλ(β j) + κλ

p

∑
j=1
|β j| (3)

so that Qλ (β) becomes a sum of convex, L (β) + κλ ∑
p
j=1 |β j|, and concave, ∑

p
j=1 Dλ(β j), functions.

Hence the tight convex upper bound of Qλ (β) (Yuille and Rangarajan, 2003) becomes

Uλ

(
β; β̃

)
= L (β) +

p

∑
j=1

∂Dλ(β̃ j)β j + κλ

p

∑
j=1
|β j|, (4)

where β̃ =
(

β̃1, . . . , β̃p
)T is a given point and ∂Dλ(β̃ j) is a subgradient of Dλ(β j) at β j = β̃ j. Algorithm

1 summarizes the CCCP step for minimizing Qλ.

Algorithm 1: minimizing Qλ (β)
1. Set β̃.
2. Update β̃ by β̃ = arg minβ Uλ

(
β; β̃

)
.

3. Repeat the Step 2 until convergence.

Modified Local quadratic approximation

Algorithm 1 includes minimizing Uλ

(
β; β̃

)
in (4) given a solution β̃. An easy way is iteratively

minimizing local quadratic approximation (LQA) of L around β̃:

L (β) ≈ L̃
(

β; β̃
)
= L

(
β̃
)
+∇L

(
β̃
)T (

β− β̃
)
+
(

β− β̃
)T ∇2L

(
β̃
) (

β− β̃
)

/2,

where ∇L (β) = ∂L (β) /∂β and ∇2L (β) = ∂2L (β) /∂β2. Then Uλ

(
β; β̃

)
can be minimized by

iteratively minimizing

Ũλ

(
β; β̃

)
= L̃

(
β; β̃

)
+

p

∑
j=1

∂Dλ(|β̃ j|)β j + κλ

p

∑
j=1
|β j|. (5)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 123

It is easy to minimize Ũλ

(
β; β̃

)
since it is simply a quadratic function and the penalty term is the

LASSO. For the algorithm, we use the coordinate descent algorithm introduced by Friedman et al.
(2007). Note that the LQA algorithm may not have the descent property. Hence, we incorporate the
modification step to ensure the descent property. Let β̃

a be the minimizer of Ũλ

(
β; β̃

)
. Then we

modify the solution β̃
a by β̃

ĥ whenever it violates the descent property, i.e., Uλ(β̃
a; β̃) > Uλ

(
β̃; β̃

)
:

β̃
ĥ
= ĥβ̃

a
+
(

1− ĥ
)

β̃, (6)

where ĥ = arg minh>0 Uλ

(
hβ̃

a
+ (1− h) β̃; β̃

)
. This modification step in (6) guarantees the descent

property of the LQA algorithm (Lee et al., 2016).

Algorithm 2: minimizing Uλ

(
β; β̃

)
1. Set β̃.
2. Find β̃

a
= arg minβ Ũλ

(
β; β̃

)
.

3. Find ĥ = arg minh>0 Uλ

(
hβ̃

a
+ (1− h) β̃; β̃

)
.

4. Update β̃ by ĥβ̃
a
+
(

1− ĥ
)

β̃.
5. Repeat the Step 2–4 until convergence.

Efficient path construction over λ

Usually, the computation time of the algorithm rapidly increases as the number of non-zero parameters
increases or λ decreases toward zero. To accelerate the algorithm, we incorporate the active-set-control
procedure while constructing the solution path over a decreasing sequence of λ.

Assume that λ is given and we have an initial solution β̃ which is expected to be very close to the
minimizer of Qλ (β). First we check the first order KKT optimality conditions:

∂Qλ

(
β̃
)

/∂β j = 0, j ∈ A and |∂Qλ

(
β̃
)

/∂β j| ≤ κλ, j ∈ N , (7)

where A = {j : β̃ j 6= 0} and N = {j : β̃ j = 0}. We stop the algorithm if the conditions are satisfied
else update N and β̃ by N = N \ {jmax} and

β̃ = arg minβ j=0,j∈NQλ (β) , (8)

respectively, where jmax = arg maxj∈N |∂Qλ

(
β̃
)

/∂β j|. We keep these iterations until the KKT condi-

tions in (7) are satisfied with β̃. The key step is (8) which is easy and fast to obtain by using Algorithm
1 and 2 since the objective function only includes the parameters in A∪ {jmax}.

Algorithm 3: minimizing Qλ (β)
1. Set β̃.
2. Set A = {j : β̃ j 6= 0} and N = {j : β̃ j = 0}.
3. Check whether ∂Qλ

(
β̃
)

/∂β j = 0, j ∈ A and |∂Qλ

(
β̃
)

/∂β j| ≤ κλ, j ∈ N .
4. Update N by N \ {jmax}, where jmax = arg maxj∈N |∂Qλ

(
β̃
)

/∂β j|.
5. Update β̃ by β̃ = arg minβ j=0,j∈NQλ (β).
6. Repeat the Step 2–5 until the KKT conditions satisfy.

Remark 1 The number of variables that violates the KKT conditions could be large for some high-dimensional
cases. In this case, it may be inefficient to add only one variable jmax into A. It would be more efficient to add
more variables into A. However, when the number variables added is too large, it also is inefficient. With many
experiences, we found that the algorithm would be efficient with 10 variables.

In practice, we want to approximate the whole solution path or surface of the minimizer β̂
λ

as a function of λ. For the purpose, we first construct a decreasing sequence λmax = λ0 > λ1 >

· · · > λn−1 > λn = λmin and then obtain the corresponding sequence of minimizers β̂
λ0 , . . . , β̂

λn .
Let ∂Qλ (0) be the subdifferential of Qλ at 0. Then we can see that 0 ∈ ∂Qλ (0) = {∇L (0) + δ :
maxj |δj| ≤ κλ}, for any κλ > κλmax = maxj |∂L (0) /∂β j|, which implies the p-dimensional zero vector
is the exact minimizer of Qλ (β) when κλ ≥ κλmax . Hence, we start from the largest value λ = λmax
that satisfies κλmax = maxj |∂L (0) /∂β j|, and then we continue down to λ = λmin = ελmax, where ε is

a predetermined ratio such as ε = 0.01. Once we obtain the minimizer β̂
λk−1 then it is easy to find β̂

λk

by using β̂
λk−1 as an initial solution in Algorithm 3, which is expected to be close to β̂

λk for a finely

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 124

divided λ sequence. This scheme is called the warm start strategy, which makes the algorithm more
stable and efficient (Friedman et al., 2010).

The R package ncpen

In this section, we introduce the main functions with various options and user-friendly functions
implemented in the package ncpen for the users. Next section will illustrate how the various options
in the main function make a difference in data analysis through numerical examples.

The R package ncpen contains the main functions: ncpen() for fitting various nonconvex penalized
regression models, cv.ncpen() and gic.ncpen() for selecting the optimal model from a sequence
of the regularization path based on cross-validation and a generalized information criterion(Wang
et al., 2007, 2009; Fan and Tang, 2013; Wang et al., 2013). In addition, the useful functions are also
implemented in the package: sam.gen.ncpen() for generating a synthetic data from various models
with the correlation structure in (11), plot() for graphical representation, coef() for extracting
coefficients from the fitted object, predict() for making predictions from new design matrix. The
followings are the basic usage of the main functions:

linear regression with scad penalty
n=100; p=10
sam = sam.gen.ncpen(n=n,p=p,q=5,cf.min=0.5,cf.max=1,corr=0.5,family="gaussian")
x.mat = sam$x.mat; y.vec = sam$y.vec
fit = ncpen(y.vec=y.vec,x.mat=x.mat,family="gaussian",penalty="scad")
coef(fit); plot(fit)

prediction from a new dataset
test.n=20
newx = matrix(rnorm(test.n*p),nrow=test.n,ncol=p)
predict(fit,new.x.mat=newx)

selection of the optimal model based on the cross-validation
cv.fit = cv.ncpen(y.vec=y.vec,x.mat=x.mat,family="gaussian",penalty="scad")
coef(cv.fit)

selection of the optimal model using the generalized information criterion
fit = ncpen(y.vec=y.vec,x.mat=x.mat,family="gaussian",penalty="scad")
gic.ncpen(fit)

The main function ncpen() provides various options which produce different penalized estimators.
The other packages for nonconvex penalized regressions also have similar options: `2-regularization
and penalty weights. However, the package ncpen provides the two unique options for standaradiza-
tion and initial value. Below, we briefly describe the options in the main function ncpen().

Ridge regularization

The option alpha in the main functions forces the algorithm to solve the following penalized problem
with the `2-regularization or ridge effect (Zou and Hastie, 2005).

Qλ (β) =
1
n

n

∑
i=1

`i (β) + α
p

∑
j=1

Jλ(|β j|) + (1− α) λ
p

∑
j=1

β2
j , (9)

where α ∈ [0, 1] is the value from the option alpha, which is the mixing parameter between the
penalties Jλ and ridge. The objective function in (9) includes the elastic net (Zou and Hastie, 2005)
when Jλ (t) = λt and Mnet (Huang et al., 2016a) when Jλ (·) is the MC penalty. By controlling the
option alpha, we can treat the problem with highly correlated variables, and it makes the algorithm
more stable also since the minimum eigenvalue of the Hessian marix becomes large up to factor
(1− α) λ (Zou and Hastie, 2005; Lee and Breheny, 2015; Huang et al., 2016a).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 125

Observation and penalty weights

We can give different weights for each observation and penalty by the options obs.weight and
pen.weight, which provides the minimizer of

Qλ (β) =
n

∑
i=1

di`i (β) +
p

∑
j=1

wj Jλ(|β j|), (10)

where di is the weight for the ith observation and wj is the penalty weight for the jth variable. For ex-
ample, controlling observation weights is required for the linear regression model with heteroscedastic
error variance. Further, we can compute adaptive versions of penalized estimators by giving different
penalty weights as in the adaptive LASSO (Zou, 2006).

Standardization

It is common practice to standardize variables prior to fitting the penalized models, but one may opt not
to. Hence, we provide the option x.standardize for flexible analysis. The option x.standardize=TRUE
means that the algorithm solves the original penalized problem in (1), with the standardized (scaled)
variables, and then the resulting solution β̂ j is converted to the original scale by β̂ j/sj, where sj =

∑n
i=1 x2

ij/n. When the penalty Jλ is the LASSO penalty, this procedure is equivalent to solving following
penalized problem

Qs
λ (β) = L (β) +

p

∑
j=1

λj|β j|,

where λj = λsj, which is another adaptive version of the LASSO being different from the adaptive
LASSO (Zou, 2006).

Initial value

We introduced the warm start strategy for speed up the algorithm, but the solution path, in fact,
depends on the initial solution of the CCCP algorithm because of the non-convexity. The option
local=TRUE in ncpen provides the same initial value specified by the option local.initial into each
CCCP iterations for whole λ values. The use of the option local=TRUE makes the algorithm slower
but the performance of the resulting estimator would be often improved as provided a good initial
such as the maximum likelihood estimator or LASSO.

Numerical illustrations

Elapsed times

We consider the linear and logistic regression models to calculate the total elapsed time for constructing
the solution path over 100 λ values:

y = xT β + ε and P (y = 1|x) = exp(xT β)

1 + exp(xT β)
(11)

where x ∼ Np (0, Σ) with Σjk = 0.5|j−k|, β j = 1/j for j, k = 1, · · · , p and ε ∼ N (0, 1). The averaged
elapsed times of ncpen in 100 random repetitions are summarized in Table 1 and 2 for various n and
p, where the penalties are the SCAD, MCP, truncated `1 (TLP), moderately clipped LASSO (CLASSO),
sparse ridge (SR), modified bridge (MBR) and log (MLOG). For comparison, we try ncvreg for the
SCAD also. The results show that all methods in ncpen are feasible for high-dimensional data.

Standardization effect

We compare the solution paths based on the diabetes samples available from lars package (Efron et al.,
2004), where the sample size n = 442 and the number of covariates p = 64, including quadratic and
interaction terms. Figure 2 shows four plots where the top two panels draw the solution paths from
the LASSO and SCAD with τ = 3.7 given by ncvreg and bottom two panels draw those from the
SCAD with τ = 3.7 based on ncpen with and without standardization of covariates. Two solution
paths from ncvreg and ncpen with standardization are almost the same since ncvreg standardizes
the covariates by default, which is somewhat different from that of ncpen without standardization.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 126

Table 1: Elapsed times for constructing the entire solution path where p = 500 and various n

Model n ncvreg SCAD MCP TLP CLASSO SR MBR MLOG
Linear 200 0.0226 0.1277 0.1971 0.0333 0.0696 0.0618 0.0620 0.0476
regression 400 0.0329 0.1082 0.2031 0.0662 0.1041 0.1025 0.1160 0.0919

800 0.0347 0.1008 0.1867 0.0865 0.0993 0.1067 0.1425 0.1197
1600 0.0665 0.2035 0.3170 0.1717 0.1847 0.1983 0.2669 0.2301
3200 0.1394 0.4341 0.6173 0.3541 0.3962 0.4161 0.5505 0.4678
6400 0.2991 0.9853 1.2045 0.7955 0.8788 0.9066 1.2281 1.0148

Logistic 200 0.0565 0.0454 0.0400 0.0391 0.0148 0.0160 0.0379 0.0411
regression 400 0.0787 0.1113 0.0971 0.0747 0.0556 0.0608 0.0969 0.0808

800 0.0907 0.1570 0.1623 0.1198 0.0777 0.1015 0.1511 0.1298
1600 0.1682 0.2965 0.3007 0.2294 0.1640 0.2088 0.3002 0.2451
3200 0.3494 0.6480 0.6258 0.4655 0.3513 0.4423 0.6395 0.5305
6400 0.7310 1.4144 1.3711 1.0268 0.8389 1.0273 1.4445 1.1827

Table 2: Elapsed times for constructing the entire solution path where n = 500 and various p

Model p ncvreg SCAD MCP TLP CLASSO SR MBR MLOG
Linear 200 0.0150 0.0733 0.2201 0.0433 0.0629 0.0981 0.0909 0.0721
regression 400 0.0210 0.0664 0.1588 0.0532 0.0617 0.0678 0.0941 0.0813

800 0.0538 0.1650 0.2172 0.1107 0.1505 0.1457 0.1750 0.1383
1600 0.0945 0.2703 0.2946 0.1793 0.2253 0.2221 0.2672 0.2045
3200 0.1769 0.5071 0.5032 0.3379 0.3972 0.3986 0.4801 0.3684
6400 0.3439 1.0781 1.0228 0.7366 0.8001 0.8207 1.0210 0.7830

Logistic 200 0.0590 0.1065 0.1029 0.0750 0.0465 0.0696 0.0978 0.0804
regression 400 0.0568 0.1054 0.1044 0.0753 0.0453 0.0593 0.0941 0.0809

800 0.1076 0.1555 0.1349 0.1103 0.0873 0.0934 0.1423 0.1163
1600 0.1327 0.1944 0.1591 0.1419 0.1122 0.1151 0.1842 0.1460
3200 0.2073 0.3120 0.2529 0.2382 0.1885 0.1948 0.3055 0.2415
6400 0.3843 0.5893 0.4792 0.4646 0.3539 0.3576 0.5978 0.4677

Figure 3 shows the solution paths from six penalties with standardization by default in ncpen: the
MCP, truncated `1, modified log, bridge, moderately clipped LASSO and sparse ridge.

Ridge regularization effect

There are cases when we need to introduce the ridge penalty for some reasons, and ncpen provides a
hybrid version of the penalties: αJλ(|t|) + (1− α)|t|2, where α is the mixing parameter between the
penalty Jλ and ridge effects. For example, the non-convex penalties often produce parameters that
diverge to infinity for the logistic regression because of perfect fitting. Figure 4 shows the effects of
ridge penalty where the prostate tumor gene expression data in spls are used for illustration. The
solution paths using the top 50 variables with high variances are drawn when α ∈ {1, 0.7, 0.3, 0} for
the SCAD and modified bridge penalties. The solution paths without ridge effect (α = 1) tend to
diverge as λ decreases and become stabilized as the ridge effect increases (α ↓) (Lee and Breheny,
2015).

Initial based solution path

We introduced the warm start strategy for speed up the algorithm but the solution path, in fact,
depends on the initial solution because of the non-convexity. For comparison, we use the prostate
tumor gene expression data and the results are displayed in Figure 5 and Table 3. In the figure,
left panels show the solution paths for the SCAD, MCP and clipped LASSO obtained by the warm
start, and the right panels show those obtained by using the LASSO as a global initial for the CCCP
algorithm. Figure 5 shows two strategies for initial provide very different solution paths, which may
result in different performances of the estimators. We compare the prediction accuracy and selectivity
of the estimators by two strategies. The results are obtained by 300 random partitions of data set
divided into two parts, training (70%) and test (30%) datasets. For each training data, the optimal
tuning parameter values are selected by 10-fold cross-validation, and then we compute the prediction
error(the percentage of the misclassified samples) on each test dataset and the number of selected

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=spls

CONTRIBUTED RESEARCH ARTICLE 127

−3 −2 −1 0 1 2 3 4

−
80

0
−

40
0

0
40

0

LASSO (ncvreg, standardization)

log(λ)

−1 0 1 2 3 4

−
50

0
0

50
0

SCAD (ncvreg, standardization)

log(λ)

−1 0 1 2 3 4

−
50

0
0

50
0

SCAD (ncpen, standardization)

log(λ)

−5 −4 −3 −2 −1 0 1

−
10

00
−

50
0

0
50

0
10

00

SCAD (ncpen, no standardization)

log(λ)

Figure 2: Solution paths from the ncvreg and ncpen for the LASSO and SCAD.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 128

−1 0 1 2 3 4

−
50

0
0

50
0

MCP

log(λ)

−1 0 1 2 3 4

−
10

00
−

50
0

0
50

0
10

00

truncated L1 penalty

log(λ)

−1 0 1 2 3 4

−
50

0
0

50
0

clipped LASSO

log(λ)

−1 0 1 2 3 4

−
40

0
−

20
0

0
20

0
40

0
60

0

sparse ridge

log(λ)

−1 0 1 2 3 4

−
50

0
0

50
0

modified log

log(λ)

−1 0 1 2 3 4

−
60

0
−

20
0

0
20

0
40

0
60

0
80

0

modified bridge

log(λ)

Figure 3: Solution paths from ncpen with six non-convex penalties.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 129

−4.5 −3.5 −2.5 −1.5

−
20

0
−

10
0

0
10

0
20

0

α = 1

−7 −5 −3 −1

−
4

−
2

0
2

4

α = 0.7

−6 −4 −2 0

−
2

−
1

0
1

2
3

α = 0.3

−11 −9 −7 −5

−
4

−
2

0
2

4
6

8

α = 0

−5 −4 −3 −2 −1

−
20

0
−

10
0

0
50

10
0

15
0

α = 1

log(λ)

−7 −5 −3 −1

−
4

−
2

0
2

4

α = 0.7

log(λ)

−6 −4 −2 0

−
2

−
1

0
1

2
3

α = 0.3

log(λ)

−11 −9 −7 −5

−
4

−
2

0
2

4
6

8

α = 0

log(λ)

Figure 4: Solution path traces with ridge penalty. Top and bottom panels are drawn from the SCAD
and modified bridge penalties, respectively.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 130

nonzero variables on each training dataset. Table 3 shows all methods by the global initial perform
better than those by the warm start strategy. In summary, the nonconvex penalized estimation depends
on the initial solution, and the non-convex penalized estimator by a good initial would improve its
performance.

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0

−
2

−
1

0
1

2

SCAD (ncvreg, warm start)

log(λ)

−5 −4 −3 −2 −1

−
1

0
1

LASSO

log(λ)

−5 −4 −3 −2 −1

−
40

−
20

0
20

40
60

SCAD (warm start)

log(λ)

−5 −4 −3 −2 −1

−
20

−
10

0
10

20

SCAD (global initial)

log(λ)

−5 −4 −3 −2 −1

−
40

−
20

0
20

40
60

MCP (warm start)

log(λ)

−5 −4 −3 −2 −1

−
20

−
10

0
10

20

MCP (global initial)

log(λ)

Figure 5: Solution paths of the SCAD and MCP with warm start and global initial solution.

Table 3: Comparison of the warm start and global initial strategies for each method.

warm start global initial
Method prediction error # variables prediction error # variables
SCAD 9.44 (.2757) 1.19 (.0268) 9.30 (.3091) 7.02 (.3907)
MCP 9.38 (.2774) 1.14 (.0234) 8.84 (.2657) 7.41 (.3771)
TLP 9.44 (.2647) 1.18 (.0254) 7.47 (.2677) 19.01 (.1710)
CLASSO 9.12 (.2749) 4.65 (.1914) 8.20 (.2785) 8.14 (.1542)
SR 9.38 (.2875) 5.15 (.2290) 7.94 (.2677) 15.13 (.2283)
MBR 9.78 (.2621) 1.29 (.0352) 8.21 (.3004) 8.75 (.1712)
MLOG 9.51 (.2627) 1.16 (.0233) 7.66 (.2746) 15.21 (.1816)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 131

Concluding remarks

We have developed the R package ncpen for estimating generalized linear models with various concave
penalties. The unified algorithm implemented in ncpen is flexible and efficient. The package also
provides various user-friendly functions and user-specific options for different penalized estimators.
The package is currently available with a general public license (GPL) from the Comprehensive R
Archive Network at https://CRAN.R-project.org/package=ncpen. Our ncpen package implements
internal optimization algorithms implemented in C++ benefiting from Rcpp package (Eddelbuettel
et al., 2011).

Acknowledgements

This research is supported by the Julian Virtue Professorship 2016-18 Endowment at the Pepperdine
Graziadio Business School at Pepperdine University, and the National Research Foundation of Korea
(NRF) funded by the Korea government (No. 2020R1I1A3071646 and 2020R1F1A1A01071036).

Bibliography

P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression, with
applications to biological feature selection. Annals of Applied Statistics, 5(1):232, 2011. URL https:
//doi.org/10.1214/10-AOAS388. [p120]

D. Eddelbuettel, R. François, J. Allaire, K. Ushey, Q. Kou, N. Russel, J. Chambers, and D. Bates.
Rcpp: Seamless r and c++ integration. Journal of Statistical Software, 40(8):1–18, 2011. URL https:
//doi.org/10.18637/jss.v040.i08. [p131]

B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al. Least angle regression. Annals of Statistics, 32(2):
407–499, 2004. URL https://www.jstor.org/stable/3448465. [p120, 125]

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association, 96(456):1348–1360, 2001. URL https://doi.org/10.
1198/016214501753382273. [p120, 121]

Y. Fan and C. Y. Tang. Tuning parameter selection in high dimensional penalized likelihood. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 75(3):531–552, 2013. URL https:
//doi.org/10.1111/rssb.12001. [p124]

J. Friedman. Fast sparse regression and classification. International Journal of Forecasting, 28(3):722–738,
2012. URL https://doi.org/10.1016/j.ijforecast.2012.05.001. [p120]

J. Friedman, T. Hastie, H. Höfling, R. Tibshirani, et al. Pathwise coordinate optimization. Annals of
Applied Statistics, 1(2):302–332, 2007. URL https://doi.org/10.1214/07-AOAS131. [p120, 123]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1, 2010. URL https://doi.org/10.18637/
JSS.V033.I01. [p124]

J. Huang, J. L. Horowitz, and S. Ma. Asymptotic properties of bridge estimators in sparse high-
dimensional regression models. Annals of Statistics, pages 587–613, 2008. URL https://doi.org/10.
1214/009053607000000875. [p120, 121]

J. Huang, P. Breheny, S. Lee, S. Ma, and C. Zhang. The mnet method for variable selection. Statistica
Sinica, 10, 2016a. URL https://doi.org/10.5705/ss.202014.0011. [p120, 124]

J. Huang, P. Breheny, S. Lee, S. Ma, and C.-H. Zhang. The mnet method for variable selection. Statistica
Sinica, pages 903–923, 2016b. [p120]

D. Jiang and J. Huang. Majorization minimization by coordinate descent for concave penalized
generalized linear models. Statistics and Computing, 24(5):871–883, 2014. URL https://doi.org/10.
1007/s11222-013-9407-3. [p120]

Y. Kim and S. Kwon. Global optimality of nonconvex penalized estimators. Biometrika, 99(2):315–325,
2012. URL https://doi.org/10.1093/biomet/asr084. [p120]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ncpen
https://CRAN.R-project.org/package=Rcpp
https://doi.org/10.1214/10-AOAS388
https://doi.org/10.1214/10-AOAS388
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.18637/jss.v040.i08
https://www.jstor.org/stable/3448465
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1111/rssb.12001
https://doi.org/10.1111/rssb.12001
https://doi.org/10.1016/j.ijforecast.2012.05.001
https://doi.org/10.1214/07-AOAS131
https://doi.org/10.18637/JSS.V033.I01
https://doi.org/10.18637/JSS.V033.I01
https://doi.org/10.1214/009053607000000875
https://doi.org/10.1214/009053607000000875
https://doi.org/10.5705/ss.202014.0011
https://doi.org/10.1007/s11222-013-9407-3
https://doi.org/10.1007/s11222-013-9407-3
https://doi.org/10.1093/biomet/asr084

CONTRIBUTED RESEARCH ARTICLE 132

Y. Kim, H. Choi, and H.-S. Oh. Smoothly clipped absolute deviation on high dimensions. Journal
of the American Statistical Association, 103(484):1665–1673, 2008. URL https://doi.org/10.1198/
016214508000001066. [p120]

S. Kwon and Y. Kim. Large sample properties of the scad-penalized maximum likelihood estimation
on high dimensions. Statistica Sinica, pages 629–653, 2012. URL https://doi.org/10.5705/ss.
2010.027. [p120]

S. Kwon, Y. Kim, and H. Choi. Sparse bridge estimation with a diverging number of parameters.
Statistics and Its Interface, 6(2):231–242, 2013. URL https://doi.org/10.4310/SII.2013.V6.N2.A7.
[p120, 121]

S. Kwon, S. Lee, and Y. Kim. Moderately clipped lasso. Computational Statistics & Data Analysis, 92:
53–67, 2015. URL https://doi.org/10.1016/j.csda.2015.07.001. [p120, 121]

S. Lee. A note on standardization in penalized regressions. Journal of the Korean Data and Information
Science Society, 26(2):505–516, 2015. URL https://doi.org/10.7465/jkdi.2015.26.2.505. [p120]

S. Lee and P. Breheny. Strong rules for nonconvex penalties and their implications for efficient
algorithms in high-dimensional regression. Journal of Computational and Graphical Statistics, 24(4):
1074–1091, 2015. URL https://doi.org/10.1080/10618600.2014.975231. [p124, 126]

S. Lee, S. Kwon, and Y. Kim. A modified local quadratic approximation algorithm for penalized
optimization problems. Computational Statistics & Data Analysis, 94:275–286, 2016. URL https:
//doi.org/10.1016/j.csda.2015.08.019. [p120, 121, 123]

R. Mazumder, J. H. Friedman, and T. Hastie. Sparsenet: Coordinate descent with nonconvex penalties.
Journal of the American Statistical Association, 106(495):1125–1138, 2011. URL https://doi.org/10.
1198/jasa.2011.tm09738. [p120]

M. Y. Park and T. Hastie. L1-regularization path algorithm for generalized linear models. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):659–677, 2007. URL https:
//doi.org/10.1111/j.1467-9868.2007.00607.x. [p120]

X. Shen, W. Pan, and Y. Zhu. Likelihood-based selection and sharp parameter estimation. Journal of the
American Statistical Association, 107(497):223–232, 2012. URL https://doi.org/10.1080/01621459.
2011.645783. [p120]

X. Shen, W. Pan, Y. Zhu, and H. Zhou. On constrained and regularized high-dimensional regression.
Annals of the Institute of Statistical Mathematics, 65(5):807–832, 2013. URL https://doi.org/10.1007/
s10463-012-0396-3. [p120, 121]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B (Statistical Methodology), pages 267–288, 1996. URL https://doi.org/10.1111/j.2517-
6161.1996.tb02080.x. [p120]

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal
of optimization theory and applications, 109(3):475–494, 2001. URL https://doi.org/10.1023/A:
1017501703105. [p120]

H. Wang, R. Li, and C.-L. Tsai. Tuning parameter selectors for the smoothly clipped absolute deviation
method. Biometrika, 94(3):553–568, 2007. URL https://doi.org/10.1093/biomet/asm053. [p124]

H. Wang, B. Li, and C. Leng. Shrinkage tuning parameter selection with a diverging number of
parameters. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):671–683,
2009. URL https://doi.org/10.1111/j.1467-9868.2008.00693.x. [p124]

L. Wang, Y. Kim, and R. Li. Calibrating non-convex penalized regression in ultra-high dimension.
Annals of Statistics, 41(5):2505, 2013. URL https://doi.org/10.1214/13-AOS1159. [p124]

A. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:915–936, 2003.
URL https://doi.org/10.1162/08997660360581958. [p121, 122]

C. Zhang. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat., 38(2):
894–942, 2010. URL https://doi.org/10.1214/09-AOS729. [p120, 121]

C.-H. Zhang and T. Zhang. A general theory of concave regularization for high-dimensional sparse
estimation problems. Statistical Science, pages 576–593, 2012. URL https://doi.org/10.1214/12-
STS399. [p120]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1198/016214508000001066
https://doi.org/10.1198/016214508000001066
https://doi.org/10.5705/ss.2010.027
https://doi.org/10.5705/ss.2010.027
https://doi.org/10.4310/SII.2013.V6.N2.A7
https://doi.org/10.1016/j.csda.2015.07.001
https://doi.org/10.7465/jkdi.2015.26.2.505
https://doi.org/10.1080/10618600.2014.975231
https://doi.org/10.1016/j.csda.2015.08.019
https://doi.org/10.1016/j.csda.2015.08.019
https://doi.org/10.1198/jasa.2011.tm09738
https://doi.org/10.1198/jasa.2011.tm09738
https://doi.org/10.1111/j.1467-9868.2007.00607.x
https://doi.org/10.1111/j.1467-9868.2007.00607.x
https://doi.org/10.1080/01621459.2011.645783
https://doi.org/10.1080/01621459.2011.645783
https://doi.org/10.1007/s10463-012-0396-3
https://doi.org/10.1007/s10463-012-0396-3
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1023/A:1017501703105
https://doi.org/10.1023/A:1017501703105
https://doi.org/10.1093/biomet/asm053
https://doi.org/10.1111/j.1467-9868.2008.00693.x
https://doi.org/10.1214/13-AOS1159
https://doi.org/10.1162/08997660360581958
https://doi.org/10.1214/09-AOS729
https://doi.org/10.1214/12-STS399
https://doi.org/10.1214/12-STS399

CONTRIBUTED RESEARCH ARTICLE 133

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101
(476):1418–1429, 2006. URL https://doi.org/10.1198/016214506000000735. [p125]

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005. URL https://doi.org/10.
1111/j.1467-9868.2005.00503.x. [p120, 121, 124]

H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models. Annals of
Statistics, 36(4):1509, 2008. URL https://doi.org/10.1214/009053607000000802. [p120]

Dongshin Kim
Pepperdine Graziadio Business School
Pepperdine University
United States of America
dongshin.kim@pepperdine.edu

Sangin Lee
Department of Information and Statistics
Chungnam National University
Korea
sanginlee44@gmail.com

Sunghoon Kwon
Department of Applied Statistics
Konkuk University
Korea
shkwon0522@gmail.com

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1198/016214506000000735
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1214/009053607000000802
mailto:dongshin.kim@pepperdine.edu
mailto:sanginlee44@gmail.com
mailto:shkwon0522@gmail.com

CONTRIBUTED RESEARCH ARTICLE 134

TULIP: A Toolbox for Linear
Discriminant Analysis with Penalties
by Yuqing Pan, Qing Mai and Xin Zhang

Abstract Linear discriminant analysis (LDA) is a powerful tool in building classifiers with easy
computation and interpretation. Recent advancements in science technology have led to the popularity
of datasets with high dimensions, high orders and complicated structure. Such datasetes motivate the
generalization of LDA in various research directions. The R package TULIP integrates several popular
high-dimensional LDA-based methods and provides a comprehensive and user-friendly toolbox for
linear, semi-parametric and tensor-variate classification. Functions are included for model fitting, cross
validation and prediction. In addition, motivated by datasets with diverse sources of predictors, we
further include functions for covariate adjustment. Our package is carefully tailored for low storage
and high computation efficiency. Moreover, our package is the first R package for many of these
methods, providing great convenience to researchers in this area.

Introduction

Linear discriminant analysis (LDA) is one of the most popular classification method and a cornerstone
for multivariate statistics (Michie et al., 1994, e.g). Classical LDA builds a linear classifier based on
p-dimensional multivariate predictor X ∈ Rp to distinguish K classes and to predict the class label
Y ∈ {1, . . . , K}. Despite its simplicity, LDA is shown to be very accurate on many benchmark datasets
(Lim et al., 2000; Dettling, 2004; Hand, 2006). Moreover, LDA is easily interpretable and is thus often
used as a visualizing tool for exploratory data analysis.

In recent decades, the advancements in science and technology have enabled researchers to collect
datasets with increasing sizes and complexity. Such datasets pose challenges to LDA. Four challenges
that we tackle with this package are as follows. First, in research areas such as biology, genomics and
psychology, we often have more predictors than samples. However, LDA is not applicable on these
high-dimensional data, because sample covariance matrix becomes not invertible when the number of
predictors exceeds the sample size.

Secondly, when we have a large number of predictors, variable selection is often desired such that
we can obtain a sparse classifier involving only a small proportion of the variables. On one hand, Fan
and Fan (2008); Bickel and Levina (2008) showed in theory that variable selection is critical for accurate
classification. On the other hand, sparse classifiers much easier to interpret in practice. However, LDA
generally does not perform variable selection.

Thirdly, contemporary datasets often have complicated structure that renders the linear classifier in
LDA inadequate. For example, in the presence of thousands of predictors, it may be inappropriate them
to model all of them with the normal distribution. Moreover, research in neuroimaging, computational
biology and personalized recommendation produces data in the form of matrices (2-way tensor) or
tensors. The analysis of tensor datasets requires considerable modification to the vector-based LDA
model.

Last but not least, integrative analysis with multiple data sources are drawing researchers’ at-
tention recently. Co-existence of diverse data types, such as vector, matrix and tensor calls for more
sophisticated models to integrate the information from them to improve classification accuracy. It is
critical to model the dependence among different types of data to reduce the noise level in the data
and improve prediction accuracy (Pan et al., 2019).

Motivated by these challenges, many methods have been proposed to generalize LDA to datasets
with high dimensions, non-normality and/or higher order predictors. In this package, we implement
six methods that generalize LDA to contemporary complicated datasets. All of them are developed
under models closely related to the LDA model, and penalties are imposed to achieve classification
accuracy and variable selection in high dimensions. These methods include:

1. Direct sparse discriminant analysis (DSDA): DSDA generalizes the classical LDA model to high
dimensions when there are only two classes (Mai et al., 2012). It formulates high-dimensional
LDA into a penalized least squares problem.

2. Regularized optimal affine discriminant (ROAD): under the same model as DSDA, ROAD fits a
sparse classifier by minimizing the classification error under the `1 constraint (Fan et al., 2012).

3. Sparse optimal scoring (SOS) for binary problems: SOS is also developed under the LDA model
(Clemmensen et al., 2011). It penalizes the optimal scoring problem (Hastie et al., 1994). We
focus on its application in binary problems.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 135

DSDA SOS ROAD SeSDA MSDA CATCH

Classes Binary Binary Binary Binary Multi-class Multi-class
Data type Vector Vector Vector Vector Vector Tensor
Model LDA LDA LDA SeLDA LDA TDA/CATCH
Covariate adjustment Yes No No No Yes Yes

Table 1: Comparison of model settings between models. SOS was originally proposed to deal with
both binary and multiclass problems, but we focus on binary problems in the package. Model
SeLDA stands for Semi-parametric linear discriminant analysis, which is introduced in Section 2.2.4.
Model TDA/CATCH represents tensor discriminant analysis and covariate-adjusted tensor in high-
dimensions, which are illustrated in Section 2.2.5 and 2.3.6.

4. Semiparametric sparse discriminant analysis (SeSDA): SeSDA assumes a semiparametric model
where data transformation can be applied to alleviate the non-normality. In practice, SeSDA
finds the data-driven transformation and then performs model-fitting on the transformed data
(Mai and Zou, 2015).

5. Multiclass sparse discriminant analysis (MSDA): Instead of focusing on binary problems, MSDA
considers the multiclass LDA model (Mai et al., 2015). It takes note of the fact that the Bayes’
rule can be estimated with minimizing a quadratic loss. To account for the multiclass structure,
a group lasso penalty (Yuan and Lin, 2006) is applied to achieve variable selection.

6. Covariate-adjusted tensor classification in high-dimensions (CATCH): CATCH (Pan et al., 2019)
is developed for tensor predictors. It takes advantage of the tensor structure to significantly
reduce the number of parameters and hence alleviate computation complexity.

See Table 1 for a comparison of these methods. Despite their different model assumptions and
formulas, all of them have strong theoretical support and excellent empirical performance. We further
note that they can be combined with covariate adjustment when multiple data sources are available.
Our package TULIP (Pan et al., 2021) integrates diverse discriminant analysis models and supportive
functions to make it a convenient and well-equipped toolbox. It has several notable advantages. First,
we not only include functions for model fitting, but also cross validation functions for easy control of
the sparsity level, and prediction functions for the prediction of future observations. In addition, we
provide covariate adjustment functions that efficiently remove heterogeneity in the predictors and
combine information from covariates. Second, our package greatly facilitates the application of DSDA,
ROAD and SeSDA for R users, as they do not have public R packages on CRAN outside ours. Third,
although MSDA and SOS have been implemented in packages msda (Mai et al., 2015) and sparseLDA
(Clemmensen and Kuhn, 2016), we carefully modify their algorithms in our implementation to lower
storage cost and/or speed up computation.

We acknowledge that many other efforts have been spent on topics closely related to that of our
paper. On one hand, by now a large number of high-dimensional discriminant analysis methods
have been developed. Some excellent examples include Fan and Fan (2008); Tibshirani et al. (2002);
Trendafilov and Jolliffe (2007); Fan et al. (2012); Wu et al. (2009); Cai et al. (2011); Shao et al. (2011);
Clemmensen et al. (2011); Witten and Tibshirani (2011); Xu et al. (2015); Niu et al. (2015). On the other
hand, in the literature, many works study matrix/tensor regression and classification methods. Many
of them impose low rank assumption (Zhou et al., 2013; Kolda and Bader, 2009; Chi and Kolda, 2012;
Liu et al., 2017; Li and Schonfeld, 2014; Lai et al., 2013; Zhong and Suslick, 2015; Zeng et al., 2015). All
these methods have been reported to have great performance, but a comprehensive study of them is
apparently out of the scope of our current paper.

The rest of this paper is organized as follows. We start with a brief overview of discriminant analy-
sis models in Section 2.2. Model estimation and implementation details are discussed in Section 2.3.
Section 2.4 contains instructions and examples on the usage of the package. A real data example is
given in Section 2.5 to confirm the numerical performance of methods in the package.

Discriminant analysis models and Bayes rules

Bayes rule for classification

Recall that Y ∈ {1, . . . , K} is the categorical response (class indicator), and we use the generic X
to denote the predictor and (potential) additional covariate. Specifically, X = X ∈ Rp in classical
multivariate discriminant analysis; X = X ∈ Rp1×···×pM in tensor discriminant analysis; and X =
(X, U) in covariate-adjusted classification settings, where U ∈ Rq is additional covariates and X can

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=TULIP
https://CRAN.R-project.org/package=msda
https://CRAN.R-project.org/package=sparseLDA

CONTRIBUTED RESEARCH ARTICLE 136

be either vector or tensor. Our goal is to construct the optimal classifier to distinguish and predict Y
based on X under various settings. Denote πk = Pr(Y = k) and fk as the conditional distribution of
X within Class k (e.g. fk(X) = f (X, U | Y = k) is the joint distribution of X and U given Y = k, in
presence of U). The optimal classifier, often referred to as the Bayes rule, is thus

δ(X) = arg max
k
{log πk + log fk(X)}. (1)

The Bayes rule achieves the lowest classification error possible (Friedman et al., 2001). Therefore, it
is our ultimate goal to estimate the Bayes rule. However, additional model assumptions are often
needed for fk to ensure statistical and computational efficiency. Consider the classical LDA setting of
X ∈ Rp and Y ∈ {1, . . . , K}. To gain intuition, we often assume that within each class, the predictor
follows a normal distribution with different means and a common covariance matrix. Then the Bayes
rule is a linear function of X and can be straightforwardly estimated.

In the rest of this section, we discuss various statistical models that have been widely studied in
the literature, along with the Bayes rules under these assumptions. Specifically, we review the classical
LDA model, the semiparametric LDA model, and the tensor discriminant analysis model. We also
discuss a general framework for covariate adjustment.

The linear discriminant analysis model (LDA)

Given a multivariate predictor X ∈ Rp and Y ∈ {1, . . . , K}, the LDA model assumes that X is normally
distributed within each class, i.e,

X | (Y = k) ∼ N(µk, Σ), Pr(Y = k) = πk, k = 1, . . . , K, (2)

where µk ∈ Rp is the mean of X within class k, and Σ ∈ Rp×p is the common within class covariance
matrix.

Define βk = Σ−1(µk − µ1) for k = 1, · · · , K. The Bayes’ rule turns out to be a linear function:

Ŷ = arg max
k

Pr(Y = k | X) = arg max
k=1,...,K

{log πk + βT
k (X− µk/2)}. (3)

The LDA model is simple yet elegant. All the parameters in this model have natural interpretations,
while the Bayes rule has a nice linear form. An interesting fact about the Bayes rule in (3) is that it does
not explicitly involve the p2-dimensional parameter Σ−1. Instead, Σ−1 is only implicitly included in
the discriminant directions βk. Moreover, it can be shown that the Bayes rule is equivalent to first
reducing data to XT β2, . . . XT βK and then fitting the LDA model on the (K− 1)-dimensional space.
Therefore, to estimate the Bayes rule in high dimensions, our interest centers on the estimation of
βk. We assume that βk’s are sparse with many elements being zero. Enforcement of this sparsity
assumption will facilitate our estimation and naturally lead to variable selection.

Although the Bayes rule is derived under the somewhat restrictive normality and equal covariance
assumptions, the discriminant directions βk are still meaningful when data are non-normal, thanks
to their geometric properties. It can be shown that, if we project X to βk, k = 1, . . . , K, the separation
between classes is maximized over all possible sets of K− 1 linear projections. Consequently, the LDA
model is reasonably resistant to model misspecification. However, in some of the cases where the LDA
model assumptions are severely violated, one can resort to more flexible models. For example, the
quadratic discriminant analysis model (Jiang et al., 2015; Fan et al., 2015; Li and Shao, 2015; Sun and
Zhao, 2015) relaxes the equal covariance assumption, while severely non-normal data can be modeled
by the semiparametric model to be discussed in Section 2.2.4.

Covariates adjustment

In many real-life problems, we have additional covariates along with the predictors. The covariates
play two roles in the classification: it has predictive power on it own, and it also accounts part of the
variation in the predictors. For example, in genomics studies, we record not only gene expression
levels but also age and clinical measurements. In this case, we may view the gene expression levels as
the high-dimensional predictor, and the age and clinical measurements as the covariates. We consider
an LDA-type model to incorporate the covariates. In addition to the response Y and the predictor X,
we denote the covariates as U ∈ Rq. We assume that

U | (Y = k) ∼ N(φk, Ψ), (4)

X | (U = u, Y = k) ∼ N(µk + αu, Σ), (5)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 137

U

Covariates

X

Predictors

Y

Class label

α

Analogous to
regressi

on β
2 , · · · , β

K

LDA model

γ2, · · · , γK

LDA model

Figure 1: Graphical illustration of the direct and indirect effects. The direct effect of covariate U on Y
follows classical discriminant analysis model measured by {γ2, . . . , γK}. Meanwhile, U also affects
class label through affecting X. Therefore we have Ŷ = f (X, U).

where φk ∈ Rq is the within-class mean, Ψ ∈ Rq×q, Ψ > 0 is the common within class covariance
matrix of covariates, and α ∈ Rp×q is the dependence of X on U. We refer to this model as the
covariate-adjusted LDA (CA-LDA) model. The CA-LDA model is conceptually similar to the CATCH
model (Pan et al., 2019) for tensor, which is to be introduced in Section 2.2.5, but the CA-LDA model
focuses on vector predictor X rather than tensor predictor.

Obviously, the CA-LDA model reduces to the LDA model in the absence of covariates. With the
covariates, the CA-LDA model continues to have natural interpretations. Equation (4) indicates that
(U, Y) marginally follow the LDA model. Equation (5) implies that the distribution of X not only
depends on Y, but also U through mean dependence. Therefore, within each class, X is linked to U
through a linear regression model, while, after we adjust for U, (X, Y) follow the LDA model as well.
See Figure 1 for a graphical illustration of the relationship among X, U and Y.

Under the CA-LDA model, the Bayes’ rule is

Ŷ = arg max
k=1,...K

{
ak + γT

k U + βT
k (X− αU)

}
(6)

where γk = Ψ−1(φk − φ1), βk = Σ−1(µk − µ1) and ak = log(πk/π1)− 1
2 γT

k (φk + φ1)− 1
2 βT

k (µk +
µ1)) is a scalar that does not involve X or U. Throughout this paper, we assume that U is low-
dimensional and does not need variable selection, but X is high-dimensional. In the presence of
covariates, X needs to be first adjusted to X− αU before entering the Bayes rule. Similar to the LDA
model, we assume that the coefficient of X− αU, βk, is sparse.

The semiparametric LDA model

Although LDA is reasonably resistant to model misspecification, we may still need more flexible
models when data are heavily non-normal. The semiparametric linear discriminant analysis (SeLDA)
model (Lin and Jeon, 2003) is proposed for this purpose. SeLDA assumes that there exists a set of
strictly monotone univariate transformations h1, . . . , hp such that

(h1(X1), · · · , hp(Xp)) | (Y = k) ∼ N(µk, Σ). (7)

For identifiability, we further assume that all the diagonal elements in Σ are 1, and all elements
in µ1 are 0. We also use the shorthand notation h(X) = (h1(X1), · · · , hp(Xp)). The transformation h
is assumed to be unknown and needs to be estimated from data. The SeLDA model assumes that
the LDA model is true up to an unknown transformation. It has the same spirit as the well-known
Box-Cox transformation, with which model assumptions are relaxed by proper data mapping.

It is easy to see that the LDA model is a special case of the SeLDA model, if we restrict h(X) = X.
However, in the SeLDA model, we do not impose any parametric assumptions on h, which leads to
great flexibility in practice. We further review a formula for hj that will facilitate its estimation. It can
be shown that

hj = Φ−1 ◦ F1j = Φ−1 ◦ Fkj + µkj, (8)

where Φ is the cumulative distribution function (CDF) of the standard normal random variable, and

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 138

Fkj is the CDF of Xj within Class k. Equation (8) will be used in Section 2.3.4. The SeLDA model also
amounts to assuming that the data follow the Gaussian copula model within each class (Klaassen and
Wellner, 1997; Hoff et al., 2014; Liu et al., 2009).

Although the SeLDA model requires much weaker conditions than the LDA model, it preserves
many of the desirable properties. One of them is that the Bayes rule continues to be a linear function
of the transformed data h(X):

Ŷ = arg max
k=1,...,K

{log πk + βT
k (h(X)− µk/2)}. (9)

Consequently, just as in the LDA model, when the dimension is high, we assume that βk is sparse
to allow accurate estimation.

Tensor discriminant analysis (TDA) and covariate adjustment

The tensor discriminant analysis (TDA) model is proposed for classification based on tensor predictors.
We first briefly introduce some standard tensor notation (Kolda and Bader, 2009). See Appendenx A
for more rigorous definitions. An M-way tensor is denoted by a multidimensional array A ∈ Rp1×···×pM

where M ≥ 2, p1, . . . , pM are all positive integers. We often need to multiply an M-way tensor C by M
matrices along each mode Gi, i = 1, . . . , M, denoted by JC; G1, . . . , GMK. For example, in Figure 2 we
obtain A = JC; G1, . . . , G3K by multiplying a 3-way tensor C with matrices Gi along each mode. If
Gi, i 6= m are identity matrices and Gm is a vector, then we write C×̄mGm = JC; I, . . . , Gm, . . . , IK.

Further, we say a tensor X ∈ Rp1×···×pM follows the tensor normal distribution TN(µ, Σ1, . . . , ΣM)
if it can be written as

X = µ + JZ; Σ1/2
1 , . . . , Σ1/2

M K,

where Z ∈ Rp1×···×pM has elements all independently standard normal, µ ∈ Rp1×···×pM is the mean
tensor, and Σm ∈ Rpm×pm are covariance matrices. See Figure 3 for an illustration.

A = C
1G

3G

 1 1 2 2 3 3 1 2 3; , ,A C G G G C G G G= × × × =

2
G

Figure 2: Tucker decomposition of tensor A.

= +
1/2
1Σ

1/2
2Σ

1/2
3Σ

X µ

1 2 3(, , ,)X TN µ Σ Σ Σ

Z

Figure 3: Tensor normal distribution.

Now we discuss the tensor discriminant analysis (TDA) model. Consider the M-way tensor
predictor X ∈ Rp1×···×pM where M ≥ 2 and class label Y ∈ {1, . . . , K}. The TDA model assumes that

X | (Y = k) ∼ TN(µk, Σ1, . . . , ΣM), Pr(Y = k) = πk (10)

where µk ∈ Rp1×···pM , Σm ∈ Rpm×pm is the within-class mean, Σm > 0 is the common within-class
covariance matrix along the m-th mode of the tensor, and 0 < πk < 1 is the prior probability for Class
k. Compared to the LDA model, TDA utilizes the tensor normal distribution to model X within each
class. By taking advantage of the tensor structure, TDA drastically reduces the number of unknown
parameters (Pan et al., 2019). It can be seen that the TDA model requires O(∑M

m=1 p2
m) parameters to

model the dependence among X. However, if we ignore the tensor structure and assume the LDA
model on the vectorized version of X, the covariance matrix has O(∏M

m=1 p2
m) parameters.

Under the TDA model, the Bayes’ rule is

Ŷ = arg max
k=1,...K

{ak + 〈Bk, X〉} (11)

where Bk = Jµk − µ1; Σ−1
1 , . . . , Σ−1

M K, and ak = log(πk/π1)− 〈Bk, 1
2 (µk + µ1)〉 is a scalar that does not

involve X. It can be seen that the Bayes rule is again a linear function in X, with the linear coefficients
Bk. In high dimensions, we again impose the sparsity assumption by assuming that many elements in
Bk are zeros.

Similar to the vector case, when additional covariates are provided, the TDA model can be
combined with covariate adjustment. Pan et al. (2019) proposed the CATCH model for this purpose.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 139

In addition to (Y, X), we are given the covariates U ∈ Rq. The CATCH model assumes that

U | (Y = k) ∼ N(φk, Ψ), (12)

X | (U = u, Y = k) ∼ TN(µk + α×̄(M+1)u, Σ1, . . . , ΣM). (13)

where φk ∈ Rq is the within-class mean of U, Ψ ∈ Rq×q is the within-class covariance of U, and
α ∈ Rp1×···×pM×q characterizes the dependence of X on U. The parameters in the CATCH model can
be interpreted in the same way as the CA-LDA model in Section 2.2.3.

The Bayes’ rule under the CATCH model is

Ŷ = arg max
k=1,...K

{
ak + γT

k U + 〈Bk, X− α×̄(M+1)U〉
}

, (14)

where γk = Ψ−1(φk −φ1), and ak = log(πk/π1)− 1
2 γT

k (φk + φ1)− 〈Bk, 1
2 (µk + µ1)〉 is a scalar that

does not involve X or U. Similar to the TDA model, we assume that Bk is sparse in high dimensions,
but impose no further sparsity assumptions on other parameters.

Methods

In this section, we formally introduce the six methods implemented by the package: DSDA, ROAD,
SOS, SeSDA, MSDA and CATCH. Throughout the rest of this paper, we denote Σ̂ as the pooled sample
covariance, µ̂k as the within-class sample mean, n as the sample size, and nk as the sample size in class
k. All the methods involve a tuning parameter λ > 0 that controls the amount of sparsity. Hence,
when we refer to an estimate β̂, it should be understood as β̂(λ), although we suppress λ in most
estimates for presentation convenience. We will discuss the tuning parameter in detail in Section 2.3.8.

Direct sparse discriminant analysis (DSDA)

The direct sparse discriminant analysis (DSDA) is proposed for binary classification under the LDA
model in (2). Recall that our main interest is in estimating the coefficients βk in the Bayes rule (3).
Because DSDA assumes that there are only two classes, it suffices to estimate β = Σ−1(µ2 − µ1). In
high dimensions, we assume that β is sparse. Let yi = − n1

n if Yi = 1 and yi =
n
n2

if Yi = 2. DSDA first
solves the penalized least squares problem

(β̂
DSDA

, β̂DSDA
0) = arg min

β∈Rp ,β0∈R

n−1
n

∑
i=1

(yi − β0 − XT
i β)2 + λ

p

∑
j=1
|β j|

 , (15)

where λ > 0 is the tuning parameter, ∑
p
j=1|β j| is the LASSO penalty (Tibshirani, 1996), and β̂

DSDA
is

our estimate for β. Because of the LASSO penalty, β̂
DSDA

is typically sparse. To estimate the Bayes

rule, we further estimate the LDA model on the reduced data {Yi, XT
i β̂

DSDA}n
i=1.

Numerical and theoretical studies show that DSDA consistently estimate the Bayes rule under
mild conditions. Also, DSDA can be computed very efficiently, as (15) is a heavily-studied `1 penalized
least squares problem. Our implementation utilizes glmnet to solve (15).

Regularized optimal affine discriminant (ROAD)

Regularized optimal affine discriminant (ROAD, Fan et al. (2012)) is another binary penalized discrim-
inant analysis method for high-dimensional data. ROAD estimates β by

β̂
ROAD

= arg min βTΣ̂β (16)

‖β‖1 ≤ c, βT(µ̂2 − µ̂1)/2 = 1. (17)

We remark that Wu et al. (2009) independently proposed the `1-Fisher’s discriminant analysis method
that closely resembles ROAD, but the developments of ROAD and the `1-Fisher’s discriminant analysis
have different emphasis. ROAD clarifies several theoretical aspects of high-dimensional classification,
while `1-Fisher’s discriminant analysis is developed for simultaneous testing for gene pathways. For
simplicity, we focus on ROAD in what follows.

In its optimization, the constraint of `1-norm can be recast as a `1-penalty with parameter λ. ROAD

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 140

rewrites (16) as

β̂
ROAD

= arg min
βT(µ̂2−µ̂1)/2=1

βTΣ̂β + λ‖β‖1 (18)

The authors of ROAD proposed to solve (18) by replacing the nonconvex constraint with a
quadratic penalty. However, we adopt a different approach to solve (18). It is showed in Mai and Zou
(2013) that the solution paths of DSDA and ROAD are equivalent. In other words, for any λ > 0, there

exists λ̃ > 0 such that β̂
DSDA

(λ) ∝ β̂
ROAD

(λ̃). Because DSDA produces a solution path much faster
than the original proposal of ROAD, we solve ROAD by first finding the solution path of DSDA for a
range of λ, and then find each corresponding λ̃ to recover the solution path of ROAD.

Sparse optimal scoring (SOS) in binary problems

We also implement the successful discriminant analysis method, sparse optimal scoring (SOS, Clem-
mensen et al. (2011)). We focus on binary problems, where we are able to greatly improve the
computation speed. For multiclass problems, SOS can be solved by the R package sparseLDA.

In binary problems, SOS creates a dummy variable Ydm ∈ Rn×2 as a surrogate for the categorical
response Y, where Ydm

ik = 1{Yi = k}. Then SOS estimates coefficient by solving

β̂
SOS

= arg min
θ∈R2,β∈Rp

{‖Ydmθ− X̃β‖2 + λ‖β‖1},

s.t 1
n θTYdmT

Ydmθ = 1, θTYdmT
Ydm1 = 0, (19)

where X̃ is the centered X, and θ ∈ R2 is the score for the two classes. SOS is a popular penalized
discriminant analysis method because of its impressive empirical performance. It can be solved by
iteratively minimizing the objective function in (19) over θ and β.

However, we take another approach to solve SOS with lower computation cost. Mai and Zou

(2013) showed that β̂
SOS

is closely related to the DSDA estimator defined in (15). Let π̂y =
ny
n . We

have that
β̂

SOS
(λ) =

√
π̂1π̂2 β̂

DSDA
(

λ√
π̂1π̂2

). (20)

Therefore, to solve for β̂
SOS

(λ), we first find β̂
DSDA

(
λ√

π̂1π̂2
) with DSDA, and rescale it to obtain

the SOS solution. This approach avoids iteration between θ and β, and is often faster than the original
algorithm for SOS.

Semiparametric sparse discriminant analysis (SeSDA)

SeSDA (Mai and Zou, 2015) fits the SeLDA model in (7) for binary problems. It is expected to have
better performance than DSDA when data are heavily non-normal. SeSDA has two steps. First, we
find an estimate ĥ for the unknown function h. Second, we apply DSDA on the pseudo data (ĥ(X), Y).
In what follows, we focus on the estimation of h.

Two estimators have been proposed for h based on (8), the naive estimator and the pooled estimator.
Without loss of generality, we assume that Class 1 has more observations than Class 2. Denote F̃1j as
the empirical CDF of Xj within Class 1. To avoid infinity values at tails, we further Winsorize F̃1j to
F̂1j, where

F̂1j(x) =


1− 1/n2

1 if F̃1j(x) > 1− 1/n2
1

F̃1j(x) if 1/n2
1 ≤ F̃1j(x) ≤ 1− 1/n2

1
1/n2

1 if F̃1j(x) < 1/n2
1.

The naive estimator is shown to consistently estimate h, but in practice it is vulnerable to loss of
efficiency, as it only utilizes one class of data. Therefore, the pooled estimator is proposed as a more
efficient estimator.

Similar to F̂1j, we denote F̂2j as the empirical CDF of Xj within Class 2 Winsorized at (1/n2
2, 1−

1/n2
2). We first find an estimate for µ2j as µ̂

(pool)
2j = π̂1µ̂

(1)
2j + π̂2µ̂

(2)
2j , where µ̂

(1)
2j = 1

n2
∑Yi=2 Φ−1 ◦

F̂1j(Xij), µ̂
(2)
2j = − 1

n1
∑Yi=1 Φ−1 ◦ F̂2j(Xij). Then the pooled estimator for hj is

ĥ(pool)
j = π̂1ĥ(1)j + π̂2ĥ(2)j , (21)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 141

Algorithm 1 Algorithm for MSDA

1. Compute Σ̂ and δ̂
k
= (µ̂k − µ̂1), k = 1, 2, · · · , K.

2. Initialize β̂
(0)
k and compute β̃

(0)
k by β̃k,j =

δ̂k
j−∑l 6=j σ̂l j β̂kl

σ̂jj
.

3. For steps w = 1, 2, . . ., do the following until convergence:

for each element j = 1, . . . , p,

(a) Compute

β̂
(w)

·j = β̃
(w−1)
·j (1− λ

‖ β̃
(w−1)
·j ‖

)+; (24)

(b) Update

β̃kj =
δ̂k

j −∑l 6=j σ̂l j β̂
(w)
kl

σ̂jj
. (25)

4. At convergence, output βk.

where ĥ(1)j = Φ−1 ◦ F̂1j and ĥ(2)j = Φ−1 ◦ F̂2j + µ̂
(pool)
2j . The pooled estimator is usually more accurate

than the naive estimator because it utilizes both classes to form an estimate for hj.

Multiclass sparse discriminant analysis (MSDA)

Up to now, we have focused on binary classifiers. In this section, we discuss a multiclass classifier
under the LDA model (2). Assume that K ≥ 2. By the Bayes rule (3), we need to estimate the
coefficients βk = Σ−1(µk − µ1), k = 2, . . . , K. There is no need to estimate β1, as it is zero by definition.
As in the binary problems, we continue to assume that the classifier is sparse in high dimensions, in the
sense that only a few predictors are relevant to classification. However, this sparsity assumption has
slightly different implication in multiclass problems. Note that, for any Xj, if any one of β2j, . . . , βKj is
nonzero, Xj is important for classification, as it helps with distinguishing between at least one pair of
classes. Therefore, in order for an Xj to be unimportant, we have to have β2j = . . . = βKj = 0. In other
words, the coefficients β2, . . . , βK has a group sparsity structure.

The multi-class sparse discriminant analysis (MSDA) has been proposed for fitting a sparse
classifier under the context of interest. It takes note of the fact that, on the population level, we have

(β2, · · · , βK) = arg min
β2,··· ,βK

K

∑
k=2
{1

2
βT

k Σβk − (µk − µ1)
T βk}. (22)

Therefore, in high dimensions, MSDA replaces the parameters with the sample estimates and
impose the group sparsity structure through group lasso (Yuan and Lin, 2006). More specifically,
MSDA estimates β by

(β̂2, · · · , β̂K) = arg min
β2,··· ,βK

K

∑
k=2
{1

2
βT

k Σ̂βk − (µ̂k − µ̂1)
T βk}+ λ

P

∑
j=1
‖ β·j ‖ . (23)

The problem in (23) can be solved by a blockwise coordinate descent algorithm (Mai et al., 2015)
summarized in Algorithm 1. We refer to Algorithm 1 as the original MSDA algorithm. The R package
msda implements such an algorithm. However, the original MSDA algorithm can be demanding on
storage for high-dimensional data, because it requires the input of Σ̂ ∈ Rp×p. When p is very large, the
original MSDA algorithm can be practically inapplicable. Moreover, because of the sparse nature of β,
many elements in Σ̂ are never used, and the calculation of them leads to unnecessary computation
burden.

Therefore, in our implementation we modify the original MSDA algorithm for lower storage and
computation cost for high-dimensional data. Note that Σ̂ is only used in updating rule (25). We
take advantage of two properties of this updating rule (25). First, given the natural element-wise
property of coordinate descent algorithm, only the j-th column of covariance matrix Σ̂·j is needed in
each iteration. The full covariance matrix is never used during the computation process. Therefore,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 142

it is not necessary to store the huge covariance matrix. Secondly, a large number elements of β̂ are
exactly 0. Hence among the column Σ̂·j, we only need to compute the rows corresponding to the
nonzero coefficients. These facts motivate us to develop the modified MSDA algorithm. The modified
MSDA algorithm is largely identical to the original algorithm, but with two important distinctions.

On one hand, in Step 1 we only require the input of δ̂
k

but not Σ̂. On the other hand, Step 3(b) in (25)
is replaced with

β̃kj =
(n− K)β̂k

j −∑l 6=j β̂
(m)
kl (∑K

k=1[∑i∈Tk
(Xil − µkl)(Xij − µkj)])

∑K
k=1[∑i∈Tk

(Xij − µkj)2]
, (26)

where Tk = {i : yi = k}. By doing so, we avoid the storage and the computation of the full matrix of Σ̂.
In computing (26), we further use three tricks to speed up the computation. Firstly, we calculate and
store all diagonal elements in the covariance matrix as they will be called multiple times. Secondly,
we keep the indexes of nonzero elements in Tk and update it every time we observe a new nonzero
element. Hence we do not need to check all elements to locate the nonzero ones in each iteration.
Thirdly, we update equation (26) by only computing elements corresponding to the nonzero indexes
in Tk. With these three tricks, the modified algorithm reduces the space complexity from O(p2) to
O(p), and is also faster than the original algorithm for large p.

Covariate-adjusted tensor classification in high dimensions (CATCH)

When X is a tensor instead of a vector, we need to fit the TDA model or the CATCH model (in presence
of covariates) for better efficiency and accuracy. Pan et al. (2019) proposed the CATCH method to fit
both models, but in this section we focus on the CATCH method on the TDA model, where there is no
covariate. The inclusion of covariates will be discussed in Section 2.3.7.

Recall that, under the TDA model, we aim to estimate the parameters Bk = Jµk− µ1; Σ−1
1 , . . . , Σ−1

M K.
We first rewrite Bk as solutions to estimating equations:

(B2, . . . , BK) = arg min
B2,...,BK

K

∑
k=2

(〈Bk, JBk; Σ1, . . . , ΣMK〉 − 2〈Bk, µk − µ1〉) ,

where for two M-way tensors A, C, 〈A, C〉 = ∑j1···jM
aj1···jM cj1···jM is the inner product of two tensors.

To estimate Bk, we find the within-class sample mean µ̂k as the estimate for µk, and moment-based
unbiased estimators Σ̂m for Σm; see the formulas in Appendix C. We further add the group LASSO
penalty for variable selection. Therefore, CATCH solves the following problem:

min
B2,...,BK

 K

∑
k=2

(
〈Bk, JBk; Σ̂1, . . . , Σ̂MK〉 − 2〈Bk, µ̂k − µ̂1〉

)
+ λ ∑

j1 ...jM

√√√√ K

∑
k=2

b2
k,j1···jM

 . (27)

CATCH can be solved by a coordinate descent algorithm with an explicit updating formula in
each iteration.

Covariates adjustment

When we have additional covariates U, the CA-LDA model or the CATCH model should be fitted.
Whether X is a vector or a tensor, a key step for the covariate adjustment is the estimation of α, the
dependence of X on U. We use the maximum likelihood estimator (MLE). Denote Uk as the sample
mean of U within class k and Xk as the sample mean of X within class k. Define group-wise centered
data X̃i = Xi − XYi , Ũi = Ui −UYi .

For vector-variate Xi ∈ Rp, we adjust for covariate U by Xi − α̂Ui, where α̂ ∈ Rq×p is the MLE,

α̂ = (ŨTŨ)−1ŨTX̃. (28)

For tensor-variate Xi ∈ Rp1×···×pM , we let αj1···jM ∈ Rq be the regression coefficient of univariate
Xi,j1···jM on multivariate Ui ∈ Rq. Then the MLE for αj1···jM is α̂j1···jM = (ŨTŨ)−1ŨT X̃j1···jM , which can
be expressed more explicitly as,

α̂j1···jM =

{
K

∑
k=1

∑
Yi=k

(Ui −Uk)(Ui −Uk)
T

}−1{ K

∑
k=1

∑
Yi=k

(Ui −Uk)(Xi,j1···jM − Xk,j1···jM)

}
. (29)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 143

Parameters λ dfmax model option Covariate Cross validation

DSDA Binary vector X X X
ROAD Binary vector X
SOS Binary vector X
SeSDA Binary vector X X
MSDA Multi-class vector X X X X X
CATCH Multi-class tensor X X X X

Table 2: Method description and major parameters. Penalty parameter λ controls the size of `1-penalty.
Parameter dfmax limits the maximum number of non-zero variables. Parameter model specifies the
version of implementation for MSDA.

Afterwards, the ensemble of all α̂j1···jM , α̂, is our estimator for α. The covariate-adjusted predictor
is then obtained as Xi − α̂×̄M+1Ui.

Selection of the tuning parameter

We recommend selecting the tuning parameter in all methods by cross validation, which is imple-
mented in our package as supportive functions for most of the methods. In cross validation, a sequence
of potential tuning parameters is supplied. For each candidate tuning parameter λ, the dataset is
random split into L folds. Then we fit L classifiers, each of which is fitted on L− 1 folds of the data and
validated on the remaining one fold. The average validation error rate of the L classifiers is used as a
measurement of the performance of the corresponding λ. The λ with the smallest average validation
error is used in our final model fitting.

If desired, our package can automatically generate a sequence of tuning parameters for all the
methods. They will first compute the smallest λ that shrinks all coefficients to zero; this value is
taken as the upper bound of tuning range. Then the upper bound is multiplied by a small number to
generate the lower bound. Finally, a sequence of tuning parameters is uniformly generated between
the lower and the upper bound.

Using the R package

The R package TULIP provides user-friendly functions to fit discriminant analysis model and perform
predictions on vector and tensor data. The package can be downloaded through https://cran.r-
project.org/web/packages/TULIP or install in R through install.packages('TULIP'). In installing
package, the pre-required packages MASS(Venables and Ripley, 2002) for LDA model fitting, packages
Matrix (Bates and Maechler, 2016) and tensr (Gerard and Hoff, 2016) for matrix and tensor operations,
and the package glmnet(Friedman et al., 2010) for LASSO are also automatically installed. Users do
not need to install them separately. To guarantee higher computation efficiency of the package, core
algorithms of MSDA and CATCH are implemented in Fortran, which have already been compiled
and can also be used directly.

Among all the six methods, there is always a tuning parameter λ to control the size of sparsity.
On the implementation aspect, MSDA and CATCH also have parameter dfmax to limit the number of
selected variables and will only return the solutions with number of non-zero elements less than dfmax.
Furthermore, MSDA has a model option to specify version of implementation between multi.original
and multi.modified. The methods are summarized in Table 2.

The functions in the package consists of two parts. One part contains core functions which generate
solution paths of all the methods, including functions dsda, road, sos, SeSDA, msda and catch. Since
binary classification can be regarded as a special case of multi-class problems, we also embedded
DSDA into msda function. See Section 2.4.1 for details. The other part includes supportive functions to
perform covariate adjustment, prediction, cross validation and handle some special cases.

To illustrate how to use the functions, we first simulate a binary vector data set named dat.vec
with dimension p = 500 and sample size nk = 75. In the data set, we have Xi | (Yi = k) ∼ N(µk, Σ),
where µ1 = 0, µ2 = Σβ, σij = 0.3 if i 6= j and σii = 1, βj = 0.5 for 1 ≤ j ≤ 10 and βj = 0 otherwise.
We further generate a testing data set with sample size 1000 from the same distribution. Variables in
dat.vec is summarized in Table 3. Data set dat.vec can be simulated by code

dat.vec<-sim.bi.vector(1000)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://cran.r-project.org/web/packages/TULIP
https://cran.r-project.org/web/packages/TULIP
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=tensr
https://CRAN.R-project.org/package=glmnet

CONTRIBUTED RESEARCH ARTICLE 144

Variable Type Dimension

x matrix 150× 500
y vector 150

testx matrix 1000× 500
testy vector 1000

Table 3: Data set dat.vec. Variables type and dimension are listed.

Moreover, we include two real data sets, GDS1615 and colorimetric sensor array data set, in the
package to demonstrate usage of the functions. Data set GDS1615 (Burczynski et al., 2006) is a vector
data set where observations belong to three classes. The original data set contains 127 observations
and 22283 variables. Package msda preprocessed the data by computing F-test statistics of each
variable (Mai et al., 2015), whose definition is in appendix. Hence only 127 variables are kept in the
data set. Colorimetric sesor array data (CSA) was used to show the performance of discriminant
analysis method (Zhong and Suslick, 2015). It records information of chemical dyes after exposed to
volatile chemical toxicants to identify their classes. It contains 147 observations in 21 classes. For each
observation, the predictor is a 36× 3 matrix. We include two conditions in our dataset, but focus on
the Immediately Dangerous to Life or Health (IDLH) condition.

Core functions

Function dsda

The following code shows an example of utilizing DSDA. Given the data set dat.vec, we fit DSDA
on {X, Y} by specifying the tuning range of parameter λ to be a sequence between [0.005, 0.3]. Hence
the function will generate a solution path. Next, we apply predict function on the model and obtain
the prediction for each λ and error rate. In the example, we report the minimum error rate and
corresponding parameter value.

obj <- dsda(dat.vec$x, y=dat.vec$y, lambda=seq(0.005, 0.3, length.out=20))
pred <- predict(obj, dat.vec$testx)
err<- apply(pred, 2, function(x){mean(x!=dat.vec$testy)})
print(min(err))
[1] 0.111
print(obj$lambda[which.min(err)])
[1] 0.02052632

If one wishes, dsda can also be used in a more automatic way. On one hand, it can be called
without supplying a sequence of value for tuning parameter. The function will automatically generate
a sequence based on data. On the other hand, the prediction can be performed along with model
fitting if testing data is supplied. The function dsda will produce the prediction error on the testing
data corresponding to each tuning parameter. See the following example.

obj <- dsda(dat.vec$x, y=dat.vec$y,testx=dat.vec$testx)
err <- apply(obj$pred, 2, function(x){mean(x!=dat.vec$testy)})
print(min(err))
[1] 0.107
print(obj$lambda[which.min(err)])
[1] 0.03180946

Figure 4 shows a solution path of DSDA model. As parameter λ increases, more coefficients will
be shrunken towards 0. In addition, DSDA can also integrate the covariate adjustment, model fitting
and prediction. The usage is similar to the function catch, and we do not give a separate example
here to avoid redundancy.

Function SeSDA

Function SeSDA fits a semiparametric sparse discriminant analysis model on the input vector data.
The simulated data dat.vec follows normal distribution within each class. We take an exponential
transformation on it to violate the normality assumption. The following example shows that SeSDA
achieves error rates 11%. However, if we directly apply DSDA on the data set, the minimum error rate
is as high as 15.8%. Therefore, the preprocessing of SeSDA can indeed help to improve performance
under this scenario.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 145

Figure 4: Solution path of five selected variables in a DSDA model. Five trends correspond to the
parameter values of five elements given different parameter λ values.

x <- exp(dat.vec$x)
testx <- exp(dat.vec$testx)
obj.SeSDA <- SeSDA(x, y=dat.vec$y)
pred.SeSDA <- predict(obj.SeSDA, testx)
err <- apply(pred.SeSDA, 2, function(x){mean(x!=dat.vec$testy)})
min(err)
[1] 0.11

Further, Figure 5 shows how the distribution of the first variable changes after transformation. It is
clear that both pooled and naïve transformatins result in approximately normal distribution.

Functions ROAD and SOS

Functions ROAD and SOS can generate equivalent solution paths as ROAD (Fan et al., 2012) and SOS
(Clemmensen et al., 2011) methods on binary vector data, respectively. Both of the two models are fit
by calling dsda function. Compared to the original package for SOS, sparseLDA, our implementation
is usually faster, especially when a solution path or parameter tuning is needed. For example, to fit a
solution path with 10 possible values of λs on a toy example with p = 40, our implementation reduces
the computation time by half compared to sparseLDA. An example of fitting ROAD and SOS model
is as follows. The lambdas passed into ROAD and SOS functions will be directly used by dsda function.
The lambdas returned by the two functions are their corresponding parameters in ROAD and SOS
model, respectively. Figure 6 shows the relationship between the λ’s that generate the same solution.

obj.dsda <- dsda(dat.vec$x, y=dat.vec$y, lambda=seq(0.1, 0.5, length.out=20))
obj.road <- ROAD(dat.vec$x, y=dat.vec$y, lambda=seq(0.1, 0.5, length.out=20))
obj.sos <- SOS(dat.vec$x, y=dat.vec$y, lambda=seq(0.1, 0.5, length.out=20))

Function msda

The function msda provides an interface to fit MSDA. Similarly to dsda, without specification of
possible values of λ, the function will automatically generate a sequence of λs. Function msda can
also perform predictions when testing data is supplied and make adjustments on covariates when
covariates exist. We apply msda on GDS1615 data set to as a demonstration. We report the minimum
training error, its corresponding parameter value and the number of non-zero variables selected by
the model.

data(GDS1615)
x <- GDS1615$x
y <- GDS1615$y
set.seed(123456)
teindex <- c(sample(which(y==1), sum(y==1)/3), sample (which(y==2),

sum(y==2)/3), sample(which(y==3), sum(y==3)/3))
obj <- msda(x[-teindex,], y=y[-teindex], testx=x[teindex,])
err <- apply(obj$pred, 2, function(x){mean(x!=y[teindex])})
paste(min(err), obj$lambda[which.min(err)], obj$df[which.min(err)])
[1] "0.04878049 1.446872 19"

If one wishes to visualize the discriminant effect, plots of projections on the discriminant coeffi-
cients is helpful. A principle component analysis is also optional to show the classification even more
clearly. For illustration, we perform principle component analysis on Xβ where β = {β2, β3} is the

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 146

Raw data

Pooled transformation estimators

Naive transformation estimators

Class 1 Class 2

Figure 5: The distribution of the 1st variable in simulated data set among two classes before transfor-
mation and after transformation. The top row is before transformation. The second row is after pooled
transformation. The bottom row is after naïve transformation.

Figure 6: Parameters in ROAD vs. Parameters in DSDA. Notice that the parameters in DSDA are
double those of SOS.

discriminant coefficient. The scatter plot on the two principle components is shown in Figure 7. It is
clear to see that the three classes are separated well.

We also note that msda has an argument model that can be specified by users to use different
algorithms in MSDA. The options for model include binary, multi.original and multi.modified.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 147

Figure 7: The GDS data projected onto the two principle components of Xβ. Three classes are
separated.

Variable Type Dimension

x list 150. Each element is a 10× 10× 10 array.
y vector 150
z matrix 150× 2

vec_x matrix 1000× 150
testx list 1000. Each element is a 10× 10× 10 array.
testy vector 1000
testz matrix 150× 2

vec_testx matrix 1000× 1000

Table 4: Data set dat.ten. Variables type and dimension are listed.

The option binary can only be used in binary problems. If selected, MSDA is solved by DSDA, which
gives the same solution with usually less time. However, using this option in multi-class problems
will result in an error. The option multi.original indicates that MSDA is solved by the original
algorithm, which requires the calculation of the full covariance matrix. When the dimension is low,
multi.original is often efficient. The option multi.modified, on the other hand, solves MSDA with
the modified algorithm, where only part of the covariance matrix is calculated in each iteration. This
option allows MSDA to be applicable in much higher dimensions. Also, when multi.modified is
selected, we suggest using relatively larger tuning parameters to account for the high dimensionality.
If unspecified, model is set to be binary in binary problems. If the response variable is multi-class, the
function will call multi.original implementation for p ≤ 2000 and multi.modified implementation for
p > 2000.

Function catch

To illustrate usage of function catch, we first simulate a data set named dat.ten with tensor
predictors Xi ∈ R10×10×10 and covariates Ui ∈ R2. The data is simulated from model Xi | (Yi = k) ∼
TN(µk, Σ1, Σ2, Σ3) where µ1 = 0, µ2 = Jβ; Σ1, Σ2, Σ3K, Σj = I for j = 1, 2, 3, β[1:2,1:2,1:2] = 0.8 and 0
otherwise. Let Ui | (Yi = k) ∼ N(φk, ψ) where φ1 = 0, φ2 = (0.3, 0.3) and ψ = I. The connection
between X and U is measured by α ∈ R10×10×10×2 and α[1:5,1:5,1:5,1] = 1 and 0 otherwise. Variables in
dat.ten are summarized in Table 4.

Data set dat.vec can be simulated by code

dat.ten<-sim.tensor.cov(1000)

Function catch fits a CATCH model on the input tensor data. Covariates are optional for the
function and the function will fit a TDA model when there is no covariate. Function catch has already
integrated the adjustment step and model fitting step, hence it will automatically adjust for covariates
when covariates exist. If one prefers to seperate the adjustment step, he/she can call adjten function
to make adjustments and then supply the adjusted predictors into catch, which we will discuss in
supportive functions.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 148

Similar to the two functions above, function catch can generate a solution path on default or
user specified potential values of the parameter. It will also perform prediction when testing data is
specified. To make predictions on CATCH model, user can directly apply catch function or separating
adjustment and model fitting step and then call the predict function. The following example shows
how to fit the model and make prediction when covariates exist. As mentioned above, functions dsda
and msda shares the same arguments name for covariates.

obj <- catch(dat.ten$x, dat.ten$z, dat.ten$y, dat.ten$testx, dat.ten$testz)
pred <- obj$pred
err <- apply(pred, 2, function(x){mean(x!=dat.ten$testy)})
min(err)
[1] 0.167
obj$lambda[which.min(err)]
[1] 0.4270712

An example of applying CATCH to fit model and perform prediction on CSA data is as follows. catch
function takes list of multi-dimensional array as input. In the dataset, x is a list of length 148, where
each element is a matrix of dimension 36× 3; y is a vector whose value ranges between 1 and 21.
We use default parameter sequence of length 100 and the prediction for each value of parameter is
generated.

data(csa)
x <- csa$IDLH
y <- csa$y
teindex <- seq(1,147,7)
obj <- catch(x[-teindex,], y=y[-teindex], testx=x[teindex,], nlambda=10)
err <- apply(obj$pred, 2, function(x){mean(x!=y[teindex])})
print(err)
[1] 0.9523819 0.1904762 0.0952381 0.0000000 0.0952381 0.0000000 0.0000000
0.0000000 0.0000000 0.0000000

Other functions

Two special cases

We provide two more functions for two common problems in practice, binary classification and
matrix classification, respectively. First, the function catch_matrix fits CATCH model on matrix data
(2-way tensor), which is a special case of catch. The usage of catch_matrix is exactly the same as that
of catch, with the only exception that the predictor has to be a matrix instead of higher-order tensor.

Second, our package includes the function dsda.all that integrates cross validation, model fitting
and prediction. It requires the input of the training set and testing set. Then the optimal tuning
parameter is chosen by cross validation on the training set, and the corresponding testing error is
reported. See the following example.

obj <- dsda.all(dat.vec$x, dat.vec$y, dat.vec$testx, dat.vec$testy, nfolds = 10)
print(obj$err)
[1] 0.116

Supportive functions

The package provides functions cv.dsda, cv.msda, cv.SeSDA and cv.catch to perform cross val-
idation. For all of these functions, user can give a sequence of potential values to tune parameter.
Otherwise, the function will first fit a model on the entire data set and then perform cross validation
on the automatically generated λs from the entire data set. Similar as msda, user can specify which
model to use in cv.msda or let the function determine by input data.

Users can also specify the number of folds by the argument nfolds. Another argument lambda.opt
has two options "min" and "max". When multiple λs lead to same error rate, "min" will return the
smallest tuning parameter with the lowest error rate while "max" will return the largest one. We take
cv.dsda and cv.catch as two examples.

obj.dsda <- cv.dsda(dat.vec$x, dat.vec$y, nfolds = 10)
obj.catch <- cv.catch(dat.ten$x, dat.ten$z, dat.ten$y, lambda.opt="min")

Function adjten and adjvec implement the adjustment step for tensor and vector data, respectively.
It takes training tensor/vector, covariate and response as input, and outputs the adjusted tensor/vector
and adjustment coefficients α. The adjustement step has already been incorporated into the modeling

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 149

Method Binary Multi-class
Error rate (%) / Time (seconds) Mean SE Time Mean SE Time

DSDA/multi.modified 23.58 0.23 36.30 35.85 0.24 88.8
SeSDA 23.68 0.24 731.28 NA NA NA
CATCH 22.79 0.24 78.6 35.22 0.25 101.4
`1-GLM 23.99 0.16 36.23 35.66 0.21 134.4

SOS 23.87 0.26 100.8 37.07 0.29 1114.8

Table 5: ADHD classification. Average error rates based on 100 replicates and running time of 20
replicates are reported.

fitting functions dsda, msda and catch. When user input covariates along with tensor/vector, the
model fitting functions will automatically make the adjustment. But if user do not want to use the
automatic prediction in model fitting function and prefer to predict via predict, user need to first
make the adjustment to obtain adjustment coefficient gamma, and pass it into function predict. Notice
that making adjustment and fitting a model on the adjusted tensor and response without covariate is
equivalent as fitting a model by inputting the original tensor, covariate and response labels. Examples
of two approaches are given as follows.

obj <- catch(dat.ten$x, dat.ten$z, dat.ten$y, dat.ten$testx, dat.ten$testz)
obj.adj <- adjten(dat.ten$x, dat.ten$z, dat.ten$y, dat.ten$testx,

dat.ten$testz)
obj.fit <- catch(dat.ten$x, dat.ten$z, dat.ten$y)
pred <- predict(obj.fit, obj.adj$testxres, dat.ten$z, dat.ten$testz,

obj.adj$gamma)

There are three prediction functions corresponding to dsda, msda and catch, respectively. All of
them can be directly called by predict and the function will recognize which function to use based
on the input fitted model object. When covariate exists, user needs to pass the adjustment coefficient
obtained from function adjten, the fitted model and testing data altogether to make predictions.
Therefore, we encourage user to direct use model fitting functions msda and catch to fit model and
predict categorical responses.

Real data example

In this section, we will show the performance of the models by a real data set. We considered
the attention deficit hyperactivity disorder (ADHD) data set. The dataset is available on NITRC
(http://fcon_1000.projects.nitrc.org/indi/adhd200) (Bellec et al., 2017). It contains three parts
of information: s-MRI data which is a 3-D tensor, covariate information including age, gender and
handedness which is a vector, and response label. Among all 930 individuals, there are four types of
categorical labels: Typically Developing Childrem (TDC), ADHD Combined, ADHD Hyperactive and
ADHD Inattentive.

We downsize the tensor to dimension 24× 27× 24 and consider two classification scenarios. One
is to combine ADHD Hyperactive with the ADHD Combined since there are only 13 subjects in class
ADHD Hyperactive. This results in a multi-class problem with three classes. The second one is to
further combine TDC and ADHD Inattentive since none of these two categories have hyperactivity
symptoms. This give us a binary problem. We split the dataset into a training set and testing set by
ratio 8 : 2.

Given the tensor structure and existence of covariates, the most suitable approach is to apply
CATCH on that. We also vectorize the tensor into vectors and stack covariates along with the long
vector to apply vector methods. For binary case, DSDA is applied. For multi-class case, MSDA model
with multi.modified is applied since the dimension is too large to employ multi.original. We also
compared with SOS (Clemmensen et al., 2011) by its own package sparseLDA and `1-GLM (Friedman
et al., 2010) by package glmnet.

For each replicate, we perform cross validation on training data and record the classification error
on testing data. The entire process was repeated for 100 times and we report the mean and standard
error of the error rates. The performance is shown in Table 5.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://fcon_1000.projects.nitrc.org/indi/adhd200

CONTRIBUTED RESEARCH ARTICLE 150

Discussion

Package TULIP provides a toolbox to fit various sparse discriminant analysis models, including
parametric models DSDA, ROAD, SOS for binary vector data, semiparametric model SeSDA for
binary vector data, MSDA for multiclass vector data, and CATCH for multiclass tensor data. As a
comprehensive toolbox, the package provides prediction and cross validation functions as well.

Meanwhile, the package propose an approach to handle cases when both predictor and covariates
are supplied. The predictor can be vector and tensor, while the covariates are usually low-dimensional
vectors. Covariates may have an effect on both response and the predictor. Therefore making
adjustment and excluding the influence of covariates from predictor is important. The package
includes functions to make the adjustments and can be called easily by supplying covariates in the
model fitting function.

Appendices

Tensor notation

On each dimension, which is named mode, a tensor is composed by vectors of length (pk × 1) called
mode-k fiber, defined as Ai1···ik−1 Ik ik+1···iM , Ik = 1, . . . pk. Stacking the mode-1 fiber by row gives the
vectorization of a tensor vec(A), which is a (∏m pm × 1) column vector. If we unfold the tensor along
the k-th mode, we obtain a matrix A(k) ∈ Rpk×∏l 6=k pl .

Denote the mode-k product of a tensor A and a matrix α ∈ Rd×pk by A×k α ∈ R, which results in a
tensor of dimension p1× · · · × pk−1× d× pk+1× · · · × pM. Each element of the product is the product
of a mode-k fiber of A and a row vector of α. In particular, the mode-k vector product of a tensor A and a
vector c ∈ Rpk is a (M− 1)-way tensor as a special case when d = 1. The Tucker decomposition of a tensor
is defined as A = C×1 G1 ×2 · · · ×M GM, in short of JC; G1, . . . , GmK. In particular, the vectorization
of tucker decomposition has the fact that vec(JC; G1, . . . , GMK) = (GM ⊗ · · · ⊗G1) vec(C), where ⊗
denotes Kronecker product. If X = µ + JZ; Σ1/2

1 , . . . , Σ1/2
M K, where Z ∈ Rp1×···×pM and all elements

of Z independently follow the univariate standard normal distribution, we say X follows a tensor
normal distribution X ∼ TN(µ, Σ1, . . . , ΣM). The dependence structure on the j-th mode is measured
by Σj > 0. Hence, vec(X) = vec(µ) + Σ1/2vec(Z), where Σ = ΣM ⊗ · · · ⊗ Σ1.

Simulation code

Data sets dat.vec and dat.ten are used to illustrate usage of the functions. Detailed model settings are
described in Section 2.4. Here are the code to simulate the two data sets.

Code to simulate data set dat.vec:

set.seed(123456)
sigma <- matrix(0.3, 500, 500)
diag(sigma) <- 1
dsigma <- t(chol(sigma))
#define beta and mean
beta <- matrix(0, nrow = 500, ncol = 1)
beta[1:10,1] <- 0.5
M <- matrix(0, nrow = 2, ncol = 500)
M[2,] <- sigma%*%beta
y <- c(rep(1, 75), rep(2, 75))
#generate test data
telabel <- ceiling(runif(1000)*2)
x <- matrix(rnorm(150*500),ncol = 500)%*%t(dsigma)
x[y==2,] <- x[y==2,] + M[2,]
testx <- matrix(rnorm(1000*500), ncol = 500) %*% t(dsigma)
testx[telabel==2,] <- testx[telabel==2,] + M[2,]
dat.vec <- list(x = x, y = y, testx = testx, testy = telabel)

Code to simulate data set dat.ten:

set.seed(123456)
sigma <- array(list(), 3) #define covariance matrices
dsigma <- array(list(), 3)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 151

for (i in 1:3){
sigma[[i]] <- diag(10)
dsigma[[i]] <- t(chol(sigma[[i]]))

}
B2 <- array(0, dim=c(10,10,10)) #define B and mean
B2[1:2, 1:2, 1:2] <- 0.8
M <- array(list(), 2)
M[[1]] <- array(0, dim=c(10,10,10))
M[[2]] <- atrans(B2, sigma)
y <- c(rep(1,75), rep(2,75))
coef <- array(0, dim=c(10,10,10,2)) #define alpha
coef[1:5, 1:5, 1:5, 1] <- 1
telabel <- ceiling(runif(1000)*2)
z <- matrix(rnorm(2*150), nrow=150, ncol=2) #generate covariates
z[y==2,] <- z[y==2,] + 0.3
testz <- matrix(rnorm(2*1000), nrow=1000, ncol=2)
testz[telabel==2,] <- testz[telabel==2,] + 0.3
vec_x <- matrix(rnorm(1000*150), ncol=150) #generate tensor
x <- array(list(),150)
for (i in 1:150){

x[[i]] <- array(vec_x[,i], c(10,10,10)) + amprod(coef, t(z[i,]), 4)[,,,1]
x[[i]] <- M[[y[i]]] + atrans(x[[i]], dsigma)

}
vec_testx <- matrix(rnorm(1000*1000), ncol=1000)
testx <- array(list(), 1000)
for (i in 1:1000){

testx[[i]] <- array(vec_testx[,i], c(10,10,10)) + amprod(coef, t(testz[i,]),
4)[,,,1]
testx[[i]] <- M[[telabel[i]]] + atrans(testx[[i]], dsigma)

}
dat.ten <- list(x=x, z=z, testx=testx, testz=testz, vec_x=t(vec_x),

vec_testx=t(vec_testx), y=y, testy=telabel)

Estimation of covariance matrices in the TDA/CATCH model

Denote the sample mean of Class k by Xk. We first center Xi within class to obtain the residuals:

Êi = Xi − µ̂k = Xi − Xk.

Further unfold Êi along the j-th mode to obtain Wi(j) and find S̃j = (n ∏M
l 6=j pl)

−1 ∑n
i=1 Wi(j)(Wi(j))

T .
Then our estimator for Σj is defined as

Σ̂j = s̃−1
j,11S̃j for j = 1, . . . , M− 1; Σ̂M =

v̂ar(X1···1)

∏M
j=1 s̃j,11

S̃M. (30)

Definition of F-test statistic

The F-test statistic used to preprocess GDS1615 data is defined as

f j =
∑K

k=1 nk(µ̂kj − ̂̄µj)
2/(K− 1)

∑n
i=1(X

i
j − µ̂Yi ,j)

2/(n− K)
, (31)

where Xi
j is the j-th variable of i-th observation and ̂̄µ is the grand mean.

Bibliography

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2016. URL https:
//CRAN.R-project.org/package=Matrix. R package version 1.2-6. [p143]

P. Bellec, C. Chu, F. Chouinard-Decorte, Y. Benhajali, D. S. Margulies, and R. C. Craddock. The

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix

CONTRIBUTED RESEARCH ARTICLE 152

neuro bureau adhd-200 preprocessed repository. NeuroImage, 144:275 – 286, 2017. URL https:
//doi.org/10.1016/j.neuroimage.2016.06.034. [p149]

P. J. Bickel and E. Levina. Covariance regularization by thresholding. Ann. Statist., 36(6):2577–2604, 12
2008. doi: 10.1214/08-AOS600. URL https://doi.org/10.1214/08-aos600. [p134]

M. Burczynski, R. Peterson, N. Twine, K. A Zuberek, B. J Brodeur, L. Casciotti, V. Maganti, P. S Reddy,
A. Strahs, F. Immermann, W. Spinelli, U. Schwertschlag, A. M Slager, M. M Cotreau, and A. J Dorner.
Molecular classification of crohn’s disease and ulcerative colitis patients using transcriptional
profiles in peripheral blood mononuclear cells. The Journal of Molecular Diagnostics, 8:51–61, 03 2006.
URL https://doi.org/10.2353/jmoldx.2006.050079. [p144]

T. T. Cai, W. Liu, and X. Luo. A constrained `1 minimization approach to sparse precision matrix
estimation. J. Amer. Statist. Assoc., 106(494):594–607, 2011. URL https://doi.org/10.1198/jasa.
2011.tm10155. [p135]

E. C. Chi and T. G. Kolda. On tensors, sparsity, and nonnegative factorizations. SIAM Journal on Matrix
Analysis and Applications, 33(4):1272–1299, 2012. URL https://doi.org/10.1137/110859063. [p135]

L. Clemmensen and M. Kuhn. sparseLDA: Sparse Discriminant Analysis, 2016. URL https://CRAN.R-
project.org/package=sparseLDA. R package version 0.1-9. [p135]

L. Clemmensen, T. Hastie, D. Witten, and B. Ersbøll. Sparse discriminant analysis. Technometrics, 53(4):
406–413, 2011. URL ttps://doi.org/10.1198/TECH.2011.08118. [p134, 135, 140, 145, 149]

M. Dettling. Bagboosting for tumor classification with gene expression data. Bioinformatics, 20(18):
3583–3593, 2004. URL https://doi.org/10.1093/bioinformatics/bth447. [p134]

J. Fan and Y. Fan. High dimensional classification using features annealed independence rules. Annals
of statistics, 36(6):2605, 2008. URL https://doi.org/10.1214/07-aos504. [p134, 135]

J. Fan, Y. Feng, and X. Tong. A road to classification in high dimensional space: the regularized optimal
affine discriminant. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(4):
745–771, 2012. URL https://doi.org/10.1111/j.1467-9868.2012.01029.x. [p134, 135, 139, 145]

J. Fan, Z. T. Ke, H. Liu, and L. Xia. Quadro: A supervised dimension reduction method via rayleigh
quotient optimization. Annals of statistics, 43(4):1498, 2015. URL https://doi.org/10.1214/14-
aos1307. [p136]

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1. Springer series in
statistics Springer, Berlin, 2001. URL https://doi.org/10.1007/b94608. [p136]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, Articles, 33(1):1–22, 2010. URL https://doi.org/
10.18637/jss.v033.i01. [p143, 149]

D. Gerard and P. Hoff. tensr: Covariance Inference and Decompositions for Tensor Datasets, 2016. URL
https://CRAN.R-project.org/package=tensr. R package version 1.0.0. [p143]

D. J. Hand. Classifier technology and the illusion of progress. Statistical science, 21(1):1–14, 2006. URL
https://doi.org/10.1214/088342306000000024. [p134]

T. Hastie, R. Tibshirani, and A. Buja. Flexible discriminant analysis by optimal scoring. Journal of the
American statistical association, 89(428):1255–1270, 1994. URL https://doi.org/10.1080/01621459.
1994.10476866. [p134]

P. D. Hoff, X. Niu, and J. A. Wellner. Information bounds for Gaussian copulas. Bernoulli, 20:604–622,
2014. URL https://doi.org/10.3150/12-bej499. [p138]

B. Jiang, X. Wang, and C. Leng. Quda: A direct approach for sparse quadratic discriminant analysis.
arXiv preprint arXiv:1510.00084, 2015. [p136]

C. Klaassen and J. Wellner. Efficient estimation in the bivariate normal copula model: normal margins
are least favourable. Bernoulli, 3:55–77, 1997. URL https://doi.org/10.2307/3318652. [p138]

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500,
2009. ISSN 0036-1445. URL https://doi.org/10.1137/07070111x. [p135, 138]

Z. Lai, Y. Xu, J. Yang, J. Tang, and D. Zhang. Sparse tensor discriminant analysis. IEEE Transactions on
Image Processing, 22(10):3904–3915, Oct 2013. ISSN 1057-7149. doi: 10.1109/TIP.2013.2264678. URL
https://doi.org/10.1109/TIP.2013.2264678. [p135]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1016/j.neuroimage.2016.06.034
https://doi.org/10.1016/j.neuroimage.2016.06.034
https://doi.org/10.1214/08-aos600
https://doi.org/10.2353/jmoldx.2006.050079
https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1137/110859063
https://CRAN.R-project.org/package=sparseLDA
https://CRAN.R-project.org/package=sparseLDA
ttps://doi.org/10.1198/TECH.2011.08118
https://doi.org/10.1093/bioinformatics/bth447
https://doi.org/10.1214/07-aos504
https://doi.org/10.1111/j.1467-9868.2012.01029.x
https://doi.org/10.1214/14-aos1307
https://doi.org/10.1214/14-aos1307
https://doi.org/10.1007/b94608
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://CRAN.R-project.org/package=tensr
https://doi.org/10.1214/088342306000000024
https://doi.org/10.1080/01621459.1994.10476866
https://doi.org/10.1080/01621459.1994.10476866
https://doi.org/10.3150/12-bej499
https://doi.org/10.2307/3318652
https://doi.org/10.1137/07070111x
https://doi.org/10.1109/TIP.2013.2264678

CONTRIBUTED RESEARCH ARTICLE 153

Q. Li and D. Schonfeld. Multilinear discriminant analysis for higher-order tensor data classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(12):2524–2537, Dec 2014. ISSN 0162-
8828. doi: 10.1109/TPAMI.2014.2342214. URL https://doi.org/10.1109/tpami.2014.2342214.
[p135]

Q. Li and J. Shao. Sparse quadratic discriminant analysis for high dimensional data. Statistica Sinica,
25(2):457–473, 4 2015. ISSN 1017-0405. URL https://doi.org/10.5705/ss.2013.150. [p136]

T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison of prediction accuracy, complexity, and training
time of thirty-three old and new classification algorithms. Machine learning, 40(3):203–228, 2000.
[p134]

Y. Lin and Y. Jeon. Discriminant analysis through a semiparametric model. Biometrika, 90(2):379–392,
2003. ISSN 00063444. URL https://doi.org/10.1093/biomet/90.2.379. [p137]

H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal: Semiparametric estimation of high
dimensional undirected graphs. J. Mach. Learn. Res., 10:2295–2328, 2009. [p138]

T. Liu, M. Yuan, and H. Zhao. Characterizing spatiotemporal transcriptome of human brain via low
rank tensor decomposition. arXiv preprint arXiv:1702.07449, 2017. [p135]

Q. Mai and H. Zou. A note on the connection and equivalence of three sparse linear discriminant
analysis methods. Technometrics, 55(2):243–246, 2013. URL https://doi.org/10.1080/00401706.
2012.746208. [p140]

Q. Mai and H. Zou. Sparse semiparametric discriminant analysis. Journal of Multivariate Analysis, 135:
175 – 188, 2015. ISSN 0047-259X. URL https://doi.org/10.1016/j.jmva.2014.12.009. [p135, 140]

Q. Mai, H. Zou, and M. Yuan. A direct approach to sparse discriminant analysis in ultra-high
dimensions. Biometrika, 99:29–42, 2012. URL https://doi.org/10.1093/biomet/asr066. [p134]

Q. Mai, Y. Yang, and H. Zou. Multiclass sparse discriminant analysis. Statistica Sinica, 29, 04 2015. URL
https://doi.org/10.5705/ss.202016.0117. [p135, 141, 144]

D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning, neural and statistical classification. Ellis
Horwood, 1994. URL https://doi.org/10.2307/1269742. [p134]

Y. Niu, N. Hao, and B. Dong. A new reduced-rank linear discriminant analysis method and its
applications. Statistica Sinica, 28, 11 2015. URL https://doi.org/10.5705/ss.202015.0387. [p135]

Y. Pan, Q. Mai, and X. Zhang. Covariate-adjusted tensor classification in high dimensions. Journal
of the American Statistical Association, 114(527):1305–1319, 2019. URL https://doi.org/10.1080/
01621459.2018.1497500. [p134, 135, 137, 138, 142]

Y. Pan, Q. Mai, and X. Zhang. TULIP: A Toolbox for Linear Discriminant Analysis with Penalties, 2021.
URL https://CRAN.R-project.org/package=TULIP. R package version 1.0.2. [p135]

J. Shao, Y. Wang, X. Deng, and S. Wang. Sparse linear discriminant analysis by thresholding for high
dimensional data. The Annals of Statistics, 39(2):1241–1265, 2011. URL https://doi.org/10.1214/10-
aos870. [p135]

J. Sun and H. Zhao. The application of sparse estimation of covariance matrix to quadratic discriminant
analysis. BMC Bioinformatics, 16, 12 2015. URL https://doi.org/10.1186/s12859-014-0443-6.
[p136]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,
Series B, 58:267–288, 1996. URL https://doi.org/10.1111/j.2517-6161.1996.tb02080.x. [p139]

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple cancer types by shrunken
centroids of gene expression. Proceedings of National Academic Science (PNAS), 99:6567–6572, 01 2002.
URL https://doi.org/10.1073/pnas.082099299. [p135]

N. T. Trendafilov and I. T. Jolliffe. Dalass: Variable selection in discriminant analysis via the lasso.
Computational Statistics and Data Analysis, 51(8):3718–3736, May 2007. URL https://doi.org/10.
1016/j.csda.2006.12.046. [p135]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth edition,
2002. URL http://doi.org/10.1007/978-0-387-21706-2. ISBN 0-387-95457-0. [p143]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1109/tpami.2014.2342214
https://doi.org/10.5705/ss.2013.150
https://doi.org/10.1093/biomet/90.2.379
https://doi.org/10.1080/00401706.2012.746208
https://doi.org/10.1080/00401706.2012.746208
https://doi.org/10.1016/j.jmva.2014.12.009
https://doi.org/10.1093/biomet/asr066
https://doi.org/10.5705/ss.202016.0117
https://doi.org/10.2307/1269742
https://doi.org/10.5705/ss.202015.0387
https://doi.org/10.1080/01621459.2018.1497500
https://doi.org/10.1080/01621459.2018.1497500
https://CRAN.R-project.org/package=TULIP
https://doi.org/10.1214/10-aos870
https://doi.org/10.1214/10-aos870
https://doi.org/10.1186/s12859-014-0443-6
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1073/pnas.082099299
https://doi.org/10.1016/j.csda.2006.12.046
https://doi.org/10.1016/j.csda.2006.12.046
http://doi.org/10.1007/978-0-387-21706-2

CONTRIBUTED RESEARCH ARTICLE 154

D. M. Witten and R. Tibshirani. Penalized classification using fisher’s linear discriminant. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 73(5):753–772, 2011. URL https:
//doi.org/10.1111/j.1467-9868.2011.00783.x. [p135]

M. C. Wu, L. Zhang, Z. Wang, D. C. Christiani, and X. Lin. Sparse linear discriminant analysis for
simultaneous testing for the significance of a gene set/pathway and gene selection. Bioinformatics,
25(9):1145–1151, 2009. URL https://doi.org/10.1093/bioinformatics/btp019. [p135, 139]

P. Xu, J. Zhu, L. Zhu, and Y. Li. Covariance-enhanced discriminant analysis. Biometrica, 102(1):33–45,
2015. URL https://doi.org/10.1093/biomet/asu049. [p135]

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006. URL https:
//doi.org/10.1111/j.1467-9868.2005.00532.x. [p135, 141]

R. Zeng, J. Wu, L. Senhadji, and H. Shu. Tensor object classification via multilinear discriminant
analysis network. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1971–1975, April 2015. URL https://doi.org/10.1109/icassp.2015.7178315.
[p135]

W. Zhong and K. S. Suslick. Matrix discriminant analysis with application to colorimetric sensor array
data. Technometrics, 57(4):524–534, 2015. URL https://doi.org/10.1080/00401706.2014.965347.
[p135, 144]

H. Zhou, L. Li, and H. Zhu. Tensor regression with applications in neuroimaging data analysis.
Journal of the American Statistical Association, 108(502):540–552, 2013. ISSN 0162-1459. URL https:
//doi.org/10.1080/01621459.2013.776499. [p135]

Yuqing Pan
Florida State University
117 N. Woodward Ave., Tallahassee, FL 32306
USA
yuqing.pan@stat.fsu.edu

Qing Mai
Florida State University
117 N. Woodward Ave., Tallahassee, FL 32306
USA
mai@stat.fsu.edu

Xin Zhang
Florida State University
117 N. Woodward Ave., Tallahassee, FL 32306
USA
henry@stat.fsu.edu

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1111/j.1467-9868.2011.00783.x
https://doi.org/10.1093/bioinformatics/btp019
https://doi.org/10.1093/biomet/asu049
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.1109/icassp.2015.7178315
https://doi.org/10.1080/00401706.2014.965347
https://doi.org/10.1080/01621459.2013.776499
https://doi.org/10.1080/01621459.2013.776499
mailto:yuqing.pan@stat.fsu.edu
mailto:mai@stat.fsu.edu
mailto:henry@stat.fsu.edu

CONTRIBUTED RESEARCH ARTICLE 155

fitzRoy - An R Package to Encourage
Reproducible Sports Analysis
by Robert Nguyen, James Day, David Warton and Oscar Lane

Abstract The importance of reproducibility, and the related issue of open access to data, has received
a lot of recent attention. Momentum on these issues is gathering in the sports analytics community.
While Australian Rules football (AFL) is the leading commercial sport in Australia, unlike popular
international sports, there has been no mechanism for the public to access comprehensive statistics
on players and teams. Expert commentary currently relies heavily on data that isn’t made readily
accessible and this produces an unnecessary barrier for the development of an inclusive sports analytics
community. We present the R package fitzRoy to provide easy access to AFL statistics.

Introduction

Access to data is the key enabling tool for any sports analytics community. Most major international
sports have a mechanism to provide free access to match statistics, for example, ballR for NBA, Lahman
for baseball and deuce for tennis. Access to sports data can be used by fans, clubs and researchers
to better predict match outcomes, to inform decisions and better understand the sport. For example
(Romer, 2006) helped change the way teams evaluate 4th down decisions in the NFL, and the way
the NBA is played has changed becoming more three point focused (Goldman and Rao, 2013). Sports
analytics has also proved a popular avenue for modern data journalism for example, Fivethirtyeight
is a popular culture website with a strong analytics following, which publishes models daily across
a variety of sports. This sort of product can only be constructed given a publicly available source of
sports data.

The Australian Football League (AFL) is the national league of Australia’s national winter sport,
Australian Rules Football. This is the largest commercial support in Australia with over 1 million club
members, a 2.5 billion dollar broadcast rights deal and a participation level of 1.649 million. No current
AFL statistics website provides easy access to data for a growing analytical fan base. The Australian
Football League (AFL) has an official data provider, Champion Data, which is 49% owned by the
AFL. Champion Data have the licence to collect the data for all AFL games and then charge clubs
and media organisations fees to access the data. There are two leading websites of publicly available
data, afltables and footywire, but data are not available in an easy-to-use form. For example, match
statistics are listed on separate web pages for different matches, so hours of time would be required
to compile data from over 200 different webpages in order to do an analysis across a single season.
Hence, unfortunately, there are significant financial and logistical barriers to prospective analysts and
fans studying the game, which stagnates progress advancing our understanding of AFL.

This paper describes the fitzRoy package, the first package to provide free and easy access to
data on the AFL, with match and player data for the men’s competition1. Web scraping tools have
been developed that provide easy, up-to-date access to AFL match and player box statistics across
the history of the game, since 1897, using open source data. The package also provides tools to link
match and player data to expert tips from popular websites. For the first time, fans can evaluate the
performance of tipsters themselves andcompare them to the betting market.

What is fitzRoy?

We developed fitzRoy, an R package that allows users to access Australian Rules Football statistics
from various websites easily with R. The fitzRoy package allows users access to popular AFL statistics
websites such as afltables and footywire. These are the two most widely used data repositories in the
AFL, which have existed since the late 1990s, and while they are not official repositories, the AFL has
not tried to take them offline. However, the data on these websites is not available in an easy-to-use
form, e.g. match statistics are stored across different web pages for each match, so compiling season
statistics would involve harvesting data from hundreds of webpages. The fitzRoy package compiles
match or player data into a single frame, and also allows users to access popular bloggers’ AFL models
via the squiggle website.

A popular website called afltables contains AFL-VFL match, player and coaching stats, records

1fitzRoy used to contain access to the AFLW (AFL Womens) data, but unfortunately the data was removed from
official AFL media, we are committed to adding AFLW data again, once it comes back

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://cran.r-project.org/web/packages/ballr/ballr.pdf
https://cran.r-project.org/web/packages/Lahman/Lahman.pdf
https://github.com/skoval/deuce
https://fivethirtyeight.com
https://afltables.com/afl/aflindex.html
https://www.footywire.com
https://CRAN.R-project.org/package=fitzRoy
https://afltables.com/afl/afl_index.html
https://www.footywire.com
https://squiggle.com.au
https://afltables.com/afl/seas/2018.html

CONTRIBUTED RESEARCH ARTICLE 156

and lists from 18972. The website afltables has been used in research for topics such as umpire racism
(Lenten, 2017), umpires assessment of players (Lenten et al., 2019), modelling of the AFL game (Kiley
et al., 2016), fixture difficulty (Lenor et al., 2016) and drafting (Lenten et al., 2018). The umpire studies
would not have been possible with footywire data as umpire information isn’t contained on the game
pages.

The footywire website has data back to 1965, but while it does not have as many seasons of data, it
has additional game variables not included in afltables. One example is Super Coach score, sometimes
used as a proxy for player value (Marshall, 2017). Other examples of variables contained within
footywire are tackles inside 50, intercepts and marks inside 50 to name a few.

Squiggle is a unique website in the AFL sporting landscape. It contains game analyses but it also
aggregates popular AFL bloggers’ tips each week. From squiggle users are able to get each models
probability of win, margin prediction and a leaderboard based on bits which has been made popular
by the Monash probability footy tipping competition3.

Building fitzRoy

The name fitzRoy comes from the Old Fitzroy hotel in Sydney where the idea for the package was
first conceived. It is also the name of one of the foundation clubs of the Australian Football League,
which since merged with another club, and is now called the Brisbane Lions.

We used the R packages Rvest (Wickham and Wickham, 2016), dplyr (Wickham et al., 2015), purrr
(Henry and Wickham, 2019) and XML (Temple Lang, 2020) to construct our web-scraper functions that
collate data from afltables or footywire into a single data frame. These websites update immediately on
completion of each round, hence so does data accessed via fitzRoy scraper functions. The key functions
accessing afltables player and match statistics are get_afltables_stats and get_afl_match_data,
respectively, and footywire data are accessed via the get_footywire_stats function. These functions
form the backbone of the package.

Applications of fitzRoy

Match Data (Scores)

The get_match_results function can be used to obtain match data for any season(s) or team(s). For
example to get the game scores for Fitzroy’s last AFL season as follows.4

library(fitzRoy)
library(tidyverse)
library(lubridate)
fitzRoy::get_match_results()%>%
mutate(Season=lubridate::year(Date))%>%
filter(Season==1996)%>%
filter(Home.Team=="Fitzroy" | Away.Team=="Fitzroy")

Match Data (Players)

Fans of Australian Football like many major sports like to keep up to date with leaders of statistical
categories. One statistic often of interest is goals scored. Users can come up with the leading goalkicker
list for Fitzroy in 1996 as follows.

library(fitzRoy)
library(tidyverse)
fitzRoy::get_afltables_stats(start_date="1996-01-01",
end_date="1997-01-01")%>%
filter(Playing.for=="Fitzroy")%>%
group_by(ID, First.name, Surname)%>%
summarise(Total_Goals=sum(Goals))%>%
arrange(desc(Total_Goals))

2The first year of VFL
3http://probabilistic-footy.monash.edu/ footy/
4fans of Fitzroy Lions might want to avoid this as it only contains one win (Round 8 vs Fremantle Dockers)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://afltables.com/afl/afl_index.html
https://www.footywire.com
https://www.footywire.com
https://afltables.com/afl/afl_index.html
https://squiggle.com.au
https://squiggle.com.au
http://probabilistic-footy.monash.edu/~footy/about.shtml#info
https://CRAN.R-project.org/package=Rvest
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=XML
https://afltables.com/afl/afl_index.html
https://www.footywire.com
https://afltables.com/afl/afl_index.html
https://www.footywire.com

CONTRIBUTED RESEARCH ARTICLE 157

Figure 1: Work flow for fitzRoy web-scrapers game IDS 5550 to 5757 refer to the 2013 AFLM Season.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 158

We can see that Anthony Mellington won the goalkicking award for Fitzroy with a modest total of
22 goals for the 1996 season.

Building Sports Models

Sports models are commonly derived using an Elo system which only needs scores (Ryall and
Bedford, 2010). The fitzRoy package readily provides a data frame of match scores, from which it is
straightforward to construct an Elo to predict future match outcomes, as below.

library(fitzRoy)
library(tidyverse)
library(elo)
library(lubridate)

Get data
results <- fitzRoy::get_match_results()
results <- results %>%
mutate(seas_rnd = paste0(Season, ".", Round.Number),
First.Game = ifelse(Round.Number == 1, TRUE, FALSE)
)

fixture <- fitzRoy::get_fixture()
fixture <- fixture %>%
filter(Date > max(results$Date)) %>%
mutate(Date = ymd(format(Date, "%Y-%m-%d"))) %>%
rename(Round.Number = Round)

Simple ELO
Set parameters (these should be optimised!)
HGA <- 30
carryOver <- 0.5
B <- 0.03
k_val <- 20

Create margin function to ensure result is between 0 and 1
map_margin_to_outcome <- function(margin, B) {
1 / (1 + (exp(-B * margin)))
}

Run ELO
elo.data <- elo.run(
map_margin_to_outcome(Home.Points - Away.Points, B = B) ~
adjust(Home.Team, HGA) +
Away.Team +
group(seas_rnd) +
regress(First.Game, 1500, carryOver),
k = k_val,
data = results
)

as.data.frame(elo.data)
as.matrix(elo.data)
final.elos(elo.data)

Do predictions
fixture <- fixture %>%
mutate(Prob = predict(elo.data, newdata = fixture))

head(fixture)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 159

Building Player Models

Box-score statistics, summary statistics of the involvement of each player in each match, contain a rich
history of information. Box score statistics led, for example, to the concept of Value Over Replacement
Player (VORP) (Woolner, 2001)5. Fantasy teams have gained a lot of interest in recent years, and
fantasy scores for players tend to be constructed from box-score statistics.

The AFL runs a fantasy sport competition, and fitzRoy could be used to recreate its fantasy points
formula, since it is a linear function of box-score statistics.

Box-score AFL data are made readily accessible through fitzRoy using the player_stats function.

library(fitzRoy)
library(tidyverse)

df<-fitzRoy::get_footywire_stats(9721:9927)

eq1<-lm(AF ~ K + HB + M + `T` + FF + FA + HO + G + B, data=df)
summary(eq1)

While this might seem like a trivial application, footywire only has fantasy scores going back
to 2007, however the statistics used for fantasy go all the way back to 1965, with Tackles being first
recorded in 1987.

cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#009E73",
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")

fitzRoy::get_afltables_stats(start_date = "1897-01-01",
end_date = "2018-10-10")%>%

group_by(Season)%>%
summarise(
meankicks=mean(Kicks),
meanmarks=mean(Marks),
meantackles=mean(Tackles),
meanfreesfor=mean(Frees.For),
meansfreesagainst=mean(Frees.Against),
meanhitouts=mean(Hit.Outs),
meangoals=mean(Goals),
meanbehinds=mean(Behinds))%>%
gather("variable", "value",-Season) %>%
ggplot(aes(x=Season, y=value, group=variable, colour=variable))+
geom_line()+
scale_colour_manual(values=cbPalette)

Goals have been recorded at a player level throughout the history of the game, and the most recent
variable that is used in fantasy (tackles) started being recorded in 1987.

The box-score also contains time on ground so users are readily able to compute points per minute
which has been a leading indicator for 2 time winner of fantasy sports Moreira Magic.6

Champion Data publish Super Coach scores, valued by clubs to inform recruitment decisions and
fantasy sport competitions. However the formula for Super Coach scores is propriety and not in the
public domain. Following the release of fitzRoy, one well-known blogger attempted to re-create it
with a linear model, and managed an R-squared of 91.678

Able to Compare Popular Models

Blogging has taken off around the world with popular websites such as fansided, fivethirtyeight and
the ringer proving popular among the overseas sporting community. To help promote other people

5https://www.theringer.com/mlb/2018/2/20/17030428/sherri-nichols-baseball-sabermetric-movement
6https://player.whooshkaa.com/shows/chilling-with-charlie
7http://www.matterofstats.com/mafl-stats-journal/2018/10/7/a-first-attempt-at-combining-afl-team-and-

player-data-in-a-predictive-model
8This is impressive as Champion data uses data not available within fitzRoy and its weighted by time and game

margin.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://github.com/jimmyday12/fitzRoy
https://fansided.com
http://fivethirtyeight.com
https://www.theringer.com

CONTRIBUTED RESEARCH ARTICLE 160

Figure 2: Line graph of mean values of AFLM statistics - By seeing when the line jumps from zero is a
quick way to see when a statistic was first collected.

who do modeling work and make their work available online, we provide access to squiggle, the most
popular aggregator website in the AFL. This means that the behaviour of different tipsters’ models
can be analysed easily.

library(fitzRoy)
fitzRoy::get_squiggle_data("tips")

The above command will enable a user to get the tips from popular blogging sites such as squiggle,
matterofstats and liveladders among many. This means that different tipsters models behaviours can
be analysed easily. For example studying how they take into account home ground advantages.

Future Developments

The developers of fitzRoy is committed to giving users the data to analyse the game. In the future this
means updating the Womens AFLW data once it becomes available online, updating the scrapers to
include the AFL website.

Summary

The fitzRoy package offers a springboard for sports analytics in the AFL community. It provides easy
access to publicly available AFL data, and we have illustrated how this can be used to predict match
outcomes and to rank players. In future work we plan to build a statistical model for AFL match
outcomes and its key predictors, along the lines of (Yurko et al., 2018; Deshpande and Jensen, 2016).
There are endless possibilities: clubs might use it to inform on player recruitment (O’Shaughnessy,
2010) and team style (Greenham et al., 2017); researchers and enthusiasts can use it to better understand
the game; there are obvious betting implications (Bailey, 2000); and educators can use it as a teaching
tool.

The fitzRoy package was only released in 2018 but has already been used by AFL club analysts
and bloggers who are now able to access data and develop content they weren’t previously able to do
(e.g. VORP). The AFL analytics community is develops rapidly, and it is exciting to see where it will go
over the coming seasons.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://squiggle.com.au
http://www.matterofstats.com
https://www.liveladders.com/AFL/
http://www.matterofstats.com/mafl-stats-journal/2019/1/5/estimating-afl-player-value

CONTRIBUTED RESEARCH ARTICLE 161

Bibliography

M. Bailey. Identifying arbitrage opportunities in afl betting markets through mathematical modelling.
In Proceedings of the Fifth Australian Conference in Mathematics and Computers in Sport, pages 37–42,
2000. [p160]

S. K. Deshpande and S. T. Jensen. Estimating an nba player’s impact on his team’s chances of winning.
Journal of Quantitative Analysis in Sports, 12(2):51–72, 2016. [p160]

M. Goldman and J. M. Rao. Live by the three, die by the three? the price of risk in the nba. In
Submission to the MIT Sloan Sports Analytics Conference, 2013. [p155]

G. Greenham, A. Hewitt, and K. Norton. A pilot study to measure game style within australian
football. International Journal of Performance Analysis in Sport, 17(4):576–585, 2017. URL https:
//doi.org/10.1080/24748668.2017.1372163. [p160]

L. Henry and H. Wickham. purrr: Functional Programming Tools, 2019. URL https://CRAN.R-project.
org/package=purrr. R package version 0.3.2. [p156]

D. P. Kiley, A. J. Reagan, L. Mitchell, C. M. Danforth, and P. S. Dodds. Game story space of professional
sports: Australian rules football. Physical Review E, 93(5):052314, 2016. URL https://doi.org/10.
1103/PhysRevE.93.052314. [p156]

S. Lenor, L. J. Lenten, and J. McKenzie. Rivalry effects and unbalanced schedule optimisation in
the australian football league. Review of Industrial Organization, 49(1):43–69, 2016. doi: https:
//doi.org/10.1007/s11151-015-9495-7. [p156]

L. J. Lenten. Racial discrimination in umpire voting: an (arguably) unexpected result. Applied Economics,
49(37):3751–3757, 2017. URL https://doi.org/10.1080/00036846.2016.1267848. [p156]

L. J. Lenten, A. C. Smith, and N. Boys. Evaluating an alternative draft pick allocation policy to reduce
‘tanking’in the australian football league. European Journal of Operational Research, 267(1):315–320,
2018. URL https://doi.org/10.1016/j.ejor.2017.11.029. [p156]

L. J. Lenten, P. Crosby, and J. McKenzie. Sentiment and bias in performance evaluation by impartial
arbitrators. Economic Modelling, 76:128–134, 2019. URL https://doi.org/10.1016/j.econmod.2018.
07.026. [p156]

K. Marshall. The effect of leadership on afl team performance. In Proceedings of MathSport International
2017 Conference, page 255, 2017. [p156]

D. O’Shaughnessy. On the value of afl player draft picks. In 10th MathSport Conference, Darwin,
Australia, 2010. [p160]

D. Romer. Do firms maximize? evidence from professional football. Journal of Political Economy, 114(2):
340–365, 2006. URL https://doi.org/10.1086/501171. [p155]

R. Ryall and A. Bedford. An optimized ratings-based model for forecasting australian rules foot-
ball. International Journal of Forecasting, 26(3):511–517, 2010. URL https://doi.org/10.1016/j.
ijforecast.2010.01.001. [p158]

D. Temple Lang. XML: Tools for Parsing and Generating XML Within R and S-Plus, 2020. URL https:
//CRAN.R-project.org/package=XML. R package version 3.99-0.5. [p156]

H. Wickham and M. H. Wickham. Package ‘rvest’. URL: https://cran. r-project. org/web/packages/rvest/rvest.
pdf, 2016. [p156]

H. Wickham, R. Francois, L. Henry, K. Müller, et al. dplyr: A grammar of data manipulation. R package
version 0.4, 3, 2015. [p156]

K. Woolner. Introduction to vorp: Value over replacement player. Retrieved from Stathead. com:
https://web. archive. org/web/20070928064958/http://www. stathead. com/bbeng/woolner/v orpdescnew. htm,
2001. [p159]

R. Yurko, S. Ventura, and M. Horowitz. nflwar: A reproducible method for offensive player evaluation
in football. arXiv preprint arXiv:1802.00998, 2018. URL https://doi.org/10.1515/jqas-2018-0010.
[p160]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1080/24748668.2017.1372163
https://doi.org/10.1080/24748668.2017.1372163
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=purrr
https://doi.org/10.1103/PhysRevE.93.052314
https://doi.org/10.1103/PhysRevE.93.052314
https://doi.org/10.1080/00036846.2016.1267848
https://doi.org/10.1016/j.ejor.2017.11.029
https://doi.org/10.1016/j.econmod.2018.07.026
https://doi.org/10.1016/j.econmod.2018.07.026
https://doi.org/10.1086/501171
https://doi.org/10.1016/j.ijforecast.2010.01.001
https://doi.org/10.1016/j.ijforecast.2010.01.001
https://CRAN.R-project.org/package=XML
https://CRAN.R-project.org/package=XML
https://doi.org/10.1515/jqas-2018-0010

CONTRIBUTED RESEARCH ARTICLE 162

Robert N. Nguyen
School of Mathematics and Statistics
University of New South Wales
Sydney,NSW 2052 Australia
robert.nguyen@unsw.edu.au

James T. Day
Fusion Sport
Australia
jamesthomasday@gmail.com

David I. Warton
School of Mathematics and Statistics and
Evolution & Ecology Research Centre
University of New South Wales
Sydney,NSW 2052 Australia
David.Warton@unsw.edu.au

Oscar Lane
lane.oscar@gmail.com

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:robert.nguyen@unsw.edu.au
mailto:jamesthomasday@gmail.com
mailto:David.Warton@unsw.edu.au
mailto:lane.oscar@gmail.com

CONTRIBUTED RESEARCH ARTICLE 163

Assembling Pharmacometric Datasets in
R - The puzzle Package
by Mario González-Sales*, Olivier Barrière*, Pierre Olivier Tremblay, Guillaume Bonnefois, Julie
Desrochers and Fahima Nekka

Abstract

Pharmacometric analyses are integral components of the drug development process. The core of
each pharmacometric analysis is a dataset. The time required to construct a pharmacometrics dataset
can sometimes be higher than the effort required for the modeling per se. To simplify the process, the
puzzle R package has been developed aimed at simplifying and facilitating the time consuming and
error prone task of assembling pharmacometrics datasets.

Puzzle consist of a series of functions written in R. These functions create, from tabulated files,
datasets that are compatible with the formatting requirements of the gold standard non-linear mixed
effects modeling software.

With only one function, puzzle(), complex pharmacometrics databases can easily be assembled.
Users are able to select from different absorption processes such as zero- and first-order, or a com-
bination of both. Furthermore, datasets containing data from one or more analytes, and/or one or
more responses, and/or time dependent and/or independent covariates, and/or urine data can be
simultaneously assembled.

The puzzle package is a powerful and efficient tool that helps modelers, programmers and
pharmacometricians through the challenging process of assembling pharmacometrics datasets.

Introduction

The pharmacometrics workflow has routine steps: 1) assemble the dataset, 2) explore, 3) model the
data, 4) evaluate, 5) validate the model, and 6) communicate the findings. The automation of these
steps saves time and money, reduces the risk of errors, and increases reproducibility. Currently, a
number of excellent tools are available to enhance steps 2-6 (Jonsson and Karlsson, 1999; Lindbom
et al., 2005; Keizer et al., 2011; Keizer, 2015; Mouksassi, 2016; Wang et al., 2016; Keizer, 2018; Xie et al.,
2018; Mouksassi, 2019; Baron, 2019; RStudio team). However, to the best of our knowledge, there is no
open source tool to support step 1). Considerable challenges exist when working in data management
with an industrial setting that must comply with rules and regulations under the scrutiny and control
of regulatory agencies, such as the U.S. Food and Drug Administration (FDA), Health Canada, the
Japanese Pharmaceutical and Medical Device Agency (PMDA), or the European Medicines Agency
(EMA). The task of dataset building should not be underrated, since the amount of time required to
construct a pharmacometrics dataset can be sometimes higher than the effort required for the modeling
per se. In fact, it is often claimed that the process of cleaning and preparing the data could take up
to 80% of data analysis (Dasu and Johnson, 2003). In addition, data preparation does not amount
to a single step, since it usually has to be repeated over the course of analysis as new data become
available.

Understanding the structure of pharmacometrics datasets is essential for an efficient data assem-
bling. These datasets are two-dimensional arrangements of data in rows and columns. Each row
represents a record or an event, while each column represents an item or a variable. Pharmacokinetic
(PK) datasets are generally time-ordered arrangements of records representing the time course of
plasma concentrations related to the dose of drug administered. Depending on the complexity of
the system being modeled, pharmacodynamics (PD) datasets might or not include dose and/or time
information. Furthermore, pharmacometrics datasets normally imply multiple doses, several routes
of administration, different treated arms and/or sequences, time dependent and/or independent
covariates, metabolite, and/or urine data, and/or information regarding one or multiple PD endpoints.
These additional components tend to skyrocket the complexity of the data assembling as it makes the
process hard to script up-front. This is especially true when working with data that are not in tidy
shape (Wickham et al., 2014). Due to this entanglement, complications are likely to happen throughout
the process. In this regard, inconsistencies between exact dates, times of dose and blood sampling,
different identifiers on the same requisition forms, imputation of missing and time-varying covariates,
and missing timing of concomitant medications are common issues (Grasela et al., 2007).

In this tutorial, we present the puzzle package to the pharmacometrics community, an open
source tool for assembling pharmacometrics datasets in R. The puzzle package consists in a group of
functions developed to simplify and facilitate the time consuming and error prone task of assembling

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=puzzle

CONTRIBUTED RESEARCH ARTICLE 164

Figure 1: Structure of the four different files to input data into puzzle() function. Panels a and b
illustrate the items required to input PK information from one and two analytes, respectively. Panel c and d
depict the items to input PD and dosing information. Panel e and f presents the pre-formatting requirements to
input covariate information assuming time in- and dependent covariates, respectively.

pharmacometrics datasets. The datasets created are compatible with the formatting requirements
of the NONMEM® software (Beal et al., 2009). Moreover, as NONMEM® data structures are the
gold standard for non-linear mixed effects modeling, the datasets created with the puzzle package
are mostly compatible with other non-linear mixed effects softwares such as MONOLIX (Lixoft),
saemix (Comets et al., 2011), and nlmixr (Fidler et al., 2019). The puzzle package is also available on
CRAN and can be installed with the following R code: install.packages("puzzle").

This tutorial proceeds as follows. First, we illustrate two common case studies of data assembling
of pharmacometrics datasets using the puzzle package. Second, we dive into the arguments of the
main function of the puzzle package, the puzzle() function. Third, we present the pre-formatting
requirements of puzzle(), and finally, we conclude with a discussion regarding the limitations and
inconveniences of this framework, and what are the other approaches or efforts that might be advanta-
geous to pursue.

Use of the puzzle function

The puzzle() function is flexible enough to build all types of pharmacometrics datasets in the appro-
priate format for the pharmacometrics analysis. The data presented in Figure 1 will be used to show
the readers the flexibility of the puzzle() function and how powerful it is. In the first example, panels
b, d, and e of Figure 1 will be used to assemble a PK dataset containing parent and metabolite plasma
concentrations, several covariates, and multiple administrations. The second example will imply
panels a, c, d and f of Figure 1. The output dataset will be a PK/PD data set with time dependent
covariates.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=saemix
https://CRAN.R-project.org/package=nlmixr

CONTRIBUTED RESEARCH ARTICLE 165

Example 1: PK data set
The syntax to create the NM_PK.csv depicted in Table 1 is as follows:

library(puzzle)
directory = "C:/projects/puzzle/data"
puzzle(directory=file.path(directory),

order=c(1,1),
pk=list(name="pk.xlsx"),
dose=list(name="dose.csv"),
cov=list(name="cov.csv"),
nm=list(name="NM_PK.csv"),
username="Mario Gonzales Sales")

C ID TIME TAD DOSETIME PDOSETIME NUMDOSE AMT CMT EVID DV LDV MDV SEX WEIGHT

1 0 0 0 0 1 200 1 1 . . 1 0 72

1 0 0 0 0 1 200 2 1 . . 1 0 72

1 0 0 0 0 1 . 3 0 0 . 0 0 72

1 0 0 0 0 1 . 4 0 0 . 0 0 72

1 2 2 0 0 1 . 3 0 10.8 2.37954613 0 0 72

1 2 2 0 0 1 . 4 0 5.41 1.68824909 0 0 72

1 8 8 0 0 1 . 3 0 7.6 2.02814825 0 0 72

1 8 8 0 0 1 . 4 0 3.77 1.327075 0 0 72

1 24 0 24 0 2 100 1 1 . . 1 0 72

1 24 0 24 24 2 100 2 1 . . 1 0 72

1 30 6 24 24 2 . 3 0 3.2 1.16315081 0 0 72

1 30 6 24 24 2 . 4 0 1.05 0.04879016 0 0 72

2 0 0 0 0 1 200 1 1 . . 1 1 95

2 0 0 0 0 1 200 2 1 . . 1 1 95

2 0 0 0 0 1 . 3 0 0 . 0 1 95

2 0 0 0 0 1 . 4 0 0 . 0 1 95

2 1.9 1.9 0 0 1 . 3 0 9.97 2.29958058 0 1 95

2 1.9 1.9 0 0 1 . 4 0 4.86 1.58103844 0 1 95

2 7.5 7.5 0 0 1 . 3 0 12.1 2.49320545 0 1 95

2 7.5 7.5 0 0 1 . 4 0 5.96 1.78507048 0 1 95

2 24 0 24 0 2 100 1 1 . . 1 1 95

2 24 0 24 24 2 100 2 1 . . 1 1 95

2 30.1 6.1 24 24 2 . 3 0 2.5 0.91629073 0 1 95

2 30.1 6.1 24 24 2 . 4 0 1.07 0.06765865 0 1 95

Table 1: Returned output from the puzzle() function after running example 1

After running the puzzle() function the following message will be printed in the R console:

Automatic coercion to numeric for CMT
3=parent
4=metabolite
Automatic coercion to numeric for SEX
0=F
1=M
Assembling date and time: 2019-10-29 12:12:47
Time zone: Europe/Paris
Number of individuals: 2
Number of observations: 16
Dose levels: “100”, “200”
This data set was assembled by Mario Gonzalez Sales

It informs the user that parent and metabolite records are located in CMT 3 and 4, respectively.
Moreover, it also indicates that the categorical variable SEX has been coerced into a numeric variable.
Female (F) and male (M) categories have been assigned to the values of 0 and 1, respectively. The user
should be aware that factors are coerced following alphabetical order. The date and time at which the
dataset was assembled, the timezone where the assembling was performed, the number of individuals
and observations in the dataset, the different dose levels administered, and if requested, the person
who performed the data assembling will be automatically displayed.

The puzzle() function simultaneously assembles the PK (i.e. parent and metabolite), the dose and
the covariate information returning a NONMEM® ready dataset stored in a .csv file (i.e. "NM_PK.csv").

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 166

Because order has been set to order = c(1,1), the dose has been split into two compartments (i.e.
CMT 1 and 2). Furthermore, because there are two analytes, the observations have been assigned
to an independent compartment (i.e. CMT 3 and 4) for the parent and the metabolite, respectively.
Additionally, the puzzle() function automatically appends useful items to the output. Specifically, a
placeholder to ignore records (C), time after dose (TAD), dosing time (DOSETIME), prior dosing time
(PDOSETIME), the compartment item (CMT), the event identification (EVID), the log of the DV (LDV)
and the missing dependent variable item (MDV).

Example 2: PK/PD data set
The syntax to create the NM_PKPD.csv depicted in Table 2 is as follows:

puzzle(directory=file.path(directory),
order=0,
pk=list(name="pk.csv"),
pd=list(name="pd.csv"),
dose=list(name="dose.csv"),
cov=list(name="cov_time_dependent.csv"),
coercion=list(name="coercion.txt"),
nm=list(name="NM_PKPD.csv"))

C ID TIME TAD DOSETIME PDOSETIME NUMDOSE AMT TYPE CMT EVID DV LDV MDV SEX WEIGHT

1 0 0 0 0 1 200 0 1 1 . . 1 0 72

1 0 0 0 0 1 . 1 1 0 0 . 0 0 72

1 0 0 0 0 1 . 2 2 0 25 3.21887582 0 0 72

1 2 2 0 0 1 . 1 1 0 10.8 2.37954613 0 0 72

1 8 8 0 0 1 . 1 1 0 7.6 2.02814825 0 0 72

1 12.1 12.1 0 0 1 . 2 2 0 100 4.60517019 0 0 71

1 24 0 24 0 2 100 0 1 1 . . 1 0 70

1 30 6 24 24 2 . 1 1 0 3.2 1.16315081 0 0 70

1 48.4 24.4 24 24 2 . 2 2 0 45 3.80666249 0 0 70

2 0 0 0 0 1 200 0 1 1 . . 1 1 95

2 0 0 0 0 1 . 1 1 0 0 . 0 1 95

2 0 0 0 0 1 . 2 2 0 32 3.4657359 0 1 95

2 1.9 1.9 0 0 1 . 1 1 0 9.97 2.29958058 0 1 95

2 7.5 7.5 0 0 1 . 1 1 0 12.1 2.49320545 0 1 95

2 12.2 12.2 0 0 1 . 2 2 0 77 4.34380542 0 1 96

2 24 0 24 0 2 100 0 1 1 . . 1 1 94

2 30.1 6.1 24 24 2 . 1 1 0 2.5 0.91629073 0 1 94

2 48.5 24.5 24 24 2 . 2 2 0 53 3.97029191 0 1 94

Table 2: Returned output from the puzzle() function after running example 2

In this case, the variable type of observation (i.e. TYPE) has been appended to the "NM_PKPD.csv"
file. Because a bolus administration has been specified with the argument order (i.e. order = 0),
TYPE has a value of 0 for dosing events, and a value of 1 and 2 for PK and PD records, respectively.
Moreover, the file "coercion.txt" has been generated. The content is printed below:

CMT: 1=pk, 2=pd
SEX: 0=F, 1=M

The argument of the puzzle function

The puzzle() function builds pharmacometrics ready datasets from a group of tabulated files. For
convenience, it always returns a ".csv" file or an R object of class "data.frame" as output. The path to
the location of the files to be assembled can be set with the directory argument. Depending on the
pharmacometric analysis to be performed, the tabulated files may contain PK, dose, covariates and/or
PD information.

The PK data may include drug concentration (i.e. parent and/or metabolite/s) and/or urine
information. The pk argument is used to input this type of data into the puzzle() function. The
general form is as follows:

pk = list(name = NULL, data = NULL)

If the PK data is stored in a ".csv" or an ".xlsx" file, the name of the file should be provided with
name:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 167

pk = list(name = "pk.csv", data = NULL)

Alternatively, if the data is within the R environment, the name of the R object may be defined
with the parameter data:

pk = list(name = NULL, data = nm$pk)

where nm is a list containing the PK information pk. Excel files are useful to simultaneously store
PK information from two or more analytes. The puzzle() function is smart enough to assemble all
the PK information at once. To this end, each analyte data has to be contained in its own spreadsheet.
Moreover, each sheet has to have the same items, and the items have to be in the same order.

The PD information may comprise the time course of the clinical endpoint of interest, time to
event data, and/or a response outcome. This type of information is handled with the pd argument. Its
behavior is similar to pk, and thus, it accepts the same type of tabulated files and it requires a similar
syntax. For example, in case of multiple endpoints stored in an ".xlsx" file, the user should define:

pd = list(name = "pd.xlsx", data = NULL)

or simply

pd = list(name = "pd.xlsx")

Consistently, covariate and dose information are inputted to the puzzle() function with the
arguments cov and dose, respectively. The reader should note that ".xlsx" files are not required, and the
data should be contained within a ".csv" file or an R object. Finally, extratimes is another argument
following this logic. This argument can be used to add a common pattern of additional times for each
individual within the dataset. The user may be interested in this feature for prediction purposes. For
example, if the data are very sparse (i.e. 2 observations per individual from time 1 to 4 hours post drug
administration), it is possible to define a vector of times from time 0 to 4 hours post dose in order to
obtain a smooth prediction (e.g. extratimes = list(name = "extratimes.csv",data = NULL)). Of
note, EVID = 2 will be assigned to these extra times.

The cov and dose arguments may be used in combination with a number of additional arguments:
optionalcolumns, which defines the optional columns to be appended in to the output. For instance,
if more than one treatment is administered, the file storing the dose information may contain the
variable treatment (i.e. "TRT"). If the user wants to include this variable in the pharmacometrics dataset,
the following syntax is warranted: optionalcolumns = "TRT". If more than one variable are to be
appended, the syntax should be: optionalcolumns = c("variable 1","variable 2"). Furthermore,
the argument fillcolumns fills the columns appended with the argument optionalcolumns using the
last observation carried forward method. If the argument is defined as fillcolumns = "TRT", the
variable TRT will be added without missing values. Otherwise, the value of TRT only will be available
for dosing records, and non-dosing records will be outputted as ".", the default for missing values.

The puzzle() function is able to coerce numeric variables from character variables. If a character
variable is introduced with the cov argument, this variable will be automatically coerced into a numeric
variable. For example, let’s assume we have a character variable accounting for renal impairment with
the following possible values: "mild", "moderate" and "severe". The puzzle() function will convert
the variable from character to factor. Each string will be a different level. Then, the factor variable will
be coerced into numeric. If there is no numeric order within the factor, the levels will be alphabetically
assigned. The argument initialindex defines the initial value of the coerced numeric variable. The
default value is initialindex = 0. Therefore, under the default settings, the "mild", "moderate" and
"severe" levels will have numeric values of 0, 1 and 2, respectively. Moreover, a string for missing
values can be defined with the argument na.strings. Thus, if a variable has a missing value, this
can be labeled as not available as follows: na.strings = "N/A". For convenience, a ".txt" file may be
created with the argument coercion. This argument creates a record of the categories of each coerced
variable. If the user defines coercion = list(name = "my_coercion_records.txt"), a file with the
name "my_coercion_records.txt" will be generated in the working directory after running the puzzle()
function. The user can also control the variables to be included in the records with the argument
nocoercioncolumns.

When performing population PK analysis in NONMEM®, the structure of the data set depends
on the route of administration. This implies that the data structure is different for bolus, infusion
and oral administrations (Owen and Fiedler-Kelly, 2014). The argument order is used to handle this
situation. It can take four different values: order = 0 indicates a zero-order absorption process. It
may be used for bolus or infusion administrations. For the later, the RATE has to be given in the
dosing file; order = 1 serves to generate datasets to model first-order absorption processes (e.g.
oral administration); order = c(1,1) may be used to model the absorption of drugs with complex
formulations. An example may be a drug formulated as immediate and extended release. In this
situation, two different absorption rates may be warranted, and c(1,1) means that the dataset is built

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 168

assuming two first-order absorption processes. Finally, order = c(0,1) allows the user to define a
zero- and first-order absorption processes. By default, the puzzle() function assumes this process
occurs in parallel, meaning that one fraction of the drug is absorbed thorough a zero-order process
and the remaining amount of the drug is absorbed following a first-order process. However, it may
also follow a sequential process where the drug is delivered thorough a zero-order process to the
depot compartment, and then, absorbed into the bloodstream following a first-absorption process. The
argument parallel can be set to false (i.e. parallel = FALSE) to control these absorption patterns.
The user must be aware that if order is not set to order = c(0,1) and parallel = FALSE, puzzle()
will return the following error message:

Error in puzzle(directory = file.path(getwd()), order = c(1, 1), parallel = F,: Would you like to use a
sequential zero + first order absorption model? Please set order=c(0,1). Otherwise, please set parallel
= T

A characteristic of the NONMEM® datasets is that characters are not allowed, and all the
items, except DAT, must be numeric. Hence, the command IGNORE in the $INPUT block within a
NONMEM® control stream is commonly used to ignore the label of the data items. The puzzle()
function has the argument ignore to create a new item for this purpose. For example, if the user
sets ignore = "C", the first column of the returned ".csv" file will contain an item called C. The argu-
ment missingvalues allows the user to specify a label for the missing values. The default value is
missingvalues = ".".

The user can control how the records are arranged with the argument arrange. By default, records
are arranged as follows: arrange="ID,TIME,CMT,desc(EVID)". Moreover, complex date formatting is
also supported. The argument datetimeformat defines the format for dates and times. By default, the
format is datetimeformat = "%Y-%m-%d %H:%M:%S". In addition to that, time units may be specified
with the argument timeunits. For example, timeunits = "hours". It should be highlighted that the
timezone will affect how times are computed from dates. Thus, depending on your location, times
may be slightly different because the default value is timezone = Sys.timezone(). The user can also
identify the person assembling the dataset with the argument username. The last argument of the
puzzle() function is nm. It is used to name the output from the function, in other words, the returned
".csv" file. The syntax of the arguments of the puzzle() function is presented in Table 3.

Pre-formatting requirements

At the beginning of a new project, the modeler or the programmer usually faces a series of large
and structurally diverse datasets where the required information for the analysis is stored. It is a
common practice that data are collected using automatic informatics methods. Unfortunately, the
systems may storage the information in multiple and non-tidy pre-defined files. This situation is not
ideal to assemble the pharmacometrics datasets because the programmer has to spend valuable time
puzzling out and assembling all the heterogeneous information. The puzzle() function generates
NONMEM® formatted datasets from standard tabulated files. Consequently, before calling the
puzzle() function, it may be necessary to perform some data manipulation (Wickham and Grolemund,
2016; Chen et al., 2017). The degree of data manipulation will depend on the structure of the stored
information. Given the high combination of possible data structures, detailing how the data should be
manipulated is out of the scope of this manuscript. The reader is referred to the documentation of
the tidyverse package for more information regarding how to efficiently perform this step (Wickham,
2017).

Pharmacometrics datasets usually contain PK, PD, dose and/or covariate information. The
puzzle() function requires each type of information to be inputted from a separate tabulated file. Each
file has to contain pre-defined variables with specific labels.

Pre-formatting requirements for the tabulated file containing the PK information

This file has to have at least three columns: i) a column used for subject identification "ID"; ii) a column
containing the sampling times at which the PK samples were collected "TIME" or "DATETIME"; and
iii) the observed value of the dependent variable "DV". The tabulated file can be an R object of class
list, or a ".csv" file in case of assembling data from one analyte (Figure 1: panel a). If information from
more than one analyte is to be assembled (Figure 1: panel b), the data should be stored in an ".xlsx",
or in an R object of class list. For example, if parent and metabolite information are available, the
puzzle() function requires an ".xlsx" file with one sheet containing the PK information of the parent
drug, and another sheet storing the PK information of the metabolite. There is no limit in the number
of sheets that the puzzle() function can handle. However, it is mandatory that each sheet includes the
three pre-defined columns mentioned above.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tidyverse

CONTRIBUTED RESEARCH ARTICLE 169

Argument Example of syntax

directory directory = file.path(getwd())
pk pk = list(name="pk.csv")
pd pd = list(name="pd.csv")
cov cov = list(name="cov.csv")

dose dose = list(name="dose.csv")
extratimes extratimes = list(name="extratimes.csv")

optionalcolumns optionalcolumns = "TRT"
fillcolumns fillcolumns = "TRT"
initialindex initialindex = 0
na.strings na.strings = "N/A"
coercion coercion = list(name = "coercion.txt")

nocoercioncolumns nocoercioncolumns = NULL
order order = c(0,1)

parallel parallel = FALSE
ignore ignore = "C"

missingvalues missingvalues = "."
arrange arrange = "ID,TIME,CMT,desc(EVID)"

datetimeformat datetimeformat="%Y-%m-%d %H:%M:%S"
timeunits timeunits="hours"
timezone timezone=Sys.timezone()
username Username="User"

nm nm=list(name="NONMEM.csv")

Table 3: Syntax of the arguments of the puzzle() function

Pre-formatting requirements for the tabulated file containing the PD information

The puzzle() function has the same requirements for the PD than for the PK information. Therefore,
the same three items (i.e. ID, TIME or DATETIME, and DV) are mandatory and depending on the
number of PD endpoints available, the data can be stored in an R object of class list, a ".csv" or an
".xlsx" file (Figure 1: panel c).

Pre-formatting requirements for the tabulated file containing the dosing records

At least three columns are required: i) a column used as subject identification "ID": ii) a column
containing the times at which the doses were administered "TIME" or "DATETIME"; and iii) the given
dose "AMT" (Figure 1: panel d). In addition to that, and depending on the study design, other columns
may be present as well. Later on, these columns may be passed to the returned ".csv" file using the
optionalcolumns argument.

Pre-formatting requirements for the tabulated file containing the covariate information

If this file is used, it has to include the following three items: i) a column with subject identification "ID";
ii) the name of the variable "VAR", and iii) the value of the variable "VALUE" (Figure 1: panel e). Of
note, the puzzle() function is able to handle time independent (e.g. sex) or time dependent covariates
(Figure 1: panel f). In the specific case of time dependent covariates, a fourth item is mandatory: iv) a
column containing the times at which the covariates were collected "TIME" or "DATETIME". This is
required so that the puzzle() function can know the times at which the value of the covariate changes
within a subject.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 170

Discussion

The puzzle package has been designed to be used as simple as possible. In fact, with a few lines of
R code, modelers, programmers and overall pharmacometricians have now an open source tool to
assemble complex pharmacometrics datasets. In order to facilitate its use and to decrease the slope of
the learning curve, users are only required to learn the behavior and syntax of one function, puzzle().
Nevertheless, the puzzle package involves additional functions intentionally working "under the
hood" to enhance the user experience. These functions are borrowed from several R libraries including:
utils, lubridate, stats, readxl, reshape2, sqldf, plyr, and dplyr. The puzzle package started to be
coded more than six years ago. At the time, reshape2, plyr, readxl and sqldf were useful tools from a
data assembling perspective. However, if the puzzle package was started to be coded from scratch
nowadays, the authors would probably use the tidyverse package as reference.

At first, the main inconvenience of puzzle() may be the requirement of specific pre-defined
formatting for its inputs. Nevertheless, it is indeed this feature that drastically increases the flexibility
and productivity of puzzle(), allowing the assembling of all types of pharmacometrics datasets. The
examples provided herein only scratches the surface of what the package is able to do. The reader is
referred to the supplementary material for additional examples on how assembling pharmacometrics
datasets using the puzzle package.

The data assembling workflow starts with data collection. The second step is data storage.
Unfortunately, most of the heterogeneity and difficulty during the data assembling arises in this step.
Effectively, each company or hospital may use its own recipe to store the data. Even more complexity
is usually added to the process if, within a company or hospital, different scientists or nurses are
involved in the data collection and/or storage. This is due to inter-individual (i.e. "two persons may
label the same item differently") and/or inter-occasion (i.e. "the same person may label the same item
differently") variability. This fact makes the principle of reproducibility from a data preparation point
of view quite challenging.

The use of Study Data Tabulation Model (SDTM) has provided a standard for organizing and
formatting data to streamline processes in collection, management, analysis and reporting, and
it is one of the required standards for data submission to FDA and PMDA. The submission data
standards team of Clinical Data Interchange Standards Consortium (CDISC) defines SDTM (Clinical
Data Interchange Standards Consortium documentation). On July 21, 2004, SDTM was selected as the
standard specification for submitting tabulation data to the FDA for clinical trials and on July 5, 2011
for nonclinical studies.

Unfortunately, inconsistencies in the data are not uncommon even if strict rules are supposed to be
followed. Because of the heterogeneity of the data being assembled, the main limitation of the puzzle
package is the requirement of pre-data manipulation. Specifically, the inconsistencies from SDTM
have to be cleared before its use. Thus, at this stage of the development, the puzzle package is not
fully compatible with SDTM datasets. Nevertheless, it is planned to implement this feature in the next
version of the package. Alternatively, maybe, it is time within the pharmacometrics community to go
one step further and develop new tools and methods allowing the establishment of strategies and/or
protocols where data are more homogeneously stored. If this objective is accomplished and the degree
of pre-data manipulation is reduced or even completely eliminated, the often-painful process of data
assembling may become a breeze.

Conclusion

The puzzle package is a very flexible, powerful and efficient tool that helps modelers, programmers
and/or pharmacometricians through the complex model building process. Specifically, it is the
first open source tool supporting pharmacometricians during the difficult, error prone, and time
consuming process of data assembling. Therefore, the puzzle package fills an unmet condition within
the pharmacometrics workflow as it offers an opportunity for a unification of the code for data
assembly improving reproducibility and traceability. Thus, we do believe that the puzzle package will
be of high interest for the pharmacometrics community. It is the authors hope that this manuscript
serves as detonating to set the foundations for a more efficient and pleasant data assembling in our
field.

Bibliography

K. T. Baron. The mrgsolve package. https://mrgsolve.github.io, 2019. Accessed 2019-07-08. [p163]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://mrgsolve.github.io

CONTRIBUTED RESEARCH ARTICLE 171

S. Beal, L. Sheiner, A. Boeckmann, and R. Bauer. Nonmem user’s guide. (1989-2009), 2009. Icon
Development Solutions, Ellicott City, MD, USA. [p164]

S.-Y. Chen, Q. Liu, and Z. Feng. Common data manipulations with r in biological researches. Journal of
thoracic disease, 9(7):2209–2213, 2017. URL https://doi.org/10.21037/jtd.2017.06.48. [p168]

Clinical Data Interchange Standards Consortium documentation. https://www.cdisc.org/
standards/foundational/sdtm. Accessed 2019-11-29. [p170]

E. Comets, A. Lavenu, and M. Lavielle. saemix: Stochastic Approximation Expectation Maximization
(SAEM) algorithm. https://rdrr.io/cran/saemix/man/saemix.html, 2011. Accessed 2019-11-29.
[p164]

T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. Wiley-IEEE, 2003. [p163]

M. Fidler, J. J. Wilkins, R. Hooijmaijers, T. M. Post, R. Schoemaker, M. N. Trame, Y. Xiong, and
W. Wang. Nonlinear mixed-effects model development and simulation using nlmixr and related
r open-source packages. CPT: pharmacometrics & systems pharmacology, 8:621–633, 2019. URL
https://doi.org/10.1002/psp4.12445. [p164]

T. H. Grasela, J. Fiedler-Kelly, B. Cirincione, D. Hitchcock, K. Reitz, S. Sardella, and B. Smith. In-
formatics: the fuel for pharmacometric analysis. The AAPS journal, 9(1):E84–E91, 2007. URL
https://doi.org/10.1208/aapsj0901008. [p163]

E. N. Jonsson and M. O. Karlsson. Xpose–an S-PLUS based population pharmacoki-
netic/pharmacodynamic model building aid for nonmem. Computer methods and programs in
biomedicine, 58(1):51–64, 1999. [p163]

R. J. Keizer. R library for simulation of PKPD models defined as ODE systems. The PKPDsim package.
https://github.com/ronkeizer/PKPDsim, 2015. Accessed 2019-07-08. [p163]

R. J. Keizer. R library to create visual predictive checks. The vpc package. https://github.com/
ronkeizer/vpc, 2018. Accessed 2019-07-08. [p163]

R. J. Keizer, M. van Benten, J. H. Beijnen, J. H. M. Schellens, and A. D. R. Huitema. Piraña and pcluster:
a modeling environment and cluster infrastructure for nonmem. Computer methods and programs in
biomedicine, 101(1):72–79, 2011. URL https://doi.org/10.1016/j.cmpb.2010.04.018. [p163]

L. Lindbom, P. Pihlgren, E. N. Jonsson, and N. Jonsson. Psn-toolkit–a collection of computer intensive
statistical methods for non-linear mixed effect modeling using nonmem. Computer methods and
programs in biomedicine, 79(3):241–257, 2005. URL https://doi.org/10.1016/j.cmpb.2005.04.005.
[p163]

Lixoft. MONOLIX 2019 version documentation. http://monolix.lixoft.com/. Accessed 2019-10-28.
[p164]

S. Mouksassi. Rshiny app as interface to ggplot2. The ggplotwithyourdata package. https://github.
com/smouksassi/ggplotwithyourdata, 2016. Accessed 2019-07-08. [p163]

S. Mouksassi. Ggplot and summary statistics quick exploration of data. The ggquickeda package.
https://github.com/smouksassi/ggquickeda, 2019. Accessed: 2019-07-08. [p163]

J. Owen and J. Fiedler-Kelly. Introduction to population pharmacokinetic and pharmacodynamic analysis
with nonlinear mixed effects models. Wiley, 2014. [p167]

RStudio team. Rmarkdown: dynamic documents for R. The rmardown package. https://rmarkdown.
rstudio.com/. Accessed 2019-10-28. [p163]

W. Wang, K. M. Hallow, and D. A. James. A Tutorial on RxODE: Simulating Differential Equation
Pharmacometric Models in R. CPT: pharmacometrics & systems pharmacology, 5(1):3–10, 2016. URL
https://doi.org/110.1002/psp4.12052. [p163]

H. Wickham. The tidyverse package. https://www.tidyverse.org/, Nov. 2017. Accessed 2019-07-08.
[p168]

H. Wickham and G. Grolemund. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data.
O’Really Media, 2016. [p168]

H. Wickham et al. Tidy data. Journal of Statistical Software, 59(10):1–23, 2014. [p163]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.21037/jtd.2017.06.48
https://www.cdisc.org/standards/foundational/sdtm
https://www.cdisc.org/standards/foundational/sdtm
https://rdrr.io/cran/saemix/man/saemix.html
https://doi.org/10.1002/psp4.12445
https://doi.org/10.1208/aapsj0901008
https://github.com/ronkeizer/PKPDsim
https://github.com/ronkeizer/vpc
https://github.com/ronkeizer/vpc
https://doi.org/10.1016/j.cmpb.2010.04.018
https://doi.org/10.1016/j.cmpb.2005.04.005
http://monolix.lixoft.com/
https://github.com/smouksassi/ggplotwithyourdata
https://github.com/smouksassi/ggplotwithyourdata
https://github.com/smouksassi/ggquickeda
https://rmarkdown.rstudio.com/
https://rmarkdown.rstudio.com/
https://doi.org/110.1002/psp4.12052
https://www.tidyverse.org/

CONTRIBUTED RESEARCH ARTICLE 172

Y. Xie, J. J. Allaire, and G. Grolemund. R Markdown: The Definitive Guide. Chapman & Hall/CRC, 2018.
[p163]

Mario González Sales*
Modeling Great Solutions
Crta. Engolasters s/n, Escaldes-Engordany, AD700
Andorra
mario@modelinggreatsolutions.com

Olivier Barrière*
Certera
2000 Peel Street, Suite 570, Montréal, H3A 2W5
Canada
olivier.barriere@certara.com

*Both authors share the first authorship.

Pierre Olivier Tremblay
Syneos Health
2500 Rue Einstein, Québec, G1P 0A2
Canada
pierreolivier.tremblay@syneoshealth.com

Guillaume Bonnefois
Syneos Health
5160, boulevard Décarie, Montréal, H3X 2H9
Canada
guillaume.bonnefois@syneoshealth.com

Julie Desrochers
Syneos Health, Québec, Canada
2500, Rue Einstein, Québec, G1P 0A2
Canada
julie.desrochers@syneoshealth.com

Fahima Nekka
Université de Montréal - Faculté de Pharmacie
2940, Chemin de Polytechnique, Montréal, H3T 1J4
Canada
fahima.nekka@umontreal.ca

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:mario@modelinggreatsolutions.com
mailto:olivier.barriere@certara.com
mailto:pierreolivier.tremblay@syneoshealth.com
mailto:guillaume.bonnefois@syneoshealth.com
mailto:julie.desrochers@syneoshealth.com
mailto:fahima.nekka@umontreal.ca

CONTRIBUTED RESEARCH ARTICLE 173

RNGforGPD: An R Package for
Generation of Univariate and
Multivariate Generalized Poisson Data
by Hesen Li, Hakan Demirtas, and Ruizhe Chen

Abstract This article describes the R package RNGforGPD, which is designed for the generation of
univariate and multivariate generalized Poisson data. Some illustrative examples are given, the utility
and functionality of the package are demonstrated; and its performance is assessed via simulations
that are devised around both artificial and real data.

Introduction and motivation

It is well known that the variance of a Poisson variable equals to its mean. However, over- and under-
dispersion in count data could make this mean-variance equality assumption unrealistically simplistic.
This situation is often caused by the heterogeneity in the population, while we implicitly assume
that the weights assigned to each event are equal when we employ the regular Poisson distribution.
This problem can be addressed by modeling count data using the generalized Poisson distribution
(GPD), which enables us to assign varying weights to events (Satterthwaite, 1942). The GPD includes
a dispersion parameter λ, which accommodates over- or under-dispersion relative to the Poisson
distribution in addition to the rate parameter θ in the regular Poisson distribution.

Scientific background

As discussed in the book of Consul (1989), the GPD has two parameters, rate and dispersion. It can be
regarded as a mixture of Poisson distributions according to Joe and Zhu (2005).

The GPD can be described mathematically as follows: Let X be a discrete random variable defined
over non-negative integers, and let Px(θ, λ) be its probability mass function (pmf). X is said to follow
the GPD with rate parameter θ and dispersion parameter λ if

Px(θ, λ) =

{
θ (θ + λx)x−1 e−θ−λx/x!, for x = 0, 1, 2...
0, for x > m if λ < 0

and zero otherwise, where θ > 0, max(−1,−θ/m) ≤ λ < 1, and m(≥ 4) is the largest positive integer
for which θ + mλ > 0 when λ < 0. The parameters θ and λ are independent, but the lower limits on λ
and m are imposed to ensure that there are at least five classes with non-zero probability when λ is
negative. λ = 0 corresponds to the Poisson distribution, while λ > 0 and λ < 0 correspond to over-
and under-dispersion relative to the regular Poisson, respectively.

Besides, if we regard the weights of each event in a time period as independent and formulate the
summation of the weights as a characteristic function, the distribution function of the sum of weights
has all the properties of the GPD after the application of the Fourier transformation (Satterthwaite,
1942).

According to Vernic (2000), the pmf for the multivariate GPD can be derived using the multivariate
reduction method. In her derivation, an m-dimensional GPD (MGP) is obtained by taking (m + 1)
independent univariate generalized Poisson random variables, Xi ∼ GPD(θi, λi), for i = 0, ..., m,
and let Y1 = X1 + X0, Y2 = X2 + X0, ..., Ym = Xm + X0, Then (Y1, ..., Ym) ∼ MGP(Θ, Λ), where
Θ = (θ0, ..., θm) and Λ = (λ1, ..., λm). The joint pmf of (Y1, ..., Ym) is

P(y1, ..., ym) = P(Y1 = y1, ..., Ym = ym)

=
min(y1,...,ym)

∑
k=0

p1(y1 − k) · ... · pm(ym − k)p0(k),

where pi is the pmf of the random variable Xi. Plugging in the pmf of Xi’s, we get

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 174

P(y1, ..., ym) =

 m

∏
j=0

θj

 exp

−θ −
m

∑
j=1

yjλj

 · min(y1,...,ym)

∑
k=0

 m

∏
j=1

[θj + (yj − k)λj]
yj−k−1

(yj − k)!

 ·
· (θ0 + kλ0)

k−1

k!
exp

k

 m

∑
j=1

λj − λ0

 ,

where θ = ∑m
j=0 θj and 0! = 1.

Application fields

The applications of the GPD in science and business vary in a wide range that spans life insurance,
physics, genetic biology, and public health. Satterthwaite (1942) mentioned a case where insurance
companies model the average financial cost per claim with the GPD, which allows the weights (costs
of different claims) to be heterogeneous. Vernic (1997) modeled the joint distribution of the yearly
frequencies of hurricanes affecting the first and the third zones of the north Atlantic coastal states in
the USA as a bivariate GPD.

Consul and Famoye (2006) gave an example regarding the induction and restitution process of
chromosomes. Chromosomes can be damaged in the induction process, and repaired in the restitution
process. The dispersion parameter λ in the GPD represents an equilibrium constant which is the limit
of the ratio of the rate of induction to the rate of restitution, and thus the GPD can be used to estimate
the net free energy for the production of induced chromosome aberrations (damaged chromosomes).

Although the importance of generating the multivariate generalized Poisson data is evident, there
has not been a comprehensive computational tool specifically targeted for this particular distribution.
Demirtas (2017) compared a few random variate generation techniques for univariate GPD, and
mentioned the potential for the generation of multivariate GPD variates via correlation mapping
procedure in a similar fashion to the method of Yahav and Shmueli (2012), which is concerned with
correlated regular Poisson data generation. The R package RNGforGPD (Li et al., 2020) is developed
to provide the accommodating tools for the expanded versions of the methods that appear in Demirtas
(2017) and Yahav and Shmueli (2012), where the augmentation is mostly about allowing over- and
under-dispersion for count data in a correlated setting.

The rest of the article is organized as follows: In Section 2, we outline the algorithms for the
generation of univariate and multivariate generalized Poisson data. In Section 3, we describe the
technical details of the R package RNGforGPD. In Section 4, we present the results of simulation
studies that are designed around both artificial and real data. Finally, we conclude the paper with a
brief discussion in Section 5.

Algorithm

First, we describe the prerequisites for the generation of GPD data. Then, we discuss the five algorithms
for generating univariate GPD data, and the algorithm for generating multivariate GPD data, which is
based on an adaptation of Yahav and Shmueli (2012)’s method for generating multivariate regular
Poisson data. In addition, we provide guidance on how to choose an appropriate data generation
function for generating univariate GPD data at the end of this section.

Generating univariate GPD data

In general, an appropriate choice from the five algorithms in generating univariate GPD data depends
on the values of the rate (θ) and dispersion (λ) parameters. Descriptions of each of the five algorithms
(Demirtas, 2017) are given in Table 1:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=RNGforGPD

CONTRIBUTED RESEARCH ARTICLE 175

Table 1: Table of algorithms.

Algorithms Steps Notes

Inversion

1. Set ω = e−λ, X = 0, S = e−θ and
P = S

2. Generate U ∼ U(0, 1)

3. While U > S, do

(a) X = X + 1

(b) C = θ − λ + λX

(c) P = ωC(1 + λ/C)X−1P/X

(d) S = S + P

4. Deliver X

This algorithm is a general purpose
univariate random number genera-
tion method that depends on the re-
cursive relationship between consec-
utive GPD probabilities:

Px(θ, λ) =
θ − λ + λx

x
×(

1 +
λ

θ − λ + λx

)x−1
×

e−λPx−1(θ, λ),

for x ≥ 1 with P0(θ, λ) = e−λ.

Branching

1. Generate Y ∼ Pois(θ)

2. Set X = Y, if X = 0, deliver X

3. Generate Z ∼ Pois(λY)

4. Set X = X + Z and Y = Z, if Y = 0,
deliver X, otherwise go to the previ-
ous step

This algorithm is a distribution spe-
cific algorithm and it only works
for positive λ values. Consul and
Shoukri (1988) showed that when
X0 ∼ Pois(θ) and Xj ∼ Pois(λ),
where j = 1, 2, ...n, Y = ∑n

k=0 Xk fol-
lows the GPD with rate parameter θ
and dispersion parameter λ.

Normal
Approximation

1. Initialize m = θ(1 − λ)−1 and ν =√
θ(1− λ)−3

2. Generate Y from a standard normal
distribution

3. X = max(0, bm + νY + 0.5c), where
b.c is the floor function

4. Deliver X

This algorithm uses the first two mo-
ments and a continuity correction in
generating univariate GPD data.

Build-Up

1. Set t = e−θ , X = 0, Px = t and S = Px

2. Generate U ∼ U(0, 1)

3. If U ≤ S then deliver X, otherwise
set X = X + 1, compute Px by the
probability mass function, set S = S+
Px, and return to the previous step

The cumulative distribution func-
tion (cdf) is built up by the recursive
computation of the mass probabili-
ties (Kemp, 1981).

Chop-Down

1. Set t = e−θ , X = 0 and Px = t

2. Generate U ∼ U(0, 1)

3. If U ≤ PX then deliver X, otherwise
set U = U − Px, X = X + 1, and com-
pute Px by the probability mass func-
tion, and return to the previous step

The generated uniform variate is de-
creased by an amount equal to the
cdf (Kemp, 1981).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 176

Generating multivariate GPD data

Yahav and Shmueli (2012) developed an algorithm for generating multivariate Poisson data using
an improved version of the NORTA method (NORmal To Anything). The NORTA method can be
used for generating multivariate regular Poisson data by simulating a p-dimensional multivariate
Normal distribution with a correlation structure RN , and then transform it into a regular Poisson
distribution using the inverse cumulative distribution function (Chen, 2001). However, Yahav and
Shmueli (2012) realized a drawback of the NORTA method for generating multivariate Poisson variates.
For lower values of rates (θ), the desired correlation matrix (ρPois) deviates seriously from the normal
approximating correlation matrix (ρN) under the NORTA method, and this problem still persists in
generating multivariate GPD data. However, the bias can be approximately corrected through an
exponential function:

ρPois = a× ebρN + c,

where

a = −
ρ̄× ρ

ρ + ρ
, b = log

(
ρ̄ + a

a

)
, c = −a,

and ρ̄ and ρ represent the upper and lower bounds of the pair correlation, which can be calculated
using their defined equations, respectively:

ρ = corr
(

Ξ−1
λi

(U) , Ξ−1
λj

(1−U)
)

,

ρ̄ = corr
(

Ξ−1
λi

(U) , Ξ−1
λj

(U)
)

.

In our package, we keep the corrections of correlation matrix and adapt the calculations of ρ̄ and ρ
using a simple but accurate sorting technique, which is described in Demirtas and Hedeker (2011).
We adapt Yahav and Shmueli (2012)’s method and develop the algorithm for generating multivariate
generalized Poisson data. Suppose we want to generate a p-dimensional generalized Poisson data
with an arbitrary correlation matrix RGpois (which we refer to as the target correlation matrix), rate

parameter vector
−→
Θ =

{
θ1, θ2, ..., θp

}
and dispersion parameter vector

−→
Λ =

{
λ1, λ2, ..., λp

}
:

(1) Compute the intermediate correlation matrix RN from the target correlation matrix using Equation
2.2.2.

(2) Generate a p-dimensional normal vector
−→
XN with mean −→µ = 0 , variance

−→
σ2 = 1, and a correlation

matrix RN .

(3) For each value XNi , i ∈ 1, 2, ..., p, calculate the normal cdf:

Φ (XNi) .

(4) For each Φ(XNi), calculate the Poisson inverse cdf (quantile) with rate parameter vector
−→
Θ and

dispersion parameter vector
−→
Λ

XGpoisi = Ξ−1 (Φ (XNi)) ,

where

Φ(x) =
∫ x

−∞

1√
2σ2

e
−u2

2 du,

Ξ(x) =
x

∑
i=0

θ (θ + λi)i−1 e−θ−λi/i!.

The resulting vector
−→
X Gpois is a p-dimensional generalized Poisson vector with correlation matrix

RGpois, rate vector
−→
Θ and dispersion vector

−→
Λ .

Comparisons of five univariate methods

In designing our package, we give our users the freedom to choose their preferred methods for
generating univariate GPD data. However, users who are not familiar with the mechanisms of

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 177

generating univariate GPD might not know how to choose the best method for their simulation
scenarios. Demirtas (2017) evaluated the relative advantages and disadvantages of the five methods
for generating univariate GPD data in terms of unbiasedness, variability, and speed in simulation
studies. We find the results he found are instructive on choosing the appropriate methods for package
users, so we summarize his findings as follows:

• When the rate parameter θ is large, Inversion method and Branching method have the best
accuracy.

• When the dispersion parameter λ is large, Inversion method and Branching method have better
accuracy, while Build-Up method and Chop-Down method have better precision.

• When the population mean is large, Normal Approximation method has better precision.

• When the population variance is large, Inversion method and Branching method have better
accuracy, Build-Up method, Chop-Down method and Normal Approximation method have better
precision.

• When the population skewness is large, Inversion method and Branching method have better
accuracy, Build-Up method and Chop-Down method have better precision.

The RNGforGPD package

The RNGforGPD package provides functions for generating univariate and multivariate data that
follow the generalized Poisson distribution. The package is available via the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=RNGforGPD. Once the package has been
appropriately installed on a local machine, the results presented in this paper can be reproduced. The
R code used in this manuscript can be accessed at https://demirtas.people.uic.edu/RNGforGPD_
paper_LDC_R_Journal.R.

This package includes two data generating functions: GenUniGpois and GenMVGpois. The data
generating functions are supported by five core functions: CmatStarGpois, ComputeCorrGpois, Corr-
NNGpois, QuantileGpois, and ValidCorrGpois, that provide essential support to the two data gen-
erating functions. Throughout this article, we use the following input arguments as given in Table
2:

Table 2: Table of input arguments.

Input Argument Description

sample.size Number of rows to be generated in multivariate generalized Poisson
data.

no.gpois Dimension of the multivariate generalized Poisson distribution.
n Number of data points to be generated in univariate generalized

Poisson data.
p Percentile of the generalized Poisson distribution.
cmat.star Intermediate correlation matrix to be used in generating multivariate

generalized Poisson data.
corMat A positive definite target correlation matrix whose entries are within

the valid limits.
theta.vec A vector of rate parameters in the multivariate generalized Poisson

distribution.
lambda.vec A vector of dispersion parameters in the multivariate generalized

Poisson distribution.
theta Rate parameter in the univariate generalized Poisson distribution.
lambda Dispersion parameter in the univariate generalized Poisson distribu-

tion.
method Method to be used in generating univariate generalized Poisson data.
details Boolean parameter for users to decide whether to display the specified

and empirical values of parameters.
verbose Boolean parameter for users to decide whether to display traces or

not.

Table 3 summarizes each function in the RNGforGPD package:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=RNGforGPD
https://demirtas.people.uic.edu/RNGforGPD_paper_LDC_R_Journal.R
https://demirtas.people.uic.edu/RNGforGPD_paper_LDC_R_Journal.R

CONTRIBUTED RESEARCH ARTICLE 178

Table 3: Table of functions.

Function type Function name Description

Data generating
functions

GenUniGpois Generates univariate GPD variables
GenMVGpois Generates univariate GPD variables

Core functions

CmatStarGpois Computes the intermediate correlation matrix
ComputeCorrGpois Computes correlation bounds
CorrNNGpois Adjusts the target correlation
QuantileGpois Computes the quantile for GPD
ValidCorrGpois Validates the correlation matrix

Their functionality, in the context of generalized Poisson data generation, is described in the next
several subsections:

GenUniGpois

GenUniGpois generates univariate data that follow the GPD with pre-specified rate and dispersion
parameters using appropriate methods according to different values of θ and λ as described in the
previous section. It takes theta, lambda, n, details, and method as input arguments. A warning will
be displayed if the method chosen by user is inappropriate considering the characteristics of each
method. For example, the Normal Approximation method does not work well for θ < 10. In that case,
a warning message shows up suggesting the user to choose a working method according to their
specific θ and λ parameters. Also, Branching method only works for positive λ values.

GenMVGpois

GenMVGpois, also referred to as the "engine" function in our package, generates multivariate GPD data.
It generates multivariate data that follow the GPD with pre-specified rate parameter vector, dispersion
parameter vector, and an intermediate correlation matrix. Its functionality depends on all the other
functions in the package (except for GenUniGpois). Besides, it requires the rmvnorm function from the
mvtnorm (Genz et al., 2020) package, the is.positive.definite function from the corpcor (Schafer
et al., 2017) package, and the nearPD function from the Matrix (Bates and Maechler, 2019) package.
It takes sample.size, no.gpois, cmat.star, theta.vec, lambda.vec, and details as input arguments.
The cmat.star argument is the intermediate correlation matrix, and is later used to obtain the target
correlation matrix using the inverse cdf transformation method in GenMVGpois. This argument needs
to be executed using the CmatStarGpois function before it can be used by the GenMVGpois function.

Generation of the multivariate GPD data is more complex than that of the univariate GPD data
due to the restrictions on the correlation matrix. These requirements can also be verified by the core
functions as explained below.

CmatStarGpois and CorrNNGpois

CmatStarGpois function computes an intermediate correlation matrix, that will be used to obtain the
target correlation matrix, using the inverse cdf transformation method in GenMVGpois. Because the
target correlation matrix has to be positive definite and its entries must be within the correlation
bounds, therefore CmatStarGpois requires the functionality of both ValidCorrGpois and CorrNNGpois.
ValidCorrGpois checks the validity of the values of pairwise correlations including positive definite-
ness, symmetry, and correctness of the dimensions. CorrNNGpois adjusts the realized correlation to the
target correlation bounds.

The following example shows the use of CorrNNGpois for adjusting the realized correlation to
the targeted correlation bounds, and CmatStarGpois for computing intermediate values of pairwise
correlations between three GPD variates.

set.seed(3406)
CorrNNGpois(c(0.1, 10), c(0.1, 0.2), 0.5)
#> [1] 0.8016437
lambda.vec <- c(-0.2, 0.2, -0.3)
theta.vec <- c(1, 3, 4)
M <- c(0.352, 0.265, 0.342)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=corpcor
https://CRAN.R-project.org/package=Matrix

CONTRIBUTED RESEARCH ARTICLE 179

N <- diag(3)
N[lower.tri(N)] <- M
TV <- N + t(N)
diag(TV) <- 1
cstar <- CmatStarGpois(TV, theta.vec, lambda.vec, verbose = FALSE)
cstar
#> [,1] [,2] [,3]
#> [1,] 1.0000000 0.3943785 0.2946171
#> [2,] 0.3943785 1.0000000 0.3601862
#> [3,] 0.2946171 0.3601862 1.0000000

If the intermediate correlation matrix is not positive definite, the nearest positive definite matrix
will be used.

QuantileGpois

QuantileGpois function computes the quantile for the generalized Poisson distribution for specified
values of percentile, θ and λ parameters. This function is of great importance because it realizes
the NORTA method (Chen, 2001) by inversely transforming the normal cdf to GPD quantiles. The
example below shows the use of QuantileGpois for computing the quantile of a generalized Poisson
distribution given θ, λ, and the percentile of the variate.

QuantileGpois(0.98, 1, -0.2, details = TRUE)
#> x = 0, P(X = x) = 0.3678794, P(X <= x) = 0.3678794
#> x = 1, P(X = x) = 0.449329, P(X <= x) = 0.8172084
#> x = 2, P(X = x) = 0.1646435, P(X <= x) = 0.9818519
#> When lambda is negative, we need to account for truncation error
#> The adjusted CDF are: 0.3746792 0.8323133 1
#> [1] 2

The corresponding cdf are adjusted to account for truncation error when λ < 0 as the warning
shows above. Besides, λ must be greater than or equal to− θ/4 when λ < 0.

ComputeCorrGpois and ValidCorrGpois

Theoretically, correlation bounds (both Pearson and Spearman correlations) for pairwise random
variables are between -1 and 1. However, correlation bounds in practice are often narrower than their
theoretical limits due to the restrictions imposed by the marginal distributions. Given vectors of θ and λ
values, ComputeCorrGpois computes the pairwise correlation bounds between any pair of generalized
Poisson variables using the Generate, Sort, and Correlate (GSC) algorithm described in Demirtas and
Hedeker (2011). It is also an integral part of ValidCorrGpois function that examines whether values
of pairwise correlation matrix fall within the limits imposed by the marginal distributions. Besides,
ValidCorrGpois checks positive definiteness, symmetry, correctness of the dimensions of the input
correlation matrix. The following example demonstrates the use of both functions:

set.seed(86634)
ComputeCorrGpois(c(3, 2, 5,4), c(0.3, 0.2, 0.5, 0.6), verbose = FALSE)
#> $min
#> [,1] [,2] [,3] [,4]
#> [1,] NA -0.8441959 -0.8523301 -0.8040863
#> [2,] -0.8441959 NA -0.8364747 -0.7861681
#> [3,] -0.8523301 -0.8364747 NA -0.7966635
#> [4,] -0.8040863 -0.7861681 -0.7966635 NA

#> $max
#> [,1] [,2] [,3] [,4]
#> [1,] NA 0.9838969 0.9937024 0.9869316
#> [2,] 0.9838969 NA 0.9872343 0.9819031
#> [3,] 0.9937024 0.9872343 NA 0.9941324
#> [4,] 0.9869316 0.9819031 0.9941324 NA

ValidCorrGpois(matrix(c(1, 0.9, 0.9, 1), byrow = TRUE, nrow = 2),
c(0.5, 0.5), c(0.1, 0.105), verbose = FALSE)

#>[1] TRUE

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 180

The following diagram shows the dependencies of the functions in the RNGforGPD package, the
arrows suggest that the function on the tail of each arrow depends on the function on its head:

GenMVGpois −→



GenUniGpois

ValidCorrGpois −→


GenUniGpois

ComputeCorrGpois −→ GenUniGpois

is.positive.definite*

CorrNNGpois −→ GenUniGpois

CmatStarGpois −→


ValidCorrGpois

CorrNNGpois

is.positive.definite*

nearPD*

QuantileGpois

rmvnorm*

* indicates that the function is from another R package.

Simulation studies

In this section, we present three examples that hinge upon one artificial and two real data-based
scenarios. We demonstrate the functionality of the package through simulating GPD data based on
the parameter estimates (rate parameter θ and dispersion parameter λ) and compare the simulated
empirical estimates with the specified parameters,

θ =

√
µ3

σ2 , λ = 1−
√

µ

σ
. (1)

The most intuitive way to check the legitimacy of the simulation results is to compare the estimated
rate and dispersion parameters to the specified quantities. Moreover, to further verify the simulation
results for multivariate GPD, we calculate the first four moments via simulated data and compare them
with the theoretical (specified) moments since most real life distributions are typically characterized
by their first four moments. The expressions for the mean (µ), variance (σ2), skewness (ν1) and excess
kurtosis (ν2) derived by Consul and Famoye (2006) are as follows:

µ = θ (1− λ)−1 , σ2 = θ (1− λ)−3 , ν1 =
1 + 2λ

(θ (1− λ))1/2 , ν2 =
1 + 8λ + 6λ2

θ (1− λ)
. (2)

As can be seen from the variance expression, λ = 0 corresponds to the standard Poisson dis-
tribution, λ > 0 and λ < 0 signify over- and under-dispersed count data relative to the Poisson,
respectively.

Artificial data modeled via multivariate GPD

In this example, we generate a four-dimensional Poisson data of size 2,000 based on 1,000 replications.

One of its marginal random variables is distributed as a regular Poisson distribution, and the other
three follow the GPD with different rate and dispersion parameters. The specifications on the rate and
dispersion parameters of the four Poisson distributions are listed below:

• Variable 1. Ordinary count data (regular Poisson data): mean 2.00, variance 2.00 with rate
parameter 2

• Variable 2. Over-dispersed count data (GPD): mean 5.00, variance 13.89 with rate parameter 3,
dispersion parameter 0.4

• Variable 3. Over-dispersed count data (GPD): mean 10.00, variance 40.00 with rate parameter 5,
dispersion parameter 0.5

• Variable 4. Under-dispersed count data (GPD): mean 44.00, variance 28.16 with rate parameter
55, dispersion parameter -0.25

As we are generating multivariate GPD data, we need to specify a positive definite correlation
matrix whose entries are within the feasible lower and upper bounds. The specified correlations

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 181

and the empirical results that are obtained through averaging the correlation matrix across 1,000
replications are shown below:

Table 4: Artificial data: specified and empirical correlation matrices.

Specified Y1 Y2 Y3 Y4

Y1 1.0000 0.1521 0.2652 0.2428
Y2 0.1521 1.0000 -0.6475 0.1645
Y3 0.2652 -0.6475 1.0000 -0.2522
Y4 0.2428 0.1645 -0.2522 1.0000

Empirical Y1 Y2 Y3 Y4

Y1 1.0000 0.1520 0.2676 0.2445
Y2 0.1520 1.0000 -0.6499 0.1654
Y3 0.2676 -0.6499 1.0000 -0.2517
Y4 0.2445 0.1654 -0.2517 1.0000

Below is the table of empirical θ’s and λ’s for four marginals compared to the specified θ’s and λ’s
across 1,000 replications:

Table 5: Specified and empirical θ’s and λ’s for four marginals.

Parameter Comparison Variable 1 Variable 2 Variable 3 Variable 4

Specified 2.0000 3.0000 5.0000 55.0000
Rate (θ)

Empirical 1.9994 3.0041 4.9930 55.1155

Specified 0.0000 0.4000 0.5000 -0.2500
Dispersion (λ)

Empirical 0.0004 0.3996 0.5004 -0.2527

We can see that the empirical θ’s, λ’s and correlation matrix of the data generated using the
GenMVGpois function are very close to the specified true parameters. The table below compares their
first four moments:

Table 6: Artificial data: specified and empirical moments.

Moments Comparison Variable 1 Variable 2 Variable 3 Variable 4

Specified 2.0000 5.0000 10.0000 44.0000
Mean(µ)

Empirical 2.0001 5.0036 9.9949 43.9975

Specified 2.0000 13.8889 40.0000 28.1600
Variance(σ2)

Empirical 2.0016 13.8809 40.0505 28.0374

Specified 0.7071 1.3416 1.2649 0.0603
Skewness(ν1) Empirical 0.7079 1.3397 1.2669 0.0595

Specified 0.5000 2.8667 2.6000 -0.0091
Kurtosis(ν2) Empirical 0.5018 2.8581 2.6085 -0.0092

Tables 6 and 7 show that the empirical first four moments of the generated GPD data are very
close to the specified ones, indicating the algorithm of generating the data properly captures the true
parameter values with negligible deviations.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 182

Table 7: Artificial data: per cent difference between empirical and specified moments.

Moments Variable 1 Variable 2 Variable 3 Variable 4

Mean (µ) 0.01% 0.07% 0.05% 0.01%
Variance (σ2) 0.08% 0.06% 0.13% 0.44%
Skewness (ν1) 0.11% 0.14% 0.16% 1.29%
Kurtosis (ν2) 0.36% 0.30% 0.33% 1.72%

Figure 1: Artificial data example: Empirical values versus specified correlations across 1,000 replica-
tions (four out of six unique pairwise correlations). Trace plot of empirical correlations that appear to
closely approximate the specified correlations across 1,000 replications.

To further illustrate the precision of the algorithm, we use the entries (1, 2), (1, 3), (2, 3), (3, 4)
of the empirical correlation matrices to generate the plot as shown in Figure 1 using the R package
ggplot2 (Wickham, 2016). The dashed lines represent the specified correlation values, the figure shows
that the empirical correlation values across 1,000 iterations fluctuate around the specified ones within
reasonably small ranges.

Epilepsy rates modeled via univariate GPD

The epilepsy data (Thall and Vail, 1990) available from the R package robustbase (Maechler et al., 2020)
were collected from a randomized clinical trial investigating the treatment effect of an anti-epileptic
drug called Progabide, which was originally conducted by Leppik (1985). In this clinical trial study,
59 patients suffering from simple or complex partial seizures were randomized to groups receiving
either the anti-epileptic drug Progabide or a placebo in addition to standard chemotherapy. The
baseline number of seizures occurred was measured for each patient followed by four successive
post-randomization clinic visits with the number of seizures occurring over the previous two weeks
reported. Although all patients were crossed over to the other treatment, we are only interested
in modeling the number of seizures at baseline and the four pre-crossover follow-up responses for

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=robustbase

CONTRIBUTED RESEARCH ARTICLE 183

each patient as a realization of GPD using our package. The number of seizures that occur on a
patient follows a Poisson distribution by assuming that each patient is independent of each other,
and we regard them as fixed unit "intervals". In this scenario, the GPD is more appropriate than the
ordinary Poisson distribution in modeling the count data since the patients generally do not exhibit
the characteristics of homogeneity in real life.

Univariate GPD simulation with small sample size

The data set has a relatively small sample size of 59, and we set the number of replications as 1,000.
First, we simulate univariate GPD data based on the baseline seizure counts measured. The true rate
(θ) and dispersion (λ) parameters used to generate univariate GPD data are calculated by the method
of moments in which the functions of parameters are set to equal to the moment estimates of the data.
The simulation results of the five univariate GPD generation algorithms are presented in the table
below:

Table 8: Epilepsy data (baseline seizure counts): specified and empirical parameters using the original
sample size of 59.

Parameters Specified Branching Inversion Build-Up Chop-Down Normal

Rate (θ) 6.4904 6.7701 6.7548 6.8478 6.8594 7.9017
Dispersion (λ) 0.7921 0.7817 0.7821 0.7773 0.7770 0.7597

The first column lists the true values of rate and dispersion parameters calculated by the method
of moments. Overall, the empirical rate parameters overestimate the true rate parameters, and the
empirical dispersion parameters underestimate the true dispersion parameters. We note that the
Normal Approximation method performs badly, perhaps due to the limitation of its approximation to
the Poisson distribution with a small rate parameter.

Estimation problems caused by simulating GPD data using a small sample size

We can infer from the above simulation results that θ̂ and λ̂ calculated using each of the five univariate
approaches overestimates and underestimates the true θ and true λ, respectively, under a small sample
size scenario. This behavior of the estimators can be explained by a close examination of the Equation
(1):

θ =

√
µ3

σ2 , λ = 1−
√

µ

σ
.

Since under a small sample size, the sample variance σ̂2 underestimates the true variance σ2.

Assuming that µ̂ is a consistent estimator of µ, θ̂ =
√

µ̂3

σ̂2
overestimates the true θ, and λ̂ = 1−

√
µ̂

σ̂

underestimates the true λ.

Univariate GPD simulation with large sample size

To alleviate this over/under estimation problem and demonstrate the performance of our package, we
use the true θ and λ parameters calculated from the epilepsy baseline seizure counts data to set up a
new simulation scenario where the sample size is increased from 59 to 2,000 while maintaining the
original distributional properties. The simulation results under this scenario are shown in the Table 9
below:

Table 9: Epilepsy data (baseline seizure counts): specified and empirical parameters using an aug-
mented sample size of 2,000.

Parameters Specified Branching Inversion Build-Up Chop-Down Normal

Rate (θ) 6.4904 6.4973 6.4953 6.6879 6.7043 7.8181
Dispersion (λ) 0.7921 0.7919 0.7920 0.7845 0.7841 0.7619

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 184

We note that the Build-up and Chop-Down methods do not work as well as the Branching and
Inversion methods, which capture the true rate and dispersion parameters of the data. The Normal
Approximation method still does not perform well in the large sample scenario.

Physician visits modeled via multivariate GPD

Deb and Trivedi (1997) conducted research on 4,406 individuals, aged 66 and over, who are covered by
Medicare (a public insurance program). The data are available as DebTrivedi.rda in the R package
MixAll (Iovleff, 2019). For this data set, we consider the multivariate generation of two mutually
exclusive measures of utilization variables, one pathologic variable, and one demographic variable:
visits to a physician in an office setting (OFP), visits to a physician in a hospital outpatient setting
(OPP) adjusted by adding 1 to avoid computational complexities, the number of chronic diseases and
conditions (NUMCHRON), and the years of education received (SCHOOL). The simulation results
based on 1,000 replications are shown below:

Table 10: DebTrivedi data: specified and empirical θ’s and λ’s for four marginals.

Parameter Comparison OFP SCHOOL OPP + 1 NUMCHRON

Specified 2.0529 8.8291 0.6342 1.4188
Rate (θ)

Empirical 2.0545 8.8345 0.6357 1.4191

Specified 0.6445 0.1420 0.6378 0.0799
Dispersion (λ)

Empirical 0.6442 0.1416 0.6373 0.0801

Table 11: DebTrivedi data: specified and empirical correlation matrices.

Specified Y1 Y2 Y3 Y4

Y1 1.0000 0.0644 0.0681 0.2619
Y2 0.0644 1.0000 -0.0122 -0.0658
Y3 0.0681 -0.0122 1.0000 0.1008
Y4 0.2619 -0.0658 0.1008 1.0000

Empirical Y1 Y2 Y3 Y4

Y1 1.0000 0.0646 0.0743 0.2688
Y2 0.0646 1.0000 -0.0120 -0.0660
Y3 0.0743 -0.0120 1.0000 0.1066
Y4 0.2688 -0.0660 0.1066 1.0000

Table 12: DebTrivedi data: specified and empirical moments.

Moments Comparison OFP SCHOOL OPP + 1 NUMCHRON

Specified 5.7744 10.2903 1.7508 1.5420
Mean(µ)

Empirical 5.7745 10.2922 1.7528 1.5427

Specified 45.6871 13.9781 13.3426 1.8215
Variance(σ2)

Empirical 45.6190 13.9688 13.3244 1.8231

Specified 2.6794 0.4665 4.7475 1.0152
Skewness(ν1) Empirical 2.6767 0.4660 4.7371 1.0155

Specified 11.8495 0.2979 37.1841 1.2852
Kurtosis(ν2) Empirical 11.8255 0.2972 37.0193 1.2865

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=MixAll

CONTRIBUTED RESEARCH ARTICLE 185

Table 13: DebTrivedi data: per cent difference between empirical and specified moments.

Moments OFP SCHOOL OPP + 1 NUMCHRON

Mean (µ) 0.00% 0.02% 0.11% 0.05%
Variance (σ2) 0.15% 0.07% 0.14% 0.09%
Skewness (ν1) 0.10% 0.11% 0.22% 0.03%
Kurtosis (ν2) 0.20% 0.26% 0.44% 0.09%

Figure 2: DebTrivedi data example: Empirical values versus specified correlations across 1,000
replications (three out of six unique pairwise correlations). Trace plot of empirical correlations that
appear to closely approximate the specified correlations across 1,000 replications.

Graphical tools further verify the simulation results: In Figure 2, we see that a few randomly
selected empirical correlations (entries (1, 2), (1, 4), (2, 4)) across 1,000 replications fluctuate around the
specified quantities within reasonably small ranges, suggesting that the algorithm is consistent and
efficient in capturing the desired values.

We evaluate the performance of the package through a comparison between the theoretical
and empirical first four moments and parameters, as we reported earlier in the manuscript. As
correctly indicated by a reviewer, an additional assessment that involves identifying the proximity
between theoretical and empirical pmf’s may provide further support for the software tool under
consideration. In this spirit, we show two plots (Figure 3 and Figure 4) that visually validate the
feasibility of our multivariate GPD generating algorithm. In Figure 3, we compare the theoretical and
empirical marginal probabilities using each of the four random variables specified in the artificial data
example. The green and red dots represent the theoretical and empirical probabilities, respectively.
The theoretical probabilities are calculated based on the pmf of each univariate GPD when its rate
and dispersion parameters are specified. The empirical probabilities are marginally extracted from
the multivariate data simulated in the artificial data example. We observe that the empirical and
theoretical probabilities align closely, which suggests that our algorithm can accurately simulate data
that follow the specified GPD marginally. In Figure 4, we show a comparison plot between specified

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 186

and empirical correlations in an attempt to examine if our multivariate GPD generating algorithm can
reasonably simulate the specified correlations. We specify a bivariate GPD using the variable 2 and
variable 4, as previously defined in the artificial data example. The specified correlations range from
-0.89 to 0.86 with an increasing step size of 0.05, which are within the lower and upper correlation
bounds, as verified using the ComputeCorrGpois function. For each specified correlation, we generate
a sample of 100 observations with 50 replications, and calculate the average empirical correlation. The
plot shows that empirical correlations closely approximate the specified correlations for all scenarios.

Figure 3: Comparison of theoretical and empirical marginal probabilities. The plot indicates that the
empirical marginal probabilities closely approximate the theoretical marginal probabilities.

Figure 4: Comparison of specified and empirical correlations. The slope of the red dashed line is one,
and is used for calibration. The blue solid line represents the empirical correlations plotted against the
specified correlations at varying specifications.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 187

Discussion

Throughout this paper, we have demonstrated the functionality and performance of the RNGforGPD
package. This package is an accurate and computationally efficient tool in random generation of
both univariate and multivariate data that follow the generalized Poisson distribution. Overall, the
performance of the algorithm is decent. Deviations between the specified and average empirical
parameter values are within tolerable limits in both the univariate and multivariate data generation
cases. Our simulation studies suggest that this package successfully implements the algorithms in
both artificial and real life scenarios as long as there are no specification errors and the correlations
are within the feasible limits (Demirtas and Hedeker, 2011). In situations such complications occur,
appropriate warning or error messages will be generated to alert the user. The simulation results we
present can be regarded as a compelling evidence for capturing the characteristics of both rate and
dispersion parameters (naturally the first four moments that are functions of these quantities) as well
as the true association structure in the multivariate cases with only minor differences. In summary, the
RNGforGPD package provides a valuable tool for investigators who need a generalized Poisson data
generation mechanism in their research.

Bibliography

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2019. URL https:
//CRAN.R-project.org/package=Matrix. R package version 1.2-18. [p178]

H. Chen. Initialization for NORTA: Generation of random vectors with specified marginals and
correlations. INFORMS Journal on Computing, 13(4):312–331, 2001. URL https://doi.org/10.1287/
ijoc.13.4.312.9736. [p176, 179]

P. Consul and M. Shoukri. Some chance mechanisms related to a generalized Poisson probability
model. American Journal of Mathematical and Management Sciences, 8(1-2):181–202, 1988. URL
http://doi.org/10.1080/01966324.1988.10737237. [p175]

P. C. Consul. Generalized Poisson distribution: properties and applications. Decker, New York, 1989.
[p173]

P. C. Consul and F. Famoye. Lagrangian Probability Distributions. Springer, 2006. URL https://link.
springer.com/book/10.1007/0-8176-4477-6. [p174, 180]

P. Deb and P. K. Trivedi. Demand for medical care by the elderly: a finite mixture approach.
Journal of Applied Econometrics, 12(3):313–336, 1997. URL http://doi.org/10.1002/(SICI)1099-
1255(199705)12:3<313::AID-JAE440>3.0.CO;2-G. [p184]

H. Demirtas. On accurate and precise generation of generalized Poisson variates. Communication in
Statistics - Simulation and Computation, 46:489–499, 2017. URL https://doi.org/10.1080/03610918.
2014.968725. [p174, 177]

H. Demirtas and D. Hedeker. A practical way for computing approximate lower and upper correlation
bounds. The American Statistician, 65(2):104–109, 2011. URL http://doi.org/10.1198/tast.2011.
10090. [p176, 179, 187]

A. Genz, F. Bretz, T. Miwa, X. Mi, F. Leisch, F. Scheipl, and T. Hothorn. mvtnorm: Multivariate Normal
and t Distributions, 2020. URL https://CRAN.R-project.org/package=mvtnorm. R package version
1.1-1. [p178]

S. Iovleff. MixAll: Clustering and Classification using Model-Based Mixture Models, 2019. URL https:
//CRAN.R-project.org/package=MixAll. R package version 1.5.1. [p184]

H. Joe and R. Zhu. Generalized Poisson distribution: the property of mixture of Poisson and
comparison with negative Binomial distribution. Biometrical Journal, 47(2):219–229, 2005. URL
http://doi.org/10.1002/bimj.200410102. [p173]

A. W. Kemp. Frugal Methods of Generating Bivariate Discrete Random Variables. Springer, 1981. URL
http://doi.org/10.1007/978-94-009-8549-0_28. [p175]

I. Leppik. A double-blind crossover evaluation of progabide in partial seizures. Neurology, 35, 1985.
[p182]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
https://doi.org/10.1287/ijoc.13.4.312.9736
https://doi.org/10.1287/ijoc.13.4.312.9736
http://doi.org/10.1080/01966324.1988.10737237
https://link.springer.com/book/10.1007/0-8176-4477-6
https://link.springer.com/book/10.1007/0-8176-4477-6
http://doi.org/10.1002/(SICI)1099-1255(199705)12:3<313::AID-JAE440>3.0.CO;2-G
http://doi.org/10.1002/(SICI)1099-1255(199705)12:3<313::AID-JAE440>3.0.CO;2-G
https://doi.org/10.1080/03610918.2014.968725
https://doi.org/10.1080/03610918.2014.968725
http://doi.org/10.1198/tast.2011.10090
http://doi.org/10.1198/tast.2011.10090
https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=MixAll
https://CRAN.R-project.org/package=MixAll
http://doi.org/10.1002/bimj.200410102
http://doi.org/10.1007/978-94-009-8549-0_28

CONTRIBUTED RESEARCH ARTICLE 188

H. Li, R. Chen, H. Nguyen, Y.-C. Chung, R. Gao, and H. Demirtas. RNGforGPD: Random Number
Generation for Generalized Poisson Distribution, 2020. R package version 1.1.0. [p174]

M. Maechler, P. Rousseeuw, C. Croux, V. Todorov, A. Ruckstuhl, M. Salibian-Barrera, T. Verbeke,
M. Koller, E. L. T. Conceicao, and M. Anna di Palma. robustbase: Basic Robust Statistics, 2020. URL
http://robustbase.r-forge.r-project.org/. R package version 0.93-6. [p182]

F. Satterthwaite. Generalized Poisson distribution. The Annals of Mathematical Statistics, 13(4):410–417,
1942. URL http://doi.org/10.1214/aoms/1177731538. [p173, 174]

J. Schafer, R. Opgen-Rhein, V. Zuber, M. Ahdesmaki, A. P. D. Silva, and K. Strimmer. corpcor: Efficient
Estimation of Covariance and (Partial) Correlation, 2017. URL https://CRAN.R-project.org/package=
corpcor. R package version 1.6.9. [p178]

P. F. Thall and S. C. Vail. Some covariance models for longitudinal count data with overdispersion.
Biometrics, 46(3):657–671, 1990. URL http://doi.org/10.2307/2532086. [p182]

R. Vernic. On the bivariate generalized Poisson distribution. ASTIN Bulletin: The Journal of the
International Actuarial Association, 27(01):23–32, 1997. URL https://doi.org/10.2143/AST.27.1.
542065. [p174]

R. Vernic. A multivariate generalization of the generalized Poisson distribution. ASTIN Bulletin: The
Journal of the International Actuarial Association, 30(1):57–67, 2000. doi: 10.2143/AST.30.1.504626. URL
https://doi.org/10.2143/AST.30.1.504626. [p173]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p182]

I. Yahav and G. Shmueli. On generating multivariate Poisson data in management science applications.
Applied Stochastic Models in Business and Industry, 28(1):91–102, 2012. URL http://doi.org/10.1002/
asmb.901. [p174, 176]

Hesen Li
Ph.D. Student
Division of Epidemiology and Biostatistics
University of Illinois at Chicago
Chicago, IL 60612, USA
ORCID: 0000-0003-1636-299X
hli226@uic.edu

Dr. Hakan Demirtas
Associate Professor of Biostatistics
Division of Epidemiology and Biostatistics
University of Illinois at Chicago
Chicago, IL 60612, USA
ORCID: 0000-0003-2482-703X
demirtas@uic.edu

Ruizhe Chen
Ph.D. Student
Division of Epidemiology and Biostatistics
University of Illinois at Chicago
Chicago, IL 60612, USA
ORCID: 0000-0003-3924-3328
rchen18@uic.edu

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://robustbase.r-forge.r-project.org/
http://doi.org/10.1214/aoms/1177731538
https://CRAN.R-project.org/package=corpcor
https://CRAN.R-project.org/package=corpcor
http://doi.org/10.2307/2532086
https://doi.org/10.2143/AST.27.1.542065
https://doi.org/10.2143/AST.27.1.542065
https://doi.org/10.2143/AST.30.1.504626
https://ggplot2.tidyverse.org
http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.901
mailto:hli226@uic.edu
mailto:demirtas@uic.edu
mailto:rchen18@uic.edu

CONTRIBUTED RESEARCH ARTICLE 189

Testing the Equality of Normal
Distributed and Independent Groups’
Means Under Unequal Variances by doex
Package
by Mustafa Cavus and Berna Yazıcı

Abstract In this paper, we present the doex package contains the tests for equality of normal dis-
tributed and independent group means under unequal variances such as Cochran F, Welch-Aspin,
Welch, Box, Scott-Smith, Brown-Forsythe, Johansen F, Approximate F, Alexander-Govern, Generalized
F, Modified Brown-Forsythe, Permutation F, Adjusted Welch, B2, Parametric Bootstrap, Fiducial
Approach, and Alvandi Generalized F-test. Most of these tests are not available in any package. Thus,
doex is easy to use for researchers in multidisciplinary studies. In this study, an extensive Monte-Carlo
simulation study is conducted to investigate the performance of the the tests for equality of normal
distributed group means under unequal variances in terms of Type I error probability and penalized
power. In the case of Type I error probability of the compared tests are different, the penalized power
is used which allows fair power comparisons. In this way, we conclude the performance of the tests by
taking into account two possible errors in hypothesis testing.

Introduction

Testing equality of normal distributed and independent groups’ means is a basic analysis in statistics
and related fields. The Fisher’s F-test is a powerful test to do this analysis with the assumptions of
variance homogeneity, normality, and statistical independency. Violation of the variance homogeneity
assumption is a commonly encountered statistical problem in a variety of application areas such
as agriculture, pharmacy, and biostatistics. There is number of methods improved because of the
negative effect of the violation of variance homogeneity assumption on the performance of Classical
F-test in terms of Type I error probability and power. These tests are, Cochran F (CF), Welch-Aspin
(WA), Welch (WE), Box (BX), Scott-Smith (SS), Brown-Forsythe (BF), Johansen (JF), Approximate F
(AF), Alexander-Govern (AG), Generalized F (GF), Modified Brown-Forsythe (MBF), Permutation F
(PF), Adjusted Welch (AW), B2, Parametric Bootstrap (PB), Fiducial Approach (FA) and Alvandi et al.
Generalized F (AGF) test, chronologically. The fact that the high number of methods in the literature
raises the problem of choosing the most appropriate method for researchers.

There are many articles to investigate the performance of the tests for equality of normal distributed
and independent group means under unequal variances in the literature. However, only some of the
tests are included in these studies. The results of these studies help researchers to solve the problem
of choosing the appropriate method for their work. Gamage and Weerahandi (1998) compared the
size performance of the GF test and four widely used procedures: CF, BF, and Welch test in case of
deviation from normality. The highly skewed Gamma distributions and Gamma distributions with
shapes close to being normal are considered. While the GF was found to have size not exceeding
the intended level, as heteroscedasticity becomes severe the others were found to have poor size
performance. Hartung et al. (2002) compared the CF, C, W, BF, MBF, AF, and AW tests under normal
populations, balanced-unbalanced sample sizes and an increasing number of populations. None of
the tests considered is uniformly dominating the others. The BF and the W test perform well over
a wide range of parameter configurations, the MBF test by Mehrotra keeps generally the level, but
other tests may also perform well, depending on the constellation of the parameters under study.
The W test becomes liberal when the sample sizes are small and the number of populations is large.
They propose a modified version of Welch’s test that keeps the nominal level in these cases. With the
understanding that methods are unacceptable if they have Type I error rates that are too high, only
the testing procedure associated with the MBF test can be recommended, the modified Welch test
can also be recommended. Argac (2004) constructed a systematic pattern in simulations of the tests
for equality of normal distributed and independent group means under unequal variances. Classical
F, Cochran, Welch, modified Welch, Brown-Forsythe, modified Brown-Forsythe, and approximate F
test considered are divided into two groups, Cochran-Welch type tests and the Brown-Forsythe type
tests. There seems to be considerably higher variability in the power of C-W type tests in the balanced
case. In the unbalanced case, there does not appear to be a huge difference between the power of
the different tests. Sadooghi-Alvandi et al. (2012) proposed a new GF test and compared it with GF,
PB, Welch, and Cochran test in an extensive Monte-Carlo simulation study. According to results, it

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=doex

CONTRIBUTED RESEARCH ARTICLE 190

controls the Type I error probability better and its power closed to the others. Gokpinar and Gokpinar
(2012) compared the Type I error probability and power of CF, BF, GF, PB, and W test under different
variance heterogeneities and effect sizes for three and five groups. Their results indicate that PB is the
best control Type I error probability and has the highest power. In addition to these articles, the scope
of the other articles are not comprehensive in the literature (Hartung et al. (2002), Lee and Ahn (2003),
Li et al. (2011), Mutlu et al. (2017)). A comprehensive Monte-Carlo simulation study is conducted
under normal distribution in this article in order to fill this gap. Especially, the penalized power is
used which allows fair power comparisons when the Type I error probabilities are different. In this
way, we conclude the performance of the tests by taking into account two possible errors in hypothesis
testing.

Another problem experienced by the researchers is most of these tests are not available in any
R package. However, some R packages contain the tests for equality of normal distributed and
independent group means under unequal variances, asbio by Aho (2018), coin by Hothorn et al.
(2008), lawstat by Hui et al. (2008), onewaytests by Dag et al. (2018), welchADF by Villacorta (2017),
WRS2 by Mair and Wilcox (2018). These packages contain only the Brunner-Dette-Munk, Permutation
F, Kruskal-Wallis, Brown-Forsythe, Alexander-Govern, James Second Order, Welch test. In particular,
the performance of the tests such as the GF, PB, FA, and AGF test by Monte-Carlo simulations prevents
the easy use of these tests. Clearly, a package should contain these tests. We propose the package doex
provides the tests for equality of normal distributed group means under unequal variances which
previously have not been implemented in any R package such as AF, AGF, B2, FA, JF, MBF, MW, PB,
and PF. Also, it consists of the modified Generalized F-test (MGF) which is proposed by Cavus et al.
(2017) to test the equality of group means under heteroscedasticity and non-normality caused by
outliers. It is a useful procedure for non-normal distributed groups and Cavus et al. (2018) showed in
a real data application.

The following sections detail the tests for equality of normal distributed and independent group
means under unequal variances considered in doex. The performance of these tests is investigated in
terms of penalized power and Type I error probability. Finally, we conclude with a brief summary and
future works.

Tests for Testing Equality of Normal Distributed Groups’ Means under
Unequal Variance

The linear model within the context of a one-way independent group design for testing the equality of
groups’ means is given in (1) .

Yij = µi + εij (1)

where Yij is the dependent variable associated with the ith observation in the jth group for i = 1, 2, ..., ni
and j = 1, 2, ..., k. µi is the group mean for the ith group, and εij is the random error component
associated with Yij. The null hypothesis H0 : µ1 = µ2 = ... = µk is tested as the Classical F-test
assumed that the εij’s are independent, normally distributed, and have an equal variance σ2 for
each group of k. Type I error probability of Classical F-test inflates and its power decreases in case
of the violation of variance homogeneity assumption. There are many procedures improved in the
literature to solve this problem. In this section, the tests for equality of normal distributed and
independent group means under unequal variances, considered in doex and discussed in the Monte-
Carlo simulation study, are introduced. These tests are, Alexander-Govern, Alvandi et al. generalized
F, Approximate F, Box F, Brown-Forsythe, B2, Cochran F, Fiducial Approach, Generalized F, Johansen,
Modified Brown-Forsythe, Adjusted Welch, Parametric Bootstrap, Permutation F, Scott-Smith, Welch,
Welch-Aspin test.

Alexander-Govern (AG) test

Alexander and Govern (1994) improved a test using the Hill’s normality transformation to the Student’s
t variables. Consider Xi1, Xi2, ..., Xini ∼ N(µi, σ2

i) and the standard deviations of normal groups
computed as in (2).

SX̄i
=

∑k
i=1 ∑ni

j=1(Xij − X̄i)
2

ni(ni − 1)
(2)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=asbio
https://CRAN.R-project.org/package=coin
https://CRAN.R-project.org/package=lawstat
https://CRAN.R-project.org/package=onewaytests
https://CRAN.R-project.org/package=welchADF
https://CRAN.R-project.org/package=WRS2

CONTRIBUTED RESEARCH ARTICLE 191

The weights are computed using the SX̄i
as in (3).

wi =
1/S2

X̄i

∑k
i=1 1/S2

X̄i

(3)

The weight mean is computed using the wi in (4).

X̄∗ =
k

∑
i=1

wiX̄i (4)

The values of ti = (X̄i − X̄∗)/SX̄i
∼ tni−1 are transformed using the following transformation.

zi = c +
c3 + 3c

b
+

4c7 + 33c5 + 240c3 + 855c
10b2 + 8bc4 + 1000b

(5)

where a = vi − 0.5, c =
√

aln(1 + t2
i

vi
) and b = 48a2. The test statistic of AG test is computed as in (6).

TAG =
k

∑
i=1

z2
i (6)

The H0 is rejected when TAG > χ2
(k−1);α.

Alvandi et. al. Generalized F (AGF) test

Sadooghi-Alvandi et al. (2012) proposed the test statistic in 8 as an alternative of Weerahandi’s
Generalized F-test.

TG(S2
1, S2

2, ..., S2
k) =

k

∑
i=1

ni

S2
i

X̄i −
[∑k

i=1 niX̄i/S2
i]

2

∑k
i=1 ni/S2

i

(7)

TAGF =
k

∑
i=1

ni − 1
Ui

(X̄i − qiX̃)2 (8)

where qi =

√
ni/s2

i

∑k
i=1 ni/s2

i
and X̃ = ∑k

i=1 qiX̄i. The p-value of AGF test computed using Monte-Carlo

simulations with Algorithm 1.

Algorithm 1. Computation of Monte-Carlo estimate of the AGF test

1. Compute the vectors of (x̄1, x̄2, ..., x̄k) and (s2
1, s2

2, ..., s2
k) for k groups

2. Compute the TG using the vectors in Step 1
3. for j in {1, ..., r} do

Generate Ui ∼ χ2
ni−1 random samples

Compute the TAGF using generated random samples
Set the counter Qj = 1 when TAGF > TG
end for

4. Compute the Monte-Carlo estimate of p-value as ∑k
i=1 Qj/r

Approximate F (AF) test

Asiribo and Gurland (1990) proposed a modification to the F-test as in (9).

TAF = N
∑k

i=1 ni(X̄i − X̄..)2

∑k
i=1(N − ni)S2

i

(9)

where X̄.. = ∑k
i=1 X̄i and N = ∑k

i=1 ni. The H0 is rejected when TAF > Fv1,v2;α. The degrees of freedom
of the AF test statistic is computed in (10).

v1 =
[∑k

i=1(1− ni/N)S2
i]

2

∑k
i=1 S4

i + [∑k
i=1 niS2

i /N]2 − 2 ∑k
i=1 niS4

i /N
, v2 =

[∑k
i=1(1− ni/N)2S2

i]
2

∑k
i=1(ni − 1)S4

i

(10)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 192

Box (BX) test

Box (1954) proposed the test statistic in (11).

TBO =
Nk

N(k− 1)∑k
i=1

(N−ni)S2
i

(ni−1)S2
i

(11)

The H0 is rejected when TBO > Fv1,v2;α where

v1 =
[∑k

i=1(N − ni)S2
i]

2

[∑k
i=1 niS2

i]
2 + N ∑k

i=1(N − 2ni)S2
i

, v2 =
[∑k

i=1(ni − 1S2
i)]

2

∑k
i=1(ni − 1)S+

i

(12)

Brown-Forsythe (BF) test

Brown and Forsythe (1974) proposes the following test statistic.

TBF =
∑k

i=1 ni(X̄i − X..)2

∑k
i=1(1− ni/N)S2

i

(13)

where X.. = ∑k
i=1 X̄i and N = ∑k

i=1 ni. The H0 is rejected when TBF > F(k−1),v;α. The degrees of
fredom of the test statistic computed as in (14).

v =
[∑k

i=1 ni(X̄i − X..)]2

∑k
i=1

(1−ni/N)2S4
i

(ni−1)

(14)

The B2 test

Ozdemir and Kurt (2006) proposed the following procedure using the Bailey’s normality transforma-
tion to the Student’s t variables. Consider Xi1, Xi2, ..., Xini ∼ N(µi, σ2

i) and the standard deviations of
normal groups computed as in (15).

SX̄i
=

∑k
i=1 ∑ni

j=1(Xij − X̄i)
2

ni(ni − 1)
(15)

The weights computed using the SX̄i
as in (16).

wi =
1/S2

X̄i

∑k
i=1 1/S2

X̄i

(16)

The weighed mean computed using the wi’s as in (17).

X̄∗ =
k

∑
i=1

wiX̄i. (17)

The values of ti = (X̄i − X̄∗)/SX̄i
∼ tni−1 are transformed using Bailey’s (1980) normality transforma-

tion.

zi =
4v2

i +
5(2z2

c+3)
24

4v2
i + vi +

4z2
c+9
12

√
viln(1 +

t2
i

vi
) ∼ N(0, 1) (18)

where zc = Zα/2 ∼ N(0, 1) and the test statistic of B2 test computed as in (19).

TBK =
k

∑
i=1

z2
i =

k

∑
i=1

(
4v2

i +
5(2z2

c+3)
24

4v2
i + vi +

4z2
c+9
12

)2. (19)

The H0 is rejected when TBK > χ2
(k−1);α.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 193

Cochran (CF) test

Cochran (1937) proposes the test statistic in (20).

TC =
k

∑
i=1

wi(X̄i −
k

∑
j=1

hjX̄j)
2 (20)

where wi = ni/s2
i and hi = wi/ ∑k

i=1 wi. The H0 is rejected when TC > χ2
(k−1);α.

Fiducial Approach (FA) test

Li et al. (2011) proposed the test statistic in (21).

TFA =
k

∑
i=1

t2
i −

(∑k
i=1

√
ni

Si
ti)

2

∑k
i=1

ni
S2

i

. (21)

The p-value of the FA test can be computed using Monte-Carlo simulations with Algorithm 2.

Algorithm 2. Computation of Monte-Carlo estimate of the FA test

1. Compute the vectors of (x̄1, x̄2, ..., x̄k) and (s2
1, s2

2, ..., s2
k) for k groups

2. Compute the TG using the vectors in Step 1
3. for j in {1, ..., r} do

Generate Zi ∼ N(0, 1) and Ui ∼ χ2
ni−1 random samples

Compute the TFA using generated random samples
Set the counter Qj = 1 when TFA > TG
end for

4. Compute the Monte-Carlo estimate of p-value as ∑k
i=1 Qj/r

Generalized F (GF) test

Weerahandi (1995) proposed the test statistic in (22) using the generalized p-value approach.

TGF =
k

∑
i=1

(niUi/v2
i)x̄2

i −
[∑k

i=1(niUi/v2
i)x̄i]

2

∑k
i=1 niUi/v2

i

(22)

where v2
i = (ni − 1)S2

i . The p-value of GF test can be computed using Monte-Carlo simulations with
Algorithm 3.

Algorithm 3. Computation of Monte-Carlo estimate of the GF test

1. Compute the vectors of (x̄1, x̄2, ..., x̄k) and (s2
1, s2

2, ..., s2
k) for k groups

2. Compute the TG using the vectors in Step 1
3. for j in {1, ..., r} do

Generate Ui ∼ χ2
ni−1 random samples

Compute the TGF using generated random samples
Set the counter Qj = 1 when TGF > TG
end for

4. Compute the Monte-Carlo estimate of p-value as ∑k
i=1 Qj/r

Johansen (JF) test

Johansen (1980) proposed an approximate solution to the W test as in (23).

TJ =
∑k

i=1
X̄2

i
S2

i
− [∑k

i=1 X̄i/S2
i]

2

∑k
i=1 1/S2

i

c
(23)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 194

where c = (k − 1) + 2A− 6A/(k + 1), v = (k − 1)(k + 1)/3A and A = ∑k
i=1(1− wi/w)2/(ni − 1)

The H0 is rejected when TJ > Fk−1,v;α.

Modified Brown-Forsythe (MBF) test

Mehrotra (1997) proposed the test statistic in (24), which is a modification of BF, to well-performing in
case of small sample size.

TMBF =
∑k

i=1 ni(X̄i − X̄..)2

∑k
i=1(1− ni/N)S2

i

. (24)

where X̄.. = ∑k
i=1 X̄i and N = ∑k

i=1 ni. The H0 is rejected when TMBF>Fv1,v2;α . The degrees of freedom
of the MBF test statistics is computed as in (25).

v1 =
[∑k

i=1(1− ni/N)S2
i]

2

∑k
i=1 S4

i + (∑k
i=1 niS2

i /N)2 − 2 ∑k
i=1 niS4

i /N
, v2 =

[∑k
i=1(1− ni/N)2S2

i]
2

∑k
i=1

(1−ni/N)2S4
i

ni−1

. (25)

Adjusted Welch (AW) test

Hartung et al. (2002) proposed an adjustment to the Welch test. The test statistic of adjusted Welch test
is computed as in (26).

TW =
∑k

i=1 w∗i (x̄i −∑k
j=1 h∗j x̄j)

2

(k− 1) + 2 k−2
k+1 ∑k

i=1
1

ni−1 (1− h∗j)
2

. (26)

where w∗i = [ni
(ni−1/ni−3)s2

i
] and h∗i =

w∗i
∑k

i=1 w∗i
. The H0 is rejected when TW > F(k−1),v;α. The degrees of

freedom of the test statistic computed in (27).

v =
k2−1

3

∑k
i=1

(1−h∗i)2

ni−1

. (27)

Parametric Bootstrap (PB) test

Krishnamoorthy et al. (2007) proposed a procedure to test the equality of group means under het-
eroscedasticity.

TG(S2
1, S2

2, ..., S2
k) =

k

∑
i=1

ni

S2
i

X̄i −
[∑k

i=1 niX̄i/S2
i]

2

∑k
i=1 ni/S2

i

(28)

Assume Zi ∼ N(0, 1) and Ui ∼ χ2
ni−1 random samples, the test statistic of the PB test is computed as

in (29).

TPB(S2
1, S2

2, ..., S2
k) =

k

∑
i=1

Z2
i (ni − 1)

Ui
−

[∑k
i=1
√

niZi(ni − 1)/SiUi]
2

∑k
i=1 ni(ni − 1)/S2

i Ui
(29)

The H0 is rejected when TPB > TG. The p-value of PB test is computed using Monte-Carlo simulations
with Algorithm 4.

Algorithm 4. Computation of Monte-Carlo estimate of the PB test

1. Compute the vectors of (x̄1, x̄2, ..., x̄k) and (s2
1, s2

2, ..., s2
k) for k groups

2. Compute the TG using the vectors in Step 1
3. for j in {1, ..., r} do

Generate Zi ∼ N(0, 1) and Ui ∼ χ2
ni−1 random samples

Compute the TPB using generated random samples
Set the counter Qj = 1 when TPB > TG
end for

4. Compute the Monte-Carlo estimate of p-value as ∑k
i=1 Qj/r

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 195

Permutation F (PF) test

Berry and Mielke (2002) proposed the test statistic in (30) as the permutational alternative of F-test.

TPF =
(T − NX̄∗)/(k− 1)
(V − T)/(N − k)

(30)

where T = ∑k
i=1 ni ∑ x2

i , X̄∗ = 1/N ∑ ni x̄i and V = ∑k
i=1 ∑ni

j=1 X2
ij. The H0 is rejected when TPF >

Fk−1,N−k;α.

Scott-Smith (SS) test

Scott and Smith (1971) proposed the test statistic in (31).

TSC =
k

∑
i=1

ni(X̄i − X̄..)2

S∗2i
(31)

where S∗2i = ni−1
ni−3 S2

i . The H0 is rejected when TSC > χ2
k;α.

Welch (WE) test

Welch (1951) improved the test statistic in 32 based on the weighted group variance as an alternative
to the F-test under heteroscedasticity.

TW =
∑k

i=1 wi(x̄i −∑k
i=1 hj x̄j)

2

(k− 1) + 2 k−2
k+1 ∑k

i=1
1

ni−1 (1− hi)2
(32)

where wi = ni/s2
i and hi = wi/ ∑k

i=1 wi. The H0 is rejected when TW > F(k−1),v;α. The degrees of
freedom of the Welch test computed as in 33.

v =
(k2 − 1)/3

∑k
i=1

(1−hi)2

ni−1

(33)

Welch-Aspin (WA) test

Aspin (1948) proposed the test statistic in (34) with a modification to the degrees of freedom of Welch
test.

TWA =
∑k

i=1(X̄i − X̄)2/S2
i

(k− 1)[1 + 2k−2
k2−1 λ]

(34)

where λ = ∑k
i=1[(1 − wi)

2/wi], v1 = k − 1 and v2 = (k2 − 1)/3λ. The H0 is rejected when
TWA > Fv1;v2;α.

Using doex package

The doex package provides to perform several tests for equality of normal distributed and indepen-
dent distributed group means under unequal variances. These tests are called a function with the
initials of their name which are given in the previous sections. In particular, the following tests are not
included in any R package or statistical package program: AF, AGF, B2, FA, JF, MBF, MW, PB, and PF.
In this section, the examples are given how to use these tests by using doex. After the explanatory
data analysis, the variance homogeneity assumption must be checked to move on to the next stage
(Noguchi and Gel, 2010; Erps and Noguchi, 2019). The Levene Test is used to this, and we did not
include it in the package is because it is included in many R package such as car by Fox and Weisberg
(2019), rstatix by Kassambara (2020), lawstat by Gastwirth et al. (2020), inferr by Hebbali (2018). We
want to stick with the idea of creating a package that includes tests not included in the CRAN.

Example 1: The data are inputted to the functions with two parts: observations and the group labels.
As an example hybrid data from Weerahandi (1995) is given in the package. It consists of two parts:
data are observations and species are the labels of species of the corn hybrids.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=car
https://CRAN.R-project.org/package=rstatix
https://CRAN.R-project.org/package=inferr

CONTRIBUTED RESEARCH ARTICLE 196

Call the doex package
> library(doex)
print hybrid data of Weerahandi (1995)
> hybrid

data species
1 7.4 A
2 6.6 A
3 6.7 A
4 6.1 A
5 6.5 A
6 7.2 A
7 7.1 B
8 7.3 B
9 6.8 B
10 6.9 B
11 7.0 B
12 6.8 C
13 6.3 C
14 6.4 C
15 6.7 C
16 6.5 C
17 6.8 C
18 6.4 D
19 6.9 D
20 7.6 D
21 6.8 D
22 7.3 D

observations of the hybrid data
> hybrid$data
[1] 7.4 6.6 6.7 6.1 6.5 7.2 7.1 7.3 6.8 6.9 7.0 6.8 6.3 6.4 6.7 6.5 6.8 6.4 6.9 7.6 6.8 7.3

group labels of the hybrid data
> hybrid$species
[1] A A A A A A B B B B B C C C C C C D D D D D
Levels: A B C D

The ggplot2 package can be used to plot the box plot of the data in Figure 1.
> ggplot(hybrid, aes(x = species, y = data)) +
> geom_boxplot() +
> ylab("Yield") +
> xlab("Corn Species")

Look at the summary statistics of the data before using the tests.
Use psych package to obtain the descriptive statistics of the hybrid data
> library(psych)

Describe the hybrid data by species using describe.by(.) function
> describe.by(hybrid$data, hybrid$species)

#The output of the describe.by function as follows:

Descriptive statistics by group
group: A

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 6 6.75 0.48 6.65 6.75 0.52 6.1 7.4 1.3 0.11 -1.7 0.19
--
group: B

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 5 7.02 0.19 7 7.02 0.15 6.8 7.3 0.5 0.28 -1.72 0.09
--
group: C

vars n mean sd median trimmed mad min max range skew kurtosis se

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 197

Figure 1: Boxplot of the data in Example 1.

X1 1 6 6.58 0.21 6.6 6.58 0.3 6.3 6.8 0.5 -0.13 -2.02 0.09
--
group: D

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 5 7 0.46 6.9 7 0.59 6.4 7.6 1.2 0.04 -1.84 0.21

It is seen that the variances of the species are unequal
Thus we need to use the tests for equality of the group means under unequal variances
#
Examples of the use of the AF and GF tests on the hybrid data are given in the follows.
The following code performs the Approximate F-test on the hybrid data.

> library(doex)
> AF(hybrid$data,hybrid$species)

This function returns a result matrix consists of a test statistic, degrees of freedom,
and p-value of Approximate F-test as follows:

Test Statistic df1 df2 p-value
Approximate F 1.8538 2 12 0.1943

Following code performs the Generalized F-test.

> library(doex)
> GF(hybrid$data,hybrid$species)

The p-value of the GF test is computed Monte-Carlo estimates and its size is
controlled with the rept parameter in the function. It is implemented as
default rept=10000
This function returns the p-value of the Generalized F-test as follows:

p-value
Generalized F 0.0492

The results of the AF and GF tests are different at the nominal level 0.05.
It is needed to investigate the performance of these tests in
a Monte-Carlo simulation study.

Example 2: This example is provided an external data involves litter weights of mice born from
mothers assigned to three different dosage groups and a control. For the low dose group the dose
metameter is 5, for the medium dose group it is 50, and for the high dose group it is 500. In here, the
problem is testing the equality of mean of litter weights of mice born according to the used dose. The
dataset is available in the following repository: https://github.com/mcavs/doex_TheRJournal.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://github.com/mcavs/doex_TheRJournal

CONTRIBUTED RESEARCH ARTICLE 198

Figure 2: Boxplot of the data in Example 2.

Print born weight data using the data is given in GitHub repository.

weight_data dose
1 22.69 0
2 26.59 0
3 28.85 0
4 28.03 0
5 29.05 0
6 23.61 0
7 22.21 0
8 26.81 0
9 26.01 0
10 25.98 0
. . .
. . .
. . .
70 26.31 500
71 30.61 500
72 26.48 500
73 24.31 500
74 27.98 500

The ggplot2 package can be used to plot the box plot of the data in Figure 2.
> ggplot(born_weight_data, aes(x = dose, y = weight_data)) +
> geom_boxplot() +
> ylab("Born Weight (gr)") +
> xlab("Dose Treatment")

Describe the born weight data by species using describe.by(.) function
> describe.by(born_weight_data$weight_data, born_weight_data$dose)

#The output of the describe.by function as follows:

Descriptive statistics by group
group: 0

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 20 25.73 2.02 26.1 25.74 2.43 22.21 29.05 6.84 -0.1 -1.16 0.45

group: 5

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 19 23.52 3.9 22.75 23.51 4.28 16.34 30.95 14.61 0.01 -0.97 0.89

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 199

group: 50

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 18 23.79 2.83 24.11 23.84 1.92 17.54 29.21 11.67 -0.28 0.03 0.67

group: 500

vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 17 23.72 4.08 24.31 23.76 3.84 16.13 30.61 14.48 -0.4 -0.91 0.99

It is seen that the variances of the dose groups may be unequal
To conclude whether the variance homogenity assumption is valid,
Levene test is used.

> library(car)
> car::LeveneTest(weight_data ~ dose)

LeveneTest(.) function returns the test statistic and
p-value of Levene variance homogeneity test as follows:

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 3 3.3819 0.0229 *

Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

The p-value of Levene test is lower than the nominal level 0.05,
so it is concluded that the variance homogeneity assumption is violated.
Thus we need to use the tests for equality of the group means under
unequal variances in doex.

The GF, AF, and PB are used to conclude there is a significance difference between
the mean born weight of mice according to used dose group.

> doex::GF(weight_data, dose)

p-value
Generalized F 0.0331

> doex::AF(weight_data, dose)

Test Statistic df1 df2 p-value
Approximate F 1.9408 3 57 0.1484

> doex::PB(weight_data, dose)

p-value
Parametric Bootstrap 0.0366

The results of the GF and PB tests indicate that there is a significant difference,
while the result of the AF indicates that there is no significant difference between
the mean born weight of mice according to used dose group.
It is also needed to investigate the performance of these tests in
a Monte-Carlo simulation study.

Monte-Carlo simulation study

In this section, the performance of the tests for equality of normal distributed and independent groups’
means under unequal variances are investigated in terms of Type I error probability and penalized
power of the test. We used the penalized power instead of the classical power of the test, because
any comparison of the powers is invalid when Type I error probabilities are different in Monte-Carlo
simulation studies. Zhang and Boos (1994) and Lloyd (2005) proposed alternatives for the power of
the tests have some deficiencies. To overcome this problem, Cavus et al. (2019) proposed the penalized

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 200

Figure 3: Type I error probability of the tests for k = 3.

power of the test in (35) to compare the power of the test even if Type I error probabilities are different.

γ =
1− β√

1 +
∣∣∣1− αi

α0

∣∣∣ (35)

where β is Type II error rate, αi is Type I error of the test, and α0 is the nominal level. Penalized
power adjusts the power function with the square root of the percentile deviation between type I error
probability and the nominal level. Thus, penalized power is used to compare the power of the tests in
the simulation studies. An extensive Monte-Carlo simulation study is conducted to investigate the
performance of the tests in terms of Type I error probability and penalized power. Firstly, the ability
of the tests to control the Type I error probability is examined. Then, the penalized power of the test
which controls the Type I error probability in the Bradley (1978)’s robustness limits are compared.
In this way, we conclude the performance of the tests by taking into account two possible errors in
hypothesis testing. The sample size, design type, variance heterogeneity, and effect sizes are used
as configuration factors beyond this part of the study. The R code used in this simulation study is
available in the following repository: https://github.com/mcavs/doex_TheRJournal.

The properties of the tests to control the Type I error probability

Type I error probabilities of the tests are investigated in an extensive Monte-Carlo simulation study
under balanced and unbalanced design with small, moderate, and large sample sizes in this section.
Also, the number of the groups is fixed as k = 3, 5, 7, and different heteroscedasticity setups are also
used. Hereby, the properties of the tests to control the Type I error probability are revealed under
various scenarios.

The boxplots in Figs. 3,4,5 are constructed for several heteroscedasticity scenarios. In this way, the
ability of the tests to control the Type I error probability are obtained. According to the Fig.3, AF, AG,
B2, GF, JF, MBF, PB, WA and WE test controls the Type I error probability in the Bradley (1978) limits
which are shown with dashed red lines. However, the AGF, CF, PF, and SS test could not control the
Type I error probability for k = 3. The GF test controls the Type I error probability unlike in the case of
k = 3 in Fig.4. The AF, AG, B2, MBF, PB, and WA test control Type I error probability for k = 7. When
the results are summarized, it is concluded that the AGF, BF, BX, CF, MW, PF, and SS test could not

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://github.com/mcavs/doex_TheRJournal

CONTRIBUTED RESEARCH ARTICLE 201

Figure 4: Type I error probability of the tests for k = 5.

Figure 5: Type I error probability of the tests for k = 7.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 202

control the Type I error probability for each of the k’s. Thus, the tests only which control Type I error
probability in the limits are considered in the next section for power comparisons to avoid making a
wrong decision.

The results of the penalized powers

In this section, the penalized power results are given under four configuration factors are sample size,
design type, effect size, heteroscedasticity level for k = 3, 5, 7. The samples follows normal distribution
with the parameters (µi, σ2

i) as given in Tables 1, 2, 3. The mean parameter of the samples are shown
as the effect size ∆i in each line. This means that the mean parameter of the samples are zero except
the last sample is ∆i.

When the effect of the configuration factors on the power are examined, it is observed that the
larger sample size increase, the higher level of heteroscedasticity decrease, and the higher effect sizes
increase the power of all tests as expected. Also, some interesting results are obtained such as the
penalized power of all tests are higher in the unbalanced designs. The performances of the AF and
MBF, the AG and B2, the JF and WE tests are very close to each other in terms of penalized power.
Thus, these tests may be used interchangeably.

The AF and MBF test are superior than others in most of the scenarios. In the lower level of
heteroscedasticity for all sample sizes, the penalized power of the tests are higher than 0.90 for
k = 3. It is the same situation for k = 5 except for a small sample-unbalanced design. In this case,
the penalized power of the AF and MGF is close to the 0.90, and the performance of the others is
unacceptable. For k = 7, the penalized power of the tests is higher than 0.90 except for small sample-
lower heteroscedasticity scenarios. In this case, the AF and MBF tests show acceptable performance
in terms of penalized power in only small sample-lower level heteroscedasticity. As a result, it
is clearly seen that the penalized power of the tests decreases dramatically in the higher level of
heteroscedasticity for k = 5, 7.

Discussion

In this paper, an extensive Monte-Carlo simulation study is conducted to investigate the performance
of the tests for equality of normal distributed and independent groups’ means under unequal variances
under several scenarios. It is rather rare to encounter normally distributed data and Bono et al. (2017)
showed that the data obtained from health, educational, and social sciences research are often not
normally distributed. Blanca et al. (2013) discussed the negative effect of non-normality on the power
and Type I error probability of the parametric tests. It is reality that the normality assumption is crucial
for the considered tests in this study. Here, it is focused on the performance of the considered tests
under normality to fill the gap mentioned the introduction part. Firstly, the ability of the test to control
the Type I error probability is examined and the boxplots in Figs.3, 4 and 5 are used to summarize
the results. The tests which can control the Type I error probability are obtained as robust tests with
respect to the Bradley (1978)’s limits. Then, the penalized power of the robust tests is calculated. The
reason for using this method was to consider two possible types of error.

According to the results of the Monte-Carlo simulation study, the AF, AG, B2, MBF, PB, WA test
control the Type I error probability for k = 3, 5, 7 in the interval [0.0495, 0.0505]. The GF can control
only for k = 3 and the WE test can control only for k = 3, 5. Besides the controlling of the Type I
error probability of these tests, the penalized power properties are also investigated under similar
scenarios. The results are indicated that the AF and MBF tests are superior than others in the higher
heteroscedasticity levels. Also, it is concluded that the penalized power of the other tests is quite close
to the intended level.

As a result of this study, the robust tests are obtained and can be used in most of the situations
except for a higher level of heteroscedasticity and small sample sizes. Using the results of the
simulation study, researchers can use appropriate tests for their studies.

Summary and Future works

The doex package contains the several tests for testing equality of normally distributed groups’ means
under unequal variances. Most of these tests are not available in any R package. Thus, we fill this
gap by implementing the package in the statistical software literature. The fact that the package
contains tests such as the GF, PB, and FA with complex calculation steps provides a significant benefit
to multidisciplinary researchers. Furthermore, the performance of the considered tests is investigated
under normal distributions in detail in an extensive Monte-Carlo simulation study. Considering the

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=doex

CONTRIBUTED RESEARCH ARTICLE 203

number of methods discussed, this article is the most comprehensive performance investigation study
in the literature. Recommendations were made to the researchers by using the interesting outputs
from the simulation study.

It is always optimistic idea to encountered normal distribution in real life. The performance of
the considered tests can be also investigated under the various distributions or to focus the tests are
proposed for non-normal distributions. Thus, it is planned to expand the package by adding methods
used to test the equality of the log-normal (Tian and Wu, 2007) and inverse-Gaussian (Tian, 2006; Ma
and Tian, 2009) distributed and independent groups’ means in further studies.

Acknowledgement

This study is supported by the Eskisehir Technical University Scientific Research Projects Commission
under grant No. 20DRP047.

Bibliography

K. Aho. asbio: A Collection of Statistical Tools for Biologists, 2018. URL https://CRAN.R-project.org/
package=asbio. R package version 1.5-3. [p190]

R. A. Alexander and D. M. Govern. A new and simplier approximation for anova under variance
heterogeneity. Journal of Educational Statistics, 19(2):91–101, 1994. URL https://www.jstor.org/
stable/1165140. [p190]

D. Argac. Testing for homogeneity in a general one-way classification with fixed effects: power
simulations and comparative study. Computational Statistics & Data Analysis, 44:603–612, 2004. URL
https://doi.org/10.1016/S0167-9473(02)00264-5. [p189]

O. Asiribo and J. Gurland. Coping with variance heterogeneity. Communications in Statistics-
Theory and Methods, 19(11):4029–4048, 1990. URL https://www.tandfonline.com/doi/abs/10.1080/
03610929008830427. [p191]

A. A. Aspin. Interval estimates for linear combinations of means. Biometrika, 35(1):276–285, 1948. URL
https://www.jstor.org/stable/2332631. [p195]

K. J. Berry and P. W. Mielke. The fisher-pitman permutation test: an attractive alternative to the f test.
Psychological Reports, 90(2):495–502, 2002. URL https://www.ncbi.nlm.nih.gov/pubmed/12061589.
[p195]

M. Blanca, J. Arnau, D. Lopez-Montiel, R. Bono, and R. Bendayan. Skewness and kurtosis in real data
samples. Methodology, 9:78–84, 2013. [p202]

R. Bono, M. Blanca, J. Arnau, and J. Gomez-Benito. Non-normal distributions commonly used in
health, education, and social sciences: A systematic review. Frontiers in Psychology, 8, 2017. [p202]

G. E. P. Box. Some theorems on quadratic forms applied in the study of analysis of variance problems.
Technometrics, 25(2):290–302, 1954. URL https://www.jstor.org/stable/pdf/2236731.pdf. [p192]

J. V. Bradley. Robustness. British Journal of Mathematical and Statistical Psychology, 31:144–152, 1978.
[p200, 202]

M. B. Brown and A. B. Forsythe. The small sample behavior of some statistics which test the equality
of several means. Technometrics, 16(1):81–90, 1974. URL https://www.jstor.org/stable/pdf/
1267501.pdf. [p192]

M. Cavus, B. Yazici, and A. Sezer. Modified tests for comparison of group means under heteroskedas-
ticity and non-normality caused by outliers. Hacettepe Journal of Mathematics and Statistics, 46
(3):493–510, 2017. URL http://www.hjms.hacettepe.edu.tr/uploads/f0746d40-4b55-41fb-9917-
12f8f2f0a2e4.pdf. [p190]

M. Cavus, B. Yazici, and A. Sezer. Analysing regional export data by the modified generalized f-
test. International Journal of Economic and Administrative Studies, pages 541–551, 2018. URL https:
//dergipark.org.tr/download/article-file/408447. [p190]

M. Cavus, B. Yazici, and A. Sezer. Penalized power approach to compare the power of the tests when
type i error probabilities are different. Communication in Statistics-Simulation and Computation, 2019.
URL https://doi.org/10.1080/03610918.2019.1588310. [p199]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=asbio
https://CRAN.R-project.org/package=asbio
https://www.jstor.org/stable/1165140
https://www.jstor.org/stable/1165140
https://doi.org/10.1016/S0167-9473(02)00264-5
https://www.tandfonline.com/doi/abs/10.1080/03610929008830427
https://www.tandfonline.com/doi/abs/10.1080/03610929008830427
https://www.jstor.org/stable/2332631
https://www.ncbi.nlm.nih.gov/pubmed/12061589
https://www.jstor.org/stable/pdf/2236731.pdf
https://www.jstor.org/stable/pdf/1267501.pdf
https://www.jstor.org/stable/pdf/1267501.pdf
http://www.hjms.hacettepe.edu.tr/uploads/f0746d40-4b55-41fb-9917-12f8f2f0a2e4.pdf
http://www.hjms.hacettepe.edu.tr/uploads/f0746d40-4b55-41fb-9917-12f8f2f0a2e4.pdf
https://dergipark.org.tr/download/article-file/408447
https://dergipark.org.tr/download/article-file/408447
https://doi.org/10.1080/03610918.2019.1588310

CONTRIBUTED RESEARCH ARTICLE 204

W. G. Cochran. Problems arising in the analysis of a series of similar experiments. Technometrics, 4(1):
290–302, 1937. URL https://www.jstor.org/stable/pdf/2984123.pdf. [p193]

O. Dag, A. Dolgun, and N. M. Konar. onewaytests: an r package for one-way tests in independent
groups designs. R Journal, 10(1):175–199, 2018. URL https://journal.r-project.org/archive/
2018/RJ-2018-022/RJ-2018-022.pdf. [p190]

R. C. Erps and K. Noguchi. A robust test for checking the homogeneity of variability measures and its
application to the analysis of implicit attitudes. Journal of Educational and Behavioral Statistics, 45(4):
403–425, 2019. [p195]

J. Fox and S. Weisberg. An R companion to applied regression. Sage, Thousand Oaks CA., third edition
edition, 2019. [p195]

J. Gamage and S. Weerahandi. Size performance of some tests in one-way anova. Communications
in Statistics-Computation and Simulation, 27(3):165–173, 1998. URL http://dx.doi.org/10.1080/
03610919808813500. [p189]

J. L. Gastwirth, Y. R. Gel, W. L. W. Hui, V. Lyubchich, W. Miao, and K. Noguchi. lawstat: Tools for
Biostatistics, Public Policy, and Law, 2020. URL https://CRAN.R-project.org/package=lawstat. R
package version 3.4. [p195]

E. Gokpinar and F. Gokpinar. A test based on the computational approach for equality of means
under the unequal variance assumption. Hacettepe Journal of Mathematics and Statistics, 41(4):
605–613, 2012. URL http://www.hjms.hacettepe.edu.tr/uploads/0871d39b-039b-45fb-9b31-
483cdde56ef7.pdf. [p190]

J. Hartung, D. Argac, and K. H. Makambi. Small sample properties of tests on homogeneity in one-way
anova and meta-analysis. Statistical Papers, 43(2):1139–1145, 2002. URL https://link.springer.
com/article/10.1007/s00362-002-0097-8. [p189, 190, 194]

A. Hebbali. inferr: Inferential Statistics, 2018. URL https://CRAN.R-project.org/package=inferr. R
package version 0.3.0. [p195]

T. Hothorn, K. Hornik, M. A. van de Wiel, and A. Zeileis. lawstat: an r package for law, public policy
and biostatistics. Journal of Statistical Software, 28(8):1–23, 2008. URL https://doi.org/10.18637/
jss.v028.i08. [p190]

W. Hui, Y. R. Gel, and G. G. Gastwirth. Implementing a class of permutation tests: The coin package.
Journal of Statistical Software, 28(3):1–26, 2008. URL https://doi.org/10.18637/jss.v028.i03.
[p190]

S. Johansen. The welch-james approximation to the distribution of the residual sum of squares in a
weighted linear regression. Biometrika, 67(1):58–92, 1980. URL https://www.jstor.org/stable/
2335320. [p193]

A. Kassambara. rstatix: Pipe-Friendly Framework for Basic Statistical Tests, 2020. URL https://CRAN.R-
project.org/package=rstatix. R package version 0.6.0. [p195]

K. Krishnamoorthy, F. Lu, and T. Mathew. A parametric bootstrap approach for anova with unequal
variances: fixed and random models. Computational Statistics and Data Analysis, 51(12):5731–5742,
2007. URL https://www.sciencedirect.com/science/article/pii/S016794730600363X. [p194]

S. Lee and C. H. Ahn. Modified anova for unequal variances. Communication in Statistics-Simulation
and Computation, 32(4):987–1004, 2003. [p190]

X. Li, J. Wang, and H. Liang. Comparison of several means: a fiducial based approach. Computational
Statistics and Data Analysis, 55(5):1993–2002, 2011. URL https://www.sciencedirect.com/science/
article/pii/S0167947310004779. [p190, 193]

C. J. Lloyd. Estimating test power adjusted for size. Journal of Statistical Computation and Simulation, 75
(11):921–933, 2005. URL https://www.tandfonline.com/doi/abs/10.1080/00949650412331321160.
[p199]

C. X. Ma and L. Tian. A parametric bootstrap approach for testing equality of inverse gaussian means
under heterogeneity. Communications in Statistics-Simulation and Computation, 38:1153–1160, 2009.
[p203]

P. Mair and R. Wilcox. WRS2: Wilcox robust estimation and testing, 2018. 0.10-0. [p190]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://www.jstor.org/stable/pdf/2984123.pdf
https://journal.r-project.org/archive/2018/RJ-2018-022/RJ-2018-022.pdf
https://journal.r-project.org/archive/2018/RJ-2018-022/RJ-2018-022.pdf
http://dx.doi.org/10.1080/03610919808813500
http://dx.doi.org/10.1080/03610919808813500
https://CRAN.R-project.org/package=lawstat
http://www.hjms.hacettepe.edu.tr/uploads/0871d39b-039b-45fb-9b31-483cdde56ef7.pdf
http://www.hjms.hacettepe.edu.tr/uploads/0871d39b-039b-45fb-9b31-483cdde56ef7.pdf
https://link.springer.com/article/10.1007/s00362-002-0097-8
https://link.springer.com/article/10.1007/s00362-002-0097-8
https://CRAN.R-project.org/package=inferr
https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.18637/jss.v028.i08
https://doi.org/10.18637/jss.v028.i03
https://www.jstor.org/stable/2335320
https://www.jstor.org/stable/2335320
https://CRAN.R-project.org/package=rstatix
https://CRAN.R-project.org/package=rstatix
https://www.sciencedirect.com/science/article/pii/S016794730600363X
https://www.sciencedirect.com/science/article/pii/S0167947310004779
https://www.sciencedirect.com/science/article/pii/S0167947310004779
https://www.tandfonline.com/doi/abs/10.1080/00949650412331321160

CONTRIBUTED RESEARCH ARTICLE 205

D. V. Mehrotra. Improving the brown-forsythe solution to the generalized behrens-fisher problem.
Communication in Statistics-Simulation and Computation, 26(3):1139–1145, 1997. URL https://www.
tandfonline.com/doi/abs/10.1080/03610919708813431. [p194]

H. T. Mutlu, F. Gokpinar, E. Gokpinar, H. H. Gul, and G. Guven. A new computational approach test
for one-way anova under heteroscedasticity. Communications in Statistics - Theory and Methods, 46
(16):8236–8256, 2017. [p190]

K. Noguchi and Y. R. Gel. Combination of levene-type tests and a finite-intersection method for testing
equality of variances against ordered alternatives. Journal of Nonparametric Statistics, 22(7):897–913,
2010. [p195]

A. F. Ozdemir and S. Kurt. One-way fixed effect analysis of variance under variance heterogeneity
and a solution proposal. Selcuk Journal of Applied Mathematics, 7(2):81–90, 2006. URL http://sjam.
selcuk.edu.tr/sjam/article/view/174. [p192]

S. M. Sadooghi-Alvandi, A. A. Jafari, and H. A. Mardani-Fard. One-way anova with unequal
variances. Communications in Statistics-Theory and Methods, 41(22):4200–4221, 2012. URL https:
//www.tandfonline.com/doi/full/10.1080/03610926.2011.573160. [p189, 191]

A. J. Scott and T. M. Smith. Interval estimates for linear combinations of means. Journal of the Royal
Statistical Society, 20(3):276–285, 1971. URL https://www.jstor.org/stable/2346757. [p195]

L. Tian. Testing equality of inverse gaussian means under heterogeneity based on generalized test
variable. Computational Statistics Data Analysis, 51:1156:1162, 2006. [p203]

L. Tian and J. Wu. Inferences on the common mean of several log-normal populations: the generalized
variable approach. Biometrical Journal, 49:944:951, 2007. [p203]

P. J. Villacorta. The welchadf package for robust hypothesis testing in unbalanced multivariate
mixed models with heteroscedastic an non-normal data. The R Journal, 9(2):309–328, 2017. URL
https://journal.r-project.org/archive/2017/RJ-2017-049/RJ-2017-049.pdf. [p190]

S. Weerahandi. Anova under unequal error variances. Biometrics, 51(2):589–599, 1995. URL http:
//www.jstor.org/stable/2532947. [p193]

B. L. Welch. On the comparison of several mean values. Biometrika, 38(1):330–336, 1951. URL
https://www.jstor.org/stable/2332631. [p195]

J. Zhang and D. D. Boos. Adjusted power estimates in monte-carlo experiments. Communications
in Statistics-Computation and Simulation, 23(1):165–173, 1994. URL https://www.tandfonline.com/
doi/abs/10.1080/00949650412331321160. [p199]

Mustafa Cavus
Eskisehir Technical University
Department of Statistics
Eskisehir, Turkey
https://orcid.org/0000-0002-6172-5449
mustafacavus@eskisehir.edu.tr

Berna Yazıcı
Eskisehir Technical University
Department of Statistics
Eskisehir, Turkey
https://orcid.org/0000-0001-9843-7355
bbaloglu@eskisehir.edu.tr

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://www.tandfonline.com/doi/abs/10.1080/03610919708813431
https://www.tandfonline.com/doi/abs/10.1080/03610919708813431
http://sjam.selcuk.edu.tr/sjam/article/view/174
http://sjam.selcuk.edu.tr/sjam/article/view/174
https://www.tandfonline.com/doi/full/10.1080/03610926.2011.573160
https://www.tandfonline.com/doi/full/10.1080/03610926.2011.573160
https://www.jstor.org/stable/2346757
https://journal.r-project.org/archive/2017/RJ-2017-049/RJ-2017-049.pdf
http://www.jstor.org/stable/2532947
http://www.jstor.org/stable/2532947
https://www.jstor.org/stable/2332631
https://www.tandfonline.com/doi/abs/10.1080/00949650412331321160
https://www.tandfonline.com/doi/abs/10.1080/00949650412331321160
https://orcid.org/0000-0002-6172-5449
mailto:mustafacavus@eskisehir.edu.tr
https://orcid.org/0000-0001-9843-7355
mailto:bbaloglu@eskisehir.edu.tr

CONTRIBUTED RESEARCH ARTICLE 206

Table 1: Penalized powers for k = 3

ni σ2
i ∆i AG AF B2 GF JF MBF PB WE WA

(10, 10, 10) (0.1, 0.2, 0.3) 0.3 0.2232 0.2630 0.2236 0.2133 0.2314 0.2628 0.2306 0.2314 0.2128
0.8 0.9045 0.9391 0.9047 0.8915 0.9197 0.9390 0.9201 0.9197 0.8833
1.5 0.9910 0.9815 0.9911 0.9768 0.9921 0.9815 0.9941 0.9921 0.9614

(0.1, 0.4, 0.7) 0.3 0.1265 0.1491 0.1269 0.1277 0.1326 0.1490 0.1296 0.1326 0.1193
0.8 0.5962 0.6858 0.5978 0.6004 0.6129 0.6855 0.6089 0.6129 0.5829
1.5 0.9853 0.9880 0.9881 0.9893 0.9812 0.9879 0.9777 0.9812 0.9583

(1, 2, 3) 0.3 0.0682 0.0656 0.0684 0.0649 0.0708 0.0655 0.0702 0.0708 0.0644
0.8 0.1700 0.2006 0.1701 0.1653 0.1760 0.2004 0.1752 0.1760 0.1615
1.5 0.4832 0.5536 0.4833 0.4716 0.4998 0.5534 0.4968 0.4998 0.4693

(1, 4, 7) 0.3 0.0614 0.0566 0.0616 0.0622 0.0627 0.0565 0.0622 0.0627 0.0563
0.8 0.1023 0.1200 0.1026 0.1050 0.1075 0.1200 0.1068 0.1075 0.0958
1.5 0.2542 0.3022 0.2550 0.2556 0.2655 0.3021 0.2594 0.2655 0.2424

(30, 30, 30) (0.1, 0.2, 0.3) 0.3 0.6299 0.7004 0.6293 0.6281 0.6327 0.7002 0.6342 0.6327 0.6375
0.8 0.9882 0.9980 0.9872 0.9872 0.9815 0.9979 0.9853 0.9815 0.9970
1.5 1 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7) 0.3 0.3210 0.3791 0.3212 0.3210 0.3243 0.3789 0.3224 0.3243 0.3233
0.8 0.9772 0.9924 0.9775 0.9779 0.9740 0.9922 0.9726 0.9740 0.9898
1.5 0.9831 0.9960 0.9834 0.9834 0.9796 0.9960 0.9787 0.9796 0.9960

(1, 2, 3) 0.3 0.0923 0.1072 0.0922 0.0934 0.0938 0.1070 0.0930 0.0938 0.0925
0.8 0.4785 0.5411 0.4780 0.4733 0.4823 0.5410 0.4789 0.4823 0.4820
1.5 0.9566 0.9798 0.9557 0.9545 0.9517 0.9797 0.9566 0.9517 0.9653

(1, 4, 7) 0.3 0.0661 0.0715 0.0663 0.0663 0.0672 0.0714 0.0648 0.0672 0.0657
0.8 0.2282 0.2809 0.2285 0.2284 0.2318 0.2808 0.2298 0.2318 0.2301
1.5 0.6982 0.7659 0.6990 0.7012 0.7032 0.7655 0.7009 0.7032 0.7100

(50, 50, 50) (0.1, 0.2, 0.3) 0.3 0.8573 0.9046 0.8577 0.8546 0.8547 0.9045 0.8604 0.8547 0.8593
0.8 0.9811 0.9980 0.9815 0.9825 0.9759 0.9979 0.9853 0.9759 0.9834
1.5 1 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7) 0.3 0.5427 0.6028 0.5425 0.5443 0.5418 0.6026 0.5400 0.5418 0.5442
0.8 0.9832 0.9980 0.9834 0.9880 0.9759 0.9980 0.9740 0.9759 0.9872
1.5 1 1 1 1 0.9979 1 0.9940 0.9981 1

(1, 2, 3) 0.3 0.1421 0.1671 0.1431 0.1432 0.1435 0.1671 0.1474 0.1435 0.1434
0.8 0.7210 0.7900 0.7214 0.7203 0.7204 0.7900 0.7262 0.7204 0.7232
1.5 0.9803 0.9974 0.9807 0.9817 0.9751 0.9974 0.9843 0.9751 0.9826

(1, 4, 7) 0.3 0.0912 0.1040 0.0917 0.0907 0.0917 0.1040 0.0918 0.0917 0.0904
0.8 0.4020 0.4659 0.4018 0.4066 0.4017 0.4659 0.4021 0.4017 0.4032
1.5 0.9031 0.9405 0.9032 0.9070 0.8990 0.9405 0.8932 0.8990 0.9077

(5, 10, 15) (0.1, 0.2, 0.3) 0.3 0.2790 0.3346 0.2791 0.2535 0.2573 0.2974 0.2605 0.2573 0.2371
0.8 0.9598 0.9388 0.9570 0.9217 0.9432 0.9342 0.9484 0.9432 0.9406
1.5 0.9844 0.9483 0.9815 0.9475 0.9731 0.9500 0.9787 0.9731 0.9759

(0.1, 0.4, 0.7) 0.3 0.1522 0.1955 0.1526 0.1346 0.1494 0.1743 0.1490 0.1494 0.1339
0.8 0.7601 0.8070 0.7609 0.7018 0.7535 0.7860 0.7532 0.7535 0.7063
1.5 0.9910 0.9612 0.9913 0.9340 0.9962 0.9748 0.9992 0.9962 0.9567

(1, 2, 3) 0.3 0.0702 0.0835 0.0709 0.0604 0.0650 0.0669 0.0652 0.0650 0.0607
0.8 0.2018 0.2644 0.2014 0.1817 0.1900 0.2236 0.1912 0.1900 0.1741
1.5 0.5940 0.6651 0.5928 0.5571 0.5611 0.6205 0.5649 0.5611 0.5412

(1, 4, 7) 0.3 0.0562 0.0690 0.0567 0.0460 0.0568 0.0610 0.0580 0.0568 0.0496
0.8 0.1202 0.1546 0.1210 0.1068 0.1190 0.1353 0.1190 0.1190 0.1036
1.5 0.3310 0.3986 0.3312 0.3016 0.3252 0.3689 0.3250 0.3252 0.2971

(20, 30, 40) (0.1, 0.2, 0.3) 0.3 0.7142 0.7419 0.7143 0.7108 0.7071 0.7609 0.7093 0.7071 0.7068
0.8 0.9955 0.9509 0.9960 0.9980 0.9872 0.9970 0.9921 0.9872 0.9960
1.5 1 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7) 0.3 0.3951 0.4407 0.3953 0.3944 0.3994 0.4314 0.3953 0.3994 0.3872
0.8 0.9892 0.9612 0.9895 0.9936 0.9984 0.9869 0.9899 0.9984 0.9857
1.5 0.9910 0.9614 0.9911 0.9950 1 0.9872 0.9911 1 0.9872

(1, 2, 3) 0.3 0.1062 0.1227 0.1066 0.1022 0.1060 0.1196 0.1058 0.1060 0.1044
0.8 0.5572 0.5975 0.5576 0.5541 0.5521 0.6064 0.5540 0.5521 0.5530
1.5 0.9843 0.9452 0.9847 0.9860 0.9758 0.9892 0.9806 0.9758 0.9845

(1, 4, 7) 0.3 0.0743 0.0821 0.0747 0.0732 0.0756 0.0772 0.0747 0.0756 0.0735
0.8 0.2872 0.3234 0.2874 0.2876 0.2904 0.3157 0.2908 0.2904 0.2843
1.5 0.8011 0.8166 0.8020 0.8044 0.8100 0.8240 0.8004 0.8100 0.7957

(25, 50, 75) (0.1, 0.2, 0.3) 0.3 0.9182 0.8505 0.9184 0.9294 0.9129 0.9361 0.9153 0.9129 0.9227
0.8 0.9744 0.8811 0.9750 0.9872 0.9704 0.9796 0.9750 0.9704 0.9825
1.5 1 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7) 0.3 0.6392 0.6680 0.6398 0.6375 0.6365 0.6702 0.6384 0.6365 0.6380
0.8 0.9682 0.9054 0.9685 0.9704 0.9649 0.9631 0.9750 0.9649 0.9722
1.5 1 0.9654 1 1 1 1 1 1 1

(1, 2, 3) 0.3 0.1631 0.2058 0.1636 0.1649 0.1630 0.1932 0.1652 0.1630 0.1627
0.8 0.8022 0.7839 0.8030 0.8105 0.7976 0.8452 0.7991 0.7976 0.8058
1.5 0.9745 0.8811 0.9750 0.9872 0.9704 0.9796 0.9750 0.9704 0.9825

(1, 4, 7) 0.3 0.0970 0.1217 0.0972 0.0959 0.0969 0.1094 0.0989 0.0969 0.0961
0.8 0.4922 0.5291 0.4924 0.4896 0.4902 0.5205 0.4941 0.4902 0.4900
1.5 0.9466 0.8923 0.9470 0.9486 0.9433 0.9435 0.9531 0.9433 0.9500

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 207

Table 2: Penalized powers for k = 5

ni σ2
i ∆i AG AF B2 JF MBF PB WE WA

(10, 10, 10, 10, 10) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.0713 0.0867 0.0716 0.0779 0.0863 0.0729 0.0779 0.0718
0.8 0.2172 0.3403 0.2173 0.2424 0.3400 0.2350 0.2424 0.2271
1.5 0.6316 0.8549 0.6315 0.6984 0.8542 0.6897 0.6984 0.6722

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.0562 0.0586 0.0565 0.0543 0.0536 0.0540 0.0543 0.0515
0.8 0.0917 0.1191 0.0915 0.0848 0.1074 0.0843 0.0848 0.0791
1.5 0.2110 0.3094 0.2109 0.1840 0.2835 0.1850 0.1840 0.1747

(1, 2, 3, 4, 5) 0.3 0.0522 0.0541 0.0523 0.0560 0.0540 0.0525 0.0560 0.0502
0.8 0.0658 0.0788 0.0657 0.0713 0.0785 0.0671 0.0713 0.0647
1.5 0.1066 0.5250 0.1065 0.1165 0.1479 0.1072 0.1165 0.1046

(1, 4, 7, 11, 15) 0.3 0.0953 0.1154 0.0951 0.0923 0.1153 0.0964 0.0923 0.0940
0.8 0.4644 0.5647 0.4635 0.4510 0.5645 0.4635 0.4510 0.4611
1.5 0.9652 0.9788 0.9633 0.9312 0.9785 0.9611 0.9312 0.9563

(30, 30, 30, 30, 30) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.3557 0.4704 0.3556 0.3598 0.4700 0.3573 0.3598 0.3601
0.8 0.9824 0.9871 0.9824 0.9666 0.9870 0.9716 0.9666 0.9803
1.5 0.9834 0.9872 0.9844 0.9676 0.9871 0.9731 0.9676 0.9815

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.1442 0.1996 0.1443 0.1461 0.1994 0.1445 0.1461 0.1456
0.8 0.7418 0.8700 0.7420 0.7478 0.8700 0.7439 0.7478 0.7586
1.5 0.9843 0.9931 0.9848 0.9708 0.9930 0.9700 0.9708 0.9906

(1, 2, 3, 4, 5) 0.3 0.0773 0.0898 0.0779 0.0791 0.0893 0.0784 0.0791 0.0768
0.8 0.2581 0.3510 0.2590 0.2618 0.3508 0.2606 0.2618 0.2614
1.5 0.7472 0.8595 0.7477 0.7509 0.8593 0.7537 0.7509 0.7579

(1, 4, 7, 11, 15) 0.3 0.0621 0.0666 0.0622 0.0621 0.0664 0.0624 0.0621 0.0614
0.8 0.1158 0.1557 0.1160 0.1167 0.1552 0.1164 0.1167 0.1159
1.5 0.3113 0.4370 0.3112 0.3182 0.4366 0.3153 0.3182 0.3193

(50, 50, 50, 50, 50) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.5882 0.6978 0.5883 0.5996 0.6975 0.5964 0.5996 0.5881
0.8 0.9955 0.9825 0.9960 1 0.9823 0.9990 1 0.9901
1.5 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.2161 0.3051 0.2163 0.2215 0.3050 0.2178 0.2215 0.2152
0.8 0.9432 0.9636 0.9433 0.9472 0.9633 0.9440 0.9472 0.9321
1.5 0.9890 0.9787 0.9892 0.9901 0.9785 0.9872 0.9901 0.9750

(1, 2, 3, 4, 5) 0.3 0.0912 0.1121 0.0919 0.0929 0.1120 0.0921 0.0929 0.0909
0.8 0.4361 0.5477 0.4363 0.4465 0.5474 0.4435 0.4465 0.4374
1.5 0.9502 0.9665 0.9508 0.9574 0.9663 0.9558 0.9574 0.9473

(1, 4, 7, 11, 15) 0.3 0.0621 0.0701 0.0628 0.0626 0.0700 0.0621 0.0626 0.0610
0.8 0.1617 0.2248 0.1619 0.1657 0.2245 0.1624 0.1657 0.1602
1.5 0.5205 0.6456 0.5206 0.5292 0.6455 0.5302 0.5292 0.5197

(4, 6, 10, 14, 16) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.1680 0.2295 0.1682 0.1448 0.1922 0.1309 0.1448 0.1313
0.8 0.8345 0.9315 0.8335 0.7925 0.8584 0.7690 0.7925 0.7730
1.5 0.9833 0.9844 0.9814 0.9795 0.9198 0.9739 0.9795 0.9758

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.0848 0.1110 0.0847 0.0790 0.0988 0.0745 0.0790 0.0736
0.8 0.3790 0.5455 0.3790 0.3366 0.5029 0.3283 0.3366 0.3282
1.5 0.9103 0.9756 0.9072 0.8771 0.9474 0.8920 0.8771 0.8947

(1, 2, 3, 4, 5) 0.3 0.0633 0.0625 0.0632 0.0605 0.0501 0.0583 0.0605 0.0570
0.8 0.1252 0.1750 0.1253 0.1103 0.1469 0.1081 0.1103 0.1069
1.5 0.3671 0.5264 0.3674 0.3126 0.4614 0.3090 0.3126 0.3093

(1, 4, 7, 11, 15) 0.3 0.0523 0.0537 0.0525 0.0544 0.0471 0.0479 0.0544 0.0474
0.8 0.0727 0.0902 0.0735 0.0707 0.0791 0.0635 0.0707 0.0630
1.5 0.1466 0.2189 0.1475 0.1359 0.1930 0.1195 0.1359 0.1197

(12,18, 30, 42, 48) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.5134 0.6239 0.5129 0.4915 0.6184 0.4904 0.4915 0.4905
0.8 0.9969 0.9466 0.9959 0.9824 0.9863 0.9910 0.9824 0.9959
1.5 1 1 1 1 1 1 1 1

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.1999 0.2816 0.2000 0.1936 0.2697 0.1906 0.1936 0.1904
0.8 0.9238 0.9291 0.9239 0.9091 0.9556 0.9046 0.9091 0.9183
1.5 0.9977 0.9543 0.9980 0.9853 0.9882 0.9815 0.9853 0.9980

(1, 2, 3, 4, 5) 0.3 0.0812 0.1162 0.0814 0.0817 0.1028 0.0804 0.0817 0.0772
0.8 0.3714 0.4900 0.3713 0.3630 0.4614 0.3567 0.3630 0.3459
1.5 0.9016 0.9321 0.9017 0.9085 0.9309 0.8963 0.9085 0.8825

(1, 4, 7, 11, 15) 0.3 0.0611 0.0718 0.0618 0.0615 0.0670 0.0605 0.0615 0.0607
0.8 0.1502 0.2101 0.1506 0.1445 0.2032 0.1460 0.1445 0.1443
1.5 0.4561 0.5788 0.4561 0.4425 0.5779 0.4465 0.4425 0.4472

(20, 30, 50, 70, 80) (0.1, 0.2, 0.3, 0.4, 0.5) 0.3 0.7441 0.8321 0.7448 0.7426 0.8292 0.7403 0.7426 0.7293
0.8 0.9692 0.9509 0.9695 0.9759 0.9722 0.9731 0.9759 0.9614
1.5 0.9891 0.9729 0.9895 0.9959 0.9822 0.9921 0.9899 0.9934

(0.1, 0.4, 0.7, 1.1, 1.5) 0.3 0.7590 0.8306 0.7593 0.7602 0.8469 0.7569 0.7602 0.7499
0.8 0.9782 0.9444 0.9785 0.9844 0.9874 0.9828 0.9844 0.9747
1.5 0.9821 0.9449 0.9825 0.9882 0.9882 0.9872 0.9882 0.9787

(1, 2, 3, 4, 5) 0.3 0.1040 0.1441 0.1047 0.1027 0.1374 0.1018 0.1027 0.1008
0.8 0.5771 0.6735 0.5773 0.5709 0.7017 0.5684 0.5709 0.5719
1.5 0.9472 0.9101 0.9475 0.9473 0.9861 0.9499 0.9473 0.9550

(1, 4, 7, 11, 15) 0.3 0.0651 0.0805 0.0657 0.0654 0.0765 0.0652 0.0654 0.0643
0.8 0.2322 0.3155 0.2326 0.2275 0.3055 0.2278 0.2275 0.2250
1.5 0.7033 0.7689 0.7038 0.6962 0.7887 0.6987 0.6962 0.6995

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 208

Table 3: Penalized powers for k = 7

ni σ2
i ∆i AG AF B2 MBF PB WA

(10, 10, 10, 10, 10, 10, 10) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.0916 0.1176 0.0921 0.1175 0.0954 0.0960
0.8 0.3745 0.6158 0.3750 0.6154 0.4288 0.4279
1.5 0.8713 0.9725 0.8715 0.9723 0.9247 0.9068

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.0668 0.0655 0.0666 0,0651 0.0660 0.0658
0.8 0.1501 0.2255 0.1502 0.2253 0.1578 0.1603
1.5 0.4021 0.6756 0.4023 0.6753 0.4519 0.4519

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0565 0.0520 0.0568 0.0520 0.0597 0.0588
0.8 0.0819 0.0944 0.0820 0.0942 0.0831 0.0834
1.5 0.1612 0.2385 0.1609 0.2381 0.1693 0.1695

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0560 0.0485 0.0561 0.0483 0.0577 0.0570
0.8 0.0632 0.0608 0.0635 0.0604 0.0625 0.0633
1.5 0.0855 0.1044 0.0858 0.1042 0.0860 0.0880

(30, 30, 30, 30, 30, 30, 30) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.2204 0.3303 0.2209 0.3301 0.2301 0.2298
0.8 0.9598 0.9703 0.9596 0.9701 0.9616 0.9640
1.5 0.9957 0.9778 0.9960 0.9768 0.9911 0.9941

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.0978 0.1334 0.0980 0.1324 0.0977 0.0985
0.8 0.4679 0.6533 0.4680 0.6530 0.4867 0.4904
1.5 0.9702 0.9822 0.9704 0.9820 0.9630 0.9757

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0651 0.0712 0.0657 0.0711 0.0670 0.0636
0.8 0.1652 0.2417 0.1657 0.2414 0.1725 0.1706
1.5 0.5243 0.6901 0.5247 0.6900 0.5453 0.5461

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0552 0.0575 0.0555 0.0572 0.0550 0.0537
0.8 0.0852 0.1060 0.0857 0.1050 0.0853 0.0860
1.5 0.1810 0.2765 0.1813 0.2755 0.1841 0.1839

(50, 50, 50, 50, 50, 50, 50) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.3722 0.5118 0.3725 0.5111 0.3782 0.3787
0.8 0.9969 0.9853 0.9978 0.9850 0.9988 0.9948
1.5 1 1 1 1 1 1

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.1362 0.1907 0.1365 0.1907 0.1387 0.1380
0.8 0.7502 0.8843 0.7507 0.8840 0.7686 0.7657
1.5 0.9943 0.9863 0.9948 0.9852 0.9988 0.9968

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0762 0.0914 0.0764 0.0910 0.0787 0.0758
0.8 0.2660 0.3817 0.2661 0.3812 0.2739 0.2697
1.5 0.8052 0.9063 0.8058 0.9051 0.8202 0.8145

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0600 0.0629 0.0601 0.0612 0.0605 0.0594
0.8 0.1093 0.1499 0.1099 0.1479 0.1123 0.1099
1.5 0.2902 0.4275 0.2906 0.4271 0.2981 0.2971

(4, 6, 8, 10, 12, 14, 16) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.1201 0.1540 0.1208 0.1419 0.1025 0.1067
0.8 0.6065 0.7846 0.6068 0.7525 0.5561 0.5596
1.5 0.9622 0.9456 0.9617 0.9273 0.9852 0.9544

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.0718 0.0814 0.0720 0.0750 0.0629 0.0704
0.8 0.2169 0.3329 0.2173 0.3132 0.1798 0.1944
1.5 0.6726 0.8591 0.6734 0.8274 0.6240 0.6532

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0622 0.0549 0.0621 0.0509 0.0587 0.0609
0.8 0.1035 0.1204 0.1041 0.1114 0.0856 0.0900
1.5 0.2357 0.3452 0.2356 0.3250 0.1935 0.2023

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0561 0.0497 0.0564 0.0481 0.0518 0.0563
0.8 0.0653 0.0714 0.0654 0.0677 0.0607 0.0641
1.5 0.1078 0.1385 0.1080 0.1305 0.0939 0.0947

(12, 18, 24, 30, 36, 42, 48) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.3332 0.4900 0.3336 0.4627 0.3226 0.3149
0.8 0.9737 0.9882 0.9740 0.9750 0.9798 0.9740
1.5 0.9950 1 0.9940 0.9920 0.9906 0.9912

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.1277 0.1966 0.1284 0.1814 0.1228 0.1205
0.8 0.7067 0.8465 0.7070 0.8059 0.6955 0.6979
1.5 0.9990 0.9970 0.9995 0.9649 0.9950 0.9988

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0712 0.0870 0.0718 0.0798 0.0675 0.0678
0.8 0.2458 0.3612 0.2452 0.3438 0.2307 0.2322
1.5 0.7381 0.8667 0.7380 0.8494 0.7108 0.7255

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0544 0.0636 0.0541 0.0593 0.0557 0.0530
0.8 0.0998 0.1537 0.0993 0.1388 0.0956 0.0938
1.5 0.2679 0.4137 0.2675 0.3839 0.2616 0.2539

(20, 30, 40, 50, 60, 70, 80) (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) 0.3 0.5722 0.7108 0.5720 0.7148 0.5596 0.5577
0.8 0.9990 0.9614 0.9987 0.9911 0.9960 0.9980
1.5 1 0.9614 1 1 1 1

(0.1, 0.4, 0.7, 1.1, 1.5, 1.9, 2.3) 0.3 0.1939 0.2736 0.1935 0.2647 0.1885 0.1875
0.8 0.9270 0.9103 0.9262 0.9315 0.9254 0.9286
1.5 0.9921 0.9261 0.9919 0.9509 0.9901 0.9941

(1, 2, 3, 4, 5, 6, 7) 0.3 0.0835 0.1185 0.0832 0.1079 0.0834 0.0799
0.8 0.4142 0.5701 0.4140 0.5418 0.4040 0.4014
1.5 0.9426 0.9747 0.9423 0.9664 0.9433 0.9380

(1, 4, 7, 11, 15, 19, 23) 0.3 0.0551 0.0709 0.0542 0.0658 0.0563 0.0551
0.8 0.1388 0.2142 0.1369 0.2012 0.1352 0.1343
1.5 0.4446 0.6286 0.4442 0.6072 0.4363 0.4414

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 209

AQuadtree: an R Package for Quadtree
Anonymization of Point Data
by Raymond Lagonigro, Ramon Oller and Joan Carles Martori

Abstract The demand for precise data for analytical purposes grows rapidly among the research
community and decision makers as more geographic information is being collected. Laws protecting
data privacy are being enforced to prevent data disclosure. Statistical institutes and agencies need
methods to preserve confidentiality while maintaining accuracy when disclosing geographic data.
In this paper we present the AQuadtree package, a software intended to produce and deal with
official spatial data making data privacy and accuracy compatible. The lack of specific methods in
R to anonymize spatial data motivated the development of this package, providing an automatic
aggregation tool to anonymize point data. We propose a methodology based on hierarchical
geographic data structures to create a varying size grid adapted to local area population densities.
This article gives insights and hints for implementation and usage. We hope this new tool may be
helpful for statistical offices and users of official spatial data.

Introduction

Data privacy is a main concern of statistical institutes, national agencies and any other institution
responsible for the collection and delivery of statistical information. Current spatial data processing
techniques enable linking accurate geographic information to other statistical data (Armstrong and
Ruggles, 2005). Thus, the disclosure of geolocated data needs special attention in terms of privacy to
avoid re-identification processes. For instance, individual information could be revealed with reverse
geocoding techniques when the data delivered includes the location (Curtis et al., 2006; Zimmerman
and Pavlik, 2008; Cassa et al., 2008).

Besides, in order to perform quality spatial analysis, there has always been a great demand by
researchers and decision makers for accessing accurate geographic data, at fine scales (Duncan and
Pearson, 1991; O’Keefe and Rubin, 2015; Chen et al., 2017). There is a strong need to develop
techniques and methods to preserve confidentiality when publishing geographic information while,
at the same time, providing accurate data. Statistical disclosure control techniques for geographic
data must balance both goals, accuracy and privacy.

Several masking methods and frameworks for spatial point data have been proposed and
analyzed (Cox, 1996; Armstrong and Ruggles, 2005; Zimmerman et al., 2007). Some geographic
masking techniques alter the position of each point event to ensure the actual locations cannot
be discovered. On the other hand, geographic aggregation techniques group individual point
information (Zimmerman et al., 2007). Political or administrative institutions are often used as
units of aggregation, because data is normally collected and summarized for those units. For
instance, national agencies usually use counties, neighbourhoods or census tracts to gather and
distribute statistical information. Alternatively, information can be collected and summarized on
a regular or irregular net of geographically referenced grid cells (Tammilehto-Luode et al., 2000;
Tammilehto-Luode, 2011). Grid datasets avoid the dependence on administrative boundaries which
may introduce biases on the data.

Some authors have defined different measures of disclosure risks on anonymized datasets to
effectively provide guarantees for privacy protection. Sweeney (2002) introduced the concept
of k-anonymity and proposed generalization and suppression techniques to preserve privacy and
truthfulness. An anonymized database accomplishes k-anonymity if the set of attributes leading to
the identification of an individual cannot be distinguished from at least k − 1 other individuals. In
the context of geographic data privacy, k-anonymity requires that for any individual in the dataset,
his location is indistinguishable from at least k − 1 other individuals. Thus, to achieve it, geographic
aggregation methods must ensure that all the geographic areas created in the aggregation process
include at least k individuals (Vu et al., 2012). While k-anonymity refers to the identification
of individuals, it cannot completely prevent attribute disclosure. For instance, low diversity or
background knowledge are situations which may allow identification of a sensitive attribute for
individuals in a geographic area. To avoid revealing confidential or sensitive information, geographic
data privacy frameworks must apply additional techniques to complement k-anonymity limitations
(Machanavajjhala et al., 2007; Li et al., 2007).

There are some packages providing functions for data privacy protection in R, although they do
not address spatial data. For instance, anonymizer (Hendricks, 2015) is a package that provides hash
functions to anonymize data containing personal identifiable information. The SciencePo package

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=anonymizer
https://CRAN.R-project.org/package=SciencePo

Contributed research article 210

(Marcelino, 2013), aimed to analyse political behaviour data, provides the anonymize function
that replaces individual identifier variables with combinations of random samples. The package
sdcMicro (Templ et al., 2015) provides a more exhaustive list of functions for the anonymization of
micro-data. It implements methods to evaluate and anonymize confidential micro-data sets with
micro-aggregation techniques. Several perturbation methodologies are implemented in the package,
such as, shuffling, micro-aggregation, post-randomization, local suppression and some others. This
package may also be used for measuring information loss and disclosure risk of anonymized data.

The lack of specific methods in R to anonymize spatial point data motivated the development of
the AQuadtree package (Lagonigro et al., 2020). The package implements functions for the analysis
and anonymization of spatial point data sets with aggregation and local suppression techniques
and provides an S4 R class for the creation, manipulation and export of spatial grids. This article
presents the AQuadtree package and explains the anonymization methodology used in the package.

Quadtree anonymization

The novel framework proposed here pursues the data accuracy at the smallest possible areas avoiding
individual information disclosure. Aggregation and local suppression of point data is performed
using a methodology based on hierarchical (quadtree) geographic data structures. The final result is
a varying size grid adapted to local area population densities as described in Lagonigro et al. (2017).
It follows the guidelines for grid datasets of GEOSTAT project (GEOSTAT, 2014) and uses the grid
coding system defined in INSPIRE Data specifications (INSPIRE, 2010).

The European Forum for Geography and Statistics (EFGS), within the GEOSTAT project,
promoted a common framework for grid based statistics across all the European countries (GEOSTAT,
2011, 2014). The project aimed to represent several European characteristics in a 1km2 regular grid
dataset and developed the guidelines for datasets and methods to link census-based data with grid
datasets. The following recommendations were established regarding grid cell sizes: “1km2 appears
to be a good compromise between data availability, data confidentiality and suitability for national to
European study areas. The project also recommends introducing intermediate grid sizes based on a
two-level quadtree (i.e. 250m and 500m as subdivision of the 1km grid)” (GEOSTAT, 2011, p. 17).
The project also proposes the INSPIRE grid coding system (INSPIRE, 2010) to unambiguously
identify each cell of the grid dataset. INSPIRE Data specifications consider the European Terrestrial
Reference System 89 and the Lambert Azimuthal Equal Area projection (ETRS89-LAEA), although
other Coordinate Reference Systems (CRS) and projections are also possible. Each cell of the grid is
identified by a code composed by the cell’s size and the coordinates of the lower left cell corner in
the ETRS89-LAEA system. The cell’s size is denoted in meters (“m”) for cells’ sizes up to 1000
meters, or kilometers (“km”) for larger cells’ sizes. To reduce the length of the string, values for
northing and easting are divided by 10n (where “n” is the number of zeros in the cell size value
measured in meters). For instance, the cell code “1kmN2599E4695“ identifies the 1km2 grid cell
with coordinates of the lower left corner: Y=2599000m, X=4695000m.

The aggregation process implemented in the AQuadtree package uses a hierarchical (quadtree)
data structure and follows a recursive decomposition of space (Samet, 1984; Behnisch et al., 2013).
The methodology recursively splits each squared area into four equal-sized quadrants. The process
builds an initial regular grid of a given cell size, where each initial cell is identified following the
INSPIRE grid coding system. The initial cells are then recursively subdivided into quadrants. A
second identifier containing a sequence of numbers to indicate the position of the cell when successive
disaggregation has been performed (see Figure 1) is assigned to each new cell; for instance, the
sequence identifier corresponding to the right top cell on the third image in Figure 1 would be 416,
i.e. fourth cell in the first division, and sixteenth cell in the second division.

Figure 1: Three level quadtree splitting cell numbering example. Initial cell on the (left); first
quadtree subdivision (center); second quadtree subdivision (right).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=sdcMicro

Contributed research article 211

In the AQuadtree package, the spatial points are aggregated considering the k-anonymity
requirement (Vu et al., 2012). The hierarchical subdivision process applies a minimum threshold on
the number of points per cell. Hereafter we will refer to this threshold as the anonymity threshold.
A cell is recursively split while the number of points in each sub-cell is greater than this threshold.
Additionally, in order to avoid attribute disclosure, it is possible to set thresholds for sensitive
attributes. Then, the number of points per cell in groups defined by the attributes should be greater
than these supplementary thresholds.

During the splitting process all the resulting cells need to satisfy the threshold restriction,
otherwise the division is not performed. In some cases, the threshold restriction may prevent the
division of a cell with a very irregular point pattern, which would result in less accuracy on the cell
resolution. For instance, Figure 2a, presents a pattern of 932 points unevenly distributed on a 1km
cell and Figure 2b shows the corresponding grid of 62.5m cells with no threshold restrictions (the
total number of points aggregated in each cell is shown).

(a) (b)

Figure 2: Set of spatial points (a) and the corresponding 62.5m grid with no threshold restrictions
(b) (the numbers indicate the points aggregated in each cell).

Given the cell in Figure 2a and using, for example, a value of 17 as the anonymity threshold, the
subdivision process could not proceed because one out of the four resulting quadrants contains only
four points. The privacy mechanism would aggregate all the points in the initial cell as presented in
Figure 3a, masking an irregular spatial distribution. In order to get more resolution accuracy the
AQuadtree algorithm considers the suppression of some points before continuing the disaggregation.
For instance, the disaggregation shown in Figure 3b is clearly more accurate to the underlying
spatial distribution and it would result from suppression of the four points in the top right quadrant
of Figure 2b. Moreover, the elimination of more data points would lead to further disaggregation
(Figure 3c and Figure 3d).

(a) (b) (c) (d)

Figure 3: Disaggregation examples with an anonymity threshold value of 17 points per cell. a) no
disaggregation and no loss; b) disaggregation with suppression of 4 points; c) more disaggregation
with suppression of 12 points; c) maximum disaggregation with suppression of 29 points.

Such cases require a strategy, balancing the need of keeping the maximum number of points
(minimum information loss) and getting the finest scale cells (maximum resolution accuracy). In
order to do this, the method computes the Theil index of inequality (Theil, 1972) for the number
of points in the possible quadrants as well as the percentage of suppressed points needed for the
division to be carried out. Going back to the example in Figure 2, the initial cell can be subdivided
into four quadrants with 547, 56, 325 and 4 points respectively (see Figure 4). The Theil measure
four quadrants is given by

∑
(xi · ln (xi/x)) /

∑
xi = 0.514, indicating high inequality, i.e. if the

cell is not subdivided it masks a very uneven distribution of points. Suppressing the four points in
the fourth quadrant to split the cell produces a 0.43% loss of points.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=AQuadtree

Contributed research article 212

Figure 4: Quadrant subdivision.

Therefore, where the anonymity threshold value prevents disaggregation, high values of inequality
measure suggest the need for further subdivision, while high values of the loss rate suggest to stop
the subdivision. The algorithm uses default limits for both measures: 0.25 and 0.4 respectively
(both values can be defined by the user between 0 and 1). Thus, if there exists any sub-cell with a
number of points lower than the anonymity threshold and the Theil entropy is higher than 0.25,
then the disaggregation process continues by suppressing these points as long as the loss rate is
lower than 0.4. Hence, going back to the example in Figure 2, the default disaggregation produced
by the method would be the one shown in Figure 3b.

In order to minimize the effects of information loss, if the number of suppressed points exceeds the
anonymity threshold, suppressed points are aggregated into the initial cell. This cell is maintained
and marked as a residual cell. Following with the example in Figure 2, the 29 suppressed points in
Figure 3d will be marked as a residual cell (see Figure 5).

Figure 5: Example of a residual cell.

Next section presents the AQuadtree package. For a given set of spatial points, the package main
function creates an R spatial object of class AQuadtree representing an irregular grid with varying
cell sizes, and provides a summary of the aggregated data. The function accepts several parameters
to adjust the characteristics of the resulting grid. For instance, initial cell size, number of recursive
subdivisions to achieve, the threshold on the minimum number of points per cell, the threshold for
information loss and inequality or the attributes to be summarized. The package defines methods to
manipulate or export AQuadtree objects and includes test datasets.

The AQuadtree package

Installation and dependencies

The AQuadtree package can easily be installed from any CRAN repository by executing the R
command:

R> install.packages("AQuadtree")

The AQuadtree depends on several R packages as shown on the corresponding web page on
CRAN1. The packages sp (Pebesma and Bivand, 2005; Bivand et al., 2013) and dplyr (Wickham et al.,
2020) will automatically be installed along with AQuadtree if the dependencies argument is set to
TRUE on the installation process. The sp package provides classes and methods for representation
and manipulation of spatial data on which AQuadtree relies. The dplyr package provides fast and
consistent tools for working with data frames which are used in AQuadtree to decrease computing
times on the automatic aggregation processes. The packages rgeos (Bivand and Rundel, 2017),
rgdal (Bivand et al., 2016) are also useful for some extra functions of the package as, for instance,
exporting a shapefile for the created grid.

1https://CRAN.R-project.org/package=AQuadtree

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=rgdal
https://CRAN.R-project.org/package=AQuadtree

Contributed research article 213

R> library(AQuadtree)
Loading required package: sp
Loading required package: dplyr

Provided data

In order to probe and test the package functionality, two SpatialPointsDataFrame objects are
included: BarcelonaPop for Barcelona Municipality (Spain) and CharlestonPop for Charleston,
metropolitan area (USA). Point data was created randomly with the distributions of real data at
census scale obtained from different sources.

The package also provides two SpatialPolygons objects with the spatial boundaries for each
region. BarcelonaCensusTracts contains spatial limits of the census tracts for the Barcelona Mu-
nicipality, and CharlestoneCensusTracts provides spatial limits of the census tracts for Charleston,
metropolitan area.

BarcelonaPop comprises 81,359 sample points in Barcelona, Spain. The original information
was obtained from the department of statistics of the Ajuntament de Barcelona and it contains
population data (age and sex) at census tract level for 2018 (Ajuntament de Barcelona. Departament
d’Estadística, 2018). The points were generated and distributed randomly in space, keeping
information at each census tract unchanged. In order to reduce memory allocation, it only contains
a 5% sample of points.

R> data("BarcelonaPop", package="AQuadtree")
R> summary(BarcelonaPop)
Object of class SpatialPointsDataFrame
Coordinates:

min max
x 3655447 3669871
y 2059179 2074546
Is projected: TRUE
proj4string :
[+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs]
Number of points: 81359
Data attributes:

age sex
Min. : 0.00 man :38472
1st Qu.: 27.00 woman:42887
Median : 43.00
Mean : 43.94
3rd Qu.: 61.00
Max. :100.00

In a similar way, the CharlestonPop object, containing 54,619 random sample points, was created
by using information in Charleston1 dataset from the 2000 Census Tract Data for the Charleston
metropolitan area (USA) (Geoda Data and Lab, 2019). For size concerns, it only contains a 10%
sample of points.

The AQuadtree class

An AQuadtree class object is a spatial dataset representing a varying size grid and is created
performing an aggregation of a given set of points observing a minimum threshold for the number
of points in each cell. The main function of the package creates the AQuadtree object from
SpatialPoints or SpatialPointsDataFrame objects.

R> bcn.QT <- AQuadtree(BarcelonaPop)
R> class(bcn.QT)
[1] "AQuadtree"
attr(,"package")
[1] "AQuadtree"

As seen in the example, only the spatial object is necessary. Several extra parameters can be used in
order to calibrate the resulting object: dim, layers, colnames, threshold, thresholdField, funs,
as, ineq.threshold, loss.threshold. All parameters are optional and have default values. For

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 214

instance, the anonymity threshold is equal to 100 by default. In the next sections all the parameters
are detailed.

The plot method for the AQuadtree class overrides the generic function for plotting R objects.
Figure 6 shows the AQuadtree created for Barcelona. It comprises areas with very different sizes.
Therefore, highly populated zones are disaggregated in small cells to allow dissemination of accurate
data whereas, information on low populated zones is aggregated at a higher scale. In some cases, to
improve accuracy and create smaller cells, the function removes some points and groups them in
cells marked as residual (those printed in red by the plot method).

R> plot(bcn.QT)

Figure 6: Plot of an AQuadtree for Barcelona.

In the next example the names generic function shows the slot names created for each cell in the
AQuadtree object. Then, in order to show the information from some of the AQuadtree cells, we use
the overridden [(sub-setting) method to extract and print a subset of the cells in the AQuadtree
(see Section Class methods and slots for details on overridden methods).

R> names(bcn.QT)
[1] "cellCode" "cellNum" "level" "residual" "total"
R> bcn.QT[310:315,]
An object of class "AQuadtree" with 6 grid cells with sizes between 1km and
125m

cellCode cellNum level residual total
310 1kmN2072E3665 204 3 FALSE 128
311 1kmN2072E3665 207 3 FALSE 138
312 1kmN2072E3665 208 3 FALSE 166
313 1kmN2073E3666 313 3 FALSE 135
314 1kmN2065E3660 1 TRUE 133
315 1kmN2067E3660 1 TRUE 109

The cellCode and the cellNum properties identify each cell in the grid, following the mechanism
of the INSPIRE grid coding system (INSPIRE, 2010). As explained in detail in paragraphs 2
and 3 of section Quadtree anonymization: cellCode refers to the initial regular grid (the highest
aggregation level) and indicates the cell’s size and the coordinates of the lower left cell corner in the
false origin of the CRS (Coordinate Reference System); cellNum refers to the varying size grid and
is the sequence of numbers indicating the position of the cell in every successive subdivision of the
initial cell. Three more properties are also added to each cell; the level attribute, that indicates
the scale of disaggregation of the cell; the residual logical value, that states whether or not the cell
has been created to store residual points; and finally, the total property, indicating the number of
points aggregated in the cell.

General usage

The characteristics of the AQuadtree object can be adjusted with several parameters. First, the dim
parameter defines the cell size of the initial grid in meters. The layers parameter indicates the

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 215

number of subdivisions to perform. Thus, specifying the parameters dim=10000 and layers=5 would
create a grid with cells sizes ranging between 10km and 625m. If dim and layers are not specified,
the default values define an initial size of 1000 meters and 5 subdivisions.

R> charleston.QT <- AQuadtree(CharlestonPop, dim=10000, layers=5)

The summary method for AQuatree summarizes information of an AQuatree object:

R> summary(charleston.QT)
Object of class "AQuadtree"
183 grid cells with sizes between 10km and 625m
Coordinates:

min max
x 2060000 2160000
y 110000 220000
Is projected: TRUE
proj4string:
+init=epsg:26978 +proj=lcc +lat_1=38.56666666666667
+lat_2=37.26666666666667 +lat_0=36.66666666666666
+lon_0=-98.5 +x_0=400000 +y_0=400000 +datum=NAD83
+units=m +no_defs +ellps=GRS80 +towgs84=0,0,0
Initial Cell Size: 10km
Number of valid grid Cells: 179
Number of residual grid Cells: 4
Data attributes:

total
Min. : 100.0
1st Qu.: 156.0
Median : 217.0
Mean : 287.4
3rd Qu.: 358.0
Max. :2281.0

If the original dataset includes individual information, the colnames parameter can be used to
specify the attributes from the dataset to be summarized in the resulting grid. Factor attributes are
deployed and a new attribute for each factor label is created. For instance, an attribute sex with
two labels, man and woman, would be deployed into the two new attributes: sex.man, sex.woman.
Additionally, the funs parameter could be used to specify the functions to compute in the summary
for each one of the attributes indicated in the colnames parameter. If no functions are specified, the
sum function is used. Next example creates an AQuatree object with the sample points in Barcelona,
retaining two attributes, age and sex, summarized with mean and sum functions respectively.

R> bcn.QT <- AQuadtree(BarcelonaPop,
+ colnames=c('age','sex'),
+ funs=c('mean', 'sum'))
R> summary(bcn.QT)
Object of class "AQuadtree"
321 grid cells with sizes between 1km and 125m
Coordinates:

min max
x 3659000 3670000
y 2062500 2074500
Is projected: TRUE
proj4string:
+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs
Initial Cell Size: 1km
Number of valid grid Cells: 313
Number of residual grid Cells: 8
Data attributes:

total age sex.man sex.woman
Min. : 100 Min. :35.28 Min. : 40.0 Min. : 44.0
1st Qu.: 139 1st Qu.:42.37 1st Qu.: 64.0 1st Qu.: 73.0
Median : 177 Median :44.42 Median : 83.0 Median : 95.0
Mean : 248 Mean :44.16 Mean :117.1 Mean :130.9

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 216

3rd Qu.: 328 3rd Qu.:46.18 3rd Qu.:158.0 3rd Qu.:170.0
Max. :1288 Max. :51.18 Max. :626.0 Max. :662.0

Anonymity threshold

The package applies a default anonymity threshold value of 100 and it can be adjusted with the
threshold parameter. By default, the threshold restriction is only applied to the total number of
points aggregated in each cell (i.e. the total attribute added to the resulting dataset). The threshold
restriction can also be applied to any attribute with confidential information. The attribute names
that must satisfy the given threshold should be specified in the thresholdField parameter.

Next example creates an AQuadtree applying a threshold value of 17 on the attributes sex.man
and sex.woman. As shown in the summary, the minimum values for both attributes is 17; cells with
lower values have been grouped to achieve the minimum threshold.

R> bcn.QT <- AQuadtree(BarcelonaPop, colnames=c('age','sex'), funs=c('mean', 'sum'),
+ threshold=17, thresholdField=c("sex.man", "sex.woman"))
R> summary(bcn.QT)
Object of class "AQuadtree"
730 grid cells with sizes between 1km and 62.5m
Coordinates:

min max
x 3659000 3670000
y 2062000 2075000
Is projected: TRUE
proj4string:
+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs
Initial Cell Size: 1km
Number of valid grid Cells: 713
Number of residual grid Cells: 17
Data attributes:

total age sex.man sex.woman
Min. : 34.0 Min. :32.63 Min. : 17.00 Min. : 17.00
1st Qu.: 64.0 1st Qu.:41.52 1st Qu.: 30.25 1st Qu.: 33.00
Median :103.0 Median :43.87 Median : 49.00 Median : 54.00
Mean :110.5 Mean :43.71 Mean : 52.25 Mean : 58.21
3rd Qu.:140.0 3rd Qu.:46.08 3rd Qu.: 65.75 3rd Qu.: 74.00
Max. :807.0 Max. :53.46 Max. :371.00 Max. :436.00

Balancing information loss and accuracy

Finally, two more parameters can be used to manage the disaggregation process: the inequality
threshold (ineq.threshold) and the loss rate threshold (loss.threshold). As explained in Section
Quadtree anonymization, when the anonymity threshold prevents the subdivision of a cell, then the
suppression of some points may be considered to allow a further subdivision (see Figures 2 and 3).
This decision depends on the inequality between sub-cells (we use the Theil index) and the rate
of points that need to be suppressed (we call it loss rate). As matter of fact, the disaggregation
process of a cell continues either when the number of points in each sub-cell is greater than the
anonymity threshold (threshold), or alternatively when the inequality between sub-cells is greater
than the inequality threshold (ineq.threshold) and the loss rate is smaller than the loss threshold
(loss.threshold). The ineq.threshold and the loss.threshold parameters range between 0 and
1 and the default values are 0.25 and 0.4 respectively. Lower values in the inequality threshold
and/or higher values in the loss threshold result in grids with smaller cells.

To illustrate the use of the ineq.threshold, in the next example a subset of points cor-
responding to a cell of 1km, with bottom-left corner (3660000,2065000) and top-right corner
(3661000,2066000) is created:

R> point.coord<-as.data.frame(coordinates(BarcelonaPop))
R> points.subset<- BarcelonaPop[point.coord[,1]>=3660000 & point.coord[,1]<=3661000
+ & point.coord[,2]>=2065000 & point.coord[,2]<=2066000,]
R> plot(points.subset)
R> length(points.subset)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 217

The result is the subset of points shown in Figure 7a, which are clustered mainly on the bottom right
and bottom left corners of the area. In order to compare the different aggregation results, three
AQuadtree objects were created using different ineq.threshold values. (Figure 7b, 7c, and 7d). For
each case the proportion of residual points as a measure of loss, and the coefficient of variation as a
measure of dispersion, are computed.

Using a minimum threshold value of 5 points per cell and the default inequality value (0.25),
the function creates the grid shown in Figure 7b. It presents a residual cell containing 2.02% of the
points, and the number of points per cell has a coefficient of variation of 0.499.

R> bcn.QT <- AQuadtree(points.subset, threshold=5)
R> plot(bcn.QT, residual=F, col="grey")
R> bcn.QT[bcn.QT$residual,]$total / length(points.subset)
R> sd(bcn.QT[!bcn.QT$residual,]$total)/mean(bcn.QT[!bcn.QT$residual,]$total)

Figure 7c shows a second aggregation example, for the same set of points, with smaller cells, using
an ineq.threshold value of 0.01, which results in 8.89% of residual points and a coefficient of variation
of 0.365 (i.e. the number points in cells is more similar between them).

R> bcn.QT <- AQuadtree(points.subset, threshold=5, ineq.threshold=0.01)
R> plot(bcn.QT, residual=F, col="grey")
R> bcn.QT[bcn.QT$residual,]$total / length(points.subset)
R> sd(bcn.QT[!bcn.QT$residual,]$total)/mean(bcn.QT[!bcn.QT$residual,]$total)

Figure 7d on the contrary, uses a higher ineq.threshold value of 0.5, resulting in aggregation on
bigger cells, with no loss, but a coefficient of variation of 0.84 (i.e. the number of points in each cell
exhibits more inequality).

R> bcn.QT <- AQuadtree(points.subset, threshold=5, ineq.threshold=0.5)
R> plot(bcn.QT, residual=F, col="grey")
R> bcn.QT[bcn.QT$residual,]$total / length(points.subset)
R> sd(bcn.QT[!bcn.QT$residual,]$total)/mean(bcn.QT[!bcn.QT$residual,]$total)

(a) (b) (c) (d)

Figure 7: Examples of the effect of the ineq.threshold parameter. a) Subset of points used in the
example; b) AQuadtree with default ineq.threshold value; c) AQuadtree with ineq.threshold value
0.01; d) AQuadtree with ineq.threshold value 0.5.

Class methods and slots

The AQuadtree class proposes a collection of methods to manage the generated objects and overrides
the generic methods show, print, summary and [(subsetting) for the AQuadtree signature. The
spplot method overrides the lattice-based plot method for spatial data with attributes from sp
package (Pebesma and Bivand, 2005), and two extra parameters: residual, to indicate if residual
cells should be displayed, and by.density to indicate if attributes should be divided for the cell
areas to make them comparable between zones with different sizes. The merge method merges
the input data on the AQuadtree object with a second data frame using cellCode and cellNum
as the merging attributes. The writeOGR.QT method coerces the given AQuadtree object to a
SpatialPolygonsDataframe and uses the writeOGR method from rgdal package (Bivand et al., 2016)
to write out spatial vector data. Finally, the area.QT method allows getting the areas of the grid
cells in square meters. An AQuadtree object can also be coerced to a SpatialPolygonsDataFrame
or a SpatialPolygons object using the generic method as from methods package:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 218

R> bcn.QT <- AQuadtree(BarcelonaPop)
R> class(bcn.QT)
[1] "AQuadtree"
attr(,"package")
[1] "AQuadtree"
R> bcn.SP <- as(bcn.QT, "SpatialPolygonsDataFrame")
R> class(bcn.SP)
[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"

The basic structure of the AQuadtree class is based on a SpatialPolygonsDataFrame with some
extra information on the object created.

R> slotNames(example.QT)
[1] "dim" "layers" "colnames" "threshold" "thresholdField" "loss" "data"
[8] "polygons""plotOrder" "bbox" "proj4string"

The properties dim, layers, colnames, threshold and thresholdField specify the parameters used
to create the grid and denote the grid characteristics: dim indicates the scale in meters of the highest
level cells; layers shows the number of subdivision levels; colnames enumerates the attribute
names summarized in the resulting grid; threshold is the value used for anonymization, indicating
the minimum number of points or a minimum number an attribute that a cell may contain; and
thresholdField specifies the attributes to which the threshold restriction has been applied.

The aggregation process aims to keep all the original points in the summarized grid, but in some
cases, when the aggregation at the highest level (the biggest cells) does not satisfy the threshold
restriction those points must be suppressed. The loss property indicates the number of points
suppressed on the subdivision process because their aggregation, at any level, does not accomplish the
threshold restriction. The rest of the slots, i.e. data, polygons, plotOrder, bbox and proj4string,
define the grid structure as a SpatialPolygonsDataFrame.

Package functions

The AQuadtree package also implements several functions that help working with the proposed
grid system. In this section we focus on the capabilities for merging two AQuadtree objects, for
aggregating spatial points to an AQuadtree object and, finally, for creating a fixed size grid.

Join AQuadtrees

As pointed by Martin (2002), administrative units may change over time, but grid cells are time
independent. Therefore, grid datasets from different periods can be compared. In the case of
aquadtrees, this is true only when the disaggregation process gets the same resolutions in all areas for
the periods being compared; i.e. information in two datasets is only comparable if there are exactly
the same cells in both datasets. A problem arises when some cells have different subdivision levels.
The function joinAQuadtrees is intended to deal with this problem. The function joinAQuadtrees
merges two AQuadtree objects and makes their information comparable. The function creates a
new AQuadtree object combining the information of the two input objects at the lowest common
resolution. The initial size of the highest scale cells should be the same in both input objects.

The resulting AQuadtree object maintains the attributes of the two input objects. The attributes
are automatically renamed, adding the suffix ".1" or ".2" to indicate whether the attribute comes
from the first or the second object. When the grids have different subdivision schemes, the algorithm
works in a quadtree manner, it merges the cells to bigger ones and aggregates information. The
optional parameters mean.1 and mean.2 can be used to indicate a list of attributes that should be
aggregated using a weighted mean instead of the sum function applied by default. The function can
be used to merge AQuadtrees with the same attributes, but also with different information.

The following example combines two AQuadtrees, with different information. The first AQuadtree
contains the population of Barcelona maintaining only the age attribute with a threshold value 25
on the number of points per grid cell.

R> Barcelona.AQT_1<-AQuadtree(BarcelonaPop,colnames="age",threshold=25, fun="mean")

A second AQuadtree for the same population preserving the sex attribute with a threshold value 17
is also created.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 219

R> Barcelona.AQT_2 <- AQuadtree(BarcelonaPop, colnames="sex", threshold=17,
+ thresholdField=c("sex.man", "sex.woman"))

Now both objects are combined to create a new AQuadtree aggregating the age attribute using the
weighted mean.

R> Barcelona.AQT_1_2 <- joinAQuadtrees(Barcelona.AQT_1, Barcelona.AQT_2,
+ mean.1="age", withResiduals=TRUE)

To illustrate how the merging process works we focus on a particular cell.

R> plot(Barcelona.AQT_1[Barcelona.AQT_1$cellCode=="1kmN2065E3665",])
R> plot(Barcelona.AQT_2[Barcelona.AQT_2$cellCode=="1kmN2065E3665",])
R> plot(Barcelona.AQT_1_2[Barcelona.AQT_1_2$cellCode=="1kmN2065E3665",])

(a) (b) (c)

Figure 8: Cell join example. AQuadtree objects in a) and b) are joined in c).

Figure 8 presents the results of the previous example, the input grids are shown in Figure 8a
and 8b and the output grid is shown in Figure 8c. Some cells have been highlighted in different grey
tones to clarify the merging process. For instance, looking at the bottom right cells in Figure 8a and
8b (see the darkest gray-scale level), the three cells in Figure 8b, must be merged to make them
comparable to the one in Figure 8a. The resulting grid in Figure 8c preserves the cell in Figure 8a
and aggregates the information of the cells in Figure 8b. Table 1 presents the attribute information
in each cell of the input and in the output grid to clarify the merging performed.

Barcelona.AQT_1 Barcelona.AQT_2 Barcelona.AQT_1_2

cell
Num

level total age cell
Num

level total sex.
man

sex.
woman

cell
Num

level total
.1

age
.1

total
.2

sex.
man

.2

sex.
woman

.2

101 3 79 43.6 101 3 79 37 42 101 3 79 43.6 79 37 42
102 3 133 40.9 102 3 133 75 58 102 3 133 40.9 133 75 58
105 3 63 45.0 105 3 63 37 2 105 3 63 45.0 63 37 26
106 3 93 40.0 106 3 93 54 39 106 3 93 40.0 93 54 39

2 2 65 38.1 203 3 118 81 37 2 2 265 38.1 253 146 107

207 3 92 47 45

208 3 43 18 25

309 3 79 41.5 309 3 79 38 41 309 3 79 41.5 79 38 41
310 3 121 38.8 310 3 121 54 67 310 3 121 38.8 121 54 67
313 3 89 35.4 313 3 89 50 39 313 3 89 35.4 89 50 39

31451 4 41 44.5 314 3 158 68 90 314 3 158 39.6 158 68 90

31452 4 44 39.4

31459 4 32 34.1

31460 4 41 39.2

411 3 128 39.8 4 2 379 192 187 4 2 379 41.0 379 192 187

412 3 62 40.1

41553 4 53 46.2

41554 4 32 35.6

41561 4 42 41.9

41562 4 31 41.3

416 3 31 43.0

Table 1: Cell join example.

The joinAQuadtrees function can also be used to incorporate a set of points to an existing
AQuadtree object building a grid with threshold of 1 point per cell. For instance, let us consider
an AQuadtree aggregating the population for the Charleston SCMA using a threshold value 17
individuals per cell and a SpatialPointsDataFrame object from the same population selecting white
people aged 65 or more:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 220

R> Charleston.AQT<-AQuadtree(CharlestonPop, threshold=17)
R> head(Charleston.AQT)
An object of class "AQuadtree" with 6 grid cells with sizes between 1km and
125m

cellCode cellNum level residual total
1 1kmN0126E2135 1 FALSE 22
2 1kmN0127E2135 1 FALSE 20
3 1kmN0127E2136 1 FALSE 24
4 1kmN0131E2140 1 FALSE 29
5 1kmN0133E2134 1 FALSE 45
6 1kmN0133E2135 1 FALSE 20

R> CharlestonWomen65 <- CharlestonPop[CharlestonPop$origin=='white'
+ & CharlestonPop$age=='over65', 'sex']

Both objects can be aggregated by creating an auxiliary AQuadtree with threshold value 1 (i.e. with
maximum level of disaggregation) for the set of points

R> CharlestonWomen65.AQT<-AQuadtree(CharlestonWomen65, threshold=1, colnames='sex')

and then joining both AQuadtree objects:

R> Charleston.AQT.ext<-joinAQuadtrees(Charleston.AQT, CharlestonWomen65.AQT)
R> head(Charleston.AQT.ext)
An object of class "AQuadtree" with 6 grid cells with sizes between 1km and
125m

cellCode cellNum level residual total.1 total.2 sex.male.2 sex.female.2
1 1kmN0126E2135 1 FALSE 22 4 2 2
2 1kmN0127E2135 1 FALSE 20 2 1 1
3 1kmN0127E2136 1 FALSE 24 3 1 2
4 1kmN0131E2140 1 FALSE 29 2 1 1
5 1kmN0133E2134 1 FALSE 45 5 4 1
6 1kmN0133E2135 1 FALSE 20 2 1 1

The resulting AQuadtree object may contain less cells than the original, because joining AQuadtrees
only merges common geometries.

R> length(Charleston.AQT)
[1] 997
R> length(Charleston.AQT.ext)
[1] 856

An optimized function to aggregate points to an existing AQuadtree object maintaining all the
original cells is explained in the next subsection.

Aggregate points to an AQuadtree

As seen in the previous subsection, a set of points may be converted into an AQuadtree object
and then it may be joined to another AQuadtree. The package includes the pointsToAQuadtree
function to optimize this process. The function takes two elements, an AQuadtree object and
a SpatialPoints or a SpatialPointsDataFrame object, and aggregates the set of points to the
AQuadtree. The function aggregates numeric attributes of the input set of points using the mean
function. It also deploys factor attributes creating new attributes for each label of the factor and
computing the number of occurrences. The point’s attributes added to the resulting AQuadtree
object are prefixed with “p.”. The function also creates a “p.total” attribute to compute the total
number of points aggregated to each cell of the input AQuadtree.

Following the example given in the previous section (see at the end of previous section), the
aggregation of the CharlestonWomen65 and Charleston.AQT objects is given by

R> Charleston.AQT.ext<- pointsToAQuadtree(Charleston.AQT, CharlestonWomen65)
R> tail(Charleston.AQT.ext)
An object of class "AQuadtree" with 6 grid cells with sizes between 1km and
125m

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 221

cellCode cellNum level residual total p.total p.sex.male p.sex.female
185 1kmN0142E2133 313 3 FALSE 23 NA NA NA
186 1kmN0142E2133 314 3 FALSE 19 1 0 1
188 1kmN0142E2134 101 3 FALSE 27 1 1 0
189 1kmN0142E2134 102 3 FALSE 27 1 0 1
190 1kmN0142E2134 105 3 FALSE 35 4 2 2
191 1kmN0142E2134 106 3 FALSE 32 2 0 2

The resulting AQuadtree object has the same cells as the original, and the cells not covering any
points contain NA values for the new attributes.

R> length(Charleston.AQT)
[1] 997
R> length(Charleston.AQT.ext)
[1] 997

Create a fixed size grid

The createGrid function creates a grid with fixed cell size (by default 1km), based on the INSPIRE
Specification on Geographical Grid Systems (INSPIRE, 2010). The grid covers entirely a given
area which can be a single polygon, a set of polygons or a set of points. The resulting grid will be
a SpatialPolygons object where the ID of each polygon is the cellCode as explained in Section
Quadtree anonymization. The size of the grid cells can be specified with the dim argument in meters;
by default cells will be 1000m. The intersect argument specifies whether the resulting grid should
be intersected with the given zone; otherwise the function builds a rectangular grid. The outline
argument, indicates whether the resulting grid should be clipped with the outline borders of the
given zone (only applicable with SpatialPolygons or SpatialPolygonsDataFrame classes).

Figure 9 presents an example of a SpatialPolygons object representing the census tracts for
Barcelona, and three possible grids with different values for the intersect and outline arguments.
Figure 9a provides the census tract spatial limits for Barcelona,

R> plot(BarcelonaCensusTracts)

Figure 9b provides a rectangular grid covering the current spatial region without intersection. To
illustrate the region covered, the boundaries for the Barcelona Municipality have also been plotted,

R> plot(createGrid(BarcelonaCensusTracts, intersect=FALSE))
R> plot(rgeos::gUnaryUnion(BarcelonaCensusTracts), add=TRUE)

and finally, Figure 9c and Figure 9d provide intersected grids with and without outlined borders,

R> plot(createGrid(BarcelonaCensusTracts, intersect=TRUE, outline=FALSE))
R> plot(createGrid(BarcelonaCensusTracts, intersect=TRUE, outline=TRUE))

(a) (b) (c) (d)

Figure 9: Barcelona census tracts (a); grid for Barcelona city without intersection (b); grid
intersected (c); grid intersected and outlined (d).

The polygons in the resulting grids are identified by their corresponding INSPIRE cell code
(INSPIRE, 2010),

R> Bcn.Grid<-createGrid(BarcelonaCensusTracts, intersect=TRUE,
+ outline=FALSE)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 222

R> row.names(Bcn.Grid)
[1] "1kmN2074E3665" "1kmN2074E3666" "1kmN2074E3667" "1kmN2073E3664"
[5] "1kmN2073E3665" "1kmN2073E3666" "1kmN2073E3667" "1kmN2072E3655"
[9] "1kmN2072E3656" "1kmN2072E3657" "1kmN2072E3661" "1kmN2072E3662"
[13] "1kmN2072E3663" "1kmN2072E3664" "1kmN2072E3665" "1kmN2072E3666"
[17] "1kmN2072E3667" ...

Once a fixed size grid is created, functionalities of spatial packages like sp can be used. For
instance, a set of points can be aggregated to the created grid:

R> Bcn.Grid.ext<-aggregate(BarcelonaPop[,'age'], by=Bcn.Grid, FUN="mean")
R> head(as.data.frame(Bcn.Grid.ext))

age
1kmN2074E3665 42.14286
1kmN2074E3666 39.38129
1kmN2074E3667 39.00000
1kmN2073E3664 66.00000
1kmN2073E3665 39.51493
1kmN2073E3666 40.06069

The same result can be achieved using the spatialPointsCellCodes function in the AQuadtree
package. This function provides, for each point in a spatialPointsDataFrame, the corresponding
cell codes (cellCode) of a rectangular grid covering the full set of points.

R> Bcn.points<-spatialPointsCellCodes(BarcelonaPop)
R> Bcn.points.agr<-aggregate(age~cellCode, Bcn.points, "mean")
R> Bcn.Grid$cellCode<-row.names(Bcn.Grid)
R> Bcn.Grid.ext<-merge(Bcn.Grid, Bcn.points.agr)
R> head(as.data.frame(Bcn.Grid.ext))

cellCode age
143 1kmN2074E3665 42.14286
144 1kmN2074E3666 39.38129
145 1kmN2074E3667 39.00000
139 1kmN2073E3664 66.00000
140 1kmN2073E3665 39.51493
141 1kmN2073E3666 40.06069

The advantage of this second method is that it gives more control over the aggregation process, for
example, the summarizing functions provided in the dplyr package may be used.

R> Bcn.points.agr<-summarise(group_by(as.data.frame(Bcn.points),cellCode),
+ total.points=n(), mean.age=mean(age), sd.age=sd(age))
R> Bcn.Grid.ext<-merge(Bcn.Grid, Bcn.points.agr)
R> head(as.data.frame(Bcn.Grid.ext))

cellCode total.points mean.age sd.age
143 1kmN2074E3665 35 42.14286 27.22579
144 1kmN2074E3666 139 39.38129 22.79283
145 1kmN2074E3667 1 39.00000 NA
139 1kmN2073E3664 1 66.00000 NA
140 1kmN2073E3665 268 39.51493 21.95441
141 1kmN2073E3666 346 40.06069 23.05115

Final remarks

In this paper we have presented the R package AQuadtree which provides an automatic aggregation
tool to anonymize point data using a methodology based on hierarchical (quadtree) geographic data
structures. The main goal of the proposed system is respecting privacy of geographic data, while,
at the same time, offering best accuracy to perform truthful spatial analysis. The implemented
methodology is helpful for the production of official spatial data and for researchers to deal with
this type of data. Further research should evaluate the quality and usefulness of ad-hoc datasets
created using the package.

Data privacy concerns are built upon the k-anonymity concept. The methodology to build the
datasets performs aggregation and suppression of spatial data, yet controlled with thresholds defined

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Contributed research article 223

by the user and covering as many attributes as needed. Thereby, the package can create grids where
the set of attributes leading to the identification of an individual cannot be distinguished from at
least k − 1 other individuals in the same grid cell. Datasets produced ensure individual privacy as
long as the anonymity thresholds used are high enough.

The process has been designed to be time efficient so it can be used with large spatial datasets. It
has been tested on a 2,5 GHz Intel 4 Core i7 computer with the Catalonian 2014 population register
dataset containing information on 7,566,464 individuals. For instance, a grid with 85,408 cells with
sizes between 1km and 31.25m, with a threshold value of 17 individuals per cell was created in 46
seconds.

Acknowledgements

The authors most gratefully thank the Institut d’Estadística de Catalunya for providing us with
the database to perform tests with real data. We thank the Data Analysis and Modeling research
group (2017SGR71) for their comments on previous versions of the paper. We sincerely thank Rafa
Madariaga for his diligent proofreading of the manuscript.

Bibliography

Ajuntament de Barcelona. Departament d’Estadística. Població segons Padró d’Habitants, 2018.
URL https://www.bcn.cat/estadistica/catala/dades/tpob/pad/padro/a2018/. [p213]

M. P. Armstrong and A. J. Ruggles. Geographic Information Technologies and Personal Privacy.
Cartographica: The International Journal for Geographic Information and Geovisualization, 40(4):
63–73, 2005. doi: https://doi.org/10.3138/RU65-81R3-0W75-8V21. [p209]

M. Behnisch, G. Meinel, S. Tramsen, and M. Diesselmann. Using Quadtree Representations in
Building Stock Visualization and Analysis. Erdkunde, 67(2):151–166, 2013. ISSN 00140015. doi:
https://doi.org/10.3112/erdkunde.2013.02.04. [p210]

R. S. Bivand and C. Rundel. rgeos: Interface to Geometry Engine - Open Source (GEOS), 2017.
URL https://cran.r-project.org/package=rgeos. R package version 0.3-22. [p212]

R. S. Bivand, E. Pebesma, and V. Gomez-Rubio. Applied spatial data analysis with R, Second edition.
Springer, NY, 2013. URL http://www.asdar-book.org/. [p212]

R. S. Bivand, T. Keitt, B. Rowlingson, and E. Pebesma. rgdal: Bindings for the Geospatial
Data Abstraction Library, 2016. URL https://CRAN.R-project.org/package=rgdal. R package
version 1.2-5. [p212, 217]

C. A. Cassa, S. C. Wieland, and K. D. Mandl. Re-identification of Home Addresses from Spatial
Locations Anonymized by Gaussian Skew. International journal of health geographics, 7:45, 2008.
ISSN 1476-072X. doi: https://doi.org/10.1186/1476-072X-7-45. [p209]

C.-C. Chen, J.-H. Chuang, D.-W. Wang, C.-M. Wang, B.-C. Lin, and T.-C. Chan. Balancing
Geo-privacy and Spatial Patterns in Epidemiological Studies. Geospatial health, 2017. doi:
https://doi.org/10.4081/gh.2017.573. [p209]

L. H. Cox. Protecting Confidentiality in Small Population Health and Environmental Statistics.
Statistics in medicine, 15(17):1895–1905, 1996. doi: https://doi.org/10.1002/(SICI)1097-
0258(19960915)15:17<1895::AID-SIM401>3.0.CO;2-W. [p209]

A. J. Curtis, J. W. Mills, and M. Leitner. Spatial Confidentiality and GIS: Re-engineering mortality
locations from published maps about Hurricane Katrina. International journal of health geographics,
5:44, 2006. ISSN 1476-072X. doi: https://doi.org/10.1186/1476-072X-5-44. [p209]

G. T. Duncan and R. W. Pearson. Enhancing Access to Microdata while Protecting Confidentiality:
Prospects for the Future. Statistical Science, 6(3):219–232, 1991. doi: https://doi.org/10.1214/ss/
1177011681. [p209]

Geoda Data and Lab. Sample Data Referenced in the Tutorials for GeoDa, GeoDaSpace, and CAST.
Technical report, Center for Spatial Data Science. University of Chicago, Illinois, 2019. URL
https://geodacenter.github.io/data-and-lab/. [p213]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://www.bcn.cat/estadistica/catala/dades/tpob/pad/padro/a2018/
https://cran.r-project.org/package=rgeos
http://www.asdar-book.org/
https://CRAN.R-project.org/package=rgdal
https://geodacenter.github.io/data-and-lab/

Contributed research article 224

GEOSTAT. ESSnet Project GEOSTAT 1A – Development of an European Population Grid Dataset.
Technical report, The European Forum for GeoStatistics, 2011. URL https://www.efgs.info/
geostat/1a/. [p210]

GEOSTAT. ESSnet Project GEOSTAT 1B – Representing 2011 Census Data on Grid. Technical
report, The European Forum for GeoStatistics, 2014. URL https://www.efgs.info/geostat/1b/.
[p210]

P. Hendricks. anonymizer: Anonymize Data Containing Personally Identifiable Information, 2015.
URL https://github.com/paulhendricks/anonymizer. R package version 0.2.0. [p209]

INSPIRE. INSPIRE Specification on Geographical Grid Systems – Guidelines (D2.8.I.2). Tech-
nical Report March, INSPIRE Infrastructure for Spatial Information in Europe: European
Commission, 2010. URL http://inspire.ec.europa.eu/documents/Data{_}Specifications/
INSPIRE{_}Specification{_}GGS{_}v3.0.1.pdf. [p210, 214, 221]

R. Lagonigro, R. Oller, and J. C. Martori. A Quadtree Approach Based on European Geographic
Grids: Reconciling Data Privacy and Accuracy. SORT, 41(1), 2017. ISSN 20138830. doi:
https://doi.org/10.2436/20.8080.02.55. [p210]

R. Lagonigro, R. Oller, and J. C. Martori. AQuadtree: Confidentiality of Spatial Point Data, 2020.
URL https://cran.r-project.org/package=AQuadtree. R package version 1.0.1. [p210]

N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-diversity.
In 2007 IEEE 23rd International Conference on Data Engineering, pages 106–115. IEEE, 2007.
doi: https://doi.org/10.1109/ICDE.2007.367856. [p209]

A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):3–es, 2007.
doi: https://doi.org/10.1145/1217299.1217302. [p209]

D. Marcelino. SciencesPo: A Tool Set for Analyzing Political Behaviour Data, 2013. R package
version 1.4.1. [p210]

D. Martin. Geography for the 2001 Census in England and Wales. Population Trends, Summer(108):
7–15, 2002. [p218]

C. M. O’Keefe and D. B. Rubin. Individual Privacy versus Public Good: Protecting Confidentiality
in Health Research. Statistics in medicine, 34(23):3081–3103, 2015. doi: https://doi.org/10.1002/
sim.6543. [p209]

E. Pebesma and R. S. Bivand. Classes and Methods for Spatial Data in R. R News, 5(2):9–13, nov
2005. URL https://cran.r-project.org/doc/Rnews/. [p212, 217]

H. Samet. The Quadtree and Related Hierarchical Data Structures. ACM Computing Surveys, 16
(2):187–260, 1984. ISSN 03600300. doi: https://doi.org/10.1145/356924.356930. [p210]

L. Sweeney. k-anonymity: A Model for Protecting Privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002. doi: https://doi.org/10.1142/
S0218488502001648. [p209]

M. Tammilehto-Luode. Opportunities and challenges of grid-based statistics. In World Statistics
Congress of the International Statistical Institute, Dublin, Ireland, 2011. [p209]

M. Tammilehto-Luode, L. Backer, and L. Rogstad. Grid Data and Area Delimitation by Definition
Towards a better European Territorial Statistical System. Statistical Journal of the United Nations
Economic Commission for Europe, 17(2):109–117, 2000. doi: https://doi.org/10.3233/SJU-2000-
17202. [p209]

M. Templ, A. Kovarik, and B. Meindl. Statistical Disclosure Control for Microdata Using the R
Package sdcMicro. Journal of Statistical Software, 67(4), 2015. doi: https://doi.org/10.18637/jss.
v067.i04. [p210]

H. Theil. Statistical decomposition analysis. Amsterdam: North Holland, 1972. [p211]

K. Vu, R. Zheng, and J. Gao. Efficient Algorithms for k-anonymous Location Privacy in Participatory
Sensing. In 2012 Proceedings IEEE INFOCOM, pages 2399–2407. IEEE, 2012. doi: https:
//doi.org/10.1109/INFCOM.2012.6195629. [p209, 211]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://www.efgs.info/geostat/1a/
https://www.efgs.info/geostat/1a/
https://www.efgs.info/geostat/1b/
https://github.com/paulhendricks/anonymizer
http://inspire.ec.europa.eu/documents/Data{_}Specifications/INSPIRE{_}Specification{_}GGS{_}v3.0.1.pdf
http://inspire.ec.europa.eu/documents/Data{_}Specifications/INSPIRE{_}Specification{_}GGS{_}v3.0.1.pdf
https://cran.r-project.org/package=AQuadtree
https://cran.r-project.org/doc/Rnews/

Contributed research article 225

H. Wickham, R. Francois, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2020.
URL https://CRAN.R-project.org/package=dplyr. R package version 0.8.4. [p212]

D. L. Zimmerman and C. Pavlik. Quantifying the Effects of Mask Metadata Disclosure and Multiple
Releases on the Confidentiality of Geographically Masked Health Data. Geographical Analysis, 40
(1):52–76, 2008. ISSN 00167363. doi: https://doi.org/10.1111/j.0016-7363.2007.00713.x. [p209]

D. L. Zimmerman, M. P. Armstrong, and G. Rushton. Alternative Techniques for Masking Geographic
Detail to Protect Privacy. In Geocoding Health Data: The Use of Geographic Codes in Cancer
Prevention and Control, Research and Practice, chapter Chapter 7, pages 127–138. CRC Press,
Boca Raton, Fla., 2007. ISBN 978-0-8493-8419-6. [p209]

Raymond Lagonigro
Department of Economics and Business
Data Analysis and Modeling Research Group
University of Vic - UCC
Spain
(ORCiD: 0000-0002-8091-4296)
raymond.lagonigro@uvic.cat

Ramon Oller
Department of Economics and Business
Data Analysis and Modeling Research Group
University of Vic - UCC
Spain
(ORCiD: 0000-0002-4333-0021)
ramon.oller@uvic.cat

Joan Carles Martori
Department of Economics and Business
Data Analysis and Modeling Research Group
University of Vic - UCC
Spain
(ORCiD: 0000-0002-8400-5487)
martori@uvic.cat

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=dplyr
mailto:raymond.lagonigro@uvic.cat
mailto:ramon.oller@uvic.cat
mailto:martori@uvic.cat

CONTRIBUTED RESEARCH ARTICLE 226

miWQS: Multiple Imputation Using
Weighted Quantile Sum Regression
by Paul M. Hargarten and David C. Wheeler

Abstract The miWQS package in the Comprehensive R Archive Network (CRAN) utilizes weighted
quantile sum regression (WQS) in the multiple imputation (MI) framework. The data analyzed is a
set/mixture of continuous and correlated components/chemicals that are reasonable to combine in
an index and share a common outcome. These components are also interval-censored between zero
and upper thresholds, or detection limits, which may differ among the components. This type of data
is found in areas such as chemical epidemiological studies, sociology, and genomics. The miWQS
package can be run using complete or incomplete data, which may be placed in the first quantile,
or imputed using bootstrap or Bayesian approach. This article provides a stepwise and hands-on
approach to handle uncertainty due to values below the detection limit in correlated component
mixture problems.

Introduction

When studying public health, researchers want to determine if a set/mixture of continuous and
correlated components/chemicals is associated with an outcome and if so, which components are
important in that mixture (Braun et al., 2016). These components share a common univariate outcome
but are interval-censored between zero and low thresholds, or detection limits, that may be different
across the components.

We have created the miWQS package to analyze epidemiological studies with chemical exposures,
but researchers may also apply the package to public health, genomics, or other areas in public
health and medicine. Epidemiologists examine chemical mixtures because human exposure to a large
number of chemicals may increase the risk of disease (Braun et al., 2016). Researchers may also create a
socioeconomic status (SES) index that is generally composed of continuous correlated variables in the
following domains: educational achievement, race, income, housing, and employment (Wheeler et al.,
2017, 2019a). For example, race may be represented by percent of the population that is white. There
are several examples of this in the literature (Wheeler et al., 2019b, 2020). Although these variables
may have missing values throughout the distribution, researchers may use the miWQS package to
create SES index even in the presence of missing data. Alternatively, genome-wide association studies
(GWAS’s) analyze DNA sequence variation using single nucleotide polymorphisms (SNPs) (Bush
and Moore, 2012). As SNPs constitute high-frequency changes of a single base in the DNA sequence
throughout the genome, SNPs serve as markers of a genomic region (Bush and Moore, 2012). Thus,
SNPs are highly correlated (Bush and Moore, 2012; Ferber and Archer, 2015). The research aim of a
GWAS is to find associations between genes and common and complex diseases like schizophrenia
and to identify specific associated genes. The miWQS package can answer this research aim while
simultaneously accounting for the correlation between SNPs.

In the data, an approach to account for the correlation among completely observed components is
the weighted quantile sum (WQS) regression (Carrico et al., 2014; Czarnota et al., 2015b; Gennings
et al., 2013). The application of WQS regression to censored data has been limited statistically and
computationally on CRAN (the Comprehensive R Archive Network) (Czarnota et al., 2015a; Horton
et al., 2015; Czarnota and Wheeler, 2015; Renzetti et al., 2020). In order to fully account for the
uncertainty due to censoring, the miWQS package utilizes WQS regression in the multiple imputation
(MI) framework (Hargarten and Wheeler, 2020, 2021).

As compared to other WQS packages in R, the miWQS package is specifically designed to use
highly correlated data that include interval-censoring. The wqs (Czarnota and Wheeler, 2015) package
performs WQS regression only on complete mixtures that share a continuous or binary outcome. The
wqs.est() function in the wqs package can be used for continuous outcomes and displays an error if
fed incomplete information. The gwqs() function in the gWQS package runs WQS regression when
the outcome is continuous, binary, binomial, multinomial, or a count. If incomplete components are
inputted into gwqs(), the function uses non-missing data without warning (Renzetti et al., 2020). By
contrast, the miWQS functions are constructed to handle both complete and incomplete mixture data
that share a continuous, binary, or count outcome by using MI.

The MI approach provides valid statistical inference in estimating regression parameters when
data are missing (Dong and Peng, 2013; Rubin, 1987; White et al., 2011). Specifically, MI consists of
three stages: (1) imputation, (2) analysis, and (3) pooling (Figure 1). First, we create several imputed
datasets by replacing the below the detection limit (BDL) values by plausible data values. The complete

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=miWQS
https://CRAN.R-project.org/package=wqs
https://CRAN.R-project.org/package=gWQS

CONTRIBUTED RESEARCH ARTICLE 227

Stage 2:
Analyze

using WQS …

Kth

1st

2nd

Imputed
Datasets

Incomplete
Data

 Stage 1:
Impute

Coefficient
Estimates

Stage 3:
Pool

Final
Estimate

Figure 1: Multiple Imputation in connection with the Weighted Quantile Sum regression (MI-WQS).
Given partially observed correlated chemical exposures that share a common outcome and covariates,
(stage 1) researchers impute the below detection limit values (dark circles) K times to form complete
datasets. In stage 2, each imputed dataset is analyzed using WQS regression. In stage 3, the coefficient
estimates from the K WQS regressions (diamonds) are combined into a final estimate (square).

datasets are identical for the observed data but are different in the imputed values. Second, we analyze
each complete dataset using WQS regression to obtain estimates (Carrico et al., 2014; Czarnota et al.,
2015b; Gennings et al., 2013; Hargarten and Wheeler, 2020). Lastly, we combine each WQS estimate
from different analyses to form one final estimate, to find its variance, and to perform statistical tests
in order to determine the significance of the exposure effects.

Other MI packages in R have functions that combine estimates, but these are different than
the pool.mi() function used in the miWQS package. The mice (multiple imputation by chained
equations) package implements a strategy to impute multivariate missing data using fully conditional
densities (van Buuren and Groothuis-Oudshoorn, 2011). Its pool function combines one estimate at
a time, while pool.mi() combines all estimates simultaneously. The norm package allows users to
impute values with an assumed multivariate normal distribution (Novo and Schafer, 2013). Its pool
function, mi.inference(), does not allow the user to adjust the degree of freedom due to small sample
sizes in contrast to pool.mi(). The mi package performs multiple imputation with missing values and
saves the results as a mi-class object (Su et al., 2011). As a mi-class object is used to pool estimates
inside the mi package, we cannot use it to pool estimates obtained in other packages.

Contrasting with the other packages on CRAN, the purpose of the miWQS package is to find
an association of interval-censored mixture data with an outcome. The miWQS package can be run
using complete or incomplete data. Incomplete data may be placed in the first quantile of the index
or imputed using bootstrap or Bayesian approach. In this vignette, we will discuss how the data are
formatted and then answer the research objectives using the miWQS package in four different ways:
(1) with complete data, (2) with incomplete data placed in the first quantile, (3) with incomplete data
imputed by bootstrapping, and (4) with incomplete data by using a Bayesian approach.

Data structure

This section describes what the data should look like in order to use the miWQS package. We wish to
assess the association of the mixture of components, X, and a univariate outcome, y, while accounting
for other covariates, Z. However, the continuous non-detects in the mixture (X) are interval-censored
between zero and different detection limits DL. Any missing values in the covariates or outcome
are ignored and removed before imputation and analysis. Although X may refer to a variable with
no obvious DL, we consider chemical concentrations X with each being partially observed in this
vignette.

Our example demonstrating the use of the miWQS package is the provided dataset, simdata87. It
is a list that consists of: 14 non-missing chemical concentrations, 14 chemical concentrations with each
having 10% missing, 14 detection limits, a binary outcome representing cancer diagnosis, and three

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mice
https://CRAN.R-project.org/package=norm
https://CRAN.R-project.org/package=mi

CONTRIBUTED RESEARCH ARTICLE 228

covariates. The dataset was generated as part of a simulation study with 1,000 subjects (Hargarten
and Wheeler, 2020).

After installing the R package miWQS from CRAN, load the package and the dataset as follows.

> library("miWQS")

Loading required package: parallel

> data("simdata87")

The numeric components of interest to combine into an index X are stored in a matrix or a data
frame. Any missing values in X are denoted by NA’s and are assumed to be censored between zero
and an upper threshold, DL. The DL is a numeric vector, where each element represents the detection
limit (DL) for each chemical. In order to use the imputation techniques in miWQS, each chemical
must have a known DL, or an upper bound. Otherwise, chemical values are placed in the first quantile
(BDLQ1) of the weighted index (see Example 2). For instance, 14 non-missing chemical concentrations
are saved as columns in a matrix simdata87$X.true. The matrix simdata87$X.bdl contains these 14
chemical concentrations, but 100 values are subbed as missing for each chemical between zero and
different detection limits. These detection limits are saved in element DL of simdata87 and are printed
below along with their chemical names.

> simdata87$DL

alpha-chlordane dieldrin gamma-chlordane lindane
0.9244609 4.4464426 29.1202898 8.2705681

methoxychlor dde ddt pentachlorophenol
41.3440690 2.3958978 4.5525251 5.1020673

pcb_105 pcb_118 pcb_138 pcb_153
1.6490457 1.9822575 1.2512259 0.7401736
pcb_170 pcb_180

3.3034084 1.0357342

A heat map of the observed logarithmic chemical concentrations (simdata87$X.bdl) shows the
correlations among the components in our dataset (Figure 2). The miWQS package handles such
correlated component data to examine whether the mixture is associated with the outcome.

>
> GGally::ggcorr(
+ log(simdata87$X.bdl),
+ method = c("pairwise", "spearman"),
+ geom = "tile",
+ layout.exp = 2,
+ hjust = 0.75,
+ size = 3,
+ legend.position = "bottom"
+)

Chemical exposure patterns often differ between individuals due to demographics and other
confounders. The additional covariates Z can be represented as a vector, data frame, or matrix. For
example, the element Z.sim in the list simdata87 is a matrix that contains an individual’s age, sex
(Female/Male), ethnicity (Hispanic/Non-Hispanic), and race (White/non-White). Some statistics of
the covariates are shown below.

> summary(simdata87$Z.sim[, "Age"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0224 2.4909 3.7443 3.7176 4.8805 7.9771

> apply(simdata87$Z.sim[, -1], 2, table)

Female Hispanic Non-Hispanic_Others
0 611 670 766
1 389 330 234

The univariate outcome shared among the components, y, may be continuous, count-based, or
binary; it is represented as a numeric vector or a factor in R. The mean of the outcome, ξ, relates the

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 229

alpha.chlordane

dieldrin

gamma.chlordane

lindane

methoxychlor

dde

ddt

pentachlorophenol

pcb_105

pcb_118

pcb_138

pcb_153

pcb_170

pcb_180

−1.0 −0.5 0.0 0.5 1.0

Figure 2: Heat map of the correlations using the fourteen observed chemical logarithmic concentra-
tions in dataset simdata87 can be analyzed with the package miWQS. The heat map was generated
using the GGally package.

covariates and chemicals by a link function g() as in generalized linear models. Continuous, count-
based, and binary outcomes all commonly arise in public health and medicine. First, exposure to a
mixture of chemicals may be associated with continuous health outcomes, such as body mass index
(BMI), systolic blood pressure, or cholesterol. When y is continuous, we assume a Gaussian distribution
using an identity link. Next, count health outcomes may arise in evaluations of socioeconomic data
or environmental exposures in census regions. When y is a count, we assume a Poisson distribution
with a log link and use an offset if a rate is modeled. Finally, binary health outcomes are common in
environmental exposure data and in case-control studies. When y is binary, we assume a Bernoulli
distribution using a logistic link. In our dataset, the y.scenario element of simdata87 is binary.
Suppose that y.scenario consists of cancer cases (represented by 1) and controls (represented by 0).
The table below shows that 457 individuals (45.7%) are diagnosed with cancer.

> cat("Counts")
> table(simdata87$y.scenario)

Counts
0 1

543 457

In our dataset–simdata87–we will like to answer the following research questions: (1) Is the
mixture of correlated chemicals associated with cancer; (2) if so, what are the important chemicals? In
the examples that follow, we will use both non-missing and missing chemical concentrations that are
handled in four different ways.

Example 1: WQS regression using complete data

WQS regression allows us to estimate the effect of a chemical mixture on the disease while parsimo-
niously selecting important components (Carrico et al., 2014; Czarnota et al., 2015b; Gennings et al.,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 230

2013; Hargarten and Wheeler, 2020). Briefly, WQS regression was designed to select components
in environmental exposure analysis. The correlated components are scored into quantiles. Let qij
represent the values of the jth chemical exposed in the ith subject. Ideally, the data should be randomly
split into a training dataset and validation dataset. While the training set is used to create the WQS
index, the validation dataset is used to assess the association of the weighted index with the outcome.
Yet, small datasets should not be split as splitting them may result in inadequate power to detect a
signal.

In the training dataset, the weights are estimated from B bootstrapped samples of size nT to form
the weighted index. Each bootstrap sample is used to estimate the unknown weights wj that maximize
the likelihood in the following nonlinear model:

g(ξi) = β
(T)
0b + β

(T)
1b ·

 c

∑
j=1

wjb · qij

+ z′ib · θ
(T),

subject to

β
(T)
1b > 0, 0 ≤ wjb ≤ 1, and

c

∑
j=1

wjb = 1

for the bth bootstrap sample. The parameters are as follows: β
(T)
0b is the intercept, β

(T)
1b is the overall

mixture effect, and θ are the covariate parameters. The term
(

∑c
j=1 wjb · qij

)
represents the weighted

index of the c chemicals of interest. The parameters in the training dataset are represented with
superscript T. The final weight estimate w̄j is calculated as an average of the bootstrap estimates ŵjb
for the jth chemical:

w̄j =
1
B

B

∑
b=1

ŵjb.

A constraint is placed on β
(T)
1b to allow for interpretation of the index (Carrico et al., 2014). Often,

exploratory single-chemical analyses, shown in Appendix 1, show that some components in the
mixture have a negative association with the outcome, while others have a positive association. In
environmental risk analysis, researchers are often interested in a positive association between the
mixture of components and an adverse health outcome. However, if a researcher hypothesizes that the

overall mixture is protective of the outcome, the constraint β
(T)
1b > 0 should be switched to β

(T)
1b < 0.

Then, the weighted quantile index score of the ith individual is specified as: WQSi = ∑c
j=1 w̄j · qij,

which uses the quantiles in the validation dataset. In the validation dataset, the significance of the

WQS parameter (β(V)
1) can be determined from:

g(ξi) = β
(V)
0 + β

(V)
1 WQSi + z′i · θ

(V),

where superscript V represents the regression coefficients in the validation dataset. While β
(V)
1

describes the effect of the chemical mixture on the health outcome, the mean weight w̄j identifies the
relative importance that chemical j imposes on the outcome (Carrico et al., 2014; Czarnota et al., 2015b;
Gennings et al., 2013; Hargarten and Wheeler, 2020).

The estimate.wqs() function performs WQS regression in the miWQS package. The data as
specified in Data structure section are placed in the first three arguments. The y argument takes
the outcome, like simdata87$y.scenario. As y.scenario is binary, the binomial distribution is spec-
ified by setting the family argument to "binomial". The X argument takes the chemicals of inter-
est, like simdata87$X.true. If X contains NA’s (that represents missing values), the BDL values are
placed in the first quantile by default (see Example 2). Any additional demographic covariates, like
simdata87$Z.sim, are placed into the Z argument. If no covariates are present, set Z to NULL. The

b1.pos argument controls whether the overall mixture effect, β
(T)
1 , is positively related to the outcome.

A way to decide the direction is to use the analyze.individually() function, which is described in
more detail in Appendix 1. In our dataset, we assume a positive relationship between the mixture
and an outcome; we consequently set b1.pos to TRUE. The proportion.train argument specifies the
proportion of data given to the training dataset. As the sample size of our example dataset is large
(n = 1000), we will use 50% of the data to train. The B argument is the number of bootstraps used to
estimate the weights wj’s.

We set a seed to ensure reproducibility as we bootstrapped the data. The execution of the
estimate.wqs() function creates an object of class wqs, and printing it answers the main research
questions.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 231

> set.seed(50679)
> wqs.eg1 <- estimate.wqs(
+ y = simdata87$y.scenario, X = simdata87$X.true, Z = simdata87$Z.sim,
+ proportion.train = 0.5,
+ n.quantiles = 4,
+ place.bdls.in.Q1 = FALSE,
+ B = 100,
+ b1.pos = TRUE,
+ signal.fn = "signal.converge.only",
+ family = "binomial",
+ verbose = FALSE
+)

#> No missing values in matrix detected. Regular quantiles computed.

> wqs.eg1

Odd Ratios & 95% CI (N.valid = 500)
Odds Ratio SE.OR 95% CI P-value

(Intercept) 0.142 1.51 0.142 (0.063, 0.320) <0.001
Age 0.950 1.06 0.950 (0.854, 1.056) 0.339
Female 0.947 1.22 0.947 (0.646, 1.388) 0.780
Hispanic 1.580 1.23 1.578 (1.059, 2.352) 0.025
Non.Hispanic_Others 1.030 1.25 1.034 (0.671, 1.593) 0.880
WQS 3.660 1.25 3.663 (2.372, 5.659) <0.001
AIC: 660.7468

All (100) bootstraps have converged.

Weights Adjusted by signal.converge.only using N.train = 500 observations:
ddt pcb_105 pcb_170 pcb_138

0.3905 0.2413 0.1105 0.1014
pcb_153 dde pcb_118 pentachlorophenol
0.0344 0.0339 0.0217 0.0216

lindane gamma.chlordane methoxychlor alpha.chlordane
0.0200 0.0138 0.0043 0.0028

pcb_180 dieldrin
0.0024 0.0014

Important chemicals defined as mean weights > 1/14~0.071.

An increase in the chemical mixture is associated with an increase in the odds of being diagnosed
with cancer by 3.66. The coef(wqs.eg1) gives us estimates on the logit scale of coefficients in the vali-
dation model. We identify chemicals in the mixture as important if their weight estimates are greater
than the reciprocal of the number of chemicals. Alpha-chlordane, PCB 153, PCB 105, and p,p-DDE
approximately constitute 88% of the effect in the index. Thus, these three chemicals are associated with
increased cancer risk. The weight estimates are directly extracted with wqs.eg1$processed.weights.
The Akaike information criterion (AIC) is used as the goodness-of-fit measure of the WQS model and
is directly computed using AIC(wqs.eg1$fit).

Plotting a WQS object gives a list of histograms: the distributions of the weight estimates, the
overall effect of the mixture, and the WQS index score (Wickham, 2016).

> eg1.plots <- plot(wqs.eg1)
> names(eg1.plots)

[1] "hist.weights" "hist.beta1" "hist.WQS"

Commonly, researchers look at distributions of the weight estimates to determine which chemicals
are important in the mixture (Figure 3). Looking at the histograms for complete WQS data, most
chemicals have no effect among all bootstraps. However, this panel of histograms indicates that alpha-
chlordane, p,p-DDE, PCB 153, and PCB 105 are important, which agrees with our above statistical
analysis.

The second histogram provides us insight into the distribution of the overall effect of the mixture

on the outcome, β
(T)
1 , across the bootstraps (Figure 4). Most bootstraps indicate that the chemical

mixture is not associated with the outcome (median around 1).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 232

pcb_170 pcb_180

pcb_105 pcb_118 pcb_138 pcb_153

methoxychlor dde ddt pentachlorophenol

alpha.chlordane dieldrin gamma.chlordane lindane

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

weight

co
un

t

Chemical Weight Estimates Histogram

Figure 3: Histograms of chemical weight estimates across 100 bootstraps for Example 1 to select
important chemicals. Weight estimates are constrained to be between zero and one.

The third histogram shows us the distribution of the weighted quantile sum. Given constraints
placed on the weights, WQS is a continuous index between zero and the number of quantiles minus 1
(given by the n.quantiles argument in estimate.wqs()) (Figure 5). In our example, the number of
quantiles is four. Across the bootstrap samples, most values of the chemical mixture are between one
and two.

Example 2: BDLQ1 approach on interval-censored data

BDLQ1 approach

Unlike Example 1, many studies contain partially observed chemical concentrations that are measured
to different detection limits. One approach to use WQS with missing data is to place the BDL values
into the first quantile (BDLQ1), and to score the observed component values in the remaining quantiles.
The make.quantile.matrix() function demonstrates this approach by creating n.quantiles quantiles
from a matrix argument X. If X is completely observed, regular quantiles are made; however, if the first
values in X are missing, they are placed in the first quantile. For example, suppose we are interested in
making four quantiles of 14 chemicals using 1,000 subjects in our dataset. If we use the completely
observed concentrations found in X.true element of simdata87, regular quantiles for all 14 chemicals
are made with the following number of individuals per quantile.

> q <- make.quantile.matrix(
+ X = simdata87$X.true,
+ n.quantiles = 4
+)

#> No missing values in matrix detected. Regular quantiles computed.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 233

0

10

20

0 1 2 3
beta1

co
un

t

Overall Mixture Effect (Beta1)

Figure 4: Histogram of overall chemical effect in the training dataset across 100 bootstraps for Example
1. Its constraint is governed by the b1.pos argument in the estimate.wqs() function. In the simdata87
dataset, the overall mixture is constrained to have a positive association with cancer. Most bootstraps
indicate that the chemical mixture is not associated with the outcome.

0

50

100

150

0 1 2 3
WQS

co
un

t

WQS Histogram

Figure 5: Histogram of the weighted quantile sum (WQS) using validation quantiles for Example 1 to
show where most values of the chemical mixture lie.

> apply(q, 2, table)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
0 250 250 250 250 250 250 250 250 250 250 250 250 250 250
1 250 250 250 250 250 250 250 250 250 250 250 250 250 250
2 250 250 250 250 250 250 250 250 250 250 250 250 250 250
3 250 250 250 250 250 250 250 250 250 250 250 250 250 250

However, if the chemical concentrations are incomplete (with the missing values indicated as NA’s),
the BDLQ1 approach works as follows. Suppose we wish to make quartiles of the X.bdl matrix in our
dataset, where each chemical has 100 BDL concentrations. Using BDLQ1, the 100 observations are
placed into the first quartile, and the remaining quartiles are evenly split in which each contains 900/3
= 300 observations. The number of individuals in each quartile of each chemical, and the total number
of missing values in each chemical are shown below. Note that the first row of the matrix matches the
total number of missing values (100).

> q <- make.quantile.matrix(
+ simdata87$X.bdl,
+ n.quantiles = 4,
+ verbose = TRUE
+)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 234

#> All BDLs are placed in the first quantile

##> Summary of Quantiles
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

0 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1 300 300 300 300 300 300 300 300 300 300 300 300 300 300
2 300 300 300 300 300 300 300 300 300 300 300 300 300 300
3 300 300 300 300 300 300 300 300 300 300 300 300 300 300
##> Total Number of NAs--Q1 (The first row) should match.
100 100 100 100 100 100 100 100 100 100 100 100 100 100

The number of individuals in the first quantile in BDLQ1 increases if more BDL values exist. For
instance, X.80 substitutes 800 values for each chemical from simdata87$X.true to be missing BDL.
Applying the BDLQ1 approach to X.80, all 800 values are placed into the first quartile, while roughly
200/3 ≈ 66 values are placed in remaining quartiles.

> q <- make.quantile.matrix(X.80, n.quantiles = 4, verbose = TRUE)

#> All BDLs are placed in the first quantile

##> Summary of Quantiles
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

0 800 800 800 800 800 800 800 800 800 800 800 800 800 800
1 67 67 67 67 67 67 67 67 67 67 67 67 67 67
2 66 66 66 66 66 66 66 66 66 66 66 66 66 66
3 67 67 67 67 67 67 67 67 67 67 67 67 67 67
##> Total Number of NAs--Q1 (The first row) should match.
800 800 800 800 800 800 800 800 800 800 800 800 800 800

Instead of quantiles, we could also categorize the chemicals into deciles by changing the n.quantiles
argument to ten. Suppose now that we wish to form deciles in simdata87$X.bdl. The first 100 BDL
values are placed in the first decile, while the remaining 900 are evenly spread out in the remaining
nine deciles (900/9 = 100).

> q <- make.quantile.matrix(simdata87$X.bdl, n.quantiles = 10, verbose = TRUE)

#> All BDLs are placed in the first quantile

##> Summary of Quantiles
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]

0 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100 100 100 100 100 100
2 100 100 100 100 100 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 100 100 100 100 100 100 100 100 100
4 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100 100 100 100 100 100
6 100 100 100 100 100 100 100 100 100 100 100 100 100 100
7 100 100 100 100 100 100 100 100 100 100 100 100 100 100
8 100 100 100 100 100 100 100 100 100 100 100 100 100 100
9 100 100 100 100 100 100 100 100 100 100 100 100 100 100
##> Total Number of NAs--Q1 (The first row) should match.
100 100 100 100 100 100 100 100 100 100 100 100 100 100

The BDLQ1 method has been used in single-chemical analyses (Metayer et al., 2013; Ward et al.,
2014, 2009) and WQS (Hargarten and Wheeler, 2020). However, it has not been coded in other WQS
packages to the best of our knowledge.

WQS analysis

The BDLQ1 method works because WQS regression uses quantile scores from each chemical in
the mixture. At this step, the estimate.wqs() function calls the make.quantile.matrix() function.
Setting the argument place.bdls.in.Q1 to TRUE allows us to use the WQS regression in conjunction
with the BDLQ1 method. Yet, if the X argument contains any missing values, the BDLQ1 approach is
automatically used. The incomplete data X.bdl is now assigned to the chemical mixture X argument.
The remaining arguments in estimate.wqs() are the same as in Example 1. Printing the resulting
object answers the research questions of interest. The research aims are to determine the association of
the mixture with cancer and to find the important chemicals (if the association exists).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 235

> set.seed(50679)
> wqs.BDL <- estimate.wqs(
+ y = simdata87$y.scenario, X = simdata87$X.bdl, Z = simdata87$Z.sim,
+ proportion.train = 0.5,
+ n.quantiles = 4,
+ place.bdls.in.Q1 = TRUE,
+ B = 100,
+ b1.pos = TRUE,
+ signal.fn = "signal.converge.only",
+ family = "binomial",
+ verbose = FALSE
+)

#> All BDLs are placed in the first quantile

> wqs.BDL

Odd Ratios & 95% CI (N.valid = 500)
Odds Ratio SE.OR 95% CI P-value

(Intercept) 0.214 1.52 0.214 (0.094, 0.483) <0.001
Age 0.952 1.05 0.952 (0.858, 1.057) 0.356
Female 0.926 1.21 0.926 (0.636, 1.349) 0.688
Hispanic 1.560 1.22 1.558 (1.052, 2.306) 0.027
Non.Hispanic_Others 1.050 1.24 1.052 (0.687, 1.612) 0.816
WQS 2.360 1.21 2.358 (1.626, 3.420) <0.001
AIC: 677.0172

1 bootstrap(s) have failed to converged. Those are:
[1] 60

Weights Adjusted by signal.converge.only using N.train = 500 observations:
pcb_105 pentachlorophenol gamma.chlordane alpha.chlordane
0.2575 0.2548 0.1622 0.0699

pcb_153 pcb_138 ddt lindane
0.0658 0.0606 0.0378 0.0349

methoxychlor pcb_118 dde pcb_170
0.0180 0.0128 0.0075 0.0066

dieldrin pcb_180
0.0065 0.0051

Important chemicals defined as mean weights > 1/14~0.071.

An increase in one-quartile of the chemical mixture is associated with an increase in the odds
of obtaining cancer by 2.36. Compared to the complete case analysis, PCB 105 and alpha-chlordane
are still important, but DDT, PCB 170, and methoxychlor are also important in the BDLQ1 analy-
sis. As we forced some complete concentrations simdata87$X.true to be BDL values in creating
simdata87$X.bdl, we used AIC to compare fit between the two WQS models in Examples 1 and 2.
Intuitively, a WQS model using the BDLQ1 approach (AIC: 677) fits the data worse than a WQS model
using complete data (AIC: 661).

Example 3: Bootstrapping interval-censored data

An alternative to the BDLQ1 approach is to perform multiple imputation of the missing chemical
values by bootstrapping (Lubin et al., 2004). Given completely observed covariates zi1, . . . zik in
i = 1, ...n subjects exposed to j = 1, ...c chemicals, an independent log-normal distribution for each
chemical j with mean µj and variance σ2

j is assumed:

log(xij)|z1 · · · zp ∼indep N
(

µj = z′i · γj, σ2
j

)
.

Let f (.) denote the normal probability density function and F(.) denote its cumulative distribution
function. For each chemical j, the dataset is bootstrapped K times to form K complete datasets. As each
bootstrap b is sampled with replacement from the original data, the number of times the ith subject is
selected for jth chemical is represented by wij. The log likelihood function for the bootstrap data in jth

chemical is given by:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 236

l(γj, σ2
j) =

n0j

∑
i=1

wij ∗ log
[

P
(

0 < Xij < DLj; z′i · γj, σ2
j

)]
+

n

∑
i=n0j+1

log
[

f (xij; z′i · γj, σ2
j)
]

,

where n0j represents the number of BDL values for chemical j. The estimates that maximize the log

likelihood are
(

γ̃j, σ̃2
j

)
. Then, the BDL values are imputed by the following method. We generate an

independent and identically distributed uniform sample between zero and F
(

log(DLj); z′i · γ̃j, σ̃2
j

)
.

Then, we assign value F−1 (uij
)

for each missing value xij below the detection limit of the jth chemical
DLj (Lubin et al., 2004). These imputed values are joined with the observed ones to form one complete
set of exposures for the jth chemical. The impute.Lubin() function performs multiple imputation by
bootstrapping for one chemical. For instance, suppose we wish to impute the dieldrin concentrations
BDL twice (K = 2) in simdata87 by bootstrapping using the following covariates: childhood age,
sex, and child race/ethnicity. The dieldrin concentrations are found in the first column of X.bdl
in simdata87 dataset (e.g. simdata87$X.bdl[,1]), and the detection limit of dieldrin is in the first
entry in DL element (e.g. simdata87$DL[1]). The chemcol argument is a numeric vector of chemical
concentrations that we wish to impute (e.g. simdata87$X.bdl[,1]). The dlcol argument is the
detection limit of the chemical (e.g. simdata87$DL[1]). The Z argument contains any covariates used
in the imputation (e.g. simdata87$Z.sim and simdata87$y.scenario). We included the outcome in
the imputation of BDL values because its omission assumes that it is not associated with the BDL
values and thereby bias the subsequent WQS coefficients towards zero (Forer, 2014; Barnard et al.,
2015). The K argument is the number of imputed datasets (e.g. 2).

> set.seed(472195)
> answer <- impute.Lubin(
+ chemcol = simdata87$X.bdl[, 1],
+ dlcol = simdata87$DL[1],
+ Z = cbind(simdata87$y.scenario, simdata87$Z.sim),
+ K = 2
+)
> summary(answer$imputed_values)

Imp.1 Imp.2
Min. : 0 Min. : 0
1st Qu.: 11 1st Qu.: 11
Median : 125 Median : 125
Mean : 44099 Mean : 44099
3rd Qu.: 1682 3rd Qu.: 1682
Max. :17354723 Max. :17354723

The answer$imputed_values is a matrix with rows of 1000 subjects and two columns consisting of
the imputed dieldrin concentrations. Since most concentrations are observed, the summaries of the
two datasets should look the same. However, if we look at BDL values, the two imputed datasets are
different, and both are under the detection limit (0.924).

> cat("Summary of BDL Values \n")
> imp <- answer$imputed_values[, 1] < simdata87$DL[1]
> summary(answer$imputed_values[imp,])

Summary of BDL Values
Imp.1 Imp.2

Min. :0.00124 Min. :0.001417
1st Qu.:0.04579 1st Qu.:0.057819
Median :0.22420 Median :0.201560
Mean :0.32314 Mean :0.272618
3rd Qu.:0.59102 3rd Qu.:0.444859
Max. :0.91690 Max. :0.854974

More than one chemical often needs to be imputed in many studies. To implement the bootstrap
approach, we use the impute.boot() function, which repeatedly executes the impute.Lubin() function.
In simdata87, now suppose that we wish to impute the X.bdl matrix twice by bootstrapping using the
covariates (Z) of age, sex, and race/ethnicity. The X argument takes a matrix with incomplete data,
like simdata87$X.bdl. The next argument, DL, takes the detection limits of X as a numeric vector, like
simdata87$DL. The K and Z arguments are exactly the same as in impute.Lubin(). A seed is set before

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 237

the function to ensure that the same bootstrap samples are selected for each chemical. The function
returns a list l.boot.

> set.seed(472195)
> l.boot <- impute.boot(
+ X = simdata87$X.bdl,
+ DL = simdata87$DL,
+ Z = cbind(simdata87$y.scenario, simdata87$Z.sim),
+ K = 2
+)

#> Check: The total number of imputed values that are above the detection limit is 0.

> results.Lubin <- l.boot$X.imputed

The X.imputed element of l.boot saves the imputed chemical values as an array, where the first
dimension is the number of subjects (n), the second is the number of chemicals (c), and the third is the
number of imputed datasets (K). The sample minima, fifth percentile (P.5), means, and maxima of the
chemicals are calculated in each imputed dataset (by the function f()). As the two imputed datasets
are different, the application of MI should yield different parameter estimates.

> apply(results.Lubin, 2:3, f)

, , Imp.1

alpha-chlordane dieldrin gamma-chlordane lindane methoxychlor
min 1.239744e-03 5.214163e-02 14.85745 3.122209 16.13658
P.5 2.257984e-01 2.016689e+00 25.79766 7.147067 35.19478
mean 4.409885e+04 4.331448e+02 49.38257 17.214769 83.45674
max 1.735472e+07 4.867330e+04 139.33689 75.360498 316.07141

dde ddt pentachlorophenol pcb_105 pcb_118
min 4.500939e-02 1.532625 1.604183 0.1372503 0.4547588
P.5 8.736265e-01 3.544432 3.923535 1.1031301 1.4373202
mean 2.546607e+03 16.122825 20.262419 16.4815577 9.7025958
max 3.835674e+05 178.853960 285.229348 400.3601114 142.2619560

pcb_138 pcb_153 pcb_170 pcb_180
min 0.08042499 0.03363274 0.7155792 0.1741525
P.5 0.80147195 0.47230663 2.5599230 0.7335900
mean 12.63094227 13.82089093 11.6125246 8.4248157
max 269.09903138 383.79850341 115.2060922 203.8593938

, , Imp.2

alpha-chlordane dieldrin gamma-chlordane lindane methoxychlor
min 1.417111e-03 0.117659 14.57128 3.690147 15.35223
P.5 2.024978e-01 2.276511 25.50909 6.751412 36.11395
mean 4.409884e+04 433.153356 49.36521 17.201076 83.39251
max 1.735472e+07 48673.296171 139.33689 75.360498 316.07141

dde ddt pentachlorophenol pcb_105 pcb_118
min 3.502864e-02 0.9292443 1.299465 0.1512212 0.4144885
P.5 9.079915e-01 3.3656892 3.959147 1.0578307 1.3154884
mean 2.546614e+03 16.1134725 20.250618 16.4788855 9.6934267
max 3.835674e+05 178.8539599 285.229348 400.3601114 142.2619560

pcb_138 pcb_153 pcb_170 pcb_180
min 0.2291489 0.08258941 0.4825019 0.05475401
P.5 0.8403295 0.52882557 2.5113298 0.69996133
mean 12.6359530 13.82390718 11.6064361 8.42308671
max 269.0990314 383.79850341 115.2060922 203.85939377

Next, we implement WQS regression on the two complete datasets, which are saved in the
results.Lubin object. Instead of performing WQS on one dataset as in Examples 1 and 2, the
do.many.wqs() function repeatedly executes WQS regression on each dataset. The arguments for
the do.many.wqs() function are the same as the estimate.wqs() function, with one exception. The
X.imputed argument now is an array of the imputed chemical values, which has three dimensions:
n subjects, c chemicals, and K imputed datasets. This array is the output from the impute.boot()
function: results.Lubin.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 238

> set.seed(50679)
> boot.wqs <- do.many.wqs(
+ y = simdata87$y.scenario, X.imputed = results.Lubin, Z = simdata87$Z.sim,
+ proportion.train = 0.5,
+ n.quantiles = 4,
+ B = 100,
+ b1.pos = TRUE,
+ signal.fn = "signal.converge.only",
+ family = "binomial"
+)

#> Sample size: 1000; Number of chemicals: 14;
Number of completed datasets: 2; Number of covariates modeled: 4

The do.many.wqs() function returns list and matrix versions of the output generated from the
estimate.wqs() function. The wqs.imputed.estimates element of the boot.wqs list is a three-dimensional
array that gives the WQS estimates for each imputed dataset. The first dimension consists of the total
number parameters in the WQS model. The second dimension consists of two columns: the mean and
standard deviation of estimates. The third dimension is the K imputation draws.

> formatC(boot.wqs$wqs.imputed.estimates, format = "fg", flag = "#", digits = 3)

, , Imputed.1

Estimate Std.Error
alpha.chlordane "0.00285" "0.0285"
dieldrin "0.00139" "0.0101"
gamma.chlordane "0.0138" "0.0442"
lindane "0.0200" "0.0525"
methoxychlor "0.00429" "0.0244"
dde "0.0339" "0.104"
ddt "0.391" "0.0936"
pentachlorophenol "0.0216" "0.0628"
pcb_105 "0.241" "0.129"
pcb_118 "0.0217" "0.0697"
pcb_138 "0.101" "0.131"
pcb_153 "0.0344" "0.0986"
pcb_170 "0.110" "0.149"
pcb_180 "0.00236" "0.0114"
(Intercept) "-1.95" "0.415"
Age "-0.0516" "0.0540"
Female "-0.0546" "0.195"
Hispanic "0.456" "0.204"
Non.Hispanic_Others "0.0333" "0.221"
WQS "1.30" "0.222"

, , Imputed.2

Estimate Std.Error
alpha.chlordane "0.00424" "0.0185"
dieldrin "0.0392" "0.0801"
gamma.chlordane "0.00843" "0.0257"
lindane "0.00191" "0.0119"
methoxychlor "0.0103" "0.0518"
dde "0.0767" "0.114"
ddt "0.148" "0.159"
pentachlorophenol "0.272" "0.163"
pcb_105 "0.156" "0.114"
pcb_118 "0.0102" "0.0302"
pcb_138 "0.213" "0.193"
pcb_153 "0.0136" "0.0513"
pcb_170 "0.0180" "0.0526"
pcb_180 "0.0291" "0.0625"
(Intercept) "-1.70" "0.363"
Age "0.0367" "0.0539"

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 239

Female "-0.199" "0.192"
Hispanic "0.577" "0.200"
Non.Hispanic_Others "0.235" "0.223"
WQS "0.762" "0.163"

As expected, the weights and WQS parameter estimates are different across the two imputed
datasets. Finally, the pool.mi() function implements the pooling rules discussed in Rubin 1987 (Rubin,
1987) in order to form one estimate (Dong and Peng, 2013; Rubin, 1987; White et al., 2011). The
to.pool argument takes an array with rows referring to the number of parameters, columns referring
to the mean and standard error, and the third dimension referring to the number of imputed datasets.
This describes the WQS output, boot.wqs$wqs.imputed.estimates, from the do.many.wqs() function.
The second argument of pool.mi(), n, is the sample size, which is the number of rows in original
data (i.e. nrow(simdata87$X.bdl)). The additional Boolean argument prt allows the user to print out
selective parts of the pool.mi object, if desired.

> boot.est <- pool.mi(
+ to.pool = boot.wqs$wqs.imputed.estimates,
+ n = nrow(simdata87$X.bdl),
+ prt = FALSE
+)

#> Pooling estimates from 2 imputed analyses for 20 parameters.

pooled.mean pooled.total.se se.within se.between
alpha.chlordane 0.004 0.024 0.024 0.001
dieldrin 0.020 0.066 0.057 0.027
gamma.chlordane 0.011 0.036 0.036 0.004
lindane 0.011 0.041 0.038 0.013
methoxychlor 0.007 0.041 0.041 0.004
dde 0.055 0.115 0.109 0.030
ddt 0.269 0.247 0.130 0.172
pentachlorophenol 0.147 0.250 0.123 0.177
pcb_105 0.198 0.143 0.122 0.061
pcb_118 0.016 0.055 0.054 0.008
pcb_138 0.157 0.191 0.165 0.079
pcb_153 0.024 0.081 0.079 0.015
pcb_170 0.064 0.137 0.112 0.065
pcb_180 0.016 0.051 0.045 0.019
(Intercept) -1.828 0.447 0.390 0.178
Age -0.007 0.094 0.054 0.062
Female -0.127 0.230 0.193 0.102
Hispanic 0.517 0.228 0.202 0.086
Non.Hispanic_Others 0.134 0.282 0.222 0.143
WQS 1.030 0.504 0.195 0.379

frac.miss.info CI.1 CI.2 p.value
alpha.chlordane 0.005 -0.044 0.051 0.883
dieldrin 0.327 -0.119 0.160 0.762
gamma.chlordane 0.019 -0.060 0.083 0.761
lindane 0.181 -0.072 0.094 0.791
methoxychlor 0.019 -0.073 0.087 0.859
dde 0.125 -0.174 0.284 0.632
ddt 0.836 -0.850 1.388 0.395
pentachlorophenol 0.859 -1.099 1.393 0.624
pcb_105 0.359 -0.109 0.506 0.187
pcb_118 0.037 -0.091 0.123 0.770
pcb_138 0.337 -0.250 0.564 0.424
pcb_153 0.057 -0.135 0.183 0.766
pcb_170 0.454 -0.249 0.378 0.652
pcb_180 0.273 -0.089 0.120 0.759
(Intercept) 0.314 -2.770 -0.885 0.001
Age 0.795 -0.373 0.358 0.943
Female 0.392 -0.631 0.378 0.593
Hispanic 0.276 0.044 0.989 0.034
Non.Hispanic_Others 0.509 -0.538 0.807 0.650
WQS 0.919 -2.441 4.501 0.233

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 240

The pool.mi() function returns the statistics of the combined estimates for each WQS parameter.
While the standard error between the imputed sets, se.between, measures the uncertainty due to
the BDL values, the standard error within the imputed sets, se.within, measures the uncertainty
in the WQS regression. Using the pooled mean and standard error, 95% t~confidence intervals are
constructed in columns CI.1 and CI.2. The p~values from the t~test whether the regression coefficient
is zero are contained in the p.value column. The frac.miss.info column gives the fraction of missing
information, which estimates the proportion of variability due to the BDL values for each WQS
parameter. A larger fraction of missing information of any WQS parameter implies that we may need
to increase the number of imputations (K). Yet, finding the optimal number of imputations remains an
open area of research (Pan and Wei, 2016; Savalei and Rhemtulla, 2012). For instance, some covariates
have high fractions of missing information, such as 0.73 or 0.85, which suggests that more than two
imputations are needed.

The WQS pooled.mean estimate answers the question of whether a chemical mixture is associated
with cancer. To find the odds ratio, we can exponentiate the estimate and its 95% confidence interval
(CI) like: exp(boot.est["WQS",c(1,7:8)]). A one-quartile increase in the chemical mixture is (95%
CI:) times as likely to obtain cancer. The first 14 rows of boot.est give us summary statistics about
the weight estimates. Using the criterion that the pooled mean of the weight estimate greater than
1/14 is important, the following chemicals have the largest contributions to the overall mixture.

> chemicals <- boot.est[1:14,]
> row.names(chemicals)[chemicals$pooled.mean >= 1 / 14]

[1] "ddt" "pentachlorophenol" "pcb_105"
[4] "pcb_138"

We can also obtain an overall sense of how WQS model fits the data from bootstrapping imputation.
In a similar spirit in combining the WQS parameter estimates, we combine the AIC from the two
models. The combine.AIC() function takes the average and standard deviation of the individual AIC
estimates from the separate WQS models. The only argument, AIC, takes a numeric vector of AIC’s,
which is saved in a do.many.wqs() object (eg. boot.wqs$AIC).

> boot.wqs$AIC

[1] 660.7468 665.1193

> boot.AIC <- combine.AIC(boot.wqs$AIC)

Compared to Examples 1 and 2, the bootstrapped MI-WQS model (AIC: 662.9 +- 3.1) fits the data
similar to a WQS model using the BDLQ1 approach (AIC: 677.0) and worse than a WQS model using
complete data (AIC: 660.7).

Example 4: Univariate Bayesian multiple imputation of BDL values

Instead of using bootstrapping imputation, the impute.univariate.bayesian.mi() imputes the BDL
values using a Bayesian paradigm. The logs of the observed chemicals xij are assumed to independently
follow normal distributions with mean µj and standard error σj. We place a Jeffrey’s prior of the
univariate normal on the parameters. In order to sample from the posterior predictive density of
missing values (Xj,miss) given the observed values (Xj,obs), we run a Gibbs sampler of length T for
each chemical. In step t of the sampler:

(Step 0): Given complete data X = (X(t−1)
miss , Xobs), calculate the mean w̄ and variance S as:

w̄ =
1
n
·

n

∑
i=1

log (xi) and S =
1

n− 1
·

n

∑
i=1

(log(xi)− w̄)2 .

(Step 1): Simulate the posterior variance σ2(t) given the mean and complete data from the inverse
gamma distribution:

σ2|µ(t−1), log (Xobs) , log
(

X(t−1)
miss

)
∼ IG

(
n− 1

2
,

n− 1
2
∗ S
)

.

(Step 2): Simulate the posterior mean µ(t) given the variance and complete data from the normal
distribution:

µ|σ2(t), log (Xobs) , log
(

X(t−1)
miss

)
∼ N

(
w̄, sd =

σ(t)
√

n

)
.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 241

(Step 3): Using current parameter estimates, impute log(X(t)
miss,i) from the normal distribution

truncated between 0 and DLj, or:

log
(
Xmiss,i

)
|µ(t), σ2(t) ∼ TruncNorm

(
µ(t), σ2(t), a = 0, b = DLj

)
.

for i = 1 · · · n0j, where n0j is the total number of BDL values for the jth chemical. We assessed
convergence using Gelman-Rubin’s R statistics (Gelman and Rubin, 1992). To construct approximately
independent sets of complete concentrations, we join the observed values with the imputed values
taken every tenth state from the end of the missing value chain. This Gibbs Sampler is repeated for all
chemicals.

The impute.univariate.bayesian.mi() function applies this Bayesian algorithm to our dataset.
The X argument takes a matrix with incomplete data, like simdata87$X.bdl. The DL argument takes
the detection limits of X, which must be a numeric vector, like simdata87$DL. Bayesian imputation
currently does not use covariate information. The T argument specifies the length of the Gibbs sampler
(like 6000), and the n.burn argument specifies the burn-in (like 400). The K argument gives the number
of imputed datasets generated (like 2). The impute.univariate.bayesian.mi() function returns a list
consisting of three categories: a series of checks, the imputed array, and the MCMC (Markov chain
Monte Carlo) chains.

> set.seed(472195)
> result.imputed <- impute.univariate.bayesian.mi(
+ X = simdata87$X.bdl,
+ DL = simdata87$DL,
+ T = 6000,
+ n.burn = 400,
+ K = 2
+)

#> Start MCMC Data Augmentation Algorithm...

#> Checking for convergence with 2nd chain ...

gelman.stat is.converge
Min. :0.9998 Mode:logical
1st Qu.:1.0001 TRUE:1428
Median :1.0004
Mean :1.0010
3rd Qu.:1.0013
Max. :1.0182
#> Evidence suggests that all 1428 parameters have converged.
#> Draw 2 Multiple Imputed Set(s) from states
[1] 6000 5990
#> Check: Indicator of # of missing values above detection limit
[1] 0

The impute.univariate.bayesian.mi() function returns a check of convergence in convg.table
and a check of correct imputation in indicator.miss. To check for convergence, a summary of a data
frame convg.table is shown above. The first column consists of the Gelman-Rubin statistics of the
MCMC variables. (In the dataset simdata87, there are (100 + 2) ∗ 14 = 1428 MCMC variables, as
each chemical has 102 MCMC variables: 100 missing values, mean, and variance.) The is.converge
column of convg.table is a logical vector that specifies whether each MCMC variable has converged.
This occurs if its Gelman-Rubin statistic is less than 1.1. In our example, the chains give evidence of
convergence. The "Indicator of # missing values above the detection limit" shown above,
represented with indicator.miss, is included to check if the imputation scheme occurred correctly.
It should be zero, which it is shown above. The indicator.miss sums a logical vector of length c, in
which an entry is TRUE if the imputed values are above the detection limit.

The element X.imputed of result.imputed list saves the imputed chemical values as an array,
where the first dimension is the number of subjects (n), the second is the number of chemicals (c),
and the third is the number of imputed datasets generated (K). Sample minima, means, and maxima
(calculated by function f()) between two imputed datasets indicate that datasets are different; so
when MI is applied, the parameter estimates should be different. Note that low values from Bayesian
imputation differ from low bootstrap values as in Example 3.

> apply(result.imputed$X.imputed, 2:3, f)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 242

, , Imputed.1

alpha-chlordane dieldrin gamma-chlordane lindane methoxychlor
min 2.359430e-03 3.086685e-01 1.691056 1.215282 1.540713
P.5 5.242831e-01 3.183691e+00 3.610778 2.600923 4.182447
mean 4.409886e+04 4.332269e+02 47.283406 16.800662 80.420552
max 1.735472e+07 4.867330e+04 139.336894 75.360498 316.071414

dde ddt pentachlorophenol pcb_105 pcb_118
min 2.768024e-02 0.482848 0.7046569 0.09017045 0.09142874
P.5 1.543214e+00 2.237090 2.7680096 1.16068653 1.30752584
mean 2.546653e+03 16.013644 20.1570964 16.48534459 9.68569878
max 3.835674e+05 178.853960 285.2293482 400.36011141 142.26195601

pcb_138 pcb_153 pcb_170 pcb_180
min 0.01173117 0.02468827 0.7360772 2.164636e-03
P.5 0.68685631 0.38681360 2.0959549 5.996663e-01
mean 12.61938196 13.81475010 11.5772453 8.412071e+00
max 269.09903138 383.79850341 115.2060922 2.038594e+02

, , Imputed.2

alpha-chlordane dieldrin gamma-chlordane lindane methoxychlor
min 8.514882e-03 4.098326e-01 1.462564 1.089740 1.425771
P.5 4.664125e-01 3.332290e+00 3.418596 2.638882 4.321919
mean 4.409886e+04 4.332296e+02 47.258091 16.797956 80.424921
max 1.735472e+07 4.867330e+04 139.336894 75.360498 316.071414

dde ddt pentachlorophenol pcb_105 pcb_118
min 5.568180e-02 0.9352681 0.297144 3.085055e-03 5.716621e-03
P.5 1.580193e+00 2.5371056 2.670481 1.110512e+00 1.215440e+00
mean 2.546663e+03 16.0346907 20.148387 1.648278e+01 9.684614e+00
max 3.835674e+05 178.8539599 285.229348 4.003601e+02 1.422620e+02

pcb_138 pcb_153 pcb_170 pcb_180
min 9.471776e-03 3.198244e-03 0.5399104 0.00652091
P.5 7.249506e-01 4.114339e-01 2.1037311 0.58501721
mean 1.262209e+01 1.381682e+01 11.5786930 8.41077395
max 2.690990e+02 3.837985e+02 115.2060922 203.85939377

The impute.univariate.bayesian.mi() function also returns the three entire MCMC chains: the
means of components, the standard errors, and the imputed missing values. The coda package, which
“provides functions for summarizing and plotting the output from . . . MCMC simulations”, saved
these MCMC chains as MCMC objects (Plummer et al., 2006).

Using the imputed datasets saved in array result.imputed$X.imputed, the do.many.wqs() func-
tion implements WQS regression on both datasets with a binary outcome, as in Example 3. The setup
is the same as before, but we are using Bayesian imputed datasets, as in result.imputed$X.imputed.
Similar to Example 3, the element, wqs.imputed.estimates, in the resulting bayes.wqs list contains
the WQS parameter estimates for each imputed dataset.

> set.seed(50679)
> bayes.wqs <- do.many.wqs(
+ y = simdata87$y.scenario, X.imputed = result.imputed$X.imputed,
+ Z = simdata87$Z.sim,
+ proportion.train = 0.5,
+ n.quantiles = 4,
+ B = 100,
+ b1.pos = TRUE,
+ signal.fn = "signal.converge.only",
+ family = "binomial"
+)
> wqs.imputed.estimates <- bayes.wqs$wqs.imputed.estimates

#> Sample size: 1000; Number of chemicals: 14;
Number of completed datasets: 2; Number of covariates modeled: 4

Lastly, we can combine the multiple WQS estimates using the pool.mi() function, exactly as in
Example 3. The output, given in bayesian.est, returns the statistics of the combined estimates for
each WQS parameter and answers the research questions of interest (Table 2).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=coda

CONTRIBUTED RESEARCH ARTICLE 243

> bayesian.est <- pool.mi(
+ to.pool = bayes.wqs$wqs.imputed.estimates,
+ n = nrow(simdata87$X.bdl),
+ prt = TRUE
+)

#> Pooling estimates from 2 imputed analyses for 20 parameters.
pooled.mean pooled.total.se frac.miss.info CI.1 CI.2

alpha.chlordane 0.004 0.024 0.005 -0.044 0.051
dieldrin 0.020 0.066 0.327 -0.119 0.160
gamma.chlordane 0.011 0.036 0.019 -0.060 0.083
lindane 0.011 0.041 0.181 -0.072 0.094
methoxychlor 0.007 0.041 0.019 -0.073 0.087
dde 0.055 0.115 0.125 -0.174 0.284
ddt 0.269 0.247 0.836 -0.850 1.388
pentachlorophenol 0.147 0.250 0.859 -1.099 1.393
pcb_105 0.198 0.143 0.359 -0.109 0.506
pcb_118 0.016 0.055 0.037 -0.091 0.123
pcb_138 0.157 0.191 0.337 -0.250 0.564
pcb_153 0.024 0.081 0.057 -0.135 0.183
pcb_170 0.064 0.137 0.454 -0.249 0.378
pcb_180 0.016 0.051 0.273 -0.089 0.120
(Intercept) -1.828 0.447 0.314 -2.770 -0.885
Age -0.007 0.094 0.795 -0.373 0.358
Female -0.127 0.230 0.392 -0.631 0.378
Hispanic 0.517 0.228 0.276 0.044 0.989
Non.Hispanic_Others 0.134 0.282 0.509 -0.538 0.807
WQS 1.030 0.504 0.919 -2.441 4.501

P.value
alpha.chlordane 0.883
dieldrin 0.762
gamma.chlordane 0.761
lindane 0.791
methoxychlor 0.859
dde 0.632
ddt 0.395
pentachlorophenol 0.624
pcb_105 0.187
pcb_118 0.770
pcb_138 0.424
pcb_153 0.766
pcb_170 0.652
pcb_180 0.759
(Intercept) <0.001
Age 0.943
Female 0.593
Hispanic 0.034
Non.Hispanic_Others 0.650
WQS 0.233

Looking at the WQS estimate in bayesian.est, the odds ratio of the overall chemical mixture on
cancer is 2.8 with a 95% confidence interval between 0.09 and 90.15. The following chemicals, in which
their weight estimates are greater than 1/14, are considered an important and may be associated with
increased cancer risk.

> chemicals <- bayesian.est[1:14,]
> row.names(chemicals)[chemicals$pooled.mean >= 1 / 14]

[1] "ddt" "pentachlorophenol" "pcb_105"
[4] "pcb_138"

To get an overall sense of how the Bayesian-imputed WQS models fit the data, the combine.AIC()
function combines the AIC calculated from Bayesian MI-WQS models (bayes.wqs$AIC).

> bayes.wqs$AIC

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 244

[1] 660.7468 665.1193

> miWQS::combine.AIC(bayes.wqs$AIC)

[1] "662.9 +- 3.1"

The Bayesian MI-WQS model (AIC: 662.9 +- 3.1) has the same fit as the bootstrapped MI-WQS
(Example 3, AIC: 662.9 +- 3.1).

Recommendations in using miWQS package

We have integrated WQS regression into the MI framework in a flexible R package called miWQS
to meet a wide variety of needs (Figure 6). The data used in this package consist of a mixture of
correlated components that share a common outcome while adjusting for other covariates. The
correlated components in the set, X, may be complete or interval-censored between zero and low
thresholds, or detection limits, that may be different across the components. The common outcome, y,
may be modeled as binary, continuous, count-based, or rate-based and can be adjusted by the family
and offset arguments of estimate.wqs().

Additional covariates, Z, may be used in the bootstrap imputation and WQS models. However,
the univariate Bayesian model does not include covariate information in imputing the BDL values.
This makes any covariate confounders uncorrelated with the imputed concentrations BDL. Thereby,
the WQS regression coefficients, such as the weights and overall mixture effect, may be biased towards
zero (Forer, 2014; Little, 1992).

Another limitation of the univariate Bayesian and bootstrap imputation models is that the X’s are
imputed independently while the actual X’s are correlated. This makes the correlations among the
imputed BDL values of different components biased towards zero. One concern is that the mixture
with independently imputed BDL values may introduce some bias in the health effect estimate if a
large amount of BDL values is present. As an alternative, an imputation model could take advantage
of the correlations to impute a potentially more precise estimate (Dong and Peng, 2013; Little, 1992).
One such approach is the multivariate Bayesian regression imputation model, which we are evaluating
in ongoing work (Hargarten and Wheeler, 2020).

If X is interval-censored, the choice of the imputation technique depends on the majority vote
of BDL values among the components (Hargarten and Wheeler, 2020) (Figure 6). Previous literature
suggests ignoring any chemicals that have greater than 80% of its values BDL (Helsel, 2012, pg. 93)
(Bolks et al., 2014, pg. 14). When most chemicals have 80% of its values BDL, we suggest using the
BDLQ1 approach (Hargarten and Wheeler, 2020). When most chemicals have less than 80% of its
values BDL, the user should perform Bayesian or bootstrapping multiple imputation (Hargarten and
Wheeler, 2020). The miWQS package, though, still allows the user to perform single imputation.
Regardless of the technique used, researchers may use the miWQS package in order to detect an
association between the mixture and the outcome and to identify the important components in that
mixture.

Conclusion

Although environmental exposures data motivated us to develop the miWQS package, the package
may be applied to other areas in public health and medicine. Wheeler et al. (Wheeler et al., 2019a)
recently used WQS regression to estimate the effect of a SES index on childhood blood lead risk and
to find which socioeconomic variables are important. The correlated SES variables considered were
of these types: educational achievement, race, income, health, housing, and employment. The five
most important variables found were: percent of homes built before 1940, percent of not using Social-
Security income, percent of renter-occupied housing, percent unemployed, and percent of the African
American population (Wheeler et al., 2019a, pg.974). Other similar studies may be analyzed using the
miWQS package. To our knowledge, WQS has not yet been applied in analyzing a high-throughput
gene expression dataset. For instance, a GWAS is conducted to find genetic risks for complex disease
and to identify specific genes. Given that SNPs are correlated with each other (Ferber and Archer,
2015) and a binary or continuous health outcome, the miWQS package may be used to conduct a WQS
regression to address these research aims. In the years to come, researchers may add other imputation
models to our established computational structure in order to find components that impact human
health.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 245

Do you want to create one or many
imputed datasets?

Multiple Imputation (recommended)
1. Select your imputation method of choice, bootstrap

or Bayesian: impute.boot() or
impute.univariate.bayesian.mi()

2. Do WQS: do.many.wqs()
3. Pool the results: pool.mi()

one many

(recommended)
Single Imputation (not recommended)
1. Select your imputation method

of choice, bootstrap or Bayesian
impute.boot() or
impute.univariate.bayesian.mi()

2. Do WQS: estimate.wqs()

Do you have missing components?

WQS Regression:
estimate.wqs()

yes
no

Do you impute and know the detection limits?

no yes

Use BDLQ1 approach: estimate.wqs() How many chemicals have under
80% of their values BDL?

many

fe
w

Figure 6: A decision tree to help researchers in using the miWQS package. The package is flexible
and can meet a wide range of needs.

Computational details

The functions in miWQS package relied upon code developed in other packages on CRAN. The steps in
the estimate.wqs() function also relied upon other packages: the solnp() function in Rsolnp package
(Ghalanos and Theussl, 2015), the glm2() function in glm2 package (Marschner and Donoghoe, 2011,
pg. 2), the list.merge() function in rlist package (Ren, 2016), the format.pval() in Hmisc package
(Harrell, 2020), the gather() function from tidyr package (Wickham and Henry, 2020), and the ggplot2
package (Wickham, 2016). The impute.Lubin() function used the survival package (Therneau and
Lumley, 2015). The impute.univariate.bayesian.mi() function used: the rinvgamma() function in
the invgamma package (Kahle and Stamey, 2017), the rtruncnorm() function in truncnorm package
(Mersmann et al., 2020), the possibly() function in the purrr package (Henry and Wickham, 2020) and
the coda package (Plummer et al., 2006). Additionally, the ggcorr() function in the GGally produced
the heat map in Figure 2 (Schloerke et al., 2020).

This vignette is successfully processed using the following.

-- Session info ---

setting value
version R version 4.0.2 (2020-06-22)
os macOS 10.16
system x86_64, darwin17.0
ui X11

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Rsolnp
https://CRAN.R-project.org/package=glm2
https://CRAN.R-project.org/package=rlist
https://CRAN.R-project.org/package=Hmisc
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=invgamma
https://CRAN.R-project.org/package=truncnorm
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=GGally

CONTRIBUTED RESEARCH ARTICLE 246

language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/New_York
date 2021-01-20

-- Packages ---

package * version date lib source
coda 0.19-4 2020-09-30 [1] CRAN (R 4.0.2)
GGally * 2.0.0 2020-06-06 [1] CRAN (R 4.0.2)
ggplot2 * 3.3.3 2020-12-30 [1] CRAN (R 4.0.2)
glm2 1.2.1 2018-08-11 [1] CRAN (R 4.0.2)
gWQS 3.0.0 2020-06-23 [1] CRAN (R 4.0.2)
Hmisc 4.4-2 2020-11-29 [1] CRAN (R 4.0.2)
invgamma 1.1 2017-05-07 [1] CRAN (R 4.0.2)
knitr * 1.30 2020-09-22 [1] CRAN (R 4.0.2)
mi 1.0 2015-04-16 [1] CRAN (R 4.0.2)
mice 3.10.0 2020-07-13 [1] CRAN (R 4.0.2)
miWQS * 0.4.0 2020-07-27 [1] local
norm 1.0-9.5 2013-02-28 [1] CRAN (R 4.0.2)
purrr 0.3.4 2020-04-17 [1] CRAN (R 4.0.2)
rlist 0.4.6.1 2016-04-04 [1] CRAN (R 4.0.2)
rmarkdown 2.3 2020-06-18 [1] CRAN (R 4.0.2)
Rsolnp 1.16 2015-12-28 [1] CRAN (R 4.0.2)
rticles 0.16.1 2020-09-22 [1] Github (rstudio/rticles@b0bbbc0)
survival 3.1-12 2020-04-10 [1] CRAN (
tidyr 1.1.2 2020-08-27 [1] CRAN (R 4.0.2)
tinytex 0.26 2020-09-22 [1] CRAN (R 4.0.2)
truncnorm 1.0-8 2020-07-27 [1] Github (olafmersmann/truncnorm@eea186e)
wqs 0.0.1 2015-10-05 [1] CRAN (R 4.0.2)
yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.2)

[1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library

Acknowledgments

We like to thank Keith W. Zirkle and Anny-Claude Joseph for their editorial comments on this vignette.
Additionally, we thank the anonymous reviewers of The R Journal who have improved this vignette.
Lastly, we appreciate Yihui Xie’s work in creating the rticles package that enabled us to write this
vignette from the Rmarkdown environment (Xie et al., 2020).

Abbreviations

• AIC: Akaike information criterion
• BDL: below the detection limit
• BDLQ1: placing the BDL values into the first quantile
• BMI: body mass index
• CRAN: the comprehensive R archive network
• DL: detection limit
• GWAS: genomic wide association study
• MCMC: Markov chain Monte Carlo
• MI: multiple imputation
• MI-WQS: multiple Imputation in connection with the weighted quantile sum regression
• SES: socioeconomic status
• SNPs: single nucleotide polymorphisms
• WQS: weighted quantile sum

Notation: + n sample size + c number of chemicals + K number of imputations

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=rticles

CONTRIBUTED RESEARCH ARTICLE 247

Appendix

Deciding whether the overall mixture effect is positively or negatively related to the
outcome in WQS regression

A researcher must decide whether the overall mixture effect, β1, is positively or negatively related to
the outcome in WQS regression. One way is to perform a series of individual chemical regressions
and look at the sign of the regression coefficients. This is performed via the analyze.individually()
function. In each regression, the outcome y is regressed on the log of each chemical X and any
covariates Z using the glm2 package (Marschner and Donoghoe, 2011). Any missing values are
ignored. The arguments in analyze.individually() are the same as the arguments specified in
estimate.wqs(). In simdata87, our outcome is element y.scenario, the chemical mixture is X.true,
the covariates are contained in Z.sim. As the outcome in simdata87 is binary, we assign "binomial" to
the family argument. The analyze.individually() function returns a data frame that consists of: the
name of the chemical, the individual chemical effect estimate and its standard error, and an assessment
of the WQS model fit using the Akaike Information Criterion (AIC).

> analyze.individually(
+ y = simdata87$y.scenario, X = simdata87$X.true,
+ Z = simdata87$Z.sim, family = "binomial"
+)

Chemical.Name Estimate Std.Error AIC
1 alpha-chlordane 0.128 0.018 1315.527
2 dieldrin 0.176 0.033 1339.606
3 gamma-chlordane 1.310 0.192 1319.118
4 lindane 0.817 0.139 1332.276
5 methoxychlor 1.056 0.150 1315.461
6 dde 0.169 0.025 1319.293
7 ddt 0.176 0.086 1365.064
8 pentachlorophenol 0.245 0.081 1360.018
9 pcb_105 -0.026 0.051 1368.984
10 pcb_118 0.332 0.072 1347.162
11 pcb_138 0.356 0.056 1325.112
12 pcb_153 0.308 0.046 1321.903
13 pcb_170 0.404 0.087 1346.696
14 pcb_180 0.311 0.059 1339.602

The sign of the estimates indicates whether the overall mixture effect should be positive or negative.
As most of the estimates are positive here, we will assume that the overall mixture is positively related
to the outcome. Then, we can set the b1.pos argument in estimate.wqs() to be TRUE. In terms of
model fit, the complete-data mixture WQS model in Example 1 with an AIC of 660 fits the data better
than any individual chemical model (see the AIC’s above).

Bibliography

J. Barnard, N. Schenker, and D. Rubin. Multiple Imputation. International Encyclopedia of the Social
& Behavioral Sciences, pages 88–93, Mar. 2015. URL https://doi.org/10.1016/B978-0-08-097086-
8.42083-0. [p236]

A. Bolks, A. DeWire, and J. Harcum. Baseline Assessment of Left-Censored Environmental Data Using
R. Technical Report 1, Tetra Tech, Inc., Fairfax, VA, June 2014. URL https://www.epa.gov/nps/
nonpoint-source-monitoring-technotes. [p244]

J. M. Braun, C. Gennings, R. Hauser, and T. F. Webster. What Can Epidemiological Studies Tell Us
About the Impact of Chemical Mixtures on Human Health? Environmental Health Perspectives, 124
(1):A6–A9, Jan. 2016. ISSN 0091-6765. URL https://doi.org/10.1289/ehp.1510569. [p226]

W. S. Bush and J. H. Moore. Chapter 11: Genome-Wide Association Studies. PLOS Computational
Biology, 8(12):e1002822, Dec. 2012. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1002822. [p226]

C. Carrico, C. Gennings, D. C. Wheeler, and P. Factor-Litvak. Characterization of Weighted Quantile
Sum Regression for Highly Correlated Data in a Risk Analysis Setting. Journal of Agricultural,
Biological, and Environmental Statistics, 20(1):100–120, Dec. 2014. ISSN 1085-7117, 1537-2693. doi:
10.1007/s13253-014-0180-3. [p226, 227, 229, 230]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1016/B978-0-08-097086-8.42083-0
https://doi.org/10.1016/B978-0-08-097086-8.42083-0
https://www.epa.gov/nps/nonpoint-source-monitoring-technotes
https://www.epa.gov/nps/nonpoint-source-monitoring-technotes
https://doi.org/10.1289/ehp.1510569

CONTRIBUTED RESEARCH ARTICLE 248

J. Czarnota and D. Wheeler. {wqs}: Weighted Quantile Sum Regression, Oct. 2015. URL https:
//cran.r-project.org/web/packages/wqs/index.html. [p226]

J. Czarnota, C. Gennings, J. S. Colt, A. J. De Roos, J. R. Cerhan, R. K. Severson, P. Hartge, M. H. Ward,
and D. C. Wheeler. Analysis of Environmental Chemical Mixtures and Non-Hodgkin Lymphoma
Risk in the NCI-SEER NHL Study. Environmental Health Perspectives, 123(10):965–970, Oct. 2015a.
ISSN 1552-9924. URL https://doi.org/10.1289/ehp.1408630. [p226]

J. Czarnota, C. Gennings, and D. C. Wheeler. Assessment of Weighted Quantile Sum Regression for
Modeling Chemical Mixtures and Cancer Risk. Cancer Informatics, 14:159–171, May 2015b. ISSN
1176-9351. URL https://doi.org/10.4137/CIN.S17295. [p226, 227, 229, 230]

Y. Dong and C.-Y. J. Peng. Principled Missing Data Methods for Researchers. SpringerPlus, 2(1), 2013.
ISSN 2193-1801. doi: 10.1186/2193-1801-2-222. [p226, 239, 244]

K. Ferber and K. J. Archer. Modeling Discrete Survival Time Using Genomic Feature Data. Cancer
Informatics, 14s2:37–43, Mar. 2015. ISSN 1176-9351. URL https://doi.org/10.4137/CIN.S17275.
[p226, 244]

B. Forer. Missing Data. In A. C. Michalos, editor, Encyclopedia of Quality of Life and Well-Being
Research, pages 4078–4082. Springer Netherlands, Dordrecht, 2014. ISBN 978-94-007-0752-8. doi:
10.1007/978-94-007-0753-5_1821. [p236, 244]

A. Gelman and D. B. Rubin. Inference from Iterative Simulation Using Multiple Sequences. Statistical
Science, 7(4):457–472, Nov. 1992. ISSN 0883-4237. URL https://doi.org/10.1214/ss/1177011136.
[p241]

C. Gennings, C. Carrico, P. Factor-Litvak, N. Krigbaum, P. M. Cirillo, and B. A. Cohn. A Cohort Study
Evaluation of Maternal PCB Exposure Related to Time to Pregnancy in Daughters. Environmental
Health, 12(1):66, Aug. 2013. ISSN 1476-069X. URL https://doi.org/10.1186/1476-069X-12-66.
[p226, 227, 229, 230]

A. Ghalanos and S. Theussl. Rsolnp: General Non-Linear Optimization Using Augmented Lagrange
Multiplier Method, July 2015. URL https://cran.r-project.org/web/packages/Rsolnp/index.
html. [p245]

P. M. Hargarten and D. C. Wheeler. Accounting for the Uncertainty Due to Chemicals Below the
Detection Limit in Mixture Analysis. Environmental Research, 186:109466, July 2020. ISSN 00139351.
URL https://doi.org/10.1016/j.envres.2020.109466. [p226, 227, 228, 230, 234, 244]

P. M. Hargarten and D. C. Wheeler. miWQS: Multiple Imputation Using Weighted Quantile Sum
Regression, 2021. URL https://CRAN.R-project.org/package=miWQS. [p226]

F. E. Harrell, Jr. Hmisc: Harrell Miscellaneous, 2020. URL https://cran.r-project.org/web/
packages/Hmisc/index.html. [p245]

D. R. Helsel. Statistics for Censored Environmental Data Using Minitab and R. John Wiley & Sons,
Hoboken, NJ, USA, second edition, 2012. ISBN 978-0-470-47988-9. [p244]

L. Henry and H. Wickham. Purrr: Functional programming tools, 2020. URL https://CRAN.R-
project.org/package=purrr. [p245]

M. K. Horton, B. C. Blount, L. Valentin-Blasini, R. Wapner, R. Whyatt, C. Gennings, and P. Factor-
Litvak. CO-Occurring Exposure to Perchlorate, Nitrate and Thiocyanate Alters Thyroid Function in
Healthy Pregnant Women. Environmental Research, 143(Pt A):1–9, Nov. 2015. ISSN 1096-0953. URL
https://doi.org/10.1016/j.envres.2015.09.013. [p226]

D. Kahle and J. Stamey. Invgamma: The Inverse Gamma Distribution, May 2017. URL https:
//CRAN.R-project.org/package=invgamma. [p245]

R. J. A. Little. Regression With Missing X’s: A Review. Journal of the American Statistical Association, 87
(420):1227–1237, 1992. ISSN 0162-1459. doi: 10.2307/2290664. [p244]

J. H. Lubin, J. S. Colt, D. Camann, S. Davis, J. R. Cerhan, R. K. Severson, L. Bernstein, and P. Hartge.
Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits. Environmental
Health Perspectives, 112(17):1691–1696, Dec. 2004. ISSN 0091-6765. URL https://doi.org/10.1289/
ehp.7199. [p235, 236]

I. C. Marschner and M. W. Donoghoe. Glm2: Fitting Generalized Linear Models with Convergence
Problems. The R Journal, 3(2):12–15, Dec. 2011. ISSN 2073-4859. [p245, 247]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://cran.r-project.org/web/packages/wqs/index.html
https://cran.r-project.org/web/packages/wqs/index.html
https://doi.org/10.1289/ehp.1408630
https://doi.org/10.4137/CIN.S17295
https://doi.org/10.4137/CIN.S17275
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1186/1476-069X-12-66
https://cran.r-project.org/web/packages/Rsolnp/index.html
https://cran.r-project.org/web/packages/Rsolnp/index.html
https://doi.org/10.1016/j.envres.2020.109466
https://CRAN.R-project.org/package=miWQS
https://cran.r-project.org/web/packages/Hmisc/index.html
https://cran.r-project.org/web/packages/Hmisc/index.html
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=purrr
https://doi.org/10.1016/j.envres.2015.09.013
https://CRAN.R-project.org/package=invgamma
https://CRAN.R-project.org/package=invgamma
https://doi.org/10.1289/ehp.7199
https://doi.org/10.1289/ehp.7199

CONTRIBUTED RESEARCH ARTICLE 249

O. Mersmann, H. Trautmann, D. Steuer, and B. Bornkamp. Truncnorm: Truncated Normal Distribution,
2020. URL https://github.com/olafmersmann/truncnorm. [p245]

C. Metayer, J. S. Colt, P. A. Buffler, H. D. Reed, S. Selvin, V. Crouse, and M. H. Ward. Exposure
to Herbicides in House Dust and Risk of Childhood Acute Lymphoblastic Leukemia. Journal of
Exposure Science & Environmental Epidemiology, 23(4):363–370, July 2013. ISSN 1559-0631, 1559-064X.
URL https://doi.org/10.1038/jes.2012.115. [p234]

A. A. Novo and J. L. Schafer. Norm: Analysis of Multivariate Normal Datasets with Missing Values,
2013. URL https://CRAN.R-project.org/package=norm. [p227]

Q. Pan and R. Wei. Fraction of Missing Information at Different Missing Data Fractions in the 2012
NAMCS Physician Workflow Mail Survey. Applied Mathematics, 07(10):1057–1067, 2016. ISSN
2152-7385, 2152-7393. URL https://doi.org/10.4236/am.2016.710093. [p240]

M. Plummer, N. Best, K. Cowles, and K. Vines. Coda: Convergence Diagnosis and Output Analysis
for MCMC. R News, 6(1):7–11, Mar. 2006. [p242, 245]

K. Ren. Rlist: A Toolbox for Non-Tabular Data Manipulation, 2016. URL https://CRAN.R-project.
org/package=rlist. [p245]

S. Renzetti, P. Curtin, A. C. Just, G. Bello, and C. Gennings. gWQS: Generalized Weighted Quantile
Sum Regression, 2020. URL https://CRAN.R-project.org/package=gWQS. [p226]

D. B. Rubin. Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, New York, NY, USA,
1987. ISBN 978-0-471-08705-2. [p226, 239]

V. Savalei and M. Rhemtulla. On Obtaining Estimates of the Fraction of Missing Information from Full
Information Maximum Likelihood. Structural Equation Modeling: A Multidisciplinary Journal, 19(3):
477–494, July 2012. ISSN 1070-5511, 1532-8007. doi: 10.1080/10705511.2012.687669. [p240]

B. Schloerke, J. Crowley, D. Cook, F. Briatte, M. Marbach, E. Thoen, A. Elberg, and J. Larmarange.
GGally: Extension to ’ggplot2’, 2020. URL https://CRAN.R-project.org/package=GGally. [p245]

Y.-S. Su, A. Gelman, J. Hill, and M. Yajima. Multiple Imputation with Diagnostics (mi) in R: Opening
Windows into the Black Box. Journal of Statistical Software, 45(2):1–31, Dec. 2011. ISSN 1548-7660.
doi: 10.18637/jss.v045.i02. [p227]

T. M. Therneau and T. Lumley. A Package for Survival Analysis in S, 2015. URL https://CRAN.R-
project.org/package=survival. [p245]

S. van Buuren and K. Groothuis-Oudshoorn. Mice: Multivariate Imputation by Chained Equations in
R. Journal of Statistical Software, 45(3):1–67, 2011. ISSN 1548-7660. URL https://doi.org/10.18637/
jss.v045.i03. [p227]

M. H. Ward, J. S. Colt, C. Metayer, R. B. Gunier, J. Lubin, V. Crouse, M. G. Nishioka, P. Reynolds, and
P. A. Buffler. Residential Exposure to Polychlorinated Biphenyls and Organochlorine Pesticides and
Risk of Childhood Leukemia. Environmental Health Perspectives, 117(6):1007–1013, June 2009. ISSN
0091-6765. URL https://doi.org/10.1289/ehp.0900583. [p234]

M. H. Ward, J. S. Colt, N. C. Deziel, T. P. Whitehead, P. Reynolds, R. B. Gunier, M. Nishioka, G. V. Dahl,
S. M. Rappaport, P. A. Buffler, and C. Metayer. Residential Levels of Polybrominated Diphenyl
Ethers and Risk of Childhood Acute Lymphoblastic Leukemia in California. Environmental Health
Perspectives, 122(10):1110–1116, June 2014. ISSN 0091-6765. URL https://doi.org/10.1289/ehp.
1307602. [p234]

D. C. Wheeler, J. Czarnota, and R. M. Jones. Estimating an Area-Level Socioeconomic Status Index
and Its Association with Colonoscopy Screening Adherence. PLOS One, 12(6):e0179272, 2017. ISSN
1932-6203. doi: 10.1371/journal.pone.0179272. [p226]

D. C. Wheeler, R. M. Jones, M. Schootman, and E. J. Nelson. Explaining Variation in Elevated Blood
Lead Levels Among Children in Minnesota Using Neighborhood Socioeconomic Variables. Science
of the Total Environment, 650:970–977, Feb. 2019a. ISSN 00489697. doi: 10.1016/j.scitotenv.2018.09.088.
[p226, 244]

D. C. Wheeler, S. Raman, R. M. Jones, M. Schootman, and E. J. Nelson. Bayesian Deprivation Index
Models for Explaining Variation in Elevated Blood Lead Levels among Children in Maryland. Spatial
and Spatio-temporal Epidemiology, 30:100286, Aug. 2019b. ISSN 18775845. doi: 10.1016/j.sste.2019.
100286. [p226]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://github.com/olafmersmann/truncnorm
https://doi.org/10.1038/jes.2012.115
https://CRAN.R-project.org/package=norm
https://doi.org/10.4236/am.2016.710093
https://CRAN.R-project.org/package=rlist
https://CRAN.R-project.org/package=rlist
https://CRAN.R-project.org/package=gWQS
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1289/ehp.0900583
https://doi.org/10.1289/ehp.1307602
https://doi.org/10.1289/ehp.1307602

CONTRIBUTED RESEARCH ARTICLE 250

D. C. Wheeler, E. K. Do, R. B. Hayes, K. Fugate-Laus, Westley L. Fallavollita, C. Hughes, and Bernard
F. Fuemmeler. Neighborhood Disadvantage and Tobacco Retail Outlet and Vape Shop Outlet Rates.
International Journal of Environmental Research and Public Health, 17(8):2864, Apr. 2020. ISSN 1660-4601.
URL https://doi.org/10.3390/ijerph17082864. [p226]

I. R. White, P. Royston, and A. M. Wood. Multiple Imputation Using Chained Equations: Issues
and Guidance for Practice. Statistics in Medicine, 30(4):377–399, Feb. 2011. ISSN 02776715. doi:
10.1002/sim.4067. [p226, 239]

H. Wickham. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, NY, USA, second
edition, 2016. ISBN 978-3-319-24277-4. URL http://ggplot2.org. [p231, 245]

H. Wickham and L. Henry. Tidyr: Easily Tidy Data with ’spread()’ and ’gather()’ Functions, 2020. URL
https://CRAN.R-project.org/package=tidyr. [p245]

Y. Xie, J. Allaire, R Foundation, H. Wickham, Journal of Statistical Software, R. Vaidyanathan, Associa-
tion for Computing Machinery, C. Boettiger, Elsevier, K. Broman, K. Mueller, B. Quast, R. Pruim,
B. Marwick, C. Wickham, O. Keyes, M. Yu, D. Emaasit, T. Onkelinx, A. Gasparini, M.-A. Desautels,
D. Leutnant, MDPI, Taylor and Francis, O. Öğreden, D. Hance, D. Nüst, P. Uvesten, E. Campitelli,
J. Muschelli, A. Hayes, Z. N. Kamvar, N. Ross, R. Cannoodt, D. Luguern, D. M. Kaplan, S. Kreutzer,
S. Wang, J. Hesselberth, and C. Dervieux. Rticles: Article formats for r markdown, 2020. URL
https://github.com/rstudio/rticles. [p246]

Paul M. Hargarten
Virginia Commonwealth University
One Capitol Square
830 East Main Street Seventh Floor
Richmond, Virginia 23219

hargartenp@vcu.edu

David C. Wheeler
Virginia Commonwealth University
One Capitol Square
830 East Main Street Seventh Floor
Richmond, Virginia 23219

david.wheeler@vcuhealth.org

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.3390/ijerph17082864
http://ggplot2.org
https://CRAN.R-project.org/package=tidyr
https://github.com/rstudio/rticles
mailto:hargartenp@vcu.edu
mailto:david.wheeler@vcuhealth.org

CONTRIBUTED RESEARCH ARTICLE 251

User-Specified General-to-Specific and
Indicator Saturation Methods
by Genaro Sucarrat

Abstract General-to-Specific (GETS) modelling provides a comprehensive, systematic and cumulative
approach to modelling that is ideally suited for conditional forecasting and counterfactual analysis,
whereas Indicator Saturation (ISAT) is a powerful and flexible approach to the detection and estimation
of structural breaks (e.g. changes in parameters), and to the detection of outliers. To these ends, multi-
path backwards elimination, single and multiple hypothesis tests on the coefficients, diagnostics tests
and goodness-of-fit measures are combined to produce a parsimonious final model. In many situations
a specific model or estimator is needed, a specific set of diagnostics tests may be required, or a specific
fit criterion is preferred. In these situations, if the combination of estimator/model, diagnostics tests
and fit criterion is not offered in a pre-programmed way by publicly available software, then the
implementation of user-specified GETS and ISAT methods puts a large programming-burden on the
user. Generic functions and procedures that facilitate the implementation of user-specified GETS
and ISAT methods for specific problems can therefore be of great benefit. The R package gets is the
first software – both inside and outside the R universe – to provide a complete set of facilities for
user-specified GETS and ISAT methods: User-specified model/estimator, user-specified diagnostics
and user-specified goodness-of-fit criteria. The aim of this article is to illustrate how user-specified
GETS and ISAT methods can be implemented with the R package gets.

Introduction

General-to-Specific (GETS) modelling provides a comprehensive, systematic and cumulative approach
to modelling that is ideally suited for scenario analysis, e.g. conditional forecasting and counterfactual
analysis. To this end, well-known ingredients (tests of coefficients, multi-path backwards elimination,
diagnostics tests and fit criteria) are combined to produce a parsimonious final model that passes the
chosen diagnostics. GETS modelling originated at the London School of Economics (LSE) during the
1960s, and gained widespread acceptance and usage in economics during the 1980s and 1990s. The
two-volume article collection by Campos et al. (2005) provides a comprehensive historical overview
of key-developments in GETS modelling. Software-wise, a milestone was reached in 1999, when the
data-mining experiment of Lovell (1983) was re-visited by Hoover and Perez (1999). They showed
that automated GETS modelling could improve substantially upon the then prevalent modelling ap-
proaches. The study spurred numerous new studies and developments, including Indicator Saturation
(ISAT) methods, see Hendry et al. (2008) and Castle et al. (2015). ISAT methods provide a powerful
and flexible approach to the detection and estimation of structural breaks (e.g. changes in parameters),
and to the detection of outliers.

On CRAN, there are two packages that provide GETS methods. The second, named gets, is simply
the successor of the first, which is named AutoSEARCH.1 Since October 2014 the development of
AutoSEARCH is frozen, and all development efforts have been directed towards gets together with
Dr. Felix Pretis and Dr. James Reade.2 An introduction to the gets package is provided by Pretis et al.
(2018). However, it does does not cover the user-specification capabilities of the package, some of
which were not available at the time.

At the time of writing (September 2020), the publicly available softwares that provide GETS and
ISAT methods are contained in Table 1. Although they offer GETS and ISAT methods for some of the
most popular models in applications, in many situations a specific model or estimator will be needed,
a specific set of diagnostics tests may be required, or a specific fit criterion is preferred. In these
situations, if the combination of estimator/model, diagnostics tests and fit criterion is not offered in a
pre-programmed way by the publicly available softwares, then the implementation of user-specified
GETS and ISAT methods puts a large programming-burden on the user. Generic functions and
procedures that facilitate the implementation of user-specified GETS and ISAT methods for specific
problems can therefore be of great benefit. The R package gets, since version 0.20 (September 2019), is
the first software – both inside and outside the R universe – to provide a complete set of facilities for
user-specified GETS and ISAT methods: User-specified model/estimator, user-specified diagnostics

1Both packages were created by me. Originally, I simply wanted to rename the first to the name of the second.
This, however, is inconvenient in practice I was told, so I was instead asked by CRAN to publish a “new" package
with the new name.

2Recently, Jonas Kurle and Moritz Schwarz have also made contributions. See the Gitub page for the current
development version of the package: https://github.com/gsucarrat/gets/.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=gets
https://CRAN.R-project.org/package=AutoSEARCH
https://github.com/gsucarrat/gets/

CONTRIBUTED RESEARCH ARTICLE 252

HP1999
(MATLAB)

Autometrics
(OxMetrics)

Grocer
(Scilab)

genspec
(STATA)

EViews∗ gets
(R)

More than 10 paths Yes Yes Yes Yes Yes
GETS of linear regression Yes Yes Yes Yes Yes Yes
GETS of variance models Yes
GETS of logit/count models Yes
GETS of probit models Yes Yes
GETS of panel models Yes Yes
GETS of MIDAS models Yes
ISAT of linear regression Yes Yes Yes Yes
User-specified GETS Yes Yes
User-specified ISAT Yes
User-specified diagnostics Yes Yes
User-specified goodness-of-fit Yes
Menu-based GUI Yes Yes
Free and open source Yes∗∗ Yes Yes∗∗ Yes

Table 1: A comparison of publicly available GETS and ISAT softwares with emphasis on user-
specification capabilities. HP1999, the MATLAB code of Hoover and Perez (1999). Autometrics,
OxMetrics version 15, see Doornik and Hendry (2018). Grocer, version 1.8, see Dubois and Michaux
(2019). genspec, version 1.2.2, see Clarke (2014). EViews, version 12, see IHS Markit (2020). gets,
version 0.25, see Sucarrat et al. (2020), and Pretis et al. (2018).
∗To be included in version 12 (November 2020).
∗∗The modules in themselves are free and open source, but they run in non-free and closed source
software environments (MATLAB and STATA, respectively).

and user-specified goodness-of-fit criteria. The aim of this article is to illustrate how user-specified
GETS and ISAT methods can be implemented.

The rest of this article contains four sections. In the next section the model selection properties
of GETS and ISAT methods are summarised. This is followed by a section that outlines the general
principles of how user-specified estimation, user-specified diagnostics and user-specified goodness-
of-fit measures are implemented. Next, a section with four illustrations follows. The final section
contains a summary.

Model selection properties of GETS and ISAT methods

It is useful to denote a generic model for observation t as

m (yt, xt, β) , t = 1, 2, . . . , n, (1)

where yt is the dependent variable, xt = (x1t, x2t, . . .)′ is a vector of covariates, β = (β1, β2, . . .)′ is a
vector of parameters to be estimated and n is the sample size. Two examples are the linear regression
model and the logit-model:

yt = β1x1t + · · ·+ βkxkt + εt, (2)

Pr (yt = 1|xt) =
1

1 + exp (−ht)
with ht = β1x1t + · · ·+ βkxkt. (3)

Note that, in a generic model m(yt, xt, β), the dimension β is usually – but not necessarily – equal
to the dimension of xt. Here, for notational convenience, they will both have dimension k unless
otherwise stated.

In (2)–(3), a variable xjt ∈ xt is said to be relevant if β j 6= 0 and irrelevant if β j = 0. Let krel ≥ 0 and
kirr ≥ 0 denote the number of relevant and irrelevant variables, respectively, such that krel + kirr = k.
GETS modelling aims at finding a specification that contains as many relevant variables as possible,
and a proportion of irrelevant variables that on average equals the significance level α chosen by the
investigator. Put differently, if k̂rel and k̂irr are the retained number of relevant and irrelevant variables

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 253

in an empirical application, respectively, then GETS modelling aims at satisfying

IE
(

k̂rel/krel

)
→ 1 and IE

(
k̂irr/kirr

)
→ α as n→ ∞, (4)

when krel, kirr > 0. If either krel = 0 or kirr = 0, then the targets are modified in natural ways: If

krel = 0, then the first target is IE
(

k̂rel

)
= 0, and if kirr = 0, then the second target is IE

(
k̂irr

)
= 0.

Sometimes, the irrelevance proportion k̂irr/kirr is also referred to as gauge , whereas the relevance
proportion k̂irr/kirr is also referred to as potency .

In targeting a relevance proportion equal to 1 and an irrelevance proportion equal to α, GETS
modelling combines well-known ingredients: Multi-path backwards elimination, tests on the β j’s (both
single and multiple hypothesis tests), diagnostics tests and fit-measures (e.g. information criteria).

Let V
(

β̂
)

denote the estimated coefficient-covariance. GETS modelling in the package gets can be

described as proceeding in three steps:3

1. Formulate a General Unrestricted Model (GUM), i.e. a starting model, that passes a set of chosen
diagnostic tests. A regressor xj in the GUM is non-significant if the p-value of a two-sided t-test
is lower than the chosen significance level α, and each non-significant regressor constitutes the
starting point of a backwards elimination path. The test-statistics of the t-tests are computed as

β̂ j/se
(

β̂ j

)
, where se

(
β̂ j

)
is the square root of the jth. element of the diagonal of V

(
β̂
)

.

2. Undertake backwards elimination along multiple paths by removing, one-by-one, non-significant
regressors as determined by the chosen significance level α. Each removal is checked for validity
against the chosen set of diagnostic tests, and for parsimonious encompassing (i.e. a multiple hy-
pothesis test) against the GUM. These multiple hypothesis tests on subsets of β are implemented
as Wald-tests.

3. Multi-path backwards elimination can result in multiple terminal models. The last step of GETS
modelling consists of selecting, among the terminal models, the specification with the best fit
according to a fit-criterion, e.g. the Schwarz (1978) information criterion.

In ISAT methods, the vector xt contains at least n− 1 indicators in addition to other covariates
that are considered. Accordingly, standard estimation methods are infeasible, since the number of
variables in xt is usually larger than the number of observations n. The solution to this problem

provided by ISAT methods is to first organise xt into B blocks: x(1)t , . . . , x(B)
t . These blocks need not be

mutually exclusive, so a variable or subset of variables can appear in more than one block. Next, GETS
modelling is applied to each block, which leads to B final models. Note that, in the isat function,
the default is that no diagnostic tests are undertaken. Finally, a new round of GETS modelling is
undertaken with the union of the retained variables from the B blocks as covariates in a new starting
model (i.e. a new GUM). The model selection properties targeted by ISAT methods are the same as
those of GETS methods. Note, however, that since the starting model (the GUM) contains at least
n− 1 regressors, a tiny significance level – e.g. α = 0.001 or smaller – is usually recommended in ISAT
methods.

User-specification: General principles

In the current version of the package gets, version 0.25, the functions that admit user-specified
estimation are arx, getsm, getsFun and isat.4 The user-specification principles are the same in all
four. However, if the result (i.e. a list) returned from the user-specified estimator does not have
the same structure as that returned from the default estimator ols (part of the gets package), then
arx, getsm and isat may not always work as expected. This is particularly the case with respect to
their extraction functions (e.g. print, coef, residuals and predict). User-specified diagnostics and
goodness-of-fit functions are optional. By default, getsFun and isat do not perform any diagnostics
tests, whereas the default in arx and getsm is to test the standardised residuals for autocorrelation
and Autoregressive Heteroscedasticity (ARCH). This is implemented via the diagnostics function
(part of the gets package). Also by default, all four functions use the Schwarz (1978) information
criterion as goodness-of-fit measure, which favours parsimony, via the infocrit function (part of the
gets package).

3The way GETS modelling is implemented across softwares varies. For example, in Autometrics and Grocer the
diagnostics are not checked at each deletion.

4In the future, the plan is to also enable user-specified GETS modelling with the function getsv, which imple-
ments GETS modelling of the log-variance.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 254

The getsFun function

The recommended, most flexible and computationally most efficient approach to user-specified GETS
modelling is via the getsFun function. Currently, it accepts up to twenty-five arguments. For the
details of all these arguments, the reader is referred to the discussion of the getsm function (Section 5)
in Pretis et al. (2018), and the help pages of getsFun (type ?getsFun). For the purpose of user-specified
estimation, user-specified diagnostics and user-specified goodness-of-fit measures, the most important
arguments are:

getsFun(y, x,
user.estimator = list(name = "ols"),
user.diagnostics = NULL,
gof.function = list(name = "infocrit", method = "sc"),
gof.method = c("min", "max"),
...)

The y is the left-hand side variable (the regressand), x is the regressor or design matrix, user.estimator
controls which estimator or model to use and further arguments – if any – to be passed on to the
estimator, user.diagnostics controls the user-specified diagnostics if any, and gof.function and
gof.method control the goodness-of-fit measure used. Note that y and x should satisfy ‘is.vector(y)
== TRUE’ and ‘is.matrix(x) == TRUE’, respectively, and enter in "clean" ways: If either y or x are objects
of class, say, "ts" or "zoo", then getsFun may not behave as expected. By default, the estimator ols is
used with its default arguments, which implements OLS estimation via the qr function. The value
NULL on user.diagnostics means no diagnostics checks are undertaken by default. The following
code illustrates getsFun in linear regression (the default), and reproduces the information printed
while searching:

n <- 40 #number of observations
k <- 20 #number of Xs

set.seed(123) #for reproducibility
y <- rnorm(n) #generate Y
x <- matrix(rnorm(n*k), n, k) #create matrix of Xs

#do gets with default estimator (ols), store output in 'result':
result <- getsFun(y, x)

#the information printed while searching:
18 path(s) to search
Searching: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

The object named result is a list, and the code summary(results) returns a summary of its contents.
The most important entries are:

• paths: A list of vectors containing the searched paths. Each vector (i.e. path) indicates the
sequence of deletion of the regressors. In the example above the first path is

$paths[[1]]
[1] 1 15 6 7 3 14 11 16 4 2 8 12 5 9 20 19 13

That is, regressor no. 1 was the first to be deleted, regressor no. 15 was the second, regressor no.
6 was the third, and so on. If the regressors in x were named, then a name-representation of the
first deletion path is obtained with colnames(x)[paths[[1]]].

• terminals: A list of vectors with the distinct terminal models of the specification search. In the
example above it is equal to

$terminals
$terminals[[1]]
[1] 10 17 18

$terminals[[2]]
[1] 10 18

That is, two terminal models. The first contains regressors 10, 17 and 18, whereas the second
contains regressors 10 and 18.

• terminals.results: A data frame with the goodness-of-fit information of the terminal models.
In the above example the entry is equal to:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 255

$terminals.results
info(sc) logl n k

spec 1: 2.514707 -44.76081 40 3
spec 2: 2.529923 -46.90958 40 2

spec 1 is short for specification 1, i.e. terminal model 1, and spec 2 is short for specification 2,
i.e. terminal model 2. info(sc) indicates that the Schwarz (1978) criterion (the default) is used
as goodness-of-fit measure, whereas n and k denote the number of observations and parameters,
respectively.

• best.terminal: An integer that indicates which terminal model is the best according to the
goodness-of-fit criterion used. In the example above the value is 1.

• specific.spec: A vector of integers that indicates which regressors that are contained in the
best terminal model. In the above example it is

$specific.spec
[1] 10 17 18

That is, the best terminal model contains regressors no. 10, 17 and 18.

User-specified estimation

User-specified estimation is carried out via the user.estimator argument. By default, the argument is
NULL, so no diagnostic tests are undertaken. To carry out diagnostics, the argument must be specified
as a list containing at least one entry – a character – named name with the name of the estimator to be
invoked.5 Optionally, the list can also contain an item named envir, a character, which indicates the
environment in which the user-specified estimator resides. Additional entries in the list, if any, are
passed on to the estimator as arguments.

The user-specified estimator must also satisfy the following:

1. It should be of the form myEstimator(y,x,...), where y is a vector and x is a matrix. In other
words, while the name of the function is arbitrary, the first argument should be the regressand
and the second the matrix of covariates.

2. The user-defined estimator should return a list with a minimum of six items:

• n (the number of observations)

• k (the number of coefficients)

• df (degrees of freedom, used in the t-tests)

• coefficients (a vector with the coefficient estimates)

• vcov (the coefficient covariance matrix)

• logl (a goodness-of-fit value, e.g. the log-likelihood)

The items need not appear in this order. However, the naming should be exactly as indicated. If
also the diagnostics and/or the goodness-of-fit criterion is user-specified, then additional objects
may be required, see the subsections below on user-specified diagnostics and goodness-of-fit
criteria. Note also that, if the goodness-of-fit criterion is user-specified, then logl can in certain
situations be replaced by another item (which needs not be named logl).

3. The user-defined estimator must be able to handle NULL regressor-matrices, i.e. situations where
either NCOL(x) is 0 or is.null(x) is TRUE. This is needed in situations where a terminal model
is empty (i.e. no regressors are retained).

To illustrate how the requirements above can be met in practice, suppose – as an example – that we
would like to use the function lm for estimation rather than ols. The first step is then to make a
function that calls lm while satisfying requirements 1 to 3:

lmFun <- function(y, x, ...){

##create list:
result <- list()

##n, k and df:
result$n <- length(y)

5To carry out the same diagnostics as the default of the getsm function, the argument can be set to list(name =
"diagnostics", pval = c(0.025, 0.025)).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 256

if(is.null(x) || NCOL(x) == 0){
result$k <- 0

}else{
result$k <- NCOL(x)

}
result$df <- result$n - result$k

##call lm if k > 0:
if(result$k > 0){
tmp <- lm(y ~ x - 1)
result$coefficients <- coef(tmp)
result$vcov <- vcov(tmp)
result$logl <- as.numeric(logLik(tmp))

}else{
result$coefficients <- NULL
result$vcov <- NULL
result$logl <- sum(dnorm(y, sd = sqrt(var(y)), log = TRUE))

}

##return result:
return(result)

}

The code

getsFun(y, x, user.estimator = list(name = "lmFun"))

undertakes the same specification search as earlier, but uses lmFun rather than ols.

User-specified diagnostics

User-specified diagnostics is carried out via the user.diagnostics argument. The argument must be
a list containing at least two entries: A character named name containing the name of the diagnostics
function to be called, and an entry named pval that contains a vector with values between 0 and 1, i.e.
the chosen significance level(s) for the diagnostics test(s).6 If only a single test is undertaken by the
diagnostics function, then pval should be of length one. If two tests are undertaken, then pval should
be of length two. And so on. An example of the argument when only a single test is undertaken is:

user.diagnostics = list(name = "myDiagnostics", pval = 0.05))

That is, the name of the function is myDiagnostics, and the chosen significance level for the single
test that is carried out is 5%. Optionally, just as when the estimator is user-specified, the list can
contain an item named envir, a character, which indicates the environment in which the user-specified
diagnostics function resides. Additional items in the list, if any, are passed on to the user-specified
function as arguments.

The user-specified diagnostics function must satisfy the following:

1. It should be of the form myDiagnostics(result,...), where result is the list returned from
the estimator in question, e.g. that of the user-specified estimator (recall requirement 2 in the
previous section above).

2. It should return an m× 3 matrix that contains the p-value(s) of the test(s) in the third column,
where m ≥ 1 is the number of tests carried out. So if only a single test is carried out, then m = 1
and the p-value should be contained in the third column. An example could look like:

statistic df pval
normality NA NA 0.0734

Note that the row-names and column-names in the example are not required. However, they do
indicate what kind of information you may wish to put there for reporting purposes, e.g. by
using the function diagnostics (also part of the gets package).

6A word of caution is required. Let R(i) denote the event of rejecting the null, under the null, for a significance
level α(i) in diagnostic test i. For example, if only a single test is undertaken so that i = 1, then Pr(R(1)) = α(1). If

two tests are undertaken, however, then the probability of rejecting in one or both tests is Pr
(

R(1) ∪ R(2)
)

. As rule
of thumb, therefore, to control the overall error, it is recommended that the significance level of each diagnostic test
is set equal to α/m, where α is the overall or total significance level targeted by the user, and m is the number of
diagnostic tests. This is sometimes referred to as a Bonferroni correction.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 257

To illustrate how the requirements can be met in practice, suppose we would like to ensure the
residuals are normal by testing for non-normality with the Shapiro-Wilks test function shapiro.test.
In this context, its main argument is the residuals of the estimated model. The list returned by the
user-defined estimator named lmFun above, however, does not contain an item with the residuals.
The first step, therefore, is to modify the estimator lmFun so that the returned list also contains the
residuals:

lmFun <- function(y, x, ...){

##info needed for estimation:
result <- list()
result$n <- length(y)
if(is.null(x) || NCOL(x)==0){
result$k <- 0

}else{
result$k <- NCOL(x)

}
result$df <- result$n - result$k
if(result$k > 0){
tmp <- lm(y ~ x - 1)
result$coefficients <- coef(tmp)
result$vcov <- vcov(tmp)
result$logl <- as.numeric(logLik(tmp))

}else{
result$coefficients <- NULL
result$vcov <- NULL
result$logl <- sum(dnorm(y, sd=sqrt(var(y)), log=TRUE))

}

##residuals:
if(result$k > 0){
result$residuals <- residuals(tmp)

}else{
result$residuals <- y

}

return(result)
}

Computationally, the only modification appears under ##residuals. We can now make the user-
specified diagnostics function:

myDiagnostics <- function(x, ...){
tmp <- shapiro.test(x$residuals) #do the test
result <- rbind(c(tmp$statistic, NA, tmp$p.value))
return(result)

}

The following code undertakes GETS modelling with the user-specified estimator defined above, and
the user-specified diagnostics function using a 5% significance level for the latter:

getsFun(y, x, user.estimator = list(name = "lmFun"),
user.diagnostics = list(name = "myDiagnostics", pval = 0.05))

Note that if the chosen significance level for the diagnostics is sufficiently high, then no specification
search is undertaken because the starting model does not pass the non-normality test. With the current
data, for example, a little bit of trial and error reveals this is the case for a level of about pval = 0.35.

User-specified goodness-of-fit

User-specified goodness-of-fit is carried out with the gof.function and gof.method arguments. The
former indicates which Goodness-of-Fit (GOF) function to use, and the second is a character that
indicates whether the best model maximises ("max") or minimises ("min") the GOF criterion in question.
The first argument is a list with a structure similar to earlier: It must contain at least one entry, a
character named name, with the name of the GOF function to call. An example is:

gof.function = list(name = "myGof"))

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 258

Optionally, also here the list can contain an item named envir, a character, which indicates the
environment in which the user-specified GOF function resides. Also as earlier, additional items in the
list are passed on to the user-specified GOF function as arguments. The default value, for example,
gof.function = list(name = "infocrit",method = "sc"), means the argument method = "sc" is
passed on to the function infocrit, see the help pages of infocrit (type ?infocrit) for information
on the methods available via this function. The user-specified GOF function must satisfy the following:

1. It should be of the form myGof(result,...), where result is the list returned from the estimator
in question, e.g. that of the user-specified estimator.

2. It should return a single numeric value, i.e. the value of the GOF measure in question.

To illustrate how the requirements can be met in practice, suppose we would like to use the adjusted R2

as our GOF measure in combination with our user-defined estimator. For the moment, the user-defined
estimator lmFun does not contain the information necessary to compute the adjusted R2. In particular,
it lacks the regressand y. However, this is readily added:

lmFun <- function(y, x, ...){

##info needed for estimation:
result <- list()
result$n <- length(y)
if(is.null(x) || NCOL(x)==0){
result$k <- 0

}else{
result$k <- NCOL(x)

}
result$df <- result$n - result$k
if(result$k > 0){
tmp <- lm(y ~ x - 1)
result$coefficients <- coef(tmp)
result$vcov <- vcov(tmp)
result$logl <- as.numeric(logLik(tmp))

}else{
result$coefficients <- NULL
result$vcov <- NULL
result$logl <- sum(dnorm(y, sd=sqrt(var(y)), log=TRUE))

}

##residuals:
if(result$k > 0){
result$residuals <- residuals(tmp)

}else{
result$residuals <- y

}

##info needed for r-squared:
result$y <- y

return(result)
}

The added part appears under ##info needed for r-squared. A GOF function that returns the
adjusted R2 is:

myGof <- function(object, ...){
TSS <- sum((object$y - mean(object$y))^2)
RSS <- sum(object$residuals^2)
Rsquared <- 1 - RSS/TSS
result <- 1 - (1 - Rsquared) * (object$n - 1)/(object$n - object$k)
return(result)

}

The following code undertakes GETS modelling with all the three user-specified functions defined so
far:

getsFun(y, x, user.estimator = list(name = "lmFun"),
user.diagnostics = list(name = "myDiagnostics", pval = 0.05),
gof.function = list(name = "myGof"), gof.method = "max")

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 259

Incidentally, it leads to the same final model as when the default GOF function is used.

More speed: turbo, max.paths, parallel computing

In multi-path backwards elimination search, one may frequently arrive at a specification that has
already been estimated and tested. As an example, consider the following two paths:

$paths[[1]]
[1] 2 4 3 1 5

$paths[[2]]
[1] 4 2 3 1 5

In path 1, i.e. paths[[1]], regressor no. 2 is the first to be deleted, regressor no. 4 is the second, and so
on. In path 2 regressor no. 4 is the first to be deleted, regressor no. 2 is the second, and so on. In other
words, after the deletion of the first two variables, the set of remaining variables (i.e. 3, 1 and 5) in the
two paths is identical. Accordingly, knowing the result from the first path, in path 2 it is unnecessary to
proceed further after having deleted the first two regressors. Setting the argument turbo equal to TRUE
turns such a check on, and thus skips searches, estimations and tests that are unnecessary. The turbo
comes at a small computational cost (often less than 1 second), since the check is undertaken at each
deletion. This is why the default is turbo = FALSE. However, if the estimation time is noticeable, then
turning the turbo on can reduce the search time substantially. As a rule of thumb, if each estimation
takes 1 second or more, then turning the turbo on will (almost) always reduce the total search time.

Searching more paths may increase the relevance proportion or potency. Whether and to what
extent this happens depends on the sample size n, and on the degree of multicolinearity among the
regressors xt. If n is sufficiently large, or if the regressors are sufficiently uncorrelated, then searching
fewer paths will not reduce the relevance proportion. In many situations, therefore, one may consider
reducing the number of paths to increase the speed. This is achieved via the max.paths argument.
Setting max.paths = 10, for example, means a maximum of 10 paths is searched. The paths that are
searched are those of the 10 most insignificant variables (i.e. those with the highest p-values) in the
starting model.

When implementing ISAT methods, the function isat undertakes a multi-round form of GETS
modelling. In the first round the variables are split into B blocks, and then GETS modelling is
undertaken on each block. This is a socalled "embarassingly parallel" problem. To make isat search in
parallel during the first round, simply set the argument parallel.options equal to an integer greater
than 1. The integer determines how many cores/threads to use, and the command detectCores() can
be used to find out how many cores/threads that are available on the current machine. Remember,
it is not recommended to use all the cores/threads available. Within isat, parallel-computing is
implemented with the makeCluster and parApply functions from the package parallel. If the time
required by makeCluster to set up parallel computing is negligible relative to the total computing
time (on an average computer the setup-time is about 1 second), then the total computing time may
– in optimal situations – be reduced by a factor of about m − 0.8, where m > 1 is the number of
cores/threads used for parallel computing.

User-specified GETS and ISAT methods: Illustrations

GETS modelling of Generalised Linear Models (GLMs)

The function glm enables the estimation of a large number of specifications within the class of Gener-
alised Linear Models (GLMs). Here, it is illustrated how GETS modelling can be implemented with
GLMs. To fix ideas, the illustration is in terms of the logit-model.

Let yt ∈ {0, 1} denote the regressand of the logit-model given by

Pr (yt = 1|xt) =
1

1 + exp (−ht)
, ht = β′xt. (5)

Next, consider the following set of data:

n <- 40 #number of observations
k <- 20 #number of Xs
set.seed(123) #for reproducibility
y <- round(runif(40)) #generate Y
x <- matrix(rnorm(n*k), n, k) #create matrix of Xs

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 260

In other words, one regressand yt ∈ {0, 1} which is entirely independent of the 20 regressors in xt.
The following function enables GETS modelling of logit-models:

logitFun <- function(y, x, ...){

##create list:
result <- list()

##n, k and df:
result$n <- length(y)
if(is.null(x) || NCOL(x)==0){
result$k <- 0

}else{
result$k <- NCOL(x)

}
result$df <- result$n - result$k

##call glm if k > 0:
if(result$k > 0){
tmp <- glm(y ~ x - 1, family = binomial(link="logit"))
result$coefficients <- coef(tmp)
result$vcov <- vcov(tmp)
result$logl <- as.numeric(logLik(tmp))

}else{
result$coefficients <- NULL
result$vcov <- NULL
result$logl <- result$n*log(0.5)

}

##return result:
return(result)

}

To undertake the GETS modelling:

getsFun(y, x, user.estimator=list(name="logitFun"))

Two variables are retained, namely x5t and x11t, at the default significance level of 5% (i.e. t.pval =
0.05). To reduce the chance of retaining irrelevant variables, the significance level can be lowered to,
say, 1% by setting t.pval = 0.01.

To implement GETS modelling for a different GLM model, only two lines of code needs to be
modified in the user-defined function above. The first is the line that specifies the family, and the
second is the one that contains the log-likelihood associated with the empty model (i.e. the line
‘result$logl <-result$n*log(0.5)’).

Creating a gets method (S3) for the "lm" class of models

The package gets provides the generic function gets. This enables the creation of GETS methods (S3)
for models of arbitrary classes (type ?S3Methods for more info on S3 methods). Here, this is illustrated
for models of class "lm". Our aim is to be able to do the following:

mymodel <- lm(y ~ x)
gets(mymodel)

That is, to first estimate a model of class "lm" where x is a matrix of regressors, and then to conveniently
undertake GETS modelling by simply applying the code gets(.) to the named object mymodel. To this
end, a function named gets.lm that relies on getsFun will be created. In doing so, a practical aspect
is how to appropriately deal with the intercept codewise. Indeed, as we will see, a notable part of
the code in the user-defined function will be devoted to the intercept. The reason for this is that lm
includes the intercept by default. Another practical aspect is whether to use lm or ols whenever a
model is estimated by OLS (both employ the QR decomposition). The latter is simpler codewise and
computationally faster, so we opt for the latter. The function is:

gets.lm <- function(object, ...){

##make y:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 261

y <- as.vector(object$model[, 1])
yName <- names(object$model)[1]

##make x:
x <- as.matrix(object$model[, -1])
xNames <- colnames(x)
if(NCOL(x) == 0){
x <- NULL
xNames <- NULL

}else{
if(is.null(xNames)){
xNames <- paste0("X", 1:NCOL(x))
colnames(x) <- xNames

}
}

##is there an intercept?:
if(length(coef(object)) > 0){
cTRUE <- names(coef(object))[1] == "(Intercept)"
if(cTRUE){
x <- cbind(rep(1, NROW(y)), x)
xNames <- c("(Intercept)", xNames)
colnames(x) <- xNames

}
}

##do gets:
myspecific <- getsFun(y, x, ...)

##which are the retained regressors?:
retainedXs <- xNames[myspecific$specific.spec]
cat("Retained regressors:\n ", retainedXs, "\n")

##return result
return(myspecific)

}

Next, recall the Data Generation Process (DGP) of the first experiment:

n <- 40 #number of observations
k <- 20 #number of Xs
set.seed(123) #for reproducibility
y <- rnorm(n) #generate Y
x <- matrix(rnorm(n*k), n, k) #create matrix of Xs

We can now do GETS modelling on models of class "lm" by simply applying the code ‘gets(...)’ on
the object in question. The following code first stores an estimated model of class "lm" in an object
named startmodel, and then applies the newly defined function gets.lm to it:

startmodel <- lm(y ~ x)
finallm <- gets(startmodel)

The information from the specification search is stored in the object called finallm, and during the
search the following is printed:

18 path(s) to search
Searching: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Retained regressors:
X10 X17 X18

In other words, the retained regressors are no. 10, 17 and 18. Note that, due to the way the user-defined
function has been put together, the intercept is excluded from deletion.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 262

Regression with ARMA error

The function arima can be used to estimate a linear regression with deterministic regressors and an
error-term that follows an ARMA. An example is

yt = β′xt + εt, εt = φ1εt−1 + θ1ut−1 + ut, ut ∼WN
(

0, σ2
u

)
,

where xt is a vector of deterministic regressors and WN is short for White Noise. The error εt is thus
governed by an ARMA(1,1). Let xt denote a (deterministic) step-shift variable in which the step-shift
occurs at observation 30, i.e. xt = 1 (t ≥ 30). Next, consider the DGP given by

yt = 4xt + εt, εt = 0.4εt−1 + 0.1ut−1 + ut, ut ∼ N (0, 1) , t = 1, . . . , n (6)

with n = 60. In other words, the series yt is non-stationary and characterised by a large location shift
at t = 30. Figure 1 illustrates the evolution of yt, which is generated with the following code:

set.seed(123) #for reproducibility
eps <- arima.sim(list(ar = 0.4, ma = 0.1), 60) #epsilon
x <- coredata(sim(eps, which.ones = 30)) #step-dummy at t = 30
y <- 4*x + eps #the dgp
plot(y, ylab="y", xlab="t", lwd = 2)

Figure 1: The graph of yt as given in (6).

By just looking at the graph, it seems clear that there is a location shift, but it is not so clear that it in
fact occurs at t = 30. I now illustrate how the arima function can be used in combination with getsFun
to automatically search for where the break occurs. The idea is to do GETS modelling over a set or
block of step-indicators that cover the period in which the break visually appears to be in. Specifically,
the aim is to apply GETS modelling to the following starting model with 11 regressors:

yt =
11

∑
i=1

βi · 1{t≥24+i} + εt, εt = φ1εt−1 + θ1ut−1 + ut.

To this end, we first need to make the user-specified estimator:

myEstimator <- function(y, x){

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 263

##create list:
result <- list()

##estimate model:
if(is.null(x) || NCOL(x)==0){
result$k <- 0
tmp <- arima(y, order = c(1,0,1)) #empty model

}else{
result$k <- NCOL(x)
tmp <- arima(y, order = c(1,0,1), xreg = x)
result$coefficients <- tmp$coef[-c(1:3)]
result$vcov <- tmp$var.coef
result$vcov <- result$vcov[-c(1:3),-c(1:3)]

}

##rename and re-organise things:
result$n <- tmp$nobs
result$df <- result$n - result$k
result$logl <- tmp$loglik

return(result)
}

Note that the estimator has been put together such that the ARMA(1,1) specification of the error εt is
fixed. As a consequence, the specification search is only over the regressors. The following code first
creates the 11 step dummies, and then undertakes the GETS modelling:

xregs <- coredata(sim(eps, which.ones = 25:35)) #11 step-dummies
getsFun(y, xregs, user.estimator = list(name = "myEstimator"))

Two step-dummies are retained, namely those of t = 30 and t = 35.

Faster ISAT when n is large

ISAT methods are computationally intensive, since at least n− 1 indicators are included as regressors.
Accordingly, as n grows large, purpose-specific estimators can greatly reduce the computing time. One
way of building such an estimator is by using tools from the package Matrix, see Bates and Maechler
(2018). The code below illustrates this. First it loads the library, and then it creates a function named
olsFaster that re-produces the structure of the estimation result returned by the function ols with
method = 3 (i.e. OLS with the ordinary coefficient-covariance), but with functions from Matrix. The
code is:

library(Matrix)
olsFaster <- function(y, x){
out <- list()
out$n <- length(y)
if (is.null(x)){ out$k <- 0 }else{ out$k <- NCOL(x) }
out$df <- out$n - out$k
if (out$k > 0) {
x <- as(x, "dgeMatrix")
out$xpy <- crossprod(x, y)
out$xtx <- crossprod(x)
out$coefficients <- as.numeric(solve(outxtx,outxpy))
out$xtxinv <- solve(out$xtx)
out$fit <- out$fit <- as.vector(x %*% out$coefficients)

}else{ out$fit <- rep(0, out$n) }
out$residuals <- y - out$fit
out$residuals2 <- out$residuals^2
out$rss <- sum(out$residuals2)
out$sigma2 <- out$rss/out$df
if (out$k > 0) { out$vcov <- as.matrix(out$sigma2 * out$xtxinv) }
out$logl <- -out$n * log(2 * out$sigma2 * pi)/2 - out$rss/(2 * out$sigma2)
return(out)

}

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Matrix

CONTRIBUTED RESEARCH ARTICLE 264

Depending on the data and hardware/software configuration, the estimator may lead to a consid-
erably speed-improvement. In the following example, the function system.time suggests a speed
improvement of about 20% on the current hardware/software configuration:

set.seed(123) #for reproducibility
y <- rnorm(1000)
x <- matrix(rnorm(length(y)*20), length(y), 20)
#with ols:
system.time(finalmodel <- isat(y, mxreg = x, max.paths = 5))
#with olsFaster:
system.time(finalmodel <- isat(y, mxreg = x, max.paths = 5,
user.estimator = list(name = "olsFaster")))

Summary

In many applications a specific model or estimator is needed, a specific set of diagnostics tests
may be required, or a specific fit criterion is preferred. In these situations, if the combination of
estimator/model, diagnostics tests and fit criterion is not already offered in a pre-programmed way
by publicly available software, the implementation of user-specified GETS and ISAT methods puts a
large programming-burden on the user. This article has outlined how recent additions to the package
gets greatly simplifies the development of user-specified GETS and ISAT methods. The package is
the first software – both inside and outside the R universe – to provide a complete set of facilities for
user-specified GETS and ISAT methods.

Acknowledgements

I am grateful to the Editor Catherine Hurley, an anonymous reviewer, Damian Clarke, Éric Dubois,
Jonas Kurle, Felix Pretis, James Reade, Moritz Schwarz, Gareth Thomas, participants at the UseR! 2019
conference (Toulouse, July), the Statistics Norway seminar (May, 2018) and the Norges Bank seminar
(April, 2018) for their helpful comments, suggestions and questions.

Bibliography

D. Bates and M. Maechler. Matrix: Sparse and Dense Matrix Classes and Methods, 2018. URL https:
//CRAN.R-project.org/package=Matrix. R package version 1.2-15. [p263]

J. Campos, D. F. Hendry, and N. R. Ericsson, editors. General-to-Specific Modeling. Volumes 1 and 2.
Edward Elgar Publishing, Cheltenham, 2005. [p251]

J. Castle, J. Doornik, D. F. Hendry, and F. Pretis. Detecting Location Shifts During Model Selection
by Step-Indicator Saturation. Econometrics, 3:240–264, 2015. URL https://doi.org/10.3390/
econometrics3020240. [p251]

D. Clarke. General-to-specific modeling in Stata. The Stata Journal, 14:895–908, 2014. URL https:
//www.stata-journal.com/article.html?article=st0365. [p252]

J. A. Doornik and D. F. Hendry. Empirical Econometric Modelling - PcGive 15. Timberlake Consultants
Ltd., London, 2018. [p252]

É. Dubois and E. Michaux. Grocer 1.8: an econometric toolbox for Scilab. 2019. URL http://dubois.
ensae.net/grocer.html. [p252]

D. F. Hendry, S. Johansen, and C. Santos. Automatic selection of indicators in a fully saturated
regression. Computational Statistics, 23:317–335, 2008. URL https://doi.org/10.1007/s00180-007-
0054-z. [p251]

K. D. Hoover and S. J. Perez. Data Mining Reconsidered: Encompassing and the General-to-Specific
Approach to Specification Search. Econometrics Journal, 2:167–191, 1999. URL https://doi.org/10.
1111/1368-423X.00025. [p251, 252]

IHS Markit. EViews Version 11. IHS Markit, Irvine, 2020. URL http://www.EViews.com/. [p252]

M. C. Lovell. Data Mining. The Review of Economics and Statistics, 65:1–12, 1983. URL https://doi.
org/10.2307/1924403. [p251]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
https://doi.org/10.3390/econometrics3020240
https://doi.org/10.3390/econometrics3020240
https://www.stata-journal.com/article.html?article=st0365
https://www.stata-journal.com/article.html?article=st0365
http://dubois.ensae.net/grocer.html
http://dubois.ensae.net/grocer.html
https://doi.org/10.1007/s00180-007-0054-z
https://doi.org/10.1007/s00180-007-0054-z
https://doi.org/10.1111/1368-423X.00025
https://doi.org/10.1111/1368-423X.00025
http://www.EViews.com/
https://doi.org/10.2307/1924403
https://doi.org/10.2307/1924403

CONTRIBUTED RESEARCH ARTICLE 265

F. Pretis, J. Reade, and G. Sucarrat. Automated General-to-Specific (GETS) Regression Modeling and
Indicator Saturation for Outliers and Structural Breaks. Journal of Statistical Software, 86:1–44, 2018.
URL https://doi.org/10.18637/jss.v086.i03. [p251, 252, 254]

G. Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6:461–464, 1978. [p253, 255]

G. Sucarrat, J. Kurle, F. Pretis, J. Reade, and M. Schwarz. gets: General-to-Specific (GETS) Modelling
and Indicator Saturation (ISAT) Methods, 2020. URL https://CRAN.R-project.org/package=gets. R
package version 0.25. [p252]

Genaro Sucarrat
BI Norwegian Business School
Nydalsveien 37, 0484 Oslo
Norway
genaro.sucarrat@bi.no

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.18637/jss.v086.i03
https://CRAN.R-project.org/package=gets
mailto:genaro.sucarrat@bi.no

CONTRIBUTED RESEARCH ARTICLE 266

Kuhn-Tucker and Multiple
Discrete-Continuous Extreme Value
Model Estimation and Simulation in R:
The rmdcev Package
by Patrick Lloyd-Smith

Abstract This paper introduces the package rmdcev in R for estimation and simulation of Kuhn-
Tucker demand models with individual heterogeneity. The models supported by rmdcev are the
multiple-discrete continuous extreme value (MDCEV) model and Kuhn-Tucker specification common
in the environmental economics literature on recreation demand. Latent class and random parameters
specifications can be implemented and the models are fit using maximum likelihood estimation
or Bayesian estimation. The rmdcev package also implements demand forecasting and welfare
calculation for policy simulation. The purpose of this paper is to describe the model estimation and
simulation framework and to demonstrate the functionalities of rmdcev using real datasets.

Introduction

Individual choice contexts are often characterized by both extensive (i.e. what alternative to choose)
and intensive (i.e. how much of an alternative to consume) margins (Bhat, 2008). These multiple
discrete-continuous (MDC) choice situations are pervasive, arising in transportation, marketing, health,
and decisions regarding environmental resources (Bhat and Pinjari, 2014). The Kuhn-Tucker (KT)
modelling framework is often employed to analyze these MDC situations and substantial progress
has been made in improving these econometric modeling structures (von Haefen and Phaneuf, 2005;
Bhat and Pinjari, 2014). Despite the large potential applications for KT models, there remains a gap
between this potential and actual examples of these models being used. One of the reasons cited for
the lack of widespread use of KT models is that estimating and simulating these models is challenging.
The explanations of methods used to work with these models are spread across many papers and few
user friendly software tools are available. The purpose of this paper is to present a unified account for
KT estimation and simulation alongside computer code for easy and efficient implementation.

This paper presents an overview of the R package rmdcev which can estimate and simulate KT
demand models with discrete or continuous unobserved individual heterogeneity.1 The common
starting point for all KT models is the individual’s constrained optimization problem and exploiting
the resulting KT first order conditions in estimation. The most popular empirical KT modelling
framework is the multiple-discrete continuous extreme value (MDCEV) model as first introduced by
Bhat (2008). A separate stream of literature in the environmental economics on recreation demand
has developed a closely related set of models and use the term KT to describe the models. In this
paper, we use KT to describe the general modelling framework, MDCEV to describe the Bhat (2008)
specifications, and KT-EE to describe the environmental economics literature KT specification (von
Haefen et al., 2004). One of the main differences between the MDCEV and KT-EE frameworks is how
alternative-specific attributes enter the utility function, a point we describe in the paper.

Incorporating preference heterogeneity has been an important advancement in choice modeling.
Both the MDCEV and KT-EE specifications can be estimated to incorporate unobserved preference
heterogeneity by assuming continuous distributions using random parameters or using a latent class
(LC) specification assuming a discrete distribution where people can be divided into distinct segments.
The models in rmdcev can be fit using maximum likelihood estimation or Bayesian estimation. Besides
estimation, the rmdcev package also implements demand forecasting and welfare calculation for policy
simulation. The two main functions in the rmdcev are mdcev used to estimate all model specifications
and mdcev.sim used to simulate both demand and welfare implications. rmdcev is available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=rmdcev
as well as from GitHub at https://github.com/plloydsmith/rmdcev.

While there are several R packages available to estimate discrete choice data such as apollo (Hess
and Palma, 2019), mlogit (Croissant, 2019), and gmnl (Sarrias and Daziano, 2017)2, there are limited
options for users interested in estimating and simulating KT models. In addition to rmdcev, the

1This paper uses version 1.2.4 of the rmdcev package.
2Sarrias and Daziano (2017) provides a good overview of the different R packages available to estimate discrete

choice models

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=rmdcev
https://CRAN.R-project.org/package=rmdcev
https://github.com/plloydsmith/rmdcev
https://CRAN.R-project.org/package=apollo
https://CRAN.R-project.org/package=mlogit
https://CRAN.R-project.org/package=gmnl

CONTRIBUTED RESEARCH ARTICLE 267

apollo package developed by Stephane Hess and David Palma at the Choice Modelling Centre in
Leeds provides a flexible modelling platform for estimating MDCEV models and simulating demand
behaviour (Hess and Palma, 2019). apollo estimates a full suite of choice models including discrete
choice models and is thus more comprehensive and flexible than rmdcev. The main advantages for KT
modeling in using the rmdcev is that it 1) provides functions for calculating welfare implications of
policy scenarios, 2) allows the estimation and simulation of the KT formulation used in environmental
economics (von Haefen and Phaneuf, 2005), 3) uses the Stan program (Carpenter et al., 2017) for
Bayesian estimation and thus the user has access to specialized postestimation commands, and 4) is
primarily coded in C++ and thus around 20 times faster than apollo. The main advantages of apollo
compared to rmdcev is that 1) it can estimate model specifications without an outside good whereas
rmdcev only estimates models with an outside good, 2) users have more control over particular
parameter specifications such as which parameters are fixed at their starting values and which are
allowed to be random parameters, and 3) it allows users to estimate the multiple discrete continuous
nested extreme value model and LC-random parameter MDCEV specifications.

The paper first introduces the conceptual framework underlying KT models and the connection to
economic theory and welfare measures. Section 2 also describes the various empirical specifications
for KT models. Section 3 introduces the rmdcev package focusing first on estimation before moving
on to discuss how to conduct welfare and demand simulations. Section 4 provides conclusions of the
paper.

Models

Conceptual framework

This section describes the underlying conceptual framework for KT models. Each individual i max-
imizes utility through the choice of the numeraire or outside good (xi1) and the non-numeraire
alternatives (xik) subject to a monetary or non-monetary budget constraint. We assume there is a
numeraire good (i.e. essential Hicksian composite good) which is always consumed and has a price of
one. The individual’s maximization problem is

max
xik ,xi1

U(xik, xi1)

s.t. yi =
K

∑
k=2

pikxik + xi1, xik ≥ 0, k = 2, ..., K,
(1)

where xik is the consumption level for alternative k, xi1 is consumption of the numeraire, yi is any
arbitrary budget amount (e.g. annual income), and pik is the unit price of alternative k.

The resulting first-order KT conditions that implicitly define the solution to the optimal consump-
tion bundles of xik and xi1 are

Uxik

Uxi1

≤ pik, k = 1,K,

xik

[
Uxik

Uxi1

− pik

]
= 0, k = 1,K.

(2)

For alternatives with positive consumption levels, the marginal rate of substitution between these
alternatives and the numeraire good is equal to the price of the alternative. For unconsumed alterna-
tives, the marginal rate of substitution between these alternatives and the numeraire good is less than
the price of the alternatives. For the rest of the paper, we drop the subscript i for notational simplicity.

These first-order conditions can be used to derive Marshallian and Hicksian demands and welfare
measures (von Haefen and Phaneuf, 2005). We assume that alternatives have non-price attribute qk
and the vector of k prices and attributes is denoted as p and q. The Hicksian compensating surplus
(CSH) for a change in price and quality from baseline levels p0 and q0 to new ‘policy’ levels p1 and q1

is defined explicitly using an expenditure function

CSH = y− e(p1, q1, Ū, θ, ε), (3)

where θ is the vector of structural parameters (ψk, αk, γk), ε is a vector or matrix of unobserved
heterogeneity, and Ū = V(p0, q0, y, θ, ε) and represents baseline utility.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://www.apollochoicemodelling.com/

CONTRIBUTED RESEARCH ARTICLE 268

Multiple discrete-continuous extreme value model (MDCEV)

The rmdcev package implements the random utility specification of the MDCEV as introduced by
Bhat (2008). The model specifications included in rmdcev always assume an outside good (i.e. the
numeraire good that is always consumed by every individual). The general utility function is specified
as

U(xk, x1) =
K

∑
k=2

γk
αk

ψk

[(
xk
γk

+ 1
)αk

− 1
]
+

ψ1
α1

xα1
1 , (4)

where γk > 0, ψk > 0 and αk ≤ 1 for all k are required for this specification to be consistent with the
properties of a utility function (Bhat, 2008). Bhat (2008) provides a detailed overview of the parameter
interpretation and in brief

• The ψk parameters represent the marginal utility of consuming alternative k at the point of zero
consumption (i.e. baseline marginal utility).

• The γk parameters are translation parameters that allow for corner solutions (i.e. zero consump-
tion levels for alternatives) and also influence satiation. The lower the value of γk, the greater
the satiation effect in consuming xk.

• The αk parameters control the rate of diminishing marginal utility of additional consumption. If
αk equal to one, then there is no satiation effects (i.e. constant marginal utility).

The ‘random utility’ element of the model is introduced into the baseline utility through a random
error term as

ψk = ψ(zk, εk) = exp(β′zk + εk), (5)

where zk is a set of variables that can include alternative-specific attributes and individual-specific
characteristics, and εk is an error term that allows for the utility function to be random over the popu-
lation. We assume an extreme value distribution that is independently distributed across alternatives
for εk with an associated scale parameter of σ. For identification, we specify ψ1 = eε1 .

To ensure the estimated utility function corresponds to economic theory we specify γk = exp(γ∗k)
such that γk > 0 and αk = exp(α∗k)/(1 + exp(α∗k)) such that 0 < αk < 1. γ∗k and α∗k are estimated
in the package and γk and αk are reported to the user. Similarly, we specify σ = exp(σ∗). Weak
complementarity, which is required for deriving unique welfare measures (Mäler, 1974), is imposed in
this specification by adding and subtracting one in the non-numeraire part of the utility function.

While the most general form of the MDCEV model includes ψk, γk, and αk parameters for each
alternative, Bhat (2008) discusses the identification concerns regarding estimating separate γk and αk
parameters for each non-numeraire alternative. Typically only a subset of these parameters can be
identified and there are four common utility function specifications:

1. α-profile: set all γk parameters to 1.

U(xk, x1) =
K

∑
k=2

1
αk

exp(β′zk + εk)
[
(xk + 1)αk − 1

]
+

exp(ε1)

α1
xα1

1 . (6)

2. γ-profile: set all non-numeraire αk parameters to 0.

U(xk, x1) =
K

∑
k=2

γkexp(β′zk + εk) ln
(

xk
γk

+ 1
)
+

exp(ε1)

α1
xα1

1 . (7)

3. hybrid-profile: set all αk = α1 = α.

U(xk, x1) =
K

∑
k=2

γk
α

exp(β′zk + εk)

[(
xk
γk

+ 1
)α

− 1
]
+

exp(ε1)

α
xα

1 . (8)

4. hybrid0-profile: set all αk = α1 = 0.

U(xk, x1) =
K

∑
k=2

γkexp(β′zk + εk) ln
(

xk
γk

+ 1
)
+ exp(ε1) ln(x1). (9)

The likelihood function representing the model probability of the consumption pattern where M
alternatives are chosen can be expressed as Bhat (2008)

P(x∗1 , x∗2 ...x∗M, 0, ..., 0) =
1

σM−1

(
M

∏
m=1

cm

)(
M

∑
m=1

pm

cm

) ∏M
m=1 eVm/σ(

∑J
k=1 eVk/σ

)M

 (M− 1)!, (10)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 269

where σ is the scale parameter and cm = 1−αm
xm+γm

. The V expressions depend on what model specifica-
tion is used:

1. α-profile: Vk = β′zk + (αk − 1) ln (xk + 1)− ln (pk) for k ≥ 2, and V1 = (α1 − 1) ln(x1).

2. γ-profile: Vk = β′zk − ln
(

xk
γk

+ 1
)
− ln (pk) for k ≥ 2, and V1 = (α1 − 1) ln(x1).

3. hybrid-profile: Vk = β′zk + (α− 1) ln
(

xk
γk

+ 1
)
− ln (pk) for k ≥ 2, and V1 = (α− 1) ln(x1).

4. hybrid0-profile: Vk = β′zk − ln
(

xk
γk

+ 1
)
− ln (pk) for k ≥ 2, and V1 = − ln(x1).

Kuhn-Tucker model specifications in Environmental Economics (KT-EE)

The rmdcev package also implements the KT-EE specification (von Haefen and Phaneuf, 2005). The
utility function in this specification is similar to the γ-profile of the MDCEV specification introduced
above and is

U(xk, x1) =
K

∑
k=2

ψk ln (φkxk + γk) +
1
α1

xα1
1 , (11)

where φk > 0.3

An important difference between this KT formulation and the MDCEV models is the way weak
complementary is imposed. In this KT formulation, weak complementarity is imposed by only
including alternative-specific attributes in the φk parameter and not the ψk parameter.4

In this formulation, the estimating first-order conditions can be written as

εk ≤
1
σ

(
−β′s + ln(

pk
φk

) + ln(φkxk + γk) + (α1 − 1) ln(y− pk ∗ xk)

)
, ∀k, (12)

and the resulting likelihood function as

P(x) = |J|∏
k
[exp(−gk(.))/σ]1(xk>0) exp[−exp(−gk(.))], (13)

where |J| is the determinant of the Jacobian of transformation, gk(.) is the right hand side of Equa-
tion (12), and 1(xk > 0) is equal to one if xk is positive and equal to zero if xk is zero (von Haefen and
Phaneuf, 2005). In previous implementations, the KT formulation used the computationally intensive
numerical gradient approach to the calculation of the determinant of the Jacobian of transformation
(von Haefen and Phaneuf, 2005).

The rmdcev package uses the compact structure of the determinant of the Jacobian as derived by
Bhat (2008) and defined as

|J| = (1− α1)

x1

[
∏
m

φm

φm ∗ xm + γm

] [
x1(1− α1) + ∑

m

(φm ∗ xm + γm) ∗ pm

φm

]
, (14)

where m denotes non-numeraire alternatives with positive consumption levels. Using this analyti-
cal gradient approach has the benefit of substantially speeding up estimation by around 70% relative
to the numerical gradient approach.

In both the MDCEV and KT-EE specifications described above, the parameters (β, αk, γk, φk, σ) are
structural parameters that are assumed to be equal across the population which simplifies estimation.
However, these fixed parameter specification is quite restrictive as they can only incorporate preference
heterogeneity through interaction terms with observed individual characteristics. Without these
interaction terms, the fixed specifications impose the assumption that all individuals have the same
tastes for alternatives (i.e. preference homogeneity). This assumption is relaxed in the next two
specifications which are able to accommodate both observed and unobserved preference heterogeneity.

Latent class (LC-KT) models

The latent class version of the KT model assumes that an individual belongs to a finite mixture of S
segments each indexed by s (s = 1, 2, ...S) (Sobhani et al., 2013; Kuriyama et al., 2010). Within each

3The environmental economics literature uses slightly different notation as typically θ is used for γ, µ is used
for σ, and ρ for α1. We change the notation slightly for consistency with the MDCEV model specifications.

4See Herriges et al. (2004) for more discussion on this point.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 270

segment, the LC specification assumes preference homogeneity. We do not observe which segment an
individual belongs to but we can attribute a probability πis that individual i is a member of segment s.
We impose that 0 ≤ πis ≤ 1 and ∑S

s=1 πis = 1 through the use of the logit link function as

πis =
exp(δ′swi)

∑S
s=1 exp(δ′swi)

, (15)

where wi is a vector of individual characteristics and δs is a vector of coefficients to be estimated. The
δs coefficients determine how the individual characteristics affect the membership of individual i in
segment s. For identification, the δ1 coefficients for the first segment are set to zero.

The likelihood function can be written as

P = ∏
i

πisPis, (16)

where Pis has the same form as Equations (10) and Equations (13) but is now class specific.

Random parameters (RP-LC) models

The random parameter specification of the LC models assumes that the structural parameters θ =
(β, αk, γk) are not necessarily fixed but have an assumed distribution (Bhat, 2008). In rmdcev, parame-
ters are distributed multivariate normal with a mean θ̄ and variance covariance matrix ∑θ (von Haefen
and Phaneuf, 2005). This structure allows for continuous preference heterogeneity and accommodates
more flexible correlation patterns between alternatives in a similar fashion to the mixed logit model in
discrete choice models. The σ scale parameter is always assumed to be a fixed parameter.

The most flexible model specification is to estimate the full variance covariance matrix and if there
are Q parameters in θ then there are Q(Q + 1)/2 unique variance covariance parameters to estimate
in the correlated RP-MDCEV specification. An alternative is to assume the off-diagonal parameters
are zero and estimate uncorrelated random parameters by estimating the Q diagonal elements of ∑θ .
If all elements of ∑θ are assumed to be zero, the model collapses to the fixed KT structures.

A note on Bayesian versus classical maximum likelihood estimation

The KT model without unobserved heterogeneity can be estimated using Bayesian or classical max-
imum likelihood techniques. The LC-KT model can only be estimated using classical maximum
likelihood techniques as Bayesian approaches are challenged by the ‘label switching’ problem (Jasra
et al., 2005). The RP-KT models can only be estimated using Bayesian techniques as random parameter
models require simulated maximum likelihood estimators and these are not implemented in rmdcev
at this time.

While there are philosophical differences between Bayesian and classical maximum likelihood
techniques to estimating models, the Bernstein-von Mises theorem suggests that the Bayesian posterior
distribution are asymptotically equivalent to maximum likelihood estimates if the data generating
process has been correctly specified (Train, 2009).

The rmdcev package

Data format

The rmdcev uses mdcev.data function for handling multiple discrete-continuous data while ensuring
the data is in the correct format and is suitable for estimation. The rmdcev package accepts data in
“long” format (i.e. one row per available non-numeraire alternative for each individual). There is no
row for the numeraire (i.e. outside) good. If there are I individuals and J non-numeraire alternatives,
then the data frame should have IxJ rows.

To illustrate the suitable form of the data, we can load the recreation data included with the rmdcev
package. This data is from the Canadian Nature Survey and includes choices for number of days
spent recreating in 17 different outdoor activities for 2,000 people (Federal, Provincial, and Territorial
Governments of Canada, 2014).

data(data_rec, package = "rmdcev")

Each recreation activity is characterized by the daily costs of participation for each individual. In
addition to the recreation behaviour and prices, the data includes information on three individual

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 271

characteristics: university (a dummy variable if the person has completed a university degree),
ageindex (a person’s age divided by the average age in sample), and urban (a dummy variable if a
person lives in an urban area). Additional details on the data and price construction are provided in
Lloyd-Smith (forthcoming). We can summarize the average consumption and price levels for each
alternative as:

aggregate(cbind(quant, price) ~ alt, data = data_rec, FUN = mean)

#> alt quant price
#> 1 beach 6.5375 53.18359
#> 2 birding 14.3835 44.01734
#> 3 camping 2.5125 61.38326
#> 4 cycling 9.4700 45.99470
#> 5 fish 3.3435 86.22383
#> 6 garden 21.5710 38.28073
#> 7 golf 4.0260 134.10374
#> 8 hiking 41.4150 37.53204
#> 9 hunt_birds 0.4855 111.00176
#> 10 hunt_large 0.9480 184.46812
#> 11 hunt_trap 0.6290 95.33228
#> 12 hunt_waterfowl 0.2085 159.66605
#> 13 motor_land 3.7040 123.10169
#> 14 motor_water 2.8390 139.63845
#> 15 photo 8.6415 67.13733
#> 16 ski_cross 2.6450 32.65243
#> 17 ski_down 1.2065 151.01398

The data can be transformed into the structure for MDCEV estimation using the mdcev.data
function:

data_mdcev <- mdcev.data(data_rec,
id.var = "id",
alt.var = "alt",
choice = "quant")

#> Sorting data by id.var then alt...
#> Checking data...
#> Data is good

The id.var argument indicates what variable uniquely identifies individuals in the data set,
alt.var indicates the variable that identifies the non-numeraire alternatives, and choice indicates
the level of consumption made by the individuals. Two other optional arguments of mdcev.data are
price and income indicating the individual-specific price levels for each alternative, and the income
level for each individual. These two arguments only need to be explicitly specified if they are not
labeled price and income. Alternative-specific attributes and individual-specific characteristics can be
included as additional columns and do not need to be specified in mdcev.data.

The mdcev.data function also checks to ensure the data has the necessary variables, and that all
individuals spend positive amounts on the numeraire good. If an individual does not have positive
expenditures on the numeraire good, an error message is given.

KT model estimation

A general overview of mdcev

The rmdcev

All the various KT model specifications are estimated using the mdcev function.

args(mdcev)

#> function (formula = NULL, data, weights = NULL, model = c("alpha",
#> "gamma", "hybrid", "hybrid0", "kt_ee"), n_classes = 1, fixed_scale1 = 0,
#> single_scale = 0, trunc_data = 0, psi_ascs = NULL, gamma_ascs = 1,
#> seed = "123", max_iterations = 2000, jacobian_analytical_grad = 1,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 272

#> initial.parameters = "random", hessian = TRUE, algorithm = c("MLE",
#> "Bayes"), flat_priors = NULL, print_iterations = TRUE,
#> prior_psi_sd = 10, prior_gamma_sd = 10, prior_phi_sd = 10,
#> prior_alpha_shape = 1, prior_scale_sd = 1, prior_delta_sd = 10,
#> gamma_nonrandom = 0, alpha_nonrandom = 0, std_errors = "deltamethod",
#> n_draws = 50, keep_loglik = 0, random_parameters = "fixed",
#> show_stan_warnings = TRUE, n_iterations = 200, n_chains = 4,
#> n_cores = 4, max_tree_depth = 10, adapt_delta = 0.8, lkj_shape_prior = 4,
#> ...)

The main arguments are briefly explained below:

• formula: Formula for the model to be estimated as described in the next section.
• data The (IxJ) data to be used in estimation as described above.
• weights An optional vector of length I of sampling or frequency weights.
• model A string indicating which model specification to estimate. The four options are presented

below:

– “alpha”: α-profile with all γk parameters fixed equal to 1 (Equation (6)).
– “gamma”: γ-profile with one estimated α1 and all non-numeraire αk parameters equal to

0 (Equation (7)).
– “hybrid”: hybrid-profile with a single estimated α parameter (i.e. α1 = αk = α) (Equation

(8)).
– “hybrid0”: hybrid-profile with all α parameters fixed equal to 1e-3 (Equation (8)).
– “kt_ee”: Environmental economics version of KT model (Equation (11)).

• n_classes The number of latent classes. Note that the LC model is automatically estimated as
long as the prespecified number of classes is set greater than 1.

• gamma_ascs Indicator to include alternative-specific gammas parameters.
• psi_ascs Whether to include alternative-specific psi parameters. The first alternative is used as

the reference category. Only specify to 1 for MDCEV models.
• fixed_scale1 Whether to fix the scale parameter at 1.
• trunc_data Whether the estimation should be adjusted for truncation of non-numeraire alterna-

tives. This option is useful if the data only includes individuals with positive non-numeraire
consumption levels such as recreation data collected on-site. To account for the truncation of
consumption, the likelihood is normalized by one minus the likelihood of observing zero con-
sumption for all non-numeraire alternatives (i.e. likelihood of positive consumption) following
Englin, Boxall and Watson (1998) and von Haefen (2003).

• seed Random seed.
• algorithm Either “Bayes” for Bayesian estimation or “MLE” for maximum likelihood estimation.

The MLE algorithm uses the Limited-memory BFGS which approximates the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm but uses less computer memory.

• flat_priors indicator if completely uninformative priors should be specified. Defaults to 1 if
MLE used and 0 if Bayes used. If using MLE and set flat_priors = 0, penalized MLE is used and
the optimizing objective is augmented with the priors.

• print_iterations Whether to print intermediate iteration information or not.
• std_errors Compute standard errors using the delta method (“deltamethod”) or multivariate

normal draws (“mvn”). The default is “deltamethod”. Note that mvn parameter draws should
be used to incorporate parameter uncertainty for demand and welfare simulation. For maximum
likelihood estimation only.

• n_draws The number of multivariate normal draws for standard error calculations if “mvn” is
specified.

• initial.parameters The default for fixed and random parameter specifications is to use ran-
dom starting values (except for the scale parameter with a starting value set to 1). For LC
models, the default is to use slightly adjusted MLE point estimates from the single class model.
Initial parameter values should be included in a named list. For example, the LC “hybrid”
specification initial parameters can be specified as:

initial.parameters = list(psi = array(0, dim = c(K, num_psi)),
gamma = array(1, dim = c(K, num_alt)),
alpha = array(0.5, dim = c(K, 1)),
scale = array(1, dim = c(K)))

where K is the number of classes (i.e. K = 1 is used for single class models), num_psi is number
of psi parameters, and num_alt is number of non-numeraire alternatives.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 273

Formula format

The formula is used to incorporate alternative-specific variables and individual-specific characteristics
into the ψk parameters, the membership equation of the LC-KT models, and φk parameters for the
KT-EE specification. By default, alternative-specific constants (ASCs) for all non-numeraire alternatives
are included in the ψk and γk parameters. For the ψk, the first ASC is fixed at 0 due to identification
concerns. They can be omitted using the psi_ascs = 0 and gamma_ascs = 0 arguments. Furthermore,
the γk, αk, and σ parameters cannot include alternative- or individual specific variables besides ASCs.

The formula is divided in three parts, separated by the symbol | and is based on the R package
Formula (Zeileis and Croissant, 2010). The first part is reserved for the zk variables in ψk as in
Equation (5), excluding ASCs. These can include alternative-specific and individual-specific variables.
Interaction terms between variables can be included using the normal Formula syntax of z1:z2. This
is particularly useful for creating interaction terms to incorporate observed preference heterogeneity
for alternative-specific variables and individual-specific characteristics.

For a model with only ASCs in ψk, the formula can be specified as

f1 = ~ 0

We can add individual-specific variables to the ψk parameters as follows

f2 = ~ university + ageindex

Alternative-specific variables such as z1 and z2 can be included in the same way such as

f2 = ~ z1 + z2

The second part corresponds to individual-specific characteristics that enter in the probability
assignment in models with latent classes. The formula will automatically include a constant in the
membership equation but this can be omitted if -1 is used in the formula. For example, a LC model
with no alternative-specific variables in the psik parameters and university, ageindex and a constant
determine the class membership can be specified as

f3 = ~ 0 | university + ageindex

The third part is reserved for the qk variables included in the φk parameters in the KT-EE model
specification ((Equation 11)). For example, if there was an alternative-specific variable named ‘q1’, it
can be included as below

f4 = ~ 0 | 0 | q1

Estimating KT models using maximum likelihood techniques

We estimate a KT model by first calling mdcev.data on the Recreation data. For these examples we
are going to use a subset of 200 individuals from the data.

data_model <- mdcev.data(data_rec, subset = id <= 200,
id.var = "id",
alt.var = "alt",
choice = "quant")

#> Sorting data by id.var then alt...
#> Checking data...
#> Data is good

We might think that older people prefer gardening to other activities and so we can include an
interaction term between the activity garden and the variable ageindex. There are no alternative-
specific variables besides constant terms to include in ψ and therefore the formula can be specified
as

data_model$age_garden = ifelse(data_model$alt == "garden",
data_model$ageindex,0)

f5 = ~ age_garden

We specify the γ-profile of the MDCEV model specification where a single α1 is estimated for the
numeraire alternative and all non-numeraire alternatives are fixed at zero by setting model = "gamma".
We use maximum likelihood estimation by setting algorithm = "MLE".

The syntax for the model is the following:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Formula

CONTRIBUTED RESEARCH ARTICLE 274

mdcev_mle <- mdcev(~ age_garden,
data = data_model,
model = "gamma",
algorithm = "MLE",
print_iterations = FALSE)

#> Using MLE to estimate KT model

Setting print_iterations = TRUE will print out intermediate iteration results as the model
converges.

The output of the function can be accessed by calling summary.

summary(mdcev_mle)

#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : MLE
#> Model type : gamma specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 36
#> LL : -5119.11
#> AIC : 10310.21
#> BIC : 10428.95
#> Standard errors calculated using : Delta method
#> Exit of MLE : successful convergence
#> Time taken (hh:mm:ss) : 00:00:0.5
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03
#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>
#> Parameter estimates --------------------------------
#> Estimate Std.err z.stat
#> psi_birding -0.762 0.113 -6.75
#> psi_camping -0.534 0.115 -4.64
#> psi_cycling -0.455 0.110 -4.13
#> psi_fish -0.162 0.116 -1.39
#> psi_garden -0.537 0.176 -3.05
#> psi_golf 0.553 0.112 4.94
#> psi_hiking -0.039 0.107 -0.36
#> psi_hunt_birds -1.034 0.194 -5.33
#> psi_hunt_large -0.234 0.160 -1.46
#> psi_hunt_trap -1.280 0.208 -6.16
#> psi_hunt_waterfowl -0.886 0.254 -3.49
#> psi_motor_land 0.119 0.126 0.94
#> psi_motor_water 0.458 0.115 3.98
#> psi_photo 0.011 0.105 0.11
#> psi_ski_cross -1.164 0.122 -9.54
#> psi_ski_down 0.229 0.134 1.71
#> psi_age_garden 0.513 0.155 3.31
#> gamma_beach 8.662 1.457 5.95
#> gamma_birding 22.366 4.945 4.52
#> gamma_camping 7.546 1.482 5.09
#> gamma_cycling 16.182 3.115 5.19
#> gamma_fish 11.831 2.277 5.20
#> gamma_garden 17.763 2.711 6.55
#> gamma_golf 11.082 2.393 4.63
#> gamma_hiking 17.467 2.872 6.08

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 275

#> gamma_hunt_birds 9.669 3.688 2.62
#> gamma_hunt_large 12.561 3.589 3.50
#> gamma_hunt_trap 12.714 5.656 2.25
#> gamma_hunt_waterfowl 7.739 4.167 1.86
#> gamma_motor_land 16.277 4.009 4.06
#> gamma_motor_water 11.247 2.352 4.78
#> gamma_photo 14.478 2.635 5.49
#> gamma_ski_cross 10.365 2.387 4.34
#> gamma_ski_down 9.051 2.403 3.77
#> alpha_num 0.667 0.008 83.43
#> scale 0.607 0.027 22.47
#> Note: All non-numeraire alpha's fixed to 0.

The summary includes overall model and estimation information and the parameter estimates.
All parameters have been transformed to their original form.5 Interpreting the parameter estimates of
KT models directly is challenging due to the non-linearities implied by the utility function and the
partial confounding of αk and γk parameters (see Bhat (2008) for a in-depth discussion). Examining
the ψk parameters first which represent the marginal utility when consumption is zero, we can see
that relative to the beach recreation activity (i.e. the omitted reference category), hunting and trapping
and cross country skiing have the largest negative ASCs suggesting these activities are less preferred
starting from zero consumption levels. The interaction parameter between age and gardening is
positive and significant suggesting that older people gain a higher utility from gardening compared
to younger people. Because all non-numeraire α parameters are fixed at zero, the γk parameters can
be interpreted as capturing satiation and these satiation effects are lowest for the activities with the
highest γk parameter values such as birding, cycling, and motorized land vehicles. The α1 is estimated
to be less than 1 which also implies satiation in the numeraire good. Bhat (2008); Lloyd-Smith et al.
(2019) provide empirical applications of this model.

In the next example, we estimate the α-profile of the MDCEV utility function by changing the
model argument to "alpha".

mdcev_mle <- mdcev(~ age_garden,
data = data_model,
model = "alpha",
algorithm = "MLE",
print_iterations = FALSE)

summary(mdcev_mle)
#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : MLE
#> Model type : alpha specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 36
#> LL : -5354.33
#> AIC : 10780.67
#> BIC : 10899.41
#> Standard errors calculated using : Delta method
#> Exit of MLE : successful convergence
#> Time taken (hh:mm:ss) : 00:00:0.59
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03
#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>

5γk = exp(γ∗k), α1 = exp(α∗1)/(1 + exp(α∗1)), and σ = exp(σ∗), where γ∗k , α∗1 , and σ∗ are estimated but the
transformed parameters are returned to users.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 276

#> Parameter estimates --------------------------------
#> Estimate Std.err z.stat
#> psi_birding -0.821 0.115 -7.13
#> psi_camping -0.582 0.117 -4.97
#> psi_cycling -0.501 0.111 -4.51
#> psi_fish -0.208 0.117 -1.78
#> psi_garden -0.481 0.176 -2.73
#> psi_golf 0.492 0.114 4.32
#> psi_hiking 0.127 0.109 1.17
#> psi_hunt_birds -1.121 0.199 -5.64
#> psi_hunt_large -0.309 0.164 -1.88
#> psi_hunt_trap -1.359 0.213 -6.38
#> psi_hunt_waterfowl -0.976 0.261 -3.74
#> psi_motor_land 0.040 0.129 0.31
#> psi_motor_water 0.396 0.117 3.38
#> psi_photo -0.031 0.105 -0.29
#> psi_ski_cross -1.229 0.125 -9.83
#> psi_ski_down 0.158 0.138 1.14
#> psi_age_garden 0.494 0.156 3.17
#> alpha_num 0.658 0.008 82.21
#> alpha_beach 0.593 0.040 14.82
#> alpha_birding 0.720 0.038 18.94
#> alpha_camping 0.596 0.049 12.16
#> alpha_cycling 0.700 0.039 17.94
#> alpha_fish 0.660 0.043 15.34
#> alpha_garden 0.647 0.030 21.55
#> alpha_golf 0.669 0.045 14.87
#> alpha_hiking 0.595 0.030 19.82
#> alpha_hunt_birds 0.665 0.090 7.39
#> alpha_hunt_large 0.701 0.068 10.31
#> alpha_hunt_trap 0.710 0.094 7.55
#> alpha_hunt_waterfowl 0.651 0.132 4.93
#> alpha_motor_land 0.721 0.048 15.02
#> alpha_motor_water 0.663 0.047 14.12
#> alpha_photo 0.680 0.037 18.37
#> alpha_ski_cross 0.661 0.051 12.97
#> alpha_ski_down 0.658 0.060 10.97
#> scale 0.602 0.034 17.71
#> Note: All non-numeraire gamma's fixed to 1.

Estimating alternative-specific αk parameters and fixing all the non-numeraire γ parameters at 1,
allows us to see the heterogeneity in αk parameters across recreation activities.

The hybrid model specification of the MDCEV model where a single α is estimated for the
numeraire and non-numeraire alternatives can be estimated by setting model = "hybrid" as the next
example demonstrates.

mdcev_mle <- mdcev(~ age_garden,
data = data_model,
model = "hybrid",
algorithm = "MLE",
print_iterations = FALSE)

#> Using MLE to estimate KT model

summary(mdcev_mle)

#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : MLE
#> Model type : hybrid specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 36
#> LL : -5230.91
#> AIC : 10533.81

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 277

#> BIC : 10652.55
#> Standard errors calculated using : Delta method
#> Exit of MLE : successful convergence
#> Time taken (hh:mm:ss) : 00:00:0.6
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03
#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>
#> Parameter estimates --------------------------------
#> Estimate Std.err z.stat
#> psi_birding -0.783 0.081 -9.67
#> psi_camping -0.570 0.082 -6.95
#> psi_cycling -0.488 0.078 -6.25
#> psi_fish -0.206 0.083 -2.48
#> psi_garden -0.580 0.128 -4.53
#> psi_golf 0.565 0.080 7.06
#> psi_hiking -0.285 0.076 -3.75
#> psi_hunt_birds -0.832 0.137 -6.08
#> psi_hunt_large -0.095 0.113 -0.84
#> psi_hunt_trap -1.029 0.146 -7.05
#> psi_hunt_waterfowl -0.524 0.178 -2.94
#> psi_motor_land 0.172 0.090 1.91
#> psi_motor_water 0.449 0.082 5.48
#> psi_photo -0.103 0.074 -1.39
#> psi_ski_cross -1.112 0.087 -12.78
#> psi_ski_down 0.345 0.095 3.63
#> psi_age_garden 0.312 0.112 2.79
#> gamma_beach 2.198 0.446 4.93
#> gamma_birding 5.722 1.484 3.86
#> gamma_camping 2.669 0.649 4.11
#> gamma_cycling 5.745 1.307 4.40
#> gamma_fish 4.162 1.007 4.13
#> gamma_garden 4.776 0.910 5.25
#> gamma_golf 3.446 0.873 3.95
#> gamma_hiking 3.315 0.719 4.61
#> gamma_hunt_birds 3.719 1.704 2.18
#> gamma_hunt_large 5.533 1.922 2.88
#> gamma_hunt_trap 4.605 2.446 1.88
#> gamma_hunt_waterfowl 3.227 2.029 1.59
#> gamma_motor_land 5.691 1.642 3.47
#> gamma_motor_water 3.941 1.011 3.90
#> gamma_photo 4.723 1.012 4.67
#> gamma_ski_cross 3.593 0.994 3.61
#> gamma_ski_down 3.265 1.027 3.18
#> alpha 0.648 0.005 129.53
#> scale 0.431 0.014 30.78
#> Note: Alpha parameter is equal for all alternatives.

The same number of parameters are estimated in all three models and the log-likelihood is highest
for the γ-profile specification. The ease of estimating different MDCEV model specifications can
be used to compare models quickly and help the analyst pick their preferred specification for each
empirical application.

We can also estimate the KT-EE specification by changing the formula call and the model call to
"kt_ee".

kt_mle <- mdcev(~ age_garden | 0 | 0,
data = data_model,
model = "kt_ee",

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 278

algorithm = "MLE",
print_iterations = FALSE)

summary(kt_mle)

#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : MLE
#> Model type : kt_ee specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 20
#> LL : -5360.46
#> AIC : 10760.93
#> BIC : 10826.89
#> Standard errors calculated using : Delta method
#> Exit of MLE : successful convergence
#> Time taken (hh:mm:ss) : 00:00:0.27
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03
#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>
#> Parameter estimates --------------------------------
#> Estimate Std.err z.stat
#> psi_age_garden 0.395 0.110 3.59
#> gamma_beach 10.552 1.083 9.74
#> gamma_birding 22.278 2.485 8.97
#> gamma_camping 16.210 1.778 9.12
#> gamma_cycling 16.247 1.744 9.32
#> gamma_fish 12.245 1.360 9.00
#> gamma_garden 16.651 2.167 7.68
#> gamma_golf 6.241 0.700 8.92
#> gamma_hiking 11.918 1.322 9.02
#> gamma_hunt_birds 25.826 4.427 5.83
#> gamma_hunt_large 13.803 2.020 6.83
#> gamma_hunt_trap 32.843 6.100 5.38
#> gamma_hunt_waterfowl 24.635 5.550 4.44
#> gamma_motor_land 10.405 1.282 8.12
#> gamma_motor_water 7.117 0.812 8.76
#> gamma_photo 11.160 1.184 9.43
#> gamma_ski_cross 28.693 3.201 8.96
#> gamma_ski_down 8.405 1.065 7.89
#> alpha_num 0.475 0.007 67.92
#> scale 0.713 0.025 28.53

This model does not include ASCs in the psik parameters due to concerns about weak complemen-
tarity.

Estimating KT models using Bayesian techniques

The exact same models can be fit using Bayesian estimation by changing the algorithm call to "Bayes".
Bayesian estimation is implemented using the Stan programming language (Carpenter et al., 2017).
The Bayesian framework requires careful choice of priors for the parameters, especially in data sparse
contexts. The specific prior distributions for the fixed parameter specifications is presented below. The
user has the ability to change the standard deviation and shape of these priors through these options
in the mdcev function:

• prior_psi_sd standard deviation for normal prior with mean 0.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 279

• prior_phi_sd standard deviation for normal prior with mean 0.
• prior_gamma_sd standard deviation for half-normal prior with mean 1.
• prior_alpha_shape shape parameter for beta distribution.
• prior_scale_sd standard deviation for half-normal prior with mean 0.

For the random parameter model specifications, the priors for the means of all random parameters
follow a normal distribution with mean 0 on the unconstrained space.

There are also a number of further options for Bayesian estimation. For example, the number
of iterations (n_iterations), number of chains (n_chains), and number of cores (n_cores) for parallel
implementation of the chains can also be chosen. The full set of options for Bayesian estimation are
presented below.

• random_parameters The form of the covariance matrix for the parameters. Options are

– ‘fixed’ for no random parameters,
– ’uncorr for uncorrelated random parameters, or
– ‘corr’ for correlated random parameters.

• n_iterations The number of iterations to use in Bayesian estimation. The default is for the
number of iterations to be split evenly between warmup and posterior draws. The number of
warmup draws can be directly controlled using the warmup argument (see rstan::sampling)

• n_chains The number of independent Markov chains in Bayesian estimation.

• n_cores The number of cores used to execute the Markov chains in parallel in Bayesian estima-
tion. Can set using options(mc.cores = parallel::detectCores()).

• lkj_shape_prior Prior for Cholesky matrix for correlated random parameters.

In this example, we estimate the γ-profile of the MDCEV specification using Bayesian techniques.
We set the number of iterations to 200 and use 4 independent chains across 4 cores.

mdcev_bayes <- mdcev(~ age_garden,
data = data_model,
model = "gamma",
algorithm = "Bayes",
n_iterations = 200,
n_chains = 4,
n_cores = 4,
print_iterations = FALSE)

The output of the function can be accessed by calling summary.

summary(mdcev_bayes)

#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : Bayes
#> Model type : gamma specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 36
#> LL : -5137.78
#> Number of chains : 4
#> Number of warmup draws per chain : 100
#> Total post-warmup sample : 400
#> Time taken (hh:mm:ss) : 00:00:41
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03
#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 280

#> Parameter estimates --------------------------------
#> Estimate Std.dev z.stat n_eff Rhat
#> psi_birding -0.789 0.113 -7.00 255 0.99
#> psi_camping -0.574 0.123 -4.67 258 1.01
#> psi_cycling -0.489 0.118 -4.16 276 1.00
#> psi_fish -0.206 0.123 -1.68 157 1.01
#> psi_garden -0.562 0.196 -2.86 347 1.01
#> psi_golf 0.501 0.134 3.74 201 1.01
#> psi_hiking 0.025 0.117 0.21 429 1.00
#> psi_hunt_birds -1.159 0.200 -5.80 235 1.01
#> psi_hunt_large -0.344 0.179 -1.91 189 1.02
#> psi_hunt_trap -1.436 0.245 -5.87 271 1.00
#> psi_hunt_waterfowl -1.098 0.291 -3.77 187 1.00
#> psi_motor_land 0.060 0.136 0.44 301 1.00
#> psi_motor_water 0.420 0.125 3.37 277 1.00
#> psi_photo -0.010 0.125 -0.08 312 1.00
#> psi_ski_cross -1.222 0.135 -9.06 207 1.01
#> psi_ski_down 0.153 0.147 1.04 362 1.00
#> psi_age_garden 0.563 0.175 3.22 481 1.00
#> gamma_beach 8.013 1.362 5.88 261 1.01
#> gamma_birding 17.715 3.298 5.37 516 1.00
#> gamma_camping 7.128 1.347 5.29 459 1.00
#> gamma_cycling 14.506 2.756 5.26 614 1.00
#> gamma_fish 11.002 2.110 5.21 636 1.00
#> gamma_garden 15.587 2.546 6.12 685 0.99
#> gamma_golf 10.145 2.029 5.00 399 1.00
#> gamma_hiking 15.158 2.444 6.20 687 1.00
#> gamma_hunt_birds 9.479 3.372 2.81 254 1.00
#> gamma_hunt_large 11.702 3.016 3.88 320 1.01
#> gamma_hunt_trap 11.582 3.582 3.23 252 1.01
#> gamma_hunt_waterfowl 8.269 3.551 2.33 141 1.01
#> gamma_motor_land 14.258 3.252 4.39 511 1.00
#> gamma_motor_water 10.392 2.260 4.60 485 1.00
#> gamma_photo 13.013 2.398 5.43 595 0.99
#> gamma_ski_cross 9.652 2.310 4.18 527 1.00
#> gamma_ski_down 8.814 2.344 3.76 357 1.00
#> alpha_num 0.668 0.008 82.15 296 1.00
#> scale 0.654 0.029 22.75 187 1.01
#> Note: All non-numeraire alpha's fixed to 0.
#> Note from Rstan: 'For each parameter, n_eff is a crude measure of effective sample
#> size, and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1)'

Comparing these parameter values to the maximum likelihood estimates of the γ-profile MDCEV
specification, the values are quite similar. As the data set is rather small with only 200 individuals, the
priors play a role in reducing the estimates closer to 1 for the γk, but this role will lessen in larger data
applications.

One benefit of using the Bayesian approach is that one can take advantage of the postestimation
commands, interactive diagnostics, and posterior analysis in rstan, bayesplot (Gabry et al., 2019), and
shinystan (Muth et al., 2018). For example, the effective sample size reports the estimated number
of independent draws from the posterior distribution for each parameter (Stan Development Team,
2019). The interested reader is referred to these packages for additional details.

Estimating LC-KT models

In this example, we estimate a LC-KT model using the Recreation data. We set the number of classes
equal to 2 and we use data on 1000 individuals. We would like to include the university, ageindex,
and urban in the membership equation and we include them in the formula interface. The constant
for the membership equation is included automatically. The LC model is automatically estimated as
long as the prespecified number of classes (n_classes) is set greater than 1. The scale parameters are
fixed at 1 using fixed_scale1 = 1.

data_model <- mdcev.data(data_rec, subset = id <= 1000,
id.var = "id",

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=rstan
https://mc-stan.org/bayesplot/
https://CRAN.R-project.org/package=bayesplot
http://mc-stan.org/shinystan/
https://CRAN.R-project.org/package=shinystan

CONTRIBUTED RESEARCH ARTICLE 281

alt.var = "alt",
choice = "quant")

mdcev_lc <- mdcev(~ 0 | university + ageindex + urban,
data = data_model,
n_classes = 2,
model = "gamma",
fixed_scale1 = 1,
algorithm = "MLE",
print_iterations = FALSE)

summary(mdcev_lc)
#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : MLE
#> Model type : gamma specification
#> Number of classes : 2
#> Number of individuals : 1000
#> Number of non-numeraire alts : 17
#> Estimated parameters : 72
#> LL : -23298.65
#> AIC : 46741.3
#> BIC : 47094.66
#> Standard errors calculated using : Delta method
#> Exit of MLE : successful convergence
#> Time taken (hh:mm:ss) : 00:00:11.39
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling
#> 6.44 14.34 2.31 8.06
#> fish garden golf hiking
#> 3.15 21.61 4.45 40.03
#> hunt_birds hunt_large hunt_trap hunt_waterfowl
#> 0.49 1.01 0.59 0.20
#> motor_land motor_water photo ski_cross
#> 4.03 2.96 9.00 2.48
#> ski_down
#> 1.18
#>
#>
#> Class average probabilities:
#> class1 class2
#> 0.86 0.14
#> Parameter estimates --------------------------------
#> Estimate Std.err z.stat
#> class1.psi_birding -1.268 0.095 -13.35
#> class2.psi_birding -1.178 0.095 -12.40
#> class1.psi_camping -0.948 0.089 -10.65
#> class2.psi_camping -0.646 0.117 -5.52
#> class1.psi_cycling -0.754 0.080 -9.42
#> class2.psi_cycling -1.094 0.099 -11.05
#> class1.psi_fish -1.075 0.085 -12.64
#> class2.psi_fish 1.179 0.546 2.16
#> class1.psi_garden 0.032 0.656 0.05
#> class2.psi_garden -0.200 1.491 -0.13
#> class1.psi_golf -0.122 0.549 -0.22
#> class2.psi_golf 0.406 0.118 3.44
#> class1.psi_hiking 0.444 0.111 4.00
#> class2.psi_hiking 0.201 0.086 2.34
#> class1.psi_hunt_birds -4.348 0.103 -42.21
#> class2.psi_hunt_birds 0.298 0.111 2.69
#> class1.psi_hunt_large -3.783 0.249 -15.19
#> class2.psi_hunt_large 1.295 0.235 5.51
#> class1.psi_hunt_trap -6.475 0.253 -25.59

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 282

#> class2.psi_hunt_trap -0.570 0.224 -2.55
#> class1.psi_hunt_waterfowl -4.140 0.217 -19.08
#> class2.psi_hunt_waterfowl -0.328 0.234 -1.40
#> class1.psi_motor_land -0.776 0.212 -3.66
#> class2.psi_motor_land 1.147 0.229 5.01
#> class1.psi_motor_water -0.397 0.233 -1.70
#> class2.psi_motor_water 1.399 0.246 5.69
#> class1.psi_photo -0.207 0.266 -0.78
#> class2.psi_photo -0.653 0.221 -2.95
#> class1.psi_ski_cross -1.772 0.209 -8.48
#> class2.psi_ski_cross -1.288 0.247 -5.21
#> class1.psi_ski_down -0.473 0.245 -1.93
#> class2.psi_ski_down -0.388 0.282 -1.38
#> class1.gamma_beach 4.112 0.372 11.05
#> class2.gamma_beach 6.337 0.850 7.45
#> class1.gamma_birding 15.129 1.727 8.76
#> class2.gamma_birding 7.732 0.833 9.28
#> class1.gamma_camping 3.497 0.520 6.73
#> class2.gamma_camping 7.827 0.650 12.04
#> class1.gamma_cycling 9.862 1.299 7.59
#> class2.gamma_cycling 13.344 1.185 11.26
#> class1.gamma_fish 4.854 3.539 1.37
#> class2.gamma_fish 3.496 2.701 1.29
#> class1.gamma_garden 9.858 16.725 0.59
#> class2.gamma_garden 8.924 7.287 1.22
#> class1.gamma_golf 7.178 1.151 6.24
#> class2.gamma_golf 4.562 0.662 6.89
#> class1.gamma_hiking 7.107 0.705 10.08
#> class2.gamma_hiking 10.823 1.472 7.35
#> class1.gamma_hunt_birds 2.989 0.445 6.72
#> class2.gamma_hunt_birds 2.673 0.639 4.18
#> class1.gamma_hunt_large 4.752 1.764 2.69
#> class2.gamma_hunt_large 3.361 0.924 3.64
#> class1.gamma_hunt_trap 0.975 0.305 3.20
#> class2.gamma_hunt_trap 5.343 1.146 4.66
#> class1.gamma_hunt_waterfowl 3.842 0.910 4.22
#> class2.gamma_hunt_waterfowl 3.626 1.017 3.57
#> class1.gamma_motor_land 5.807 1.331 4.36
#> class2.gamma_motor_land 7.884 1.757 4.49
#> class1.gamma_motor_water 3.894 0.817 4.77
#> class2.gamma_motor_water 5.414 1.523 3.55
#> class1.gamma_photo 6.970 2.271 3.07
#> class2.gamma_photo 7.877 1.674 4.71
#> class1.gamma_ski_cross 4.951 1.039 4.77
#> class2.gamma_ski_cross 4.932 1.480 3.33
#> class1.gamma_ski_down 3.887 1.107 3.51
#> class2.gamma_ski_down 4.667 1.677 2.78
#> class1.alpha_num 0.679 0.006 113.18
#> class2.alpha_num 0.676 0.017 39.78
#> class2.(Intercept) -1.187 0.366 -3.24
#> class2.university -0.506 0.257 -1.97
#> class2.ageindex 0.129 0.281 0.46
#> class2.urban -0.752 0.260 -2.89
#> Note: Scale parameter fixed to 1.
#> Note: All non-numeraire alpha's fixed to 0.
#> Note: The membership equation parameters for class 1 are normalized to 0.

In this LC example, we assume that there are two types of people that have different preferences
for recreation. The probability of class assignment depends on unobserved factors and the three
sociodemographic factors included in the membership equation with only urban having a statistically
significant effect on class probability. People living in urban areas are less likely to be in class 2. The
summary output reports the average class probabilities as being 85% for class 1 and 15% for class 2.
The ψ parameters across classes are similar although there are some noticeable differences such as the
hunting and trapping preferences. The γ parameters, on the other hand, show that satiation between

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 283

classes is quite different. Sobhani et al. (2013); Kuriyama et al. (2010) provide empirical applications of
these models.

If initial.parameter are not provided, the default is to use slightly adjusted parameter estimates
of the MDCEV model as starting values when estimating the LC-MDCEV model to assist speed and
convergence issues.6 The MDCEV model output can be accessed from mdcev_lc[["mdcev_fit"]]
object for comparison.

Estimating RP-KT models

Random parameter models require defining and parameterizing the variance covariance matrix.
For uncorrelated random parameters, the diagonal elements of the variance covariance matrix are
estimated and the off-diagonal elements are assumed to be zero. For correlated random parameters,
the variance covariance matrix is fully estimated and can be parameterized in many ways. The rmdcev
package defines the variance covariance matrix in terms of Cholesky factors of the correlation matrix
and a vector of standard deviations for numerical stability. Thus the variance covariance matrix is
specified as

∑ = diag(τ) x LLT x diag(τ), (17)

where τ is a vector of standard deviations, and L is the cholesky factors of the correlation matrix.

In this example, we estimate an uncorrelated random parameters γ-specification of the MDCEV
model without any ψk parameters. We set the argument random_parameters = "uncorr" to indicate
that uncorrelated random parameters will be estimated. As noted earlier, all random parameters
follow a normal distribution. We change the psi_ascs = 0 to omit the ASCs in the ψk parameters.

data_model <- mdcev.data(data_rec, subset = id <= 200,
id.var = "id",
alt.var = "alt",
choice = "quant")

mdcev_rp <- mdcev(~ 0,
data = data_model,
model = "gamma",
algorithm = "Bayes",
n_chains = 4,
psi_ascs = 0,
fixed_scale1 = 1,
n_iterations = 200,
random_parameters = "uncorr",
print_iterations = FALSE)

summary(mdcev_rp)

#> Model run using rmdcev for R, version 1.2.4
#> Estimation method : Bayes
#> Model type : gamma specification
#> Number of classes : 1
#> Number of individuals : 200
#> Number of non-numeraire alts : 17
#> Estimated parameters : 36
#> LL : -5363.25
#> Random parameters : uncorrelated random parameters
#> Number of chains : 4
#> Number of warmup draws per chain : 100
#> Total post-warmup sample : 400
#> Time taken (hh:mm:ss) : 00:01:51.2
#>
#> Average consumption of non-numeraire alternatives:
#> beach birding camping cycling fish
#> 6.70 12.75 2.60 7.89 4.00
#> garden golf hiking hunt_birds hunt_large
#> 23.18 5.42 41.62 0.58 1.03

6In particular, the estimated ψk and γk parameters from the MDCEV model are randomly adjusted by 0.02.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 284

#> hunt_trap hunt_waterfowl motor_land motor_water photo
#> 0.80 0.24 5.92 3.53 11.00
#> ski_cross ski_down
#> 3.12 1.85
#>
#> Parameter estimates --------------------------------
#> Estimate Std.dev z.stat n_eff Rhat
#> gamma_beach 5.678 1.066 5.32 302 1.00
#> gamma_birding 8.121 1.925 4.22 472 0.99
#> gamma_camping 3.791 0.812 4.67 463 1.00
#> gamma_cycling 8.235 1.615 5.10 416 0.99
#> gamma_fish 7.203 1.788 4.03 543 1.00
#> gamma_garden 12.485 1.889 6.61 362 0.99
#> gamma_golf 6.480 1.464 4.43 319 1.00
#> gamma_hiking 15.217 2.411 6.31 525 1.00
#> gamma_hunt_birds 4.108 2.014 2.04 341 1.01
#> gamma_hunt_large 7.419 2.542 2.92 352 1.00
#> gamma_hunt_trap 5.671 4.956 1.14 423 1.00
#> gamma_hunt_waterfowl 5.014 7.314 0.69 388 1.00
#> gamma_motor_land 8.620 2.381 3.62 526 1.00
#> gamma_motor_water 6.577 1.421 4.63 390 1.00
#> gamma_photo 8.662 1.777 4.88 197 1.04
#> gamma_ski_cross 3.333 0.785 4.25 440 1.00
#> gamma_ski_down 4.916 1.621 3.03 456 1.00
#> alpha_num 0.725 0.008 94.68 459 1.00
#> sd.gamma_beach 1.239 0.222 5.58 319 1.01
#> sd.gamma_birding 1.894 0.665 2.85 179 1.03
#> sd.gamma_camping 1.254 0.254 4.94 326 1.00
#> sd.gamma_cycling 1.293 0.262 4.93 404 1.00
#> sd.gamma_fish 1.268 0.234 5.43 640 1.00
#> sd.gamma_garden 1.262 0.234 5.40 268 1.02
#> sd.gamma_golf 1.532 0.453 3.38 306 0.99
#> sd.gamma_hiking 1.319 0.261 5.05 200 1.00
#> sd.gamma_hunt_birds 1.764 0.963 1.83 551 1.01
#> sd.gamma_hunt_large 1.418 0.445 3.19 840 0.99
#> sd.gamma_hunt_trap 2.359 2.573 0.92 362 1.00
#> sd.gamma_hunt_waterfowl 3.875 12.454 0.31 312 1.02
#> sd.gamma_motor_land 1.502 0.456 3.29 334 1.00
#> sd.gamma_motor_water 1.420 0.335 4.24 398 1.00
#> sd.gamma_photo 1.311 0.272 4.82 455 0.99
#> sd.gamma_ski_cross 1.439 0.367 3.92 276 1.00
#> sd.gamma_ski_down 1.569 0.544 2.88 419 1.00
#> sd.alpha_num 0.514 0.010 51.01 183 1.02
#> Note: Scale parameter fixed to 1.
#> Note: All non-numeraire alpha's fixed to 0.
#> Note from Rstan: 'For each parameter, n_eff is a crude measure of effective sample
#> size, and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1)'

The results show the means of the random parameters followed by the estimated standard devia-
tions. The standard deviations that are estimated to be different from zero suggest there is heterogeneity
in preference parameters. The correlated random parameters specification can be estimated by setting
random_parameters = "corr". Bhat and Sen (2006) provide an empirical application of this type of
model.

Computational and estimation issues

KT models are notoriously tricky to estimate relative to standard discrete choice models. This section
provides some guidance for estimating these models and common convergence issues:

• Starting values: Model parameter estimates can be sensitive to starting values, especially the
more complex LC-KT specification. Users should use several different initial parameter values
for model estimation to ensure robust results and a global maxima is found rather than a local
maxima. The default behaviour for LC-KT models is to use KT parameters as starting values.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 285

In practice the author has found this to be quite effective at finding global maxima. However,
users are encouraged to use random starting values as a robustness check.

• Identification issues: Depending on the model specification and included variables the model
may not be properly identified. If you receive an error such as Error in chol.default(-H)
: the leading minor of order 9 is not positive definite or In sqrt(diag(cov_mat))
: NaNs produced, this usually suggests an identification issue. Users should double check all
variables included in the model are appropriate. One solution is to start with a simpler model
first and then slowly add variables to help locate any problematic variables.

• Parameter estimates near boundaries: Interpret models with parameter estimates that are near
the boundaries (e.g. α close to 1) with caution. Users are recommended to re-estimate the model
with starting values far from this boundary.

• Bayesian estimation: For models estimated using Bayesian estimation, users should consult
the rstan User Guide for additional guidance on model estimation options and postestima-
tion checks (Stan Development Team, 2019). Additional information is available by typing
help(rstan).

Simulating KT demand and welfare scenarios

The rmdcev package includes simulation functions for calculating welfare measures and forecasting
demand under alternative policy scenarios. The overall approach used for simulation is first introduced
and then code examples are given.

Overview of simulation steps

Once the model parameters are estimated, there are two steps to simulation in KT models. In the
first step we draw simulated values for the unobserved heterogeneity term (ε) using Monte Carlo
techniques. The second step uses these error draws, the previously estimated model parameters, and
the underlying data to calculate Marshallian demands for forecasting or Hicksian demands for welfare
analysis. These two steps are described below.

Step 1: simulating unobserved heterogeneity

Monte Carlo simulation techniques can be employed to draw simulated values of the unobserved
heterogeneity (ε) using either unconditional or conditional draws.

1. Unconditional error draws: draw from the entire distribution of unobserved heterogeneity
using the following formula

εk = −log(−log(draw(0, 1))) ∗ σ, (18)

where draw(0, 1) is a draw between 0 and 1 and σ is the scale parameter. rmdcev allows errors
to be drawn using uniform draws or the Modified Latin Hypercube Sampling algorithm (Hess et al.,
2006).

2. Conditional error draws: draw errors terms to reflect behaviour and dependent on whether
alternative is consumed or not (von Haefen, 2003; von Haefen et al., 2004):

• If xk > 0, set εk = (V1 − Vk)/σ for the MDCEV specifications where V1 and Vk depend on
the model specification as detailed above. If using the environmental economics KT model
specification (“kt_ee”), set εk = gk(.) from Equation (12).

• If xk = 0, εk < (V1−Vk)/σ and simulate εk from the truncated type I extreme value distribution
such that

εk = −log(−log(draw(0, 1) ∗ exp(−exp(
V1 −Vk

σ
)))) ∗ σ for the MDCEV specifications, or (19)

εk = −log(−log(draw(0, 1) ∗ exp(−exp(−gk(.))))) ∗ σ for the KT-EE specification. (20)

In the conditional error draw approach, we normalize ε1 = 0.

The main differences between these two error draw approaches is that in the conditional approach,
errors are drawn such that the model perfectly predicts the observed consumption patterns in the
baseline state (von Haefen and Phaneuf, 2005). The conditional approach uses observed behaviour by

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 286

individuals to characterize unobserved heterogeneity and can be useful for scenario simulation as the
baseline matches observed behavior. This is especially true if poor in-sample behavioral predictions is
found using the unconditional approach (von Haefen, 2003). The unconditional approach draws all
errors based on distributional assumptions and is necessary for out-of-sample forecasting. If the model
correctly specifies the data generating process, the sample means of the conditional and unconditional
approaches should converge in expectation. Another difference between the two approaches is that
the unconditional approach uses more computation time as there is a need to calculate consumption
patterns in the baseline state as well as simulate the entire distribution of unobserved heterogeneity.

Step 2: Calculating welfare measures and demand forecasts

With the error draws in hand, the second step is to simulate demand or welfare changes. Compared
to welfare measures in discrete choice models, welfare calculation in KT models is more challenging
because of the two KT conditions in Equation (2). For a given policy scenario, a priori, we do not know
which alternatives have a positive or zero consumption level. rmdcev implements the Pinjari and Bhat
(2011) efficient demand forecasting routine for simulating demand behaviour for MDCEV models
which relies on calculating Marshallian demands. For welfare calculations, we need to calculate
the expenditure function in Equation (3) which relies on Hicksian demands. These are calculated
using the approach described by Lloyd-Smith (2018) and the rmdcev extends these approaches to the
environmental economics KT model specifications. The demand and welfare simulation approaches
share a lot of commonalities and thus only the approach used for welfare calculations are fully
described in the appendix. The specific steps for demand simulation is explained in-depth in Pinjari
and Bhat (2011) and the interested reader is encouraged to read Section 4 of the paper for the exact
details.

Welfare analysis

In rmdcev, the functions for welfare and demand simulation have been divided into 3 steps to allow
users to parallelize operations as necessary.

We first estimate the model using mdcev and we set std_errors = "mvn" to generate multivariate
normal draws as these will be required to generate standard errors for calculations.

mdcev_mle <- mdcev(~ageindex,
data = data_model,
model = "hybrid",
algorithm = "MLE",
std_errors = "mvn",
print_iterations = FALSE)

#> Using MLE to estimate KT model

1. Define policy scenarios In the first step, we define the number of alternative policy scenarios
to use in simulation and then specify changes to the ψ variables and prices of alternatives. The
CreateBlankPolicies function has been created to easily set-up the required lists for the simulation.
These policies can then be manually edited according to the specific policy scenario. For prices, rmdcev
is set up to accept additive changes in prices that impact all individuals the same. For the ψ and φ
variable changes, the package is set up to accept any new values for these variables. Depending on
the number of individuals and number of policies, the generated policies list can be quite large. If the
user is only interested in assessing price changes, then you can use price_change_only = TRUE which
ensures duplicate ψ and φ data is not created.

In this example, we are interested in two separate policies. The first policy increases the costs of all
recreation activities by $1 and the second policy increases the cost of all four hunting activities by $10.
The policy set-up for these two scenarios is demonstrated below.

nalts <- mdcev_mle$stan_data[["J"]]
npols <- 2

policies<- CreateBlankPolicies(npols = npols,
model = mdcev_mle,
price_change_only = TRUE)

policies$price_p[[1]] <- c(0, rep(1, nalts))
policies$price_p[[2]][10:13] <- rep(10, 4)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 287

For policy scenarios that involve changes in the ψ or φ variables, the user can change the dat_psi
or dat_phi list of the policies object. For example, the following code will increase the value of the
first ψ variable by 20% in policy scenario 2.

policies_2 <- CreateBlankPolicies(npols = npols,
model = mdcev_mle,
price_change_only = FALSE)

policies_2$dat_psi_p[[2]][, 1] <- policies_2$dat_psi_p[[2]][, 1] * 1.2

2. Prepare simulation data The second step is to combine the parameter estimates, data, and
policy scenarios into a data format for simulation. The PrepareSimulationData function uses the
model fit and the user defined policy scenarios to create this specific data format. This function sepa-
rates the output into individual-specific data (df_indiv), data common to all individuals (df_common),
and simulation options (sim_options).

df_sim <- PrepareSimulationData(mdcev_mle, policies)

3. Simulate MDCEV model The third step is to simulate the policy scenario using the formatted
data and the mdcev.sim function. The specific steps for the simulation algorithms are described in
Appendix A. The user chooses the type of error draws (unconditional or conditional as described
above), the number of error draws, and whether to simulate the demand or welfare changes.

welfare <- mdcev.sim(df_sim$df_indiv,
df_common = df_sim$df_common,
sim_options = df_sim$sim_options,
cond_err = 1,
nerrs = 25,
sim_type = "welfare")

#> Using hybrid approach in simulation...
#> 3.00e+05simulations finished in0.07minutes.(75377per second)

summary(welfare)

#> # A tibble: 2 x 5
#> policy mean std.dev `ci_lo2.5%` `ci_hi97.5%`
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 policy1 -126. 0.189 -126. -126.
#> 2 policy2 -20.6 0.458 -21.3 -19.7

The output of the mdcev.sim for welfare analysis is an object of class mdcev.sim which contains a
list of matrices where each element of the list is for an individual and the matrix consists of rows for
each policy scenario and columns for each parameter simulation.

The summary function computes summary statistics across all individuals. For example, the
average welfare change for a $1 daily increase in all recreation costs (i.e. Policy 1) is -$126.

The reason these last two steps are separate is to allow users to parallelize the simulation step as
the last step can be computationally intensive. The number of simulations is a multiplicative function
of the number of individuals, number of policies, number of parameter estimate simulations, and the
number of error draws (I x npols x nsims x nerrs). Even for modestly sized data, the total number of
simulations can easily reach well into the millions or billions. All simulations are conducted at the
individual level which allows the user to easily parallelize the mdcev.sim function using the parallel
package or similar packages.

Demand forecasting

This section demonstrates the demand forecasting capabilities of rmdcev. Please refer to the previous
section for an overview of the three steps to simulation.

policies <- CreateBlankPolicies(npols = 2, model = mdcev_mle)

policies$price_p[[1]] <- c(0, rep(1, nalts))
policies$price_p[[2]][10:13] <- rep(10, 4)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=parallel

CONTRIBUTED RESEARCH ARTICLE 288

df_sim <- PrepareSimulationData(mdcev_mle, policies)

demand <- mdcev.sim(df_sim$df_indiv,
df_common = df_sim$df_common,
sim_options = df_sim$sim_options,
cond_err = 1,
nerrs = 25,
sim_type = "demand")

#> Using hybrid approach in simulation...
#> 5.40e+06simulations finished in0.07minutes.(1360202per second)

summary(demand)

#> # A tibble: 36 x 6
#> # Groups: policy [2]
#> policy alt mean std.dev `ci_lo2.5%` `ci_hi97.5%`
#> <chr> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 policy1 0 68946. 8.62 68933. 68962.
#> 2 policy1 1 6.24 0.02 6.2 6.28
#> 3 policy1 2 11.2 0.05 11.1 11.2
#> 4 policy1 3 2.34 0.02 2.31 2.37
#> 5 policy1 4 7.24 0.04 7.18 7.3
#> 6 policy1 5 3.76 0.02 3.72 3.78
#> 7 policy1 6 20.7 0.06 20.7 20.8
#> 8 policy1 7 5.29 0.01 5.28 5.3
#> 9 policy1 8 36.1 0.15 35.8 36.4
#> 10 policy1 9 0.55 0 0.53 0.55
#> # ... with 26 more rows

The output of the demand simulation a mdcev.sim object with a list of I elements, one for each
individual. Within each element there are nsim lists each containing a matrix of demands. The rows
of the matrix are for each policy scenario and the columns represent each alternative. The summary
function computes summary statistics.

Generating simulated data

The rmdcev package has the capability to simulate KT data. Simulated KT data can be easily created
for model assessment and Monte Carlo analysis using the GenerateMDCEVData function. The following
example will generate a simulated data set with 1,000 individuals, 10 non-numeraire alternatives, and
particular parameter values.

model = "gamma"
nobs = 1000
nalts = 10
sim.data <- GenerateMDCEVData(model = model,

nobs = nobs,
nalts = nalts,
psi_j_parms = c(-5, 0.5, 2), # alt-specific variables
psi_i_parms = c(-1.5, 3, -2, 1, 2), # individual-specific variables
gamma_parms = stats::runif(nalts, 1, 10),
alpha_parms = 0.5,
scale_parms = 1)

#> Sorting data by id.var then alt...
#> Checking data...
#> Data is good

Next, we can estimate the model using maximum likelihood techniques to recover the parameter
estimates.

mdcev_mle <- mdcev(formula = ~ b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8,
data = sim.data$data,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 289

model = model,
psi_ascs = 0,
algorithm = "MLE",
print_iterations = FALSE)

Conclusions

The rmdcev package implements several Kuhn-Tucker model specifications including MDCEV with
heterogeneity that can be continuous (i.e. random parameters) or discrete (i.e. latent classes). Models
can be estimated using maximum likelihood or Bayesian techniques. This paper demonstrates the use
of the package to estimate several model specifications and to derive demand forecasts and welfare
implications of policy scenarios. To my knowledge, there is no other available statistical package
that can estimate welfare implications of policy scenarios using MDCEV models. I hope that the
publication of rmdcev will make KT modeling available to a wider audience.

Appendix A: Specific steps for simulating KT models

Welfare and demand simulation follow similar approaches and this section details the welfare simula-
tion approach. There are two algorithms that differ depending on the model specification. If a single α
parameter is estimated (i.e. model = “hybrid” or “hybrid0”), then we can use the hybrid approach
to welfare simulation. If there are heterogeneous α parameters (i.e. model = “gamma”, “alpha”, or
“kt_ee”), then we can use the general approach to welfare simulation. The hybrid approach is less
computationally intensive and provides an exact analytical solution but the general approach can
be used with all utility specifications. The specific steps for both algorithms are described below.
Additional details are provided in Lloyd-Smith (2018).

Steps in algorithm for hybrid-profile MDCEV utility specifications

Step 0: Assume that only the numeraire alternative is chosen and let the number of chosen
alternatives equal one (M=1).

Step 1: Using the data, model parameters, and either conditional or unconditional simulated error
term draws, calculate the price-normalized baseline utility values (ψk/pk) for all alternatives. Sort the
K alternatives in the descending order of their price-normalized baseline utility values. Note that the
numeraire alternative is in the first place. Go to step 2.

Step 2: Compute the value of λE using the following equation:

1
λE =

 αŪ + ∑M
m=2 γmψm

∑M
m=2 γmψm

(
pm
ψm

) α
α−1

+ ψ1

(
p1
ψ1

) α
α−1


α−1

α

. (21)

Go to step 3.

Step 3: If 1
λE >

ψM+1
pM+1

, go to step 4. Else if 1
λE <

ψM+1
pM+1

, set M = M + 1. If M < K, go back to step 2.
If M = K, go to step 4.

Step 4: Compute the optimal Hicksian consumption levels for the first I alternatives in the above
descending order using the following equations

x1 =

(
p1

λEψ1

) 1
α1−1

, and (22)

xm =

[(
pm

λEψm

) 1
αm−1

− 1

]
γm, if xm > 0. (23)

Set the remaining alternative consumption levels to zero and stop.

Steps in algorithm for general utility specifications

In this context, there is no closed-form expressions for λE and we need to conduct a numerical
bisection routine. The following routine describes the approach for the MDCEV utility specifications.
The approach used for the KT-EE specification is omitted due to space, but the overall strategy is the
same with the only differences being the definitions for utility functions and optimal demands. Let λ̂E

and Û be estimates of λE and U and let tolλ and tolU be the tolerance levels for estimating λE and U

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 290

that can be arbitrarily small. The algorithm works as follows:

Step 0: Assume that only the numeraire is chosen and let the number of chosen alternatives equal
one (M=1).

Step 1: Using the data, model parameters, and either conditional or unconditional simulated error
term draws, calculate the price-normalized baseline utility values (ψk/pk) for all alternatives. Sort the
K alternatives in the descending order of their price-normalized baseline utility values. Note that the
numeraire is in the first place. Go to step 2.

Step 2: Let 1
λ̂E

=
ψM+1
pM+1

and substitute λ̂E into the following equation to obtain an estimate of Û.

Ū =
M

∑
M=2

γm

αm
ψm

[(
pm

λEψm

) αm
αm−1

− 1

]
+

ψ1
α1

(
p1

λEψ1

) α1
α1−1

. (24)

Step 3: If Û < Ū, go to step 4. Else, if Û ≥ Ū, set 1
λE

l
=

ψM+1
pM+1

and 1
λE

u
=

ψM
pM

. Go to step 5.

Step 4: Set M = M + 1. If M < K, go to step 2. Else if M = K, set 1
λE

l
= 0 and 1

λE
u
=

ψK
pK

. Go to step

5.

Step 5: Let λ̂E = (λE
l + λE

u)/2 and substitute λ̂E into the equation of step 2 to obtain an estimate
of Û. Go to step 6.

Step 6: If |λE
l − λE

u | ≤ tolλ or |Û − Ū| ≤ tolU , go to step 7. Else if Û < Ū, update λE
u =

(λE
l + λE

u)/2 and go to step 5. Else if Û > Ū, update λE
l = (λE

l + λE
u)/2 and go to step 5.

Step 7: Compute the optimal Hicksian consumption levels for the first M alternatives in the above
descending order using Equation (22). Set the remaining alternative consumption levels to zero and
stop.

Acknowledgements

Thanks to Joshua K Abbott and Allen Klaiber whose codes were helpful in putting this package
together.

Bibliography

C. Bhat and A. Pinjari. Multiple discrete-continuous choice models: A reflective analysis and a
prospective view. In S. Hess and A. Daly, editors, Handbook of Choice Modelling, chapter 19, pages
427–454. Edward Elgar Publishing, 2014. [p266]

C. R. Bhat. The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function
parameters, identification considerations, and model extensions. Transportation Research Part B:
Methodological, 42(3):274–303, 2008. ISSN 0191-2615. URL 10.1016/j.trb.2007.06.002. [p266, 268,
270, 275]

C. R. Bhat and S. Sen. Household vehicle type holdings and usage: an application of the multiple
discrete-continuous extreme value (MDCEV) model. Transportation Research Part B: Methodological,
40(1):35–53, Jan. 2006. ISSN 0191-2615. URL 10.1016/j.trb.2005.01.003. [p284]

B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li,
and A. Riddell. Stan: A Probabilistic Programming Language. Journal of Statistical Software, Articles,
76(1):1–32, 2017. ISSN 1548-7660. URL 10.18637/jss.v076.i01. [p267, 278]

Y. Croissant. mlogit: Multinomial Logit Models, 2019. URL https://CRAN.R-project.org/package=
mlogit. R package version 1.0-1. [p266]

Federal, Provincial, and Territorial Governments of Canada. 2012 Canadian Nature Survey: Awareness,
participation, and expenditures in nature-based recreation, conservation, and subsistence activities.
Technical report, Canadian Councils of Resource Ministers, Ottawa, ON, 2014. [p270]

J. Gabry, D. Simpson, A. Vehtari, M. Betancourt, and A. Gelman. Visualization in bayesian workflow.
J. R. Stat. Soc. A, 182:389–402, 2019. URL 10.1111/rssa.12378. [p280]

J. A. Herriges, C. L. Kling, and D. J. Phaneuf. What’s the use? welfare estimates from revealed
preference models when weak complementarity does not hold. Journal of Environmental Economics

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

10.1016/j.trb.2007.06.002
10.1016/j.trb.2005.01.003
10.18637/jss.v076.i01
https://CRAN.R-project.org/package=mlogit
https://CRAN.R-project.org/package=mlogit
10.1111/rssa.12378

CONTRIBUTED RESEARCH ARTICLE 291

and Management, 47(1):55–70, 2004. URL https://doi.org/10.1016/S0095-0696(03)00058-5. Pub-
lisher: Elsevier. [p269]

S. Hess and D. Palma. Apollo: A flexible, powerful and customisable freeware package for choice
model estimation and application. Journal of Choice Modelling, page 100170, June 2019. ISSN
1755-5345. URL 10.1016/j.jocm.2019.100170. [p266, 267]

S. Hess, K. E. Train, and J. W. Polak. On the use of a Modified Latin Hypercube Sampling (MLHS)
method in the estimation of a Mixed Logit Model for vehicle choice. Transportation Research Part B:
Methodological, 40(2):147–163, Feb. 2006. ISSN 0191-2615. URL 10.1016/j.trb.2004.10.005. [p285]

A. Jasra, C. C. Holmes, and D. A. Stephens. Markov chain monte carlo methods and the label
switching problem in bayesian mixture modeling. Statist. Sci., 20(1):50–67, 02 2005. URL https:
//doi.org/10.1214/088342305000000016. [p270]

K. Kuriyama, M. Hanemann, and J. Hilger. A latent segmentation approach to a Kuhn-Tucker model:
An application to recreation demand. Journal of Environmental Economics and Management, 60(3):
209–220, Nov. 2010. ISSN 0095-0696. URL 10.1016/j.jeem.2010.05.005. [p269, 283]

P. Lloyd-Smith. A new approach to calculating welfare measures in kuhn-tucker demand models.
Journal of Choice Modelling, 26:19 – 27, 2018. ISSN 1755-5345. URL https://doi.org/10.1016/j.
jocm.2017.12.002. [p286, 289]

P. Lloyd-Smith. The Economic Benefits of Recreation in Canada. Canadian Journal of Economics,
forthcoming. [p271]

P. Lloyd-Smith, J. K. Abbott, W. Adamowicz, and D. Willard. Decoupling the Value of Leisure Time
from Labor Market Returns in Travel Cost Models. Journal of the Association of Environmental and
Resource Economists, 6(2):215–242, Jan. 2019. ISSN 2333-5955. URL 10.1086/701760. [p275]

C. Muth, Z. O. Jonah, and Gabry. User-friendly bayesian regression modeling: A tutorial with rstanarm
and shinystan. The Quantitative Methods for Psychology, 14(2):99–119, 2018. URL 10.20982/tqmp.14.
2.p099. [p280]

K. Mäler. Environmental Economics: A Theoretical Inquiry. Johns Hopkins University Press for Resources
for the Future, 1974. [p268]

A. R. Pinjari and C. R. Bhat. Computationally efficient forecasting procedures for Kuhn-Tucker con-
sumer demand model systems: Application to residential energy consumption analysis. Technical
report, Department of Civil and Environmental Engineering, University of South Florida, 2011.
[p286]

M. Sarrias and R. Daziano. Multinomial Logit Models with Continuous and Discrete Individual
Heterogeneity in R: The gmnl Package. Journal of Statistical Software, 79(1):1–46, July 2017. ISSN
1548-7660. URL http://dx.doi.org/10.18637/jss.v079.i02. [p266]

A. Sobhani, N. Eluru, and A. Faghih-Imani. A latent segmentation based multiple discrete continuous
extreme value model. Transportation Research Part B: Methodological, 58:154–169, Dec. 2013. ISSN
0191-2615. URL 10.1016/j.trb.2013.07.009. [p269, 283]

Stan Development Team. RStan: the R interface to Stan. R package version 2.19, 2019. URL https:
//mc-stan.org/rstan. [p280, 285]

K. Train. Discrete Choice Methods with Simulation. Cambridge University Press, 2009. [p270]

R. H. von Haefen. Incorporating observed choice into the construction of welfare measures from
random utility models. Journal of Environmental Economics and Management, 45(2):145–165, Mar. 2003.
ISSN 0095-0696. URL 10.1016/S0095-0696(02)00047-5. [p285, 286]

R. H. von Haefen and D. J. Phaneuf. Kuhn-Tucker Demand System Approaches to Non-Market
Valuation. In R. Scarpa and A. Alberini, editors, Applications of Simulation Methods in Environmental
and Resource Economics, pages 135–157. Springer Netherlands, Dordrecht, 2005. ISBN 978-1-4020-
3684-2. [p266, 267, 269, 270, 285]

R. H. von Haefen, D. J. Phaneuf, and G. R. Parsons. Estimation and Welfare Analysis with Large
Demand Systems. Journal of Business & Economic Statistics, 22(2):194–205, 2004. ISSN 0735-0015.
[p266, 285]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1016/S0095-0696(03)00058-5
10.1016/j.jocm.2019.100170
10.1016/j.trb.2004.10.005
https://doi.org/10.1214/088342305000000016
https://doi.org/10.1214/088342305000000016
10.1016/j.jeem.2010.05.005
https://doi.org/10.1016/j.jocm.2017.12.002
https://doi.org/10.1016/j.jocm.2017.12.002
10.1086/701760
10.20982/tqmp.14.2.p099
10.20982/tqmp.14.2.p099
http://dx.doi.org/10.18637/jss.v079.i02
10.1016/j.trb.2013.07.009
https://mc-stan.org/rstan
https://mc-stan.org/rstan
10.1016/S0095-0696(02)00047-5

CONTRIBUTED RESEARCH ARTICLE 292

A. Zeileis and Y. Croissant. Extended Model Formulas in R: Multiple Parts and Multiple Responses.
Journal of Statistical Software, 34(1):1–13, Apr. 2010. ISSN 1548-7660. URL 10.18637/jss.v034.i01.
[p273]

Patrick Lloyd-Smith
University of Saskatchewan
Department of Agricultural and Resource Economics
Global Institute for Water Security
Room 3D34, Agriculture Building 51 Campus Drive
Saskatoon, SK S7N 5A8 Canada
https://plloydsmith.github.io/
patrick.lloydsmith@usask.ca

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

10.18637/jss.v034.i01
https://plloydsmith.github.io/
mailto:patrick.lloydsmith@usask.ca

CONTRIBUTED RESEARCH ARTICLE 293

NTS: An R Package for Nonlinear Time
Series Analysis
by Xialu Liu, Rong Chen, and Ruey Tsay

Abstract Linear time series models are commonly used in analyzing dependent data and in forecasting.
On the other hand, real phenomena often exhibit nonlinear behavior and the observed data show
nonlinear dynamics. This paper introduces the R package NTS that offers various computational
tools and nonlinear models for analyzing nonlinear dependent data. The package fills the gaps of
several outstanding R packages for nonlinear time series analysis. Specifically, the NTS package
covers the implementation of threshold autoregressive (TAR) models, autoregressive conditional mean
models with exogenous variables (ACMx), functional autoregressive models, and state-space models.
Users can also evaluate and compare the performance of different models and select the best one for
prediction. Furthermore, the package implements flexible and comprehensive sequential Monte Carlo
methods (also known as particle filters) for modeling non-Gaussian or nonlinear processes. Several
examples are used to demonstrate the capabilities of the NTS package.

Introduction: nonlinear time series analysis in R

Time series analysis investigates the dynamic dependence of data observed over time or in space.
While linear time series analysis has been extensively studied in the literature with many software
packages widely available, nonlinear time series analysis only attracts limited attention. Although
there exist some software packages for analyzing nonlinear time series focusing on different sets of
tools, there are still significant gaps in capability. The NTS (Tsay et al., 2020), a recent R package,
provides a number of functions for simulating, analyzing, and predicting nonlinear time series data.
The available models include univariate and multivariate TAR models, conditional intensity models,
nonlinear state-space models, and functional time series models. The package also features various
nonlinearity tests and sequential Monte Carlo (SMC) methods. While NTS package does not intend
to be comprehensive, it fills the important missing parts of the existing packages, providing users
valuable tools for analyzing dependent data with nonlinear dynamics. The package is now available
from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=NTS.

NTS incorporates the latest developments in statistical methods and algorithms for analyzing non-
linear time series data, and it makes the following contributions: (1) NTS offers various computational
tools with a wide range of applications, and it fills the gaps left by the existing R functions. There
are several R packages focusing on nonlinear time series. The nonlinearTseries (Garcia and Sawitzki,
2020) package implements the methods based on information theory, the NlinTS (Youssef, 2020)
package introduces functions for causality detection and neural networks, and the nlts (Bjornstad,
2018) package emphasizes nonparametric autoregression and tests. NTS, providing computational
tools for TAR models, ACMx models, convolutional functional autoregressive (CFAR) models, and
non-Gaussian and nonlinear state-space models, consists of some of the missing pieces in the cur-
rent coverage, hence making a more completed toolkit for nonlinear time series analysis in R. Other
well-known modern methods for nonlinear data such as smoothing, deep learning and random forest
that have been implemented in packages sm (Bowman and Azzalini, 2018), tree (Ripley, 2019) and
randomForest (Breiman et al., 2018) can be adopted for nonlinear time series analysis, even though
they are mainly designed for independent data. Hence, they are not included in this package. (2)
NTS provides complete solutions with superior performance for the nonlinear models entertained.
For example, NTS implements estimation, prediction, model building and model comparison pro-
cedures for TAR models. It allows the threshold variable in the model to be a lag variable or an
exogenous variable, while the TAR (Zhang and Nieto, 2017) package, using Markov Chain Monte
Carlo and Bayesian methods aiming to deal with missing values, assumes the threshold variable is
exogenous. Threshold estimation methods in NTS, which perform recursive least squares or nested
sub-sample searching, are more computationally efficient than the conditional least squares methods
implemented in package tsDyn (Narzo et al., 2020). Furthermore, the threshold nonlinearity test
proposed by Tsay (1989) in NTS is specifically designed for self-exciting TAR (SETAR) models while
the existing R package nonlinearTseries just conducts general nonlinearity tests. In addition, NTS
utilizes the out-of-sample forecasting to evaluate different TAR models to avoid overfitting, while
other R packages such as tsDyn just compare TAR models based on AIC and residuals. (3) NTS offers
additional options to existing packages with more flexibility. Specifically, NTS offers R functions to
fit the ACMx model for time series analysis of count data, which allow the conditional distribution
to be double Poisson, while the tscount (Liboschik et al., 2020) package uses the generalized linear
models and only considers Poisson and negative binomial distributions. Another example is that

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=NTS
http://CRAN.R-project.org/package=NTS
https://CRAN.R-project.org/package=nonlinearTseries
https://CRAN.R-project.org/package=NlinTS
https://CRAN.R-project.org/package=nlts
https://CRAN.R-project.org/package=sm
https://CRAN.R-project.org/package=tree
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=TAR
https://CRAN.R-project.org/package=tsDyn
https://CRAN.R-project.org/package=tscount

CONTRIBUTED RESEARCH ARTICLE 294

NTS implements the estimation and prediction procedures of CFAR models proposed by Liu et al.
(2016), which give an intuitive and direct interpretation for functional time series analysis and provide
more flexibility for estimation to deal with irregular observation locations compared to functional
autoregressive models developed by Bosq (2000) introduced in the ftsa (Hyndman and Shang, 2020)
package. (4) NTS provides easy access to SMC methods with various options for statistical inference.
It contains different R functions which can be easily implemented for filtering and smoothing and are
much more user-friendly, while the SMC (Goswami, 2011) package only writes a generic function for
SMC and requires more effort from users.

The goal of this paper is to highlight the main functions of the NTS package. In the paper, we
first consider different models for nonlinear time series analysis, and provide an overview of the
available functions for parameter estimation, prediction and nonlinearity tests in the NTS package.
Then we discuss the functions for SMC methods and demonstrate their applications via an example.
Conclusions are given at the end.

Models and methods available in NTS

TAR models

TAR models are a piecewise extension of the autoregressive (AR) model proposed by Tong (1978). It
has been widely used in many scientific fields, such as economics (Tong and Lim, 1980; Tiao and Tsay,
1989), finance (Domian and Louton, 1997; Narayan, 2006), among others (Chen, 1995). The models
are characterized by partitioning the Euclidean space into non-overlapping regimes via a threshold
variable and fitting a linear AR model in each regime (Li and Tong, 2016). The partition is by various
thresholds in the domain of the threshold variable.

Let {ri | i = 0, . . . , m} be a sequence of real numbers satisfying

r0 = −∞ < r1 < r2 < . . . < rm−1 < rm = ∞.

A time series {yt|t = 1, . . . n} follows an m-regime TAR model with threshold variable zt, threshold
delay d > 0, and order (p1, . . . , pm), if

yt =


φ0,1 + ∑

p1
i=1 φi,1yt−i + σ1εt, if zt−d ≤ r1,

φ0,2 + ∑
p2
i=1 φi,2yt−i + σ2εt, if r1 < zt−d ≤ r2,

. . .
φ0,m + ∑

pm
i=1 φi,myt−i + σmεt, if rm−1 < zt−d,

(1)

where φi,j are real numbers, σ1, . . . , σm are positive real numbers, and εt are i.i.d random variates with
mean 0 and variance 1. If the threshold variable zt = yt for t = 1, . . . , n, Model (1) is called a SETAR
model with delay d. The coefficients φi,j must satisfy certain conditions for the stationarity of yt. These
conditions are complicated in general, but some special cases are available in the literature. See, for
instance, Chen and Tsay (1991) and the references therein. In particular, it is interesting to point out
that the stationarity of each marginal model in (1) is not needed for the stationarity of yt. As a matter of
fact, Model (1) would become more interesting when some of the marginal models are nonstationary.

Threshold estimation for two-regime TAR models

In this subsection, we introduce three algorithms for estimation of two-regime TAR models.

The two-regime TAR model can be rewritten as

yt = (β′1xt,1 + σ1εt)I(zt−d ≤ r1) + (β′2xt,2 + σ2εt)I(zt−d > r1), (2)

where I(·) is the indicator function, xt,j = (1, yt−1, . . . , yt−pj)
′, and βj = (φ0,j, φ1,j, . . . , φpj ,j)

′ collects
the AR coefficients in regime j, for j = 1, 2.

Define p = max{p1, p2, d}, and xj = (xp+1,j, . . . , xn,j)
′ for j = 1, 2. Write x1(r) = x1 ∗ I(zt−d ≤ r),

and x2(r) = x2 ∗ I(zt−d > r), where ∗ denotes the Hadamard product operator of matrices. Then
Equation (2) can be re-expressed in a matrix form

y = x1(r1)β1 + x2(r1)β2 + ε, (3)

where y = (yp+1, . . . , yn)′, ε = (ε̃p+1, . . . , ε̃n)′, and ε̃t = [I(zt−d ≤ r1)σ1 + I(zt−d > r1)σ2]εt for
t = p + 1, . . . , n.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ftsa
https://CRAN.R-project.org/package=SMC

CONTRIBUTED RESEARCH ARTICLE 295

(Conditional) least squares: For each fixed threshold candidate r, least squares method can be used
to estimate the AR coefficients β1 and β2,

β̂1(r) = [x1(r)′x1(r)]−1x1(r)′y, β̂2(r) = [x2(r)′x2(r)]−1x2(r)′y. (4)

It yields the following error function

Sn(r) = y′y− β̂1(r)
′x1(r)′x1(r)β̂1(r)− β̂2(r)

′x2(r)′x2(r)β̂2(r). (5)

To get sufficient number of observations in each regime for estimation, we assume that the threshold
value r1 lies in a bounded interval [r, r]. Then it can be estimated as

r̂1 = arg min
r∈{zp−d+1,..., zn−d}∩[r, r]

Sn(r). (6)

Recursive least squares: Recursive least squares method provides an efficient way to update the least
squares solution with new observations, and is much less computationally expensive than the ordinary
least squares method. When we traverse all possible thresholds and calculate Sn(r) in (5), recursive
least squares can be used to estimate β1 and β2 in (4) helping us effectively reduce the computational
cost.

Let S = {zp−d+1, . . . , zn−d} ∩ [r, r] be the set containing all candidates for the threshold value, n0
be the number of elements in S , z(j) be the j-th largest value in set S , and t(j) be the time index for z(j).
In other words, z(j) = zt(j) .

Here is the algorithm of recursive least squares for TAR model estimation:

1. When z(1) is used as a tentative threshold value to estimate β1,

P1(1) = [x1(z(1))
′x1(z(1))]

−1, β̂1(z(1)) = P1(1)x1(z(1))
′y.

When z(n0) is used as a tentative threshold value to estimate β2,

P2(n0) = [x2(z(n0))
′x2(z(n0))]

−1, β̂2(z(n0)) = P2(n0)x2(z(n0))
′y.

2. For k = 2, . . . , n0, we estimate the AR coefficients in regime 1 with the following

K1(k) = P1(k− 1)xt(k)+d,1/[1 + x′t(k)+d,1P1(k− 1)xt(k)+d,1],

P1(k) = P1(k− 1)−K1(k)x′t(k)+d,1P1(k− 1),

β̂1(z(k)) = β̂1(z(k−1)) + K1(k)[yt(k)+d − β̂1(z(k−1))
′xt(k)+d,1].

For k = n0 − 1, . . . , 1, we estimate the AR coefficients in regime 2 with the following

K2(k) = P2(k + 1)xt(k)+d,2/[1 + x′t(k)+d,2P2(k + 1)xt(k)+d,2],

P2(k) = P2(k + 1)−K2(k)x′t(k)+d,2P2(k + 1),

β̂2(z(k)) = β̂2(z(k+1)) + K2(k)[yt(k)+d − β̂2(z(k+1))
′xt(k)+d,2].

3. With β̂1(z(j)) and β̂2(z(j)) for j = 1, . . . , n0, we can obtain Sn(z(j)) and then estimate r1 with (6).

Nested sub-sample search (NeSS) algorithm: NeSS algorithm proposed by Li and Tong (2016) pro-
duces a much faster way to search threshold candidates, and reduce the computational complexity
dramatically.

Li and Tong (2016) shows that there exists a positive constant C depending only on y, p1 and p2,
such that

sup
r∈[r, r]

∣∣∣C− Sn(r)
n

− J(r)
∣∣∣ p→ 0,

where J(r) is a non-stochastic continuous function over [r, r], and it is strictly monotonically increasing
in [r, r1] and strictly monotonically deceasing in [r1, r]. It implies that Sn(r) may have only one
minimum value over the set {k∆ : k ∈ Z} ∩ [r, r] for some ∆ > 0. This provides theoretical support
for the following NeSS algorithm to seek the minimizer of Sn(r).

NeSS algorithm:

0. Get the initial feasible set S = {zp−d+1, . . . , zn−d} ∩ [r, r] for the threshold value estimation.

1. Obtain the 25th, 50th, and 75th percentiles of the feasible set, and define them as q1, q2 and q3,
respectively. Calculate Sn(q1), Sn(q2), and Sn(q3).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 296

Table 1: Comparison among various R functions for SETAR model estimation (200 replicates)

Function Sample size 200 Sample size 2000

Elapsed time MSE Elapsed time MSE

uTAR with recursive least squares 2.802s 0.0017 44.020s 2.08e-05
uTAR with NeSS algorithm 20.360s 0.0017 25.878s 2.08e-05
setar 7.147s 0.0017 286.226s 2.08e-05

2. If Sn(q1) ≤ Sn(q2) and Sn(q1) ≤ Sn(q3), the feasible set is updated as S ∩ (−∞, q2].
If Sn(q2) < Sn(q1) and Sn(q2) ≤ Sn(q3), the feasible set is updated as S ∩ [q1, q3].
Otherwise, the feasible set is updated as S ∩ [q2,+∞).
Repeat Steps 1-2 until the number of elements in the new feasible set is less than a pre-specified
positive integer k0.

3. Minimize Sn(r) over the new feasible set and get r̂1.

Comparing to the standard search algorithm which traverses all the threshold candidates, NeSS
algorithm reduces the number of least squares operations from O(n) to O(log n).

R functions for TAR models in NTS

In the R package NTS, the function uTAR implements recursive least squares estimation or the NeSS
algorithm for TAR model estimation. The two methods both have lower computational complexity
than the existing R function setar designed for SETAR model estimation in the tsDyn package, which
performs least squares estimation and adopts a single grid search algorithm.

To illustrate, we use the following data generating process to compare the performance of the three
methods1.

yt =

{
1− 0.3yt−1 + 0.5yt−2 + εt, if yt−2 ≤ 0.2,
−1 + 0.6yt−1 + 0.3yt−2 + εt, if yt−2 > 0.2.

(7)

Table 1 summarizes the average elapsed time and mean squared error (MSE) of the estimated threshold
value for 200 replications. Recursive least squares method and NeSS algorithm implemented by uTAR
both take shorter time than setar when sample size is large. It is also seen that when sample size is
large, NeSS algorithm is the fastest, but when the sample size is relatively small, the recursive least
squares method is the fastest.

Besides threshold value estimation for univariate time series, the NTS package implements data
generating, forecasting, model checking, and model comparison procedures for both univariate and
multivariate time series into user-friendly computational tools. Table 2 lists these functions of NTS
related to TAR models. In the following we will demonstrate the usage of functions for univariate
time series through the data generating process in Model (7).

Table 2: List of R functions about TAR models in the package NTS

Function Description

Univariate TAR model uTAR.sim Generate a univariate SETAR process for up to 3 regimes
uTAR Estimate univariate two-regime TAR models including threshold
uTAR.est Estimate multiple regimes TAR models with known threshold(s)
uTAR.pred Predict a fitted univariate TAR model
thr.test Test for threshold nonlinearity of a scalar series

Multivariate TAR model mTAR.sim Generate a multivariate two-regime SETAR process
mTAR Estimate multivariate two-regime TAR models including threshold
mTAR.est Estimate multivariate multiple-regime TAR models
ref.mTAR Refine a fitted multivariate two-regime TAR model
mTAR.pred Predict a fitted multivariate TAR model

The function uTAR.sim generates data from a given univariate SETAR model for up to three
regimes with following arguments: nob is the sample size of the generated data, arorder specifies the
AR orders for different regimes, phi is a real matrix containing the AR coefficients with one row for a

1The program is run on a personal computer with a 2.30GHz Intel Core(TM)i5-8259U CPU, 16GB RAM and
64-bit Operating system.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 297

regime, d is the time delay, cnst is a vector of constant terms for the regimes, and sigma is a vector
containing the standard deviations of the innovation process of the regimes. It also allows users to
customize the burn-in period with option ini. The function returns a list of components including the
generated data from the specified TAR model (series) and the innovation series (at).

We simulate the data generating process in Model (7) with the following code. Figure 1 shows the
time series plot of the first 200 observations of the simulated data.

R> set.seed(1687)
R> y <- uTAR.sim(nob = 2000, arorder = c(2,2), phi = t(matrix(c(-0.3, 0.5, 0.6,
+ -0.3), 2, 2)), d = 2, thr = 0.2, cnst = c(1, -1), sigma = c(1, 1))

0 50 100 150 200

−
4

−
2

0
2

4

Time series plot of a SETAR process

Time

Figure 1: Time series plot of the first 200 observations generated from the SETAR model in Equation
(7).

Estimation of the threshold value of the two-regime SETAR process can be done via the function
uTAR as illustrated below:

R> thr.est<- uTAR(y = y$series, p1 = 2, p2 = 2, d = 2, thrQ = c(0, 1), Trim = c(0.1,
+ 0.9), include.mean = T, method = "NeSS", k0 = 50)
Estimated Threshold: 0.1951103
Regime 1:

Estimate Std. Error t value Pr(>|t|)
X1 1.0356009 0.04902797 21.12265 8.946275e-85
X2 -0.3017810 0.01581242 -19.08506 2.383743e-71
X3 0.4890477 0.02707987 18.05945 7.230880e-65
nob1 & sigma1: 1236 1.017973
Regime 2:

Estimate Std. Error t value Pr(>|t|)
X1 -1.1352678 0.07222915 -15.717585 2.107275e-48
X2 0.5560001 0.03177212 17.499622 7.360494e-58
X3 -0.2122922 0.04641671 -4.573616 5.596852e-06
nob2 & sigma2: 762 1.034592

Overall MLE of sigma: 1.024343
Overall AIC: 101.8515

R> thr.est <- uTAR(y = y$series, p1 = 2, p2 = 2, d = 2, thrQ = c(0,1), Trim = c(0.1,
+ 0.9), include.mean = T, method = "RLS")
Estimated Threshold: 0.1951103
Regime 1:

Estimate Std. Error t value Pr(>|t|)
X1 1.0356009 0.04902797 21.12265 8.946275e-85
X2 -0.3017810 0.01581242 -19.08506 2.383743e-71
X3 0.4890477 0.02707987 18.05945 7.230880e-65
nob1 & sigma1: 1236 1.017973
Regime 2:

Estimate Std. Error t value Pr(>|t|)
X1 -1.1352678 0.07222915 -15.717585 2.107275e-48
X2 0.5560001 0.03177212 17.499622 7.360494e-58
X3 -0.2122922 0.04641671 -4.573616 5.596852e-06
nob2 & sigma2: 762 1.034592

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 298

Overall MLE of sigma: 1.024343
Overall AIC: 101.8515

uTAR has the following arguments: y is a vector of observed time seres, p1 and p2 are the AR order of
regime 1 and regime 2, respectively, d is the delay, and thrV contains the external threshold variable zt
which should have the same length as that of y. For SETAR models, thrV is not needed and should
be set to NULL. thrQ determines the lower and upper quantiles to search for threshold value. Trim
defines the lower and upper trimmings to control the minimum sample size in each regime and
determine [r, r] for estimation. include.mean is a logical value for including the constant term in each
linear model. method decides the way to search the threshold value, and there are two choices, "RLS"
for recursive least squares and "NeSS" for NeSS algorithm. k0 is only used when NeSS algorithm is
selected to controls the maximum sub-sample size.

From the output, the estimated threshold value is 0.195, which is close to the true value 0.2. The
estimated constant terms for regime 1 and regime 2 are 1.036 and −1.135, respectively. The estimated
AR coefficients for regime 1 and regime 2 are −0.302, 0.489, 0.556, and −0.212, respectively. The
estimated standard deviations of the innovation processes in two regimes are 1.018 and 1.035. As
expected, all estimates are significant and close their true parameters.

Here we provide an incomplete list of the returned values of the function uTAR:

• residuals: estimated innovations or residuals series.
• coefs: a 2-by-(p + 1) matrix. The first row and second row show the estimated coefficients in

regime 1 and 2, respectively.
• sigma: estimated covariances of the innovation process in regime 1 and regime 2.
• thr: estimated threshold value.

Estimation of a multiple-regime TAR model with pre-specified threshold values can be done by
the function uTAR.est.

R> est <- uTAR.est(y = y$series, arorder = c(2, 2), thr = thr.est$thr, d = 2,
+ output = FALSE)

Here aroder is a row vector of positive integers containing the AR orders of all the regimes. thr
collects the threshold values whose length should be the number of regimes minus 1. output is a
logical value for printing out the estimation results with default being TRUE. The function uTAR.est
returns the following components: coefs is a matrix with m rows in which each row contains the
estimated parameters for one regime, sigma contains the estimated innovation variances for different
regimes, residuals collects the estimated innovations, and sresi shows the standardized residuals.

The following R code provides one-step-ahead prediction with function uTAR.pred.

R> set.seed(12)
R> pred <- uTAR.pred(model = est, orig = 2000, h = 1, iteration = 100, ci = 0.95,
+ output = TRUE)
Forecast origin: 2000
Predictions: 1-step to 1 -step

step forecast
[1,] 1 -1.429635
Pointwise 95 % confident intervals

step Lowb Uppb
int 1 -2.991667 0.6531542

The output above shows that the one-step ahead prediction for y2001 is −1.43. Various options in the
function uTAR.pred provide users the flexibility to customize the forecasting origin with orig, forecast
horizon with h, number of iterations with iterations, and confidence level with ci. The function
uTAR.pred returns the prediction with pred.

The R function thr.test in the NTS package implements the F test designed for SETAR models
and proposed by Tsay (1989). The test helps users detect the existence of nonlinear dynamics in the
data. Below is the R code and output when we perform the nonlinearity tests with thr.test.

R> thr.test(y$series, p = 2, d = 2, ini = 40, include.mean = T)
SETAR model is entertained
Threshold nonlinearity test for (p,d): 2 2
F-ratio and p-value: 213.0101 1.511847e-119

ini is the initial number of data to start the recursive least square estimation. The output shows that
p-value is very small, and it indicates that there is nonlinearity in the series y$series.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 299

Back-testing can be used to evaluate the forecasting performance of a model and to conduct model
comparison between different models. Back-testing for a univariate SETAR model is implemented
through the function backTAR with syntax:

R> backTAR(model, orig, h = 1, iter = 3000)

where model is an object returned by uTAR or uTAR.est, h is the forecast horizon, and iter controls the
number of simulation iterations in prediction.

The function returns the model, out-of-sample rolling prediction errors and predicted states. It
also provides information for model comparison. The following example shows the out-of-sample
forecasting performance of SETAR models with delay 2 and 1, respectively. It shows that the root MSE,
mean absolute error, and biases of the model with delay 2 are all smaller than those of the model with
delay 1. Hence, as expected, the model with delay 2 is preferred.

R> set.seed(11)
R> backTAR(est, 50, 1, 3000)
Starting forecast origin: 50
1-step to 1 -step out-sample forecasts
RMSE: 1.02828
MAE: 0.8172728
Bias: -0.001337478
Performance based on the regime of forecast origins:
Summary Statistics when forecast origins are in State: 1
Number of forecasts used: 1204
RMSEj: 1.029292
MAEj: 0.8172963
Biasj: 0.00259177
Summary Statistics when forecast origins are in State: 2
Number of forecasts used: 746
RMSEj: 1.026645
MAEj: 0.817235
Biasj: -0.007679051

R> thr.est2 <- uTAR(y = y$series, p1 = 2, p2 = 2, d = 1, thrQ = c(0, 1),
+ Trim=c(0.1, 0.9), include.mean = T, method = "RLS")
R> est2 <- uTAR.est(y = y$series, arorder = c(2, 2), thr = thr.est2$thr, d = 1)
R> set.seed(11)
R> backTAR(est2, 50, 1, 3000)
Starting forecast origin: 50
1-step to 1 -step out-sample forecasts
RMSE: 1.38731
MAE: 1.105443
Bias: -0.006635381
Performance based on the regime of forecast origins:
Summary Statistics when forecast origins are in State: 1
Number of forecasts used: 1112
RMSEj: 1.360347
MAEj: 1.090989
Biasj: 0.2462278
Summary Statistics when forecast origins are in State: 2
Number of forecasts used: 838
RMSEj: 1.4223
MAEj: 1.124622
Biasj: -0.3421769

The usage of functions for multivariate two-regime TAR models listed in Table 2, including
mTAR.sim, mTAR, mTAR.pred, is similar to that of the univariate counterpart functions discussed before.
The only exception is that these multivariate functions take different arguments to define the vector
autoregressive(VAR) coefficients:

• phi1,phi2: VAR coefficient matrices of regime 1 and regime 2.
• sigma1,sigma2: innovation covariance matrices of regime 1 and regime 2.
• c1,c2: constant vectors of regime 1 and regime 2.
• delay: two elements (i, d) with "i" being the index of the component to be used as the threshold

variable and "d" the delay for threshold variable.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 300

The function mTAR conducts the nested sub-sample search algorithm and provides different choices
of criterion for threshold selection with the option score, namely (AIC, det(RSS)). It has less compu-
tational cost, but only applies to two-regime models. mTAR.est can handle multiple regimes. They
both return a list of components with the estimated VAR coefficients in beta, estimated innovation
covariance matrices in sigma, and estimated innovations in residuals.

Analysis of non-Gaussian time series

Autoregressive conditional mean (ACM) models are designed for time series of count data, starting
with the autoregressive conditional Poisson models, and various extensions of ACM models were inves-
tigated. The NTS includes a function ACMx for the estimation of ACMx models. Let yt be the time series
of interest, xt be a vector containing the exogenous variables, and Ft = {yt−1, yt−2, . . . ; xt, xt−1, . . .}.
The ACMx models postulate

yt | Ft ∼ F(· | µt),

where µt = E(yt | Ft) = exp(x′tβ)λt, and λt follows the model

λt = ω +
p

∑
i=1

αi

[
yt−i

exp(x′t−iβ)

]
+

q

∑
j=1

γjλt−j,

p and q are nonnegative integers, ω > 0, and αi and γj are parameters satisfying certain conditions so
that λt is always positive and finite. The conditional distribution F(yt | Ft) can be Poisson, negative
binomial, or double Poisson (Tsay and Chen, 2018).

The estimation of ACMx models is implemented via the function ACMx with syntax:

R> ACMx(y, order = c(1, 1), X = NULL, cond.dist = "po", ini = NULL)

where y is the series of count data, X is the matrix of exogenous variables, order specifies the values
for p and q, cond.dist determines the conditional distribution with options: "po" for Poisson, "nb" for
negative binomial, and "dp" for double Poisson, and ini collects initial parameter estimates designed
for use with "nb" or "dp".

We illustrate the function ACMx with an example below:

R> set.seed(12)
R> x <- rnorm(1000)*0.1
R> y <- matrix(0, 1000, 1)
R> y[1] <- 2
R> lambda <- matrix(0, 1000, 1)
R> for (i in 2:1000){
+ lambda[i] <- 2 + 0.2*y[i-1]/exp(x[i-1]) + 0.5*lambda[i-1]
+ set.seed(i)
+ y[i] <- rpois(1, exp(x[i]) * lambda[i])
+ }
R> ACMx(y, order = c(1, 1), x, "po")
Initial estimates: 1.056732 1.738874 0.05 0.5
loB: -1.056732 1e-06 1e-06 1e-06
upB: 3.170195 19.12762 0.5 0.999999
Maximized log-likehood: -2373.08

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

beta 1.0562836 0.1274853 8.28553 2.2204e-16 ***
omega 2.6696378 0.5569954 4.79293 1.6437e-06 ***
alpha 0.1579050 0.0265997 5.93634 2.9145e-09 ***
gamma 0.4427157 0.0913361 4.84711 1.2528e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here a time series following the ACMx model with Poisson conditional distribution, order (1,1),
β = 1, ω = 2, α = 0.2 and γ = 0.5 is generated. The R output reports the estimated coefficients which
are all significant and close to their true values.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 301

Functional time series

Functional time series analysis has received much attention since the pioneering work of Bosq (2000),
and has been widely applied in many fields, including environmental science (Hormann and Kokoszka,
2010), social science (Hyndman and Shang, 2009), and finance (Diebold and Li, 2006; Horváth et al.,
2013). Liu et al. (2016) proposed a new class of models called the CFAR models, which has an intuitive
and direct interpretation of the dynamics of a stochastic process. The NTS encompasses functions to
implement the method proposed by Liu et al. (2016).

Before presenting these R functions, we briefly introduce the CFAR model and its estimation
procedure. A sequence of square integrable random functions {Xt | t = 1, . . . , T} defined on [0, 1]
follows a CFAR model of order p if

Xt(s) =
p

∑
i=1

∫ 1

0
φi(s− u)Xt−i(u)du + εt(s), s ∈ [0, 1],

where φi(·) are square integrable and defined on [−1, 1] (i = 1, . . . , p) and are called the convolutional
coefficient functions, and εt are i.i.d. Ornstein-Uhlenbeck (O-U) processes defined on [0,1] satisfying
the stochastic differential equation, dεt(s) = −ρεt(s)ds + σdWs, ρ > 0, and Ws is a Wiener process.

In practice, Xt(·) is usually observed only at discrete points, si = i/N, i = 0, . . . N for time
t = 1, . . . T. Liu et al. (2016) recovers the function Xt(·) by linear interpolation,

X̃t(s) =
(si − s)Xt(si−1) + (s− si−1)Xt(si)

1/N
, for si−1 ≤ s < si,

and approximates φi(·) by cubic B-splines,

φi(·) ≈ φ̃i(·) =
k

∑
j=1

βk,i,jBk,j(·), for i = 1, . . . p,

where {Bk,j, j = 1, . . . , k} are uniform cubic B-spline basis functions with k degrees of freedom.

With the above approximation, the B-spline coefficients β = {βk,i,j}, ρ, and σ2 can be estimated by
maximizing the approximated log-likelihood function. Specifically

(β̂, ρ̂, σ̂2) = arg max Q(β, ρ, σ2),

where

Q(β, ρ, σ2) = C +
(N + 1)(T − p)

2
ln
(

πσ2

ρ

)
− N(T − p)

2
ln(1− e−2ρ/N)− 1

2

T

∑
t=1

e′tΣ
−1et,

where C is a constant, et = (et,0, . . . et,N)′, et,` = Xt(`/N)−∑
p
i=1 ∑k

j=1 βk,i,j
∫ 1

0 Bk,j(`/N − u)X̃t(s)du

for ` = 0, . . . , N, and Σ is an (N + 1)-by-(N + 1) matrix with σ2e−ρ|i−j|/N as its (i, j)-th entry.

The convolutional functions are estimated by

φ̂i(·) =
k

∑
j=1

β̂k,i,jBk,j(·).

In the NTS package, model specification and estimation of a CFAR process can be carried out by
the functions F_test_cfar and est_cfar with the syntax:

R> F_test_cfar(f, p.max = 6, df_b = 10, grid = 1000)
R> est_cfar(f, p = 3, df_b = 10, grid = 1000)

The observed functional time series is stored in f, which is a T-by-(N + 1) matrix, where T is the
length of time, and (N + 1) is the number of discrete observations of the functional data at a given
time period. p specifies the CFAR order. df_b determines the degrees of freedom k for the natural
cubic splines, and grid is the number of grid points used to construct the functional time series and
noise process.

The function F_test_cfar returns the test statistics and the p-values for a sequence of F-tests with
H0 : φk(·) = 0, φi(·) 6= 0, i = 1 . . . , k− 1 versus Ha : φi(·) 6= 0, i = 1, . . . , k for k = 1, . . ., p.max. The
function est_cfar returns the following values: phi_coef collects the estimated spline coefficients
β̂k,i,j for the convolutional function(s) which is a (df_b+ 1)× p matrix, and phi_func contains the
estimated convolutional function values which is a (2× grid+ 1)× p matrix. rho is the estimated ρ
in the O-U process, and sigma is estimated standard deviation of the noise process, respectively.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 302

−1.0 −0.5 0.0 0.5 1.0
0

1
2

3
4

True
Estimated

Figure 2: Plot of true convolution function φ(·) and estimated convolution function φ̂(·) of the
functional time series generated from Equation (8).

The function g_cfar in the NTS package generates a CFAR process with argument tmax being the
length of time, rho is the parameter for the O-U process, sigma is the standard deviation of the O-U
process, phi_list is the convolutional function(s), and ini is the burn-in period. It returns a list with
two components. One is cfar, a tmax-by-(grid+1) matrix following the CFAR(p) model, and the other
one epsilon is the innovation at time tmax. Function p_cfar provides the forecasts of a CFAR model
with argument model as a result of an est_cfar fit and argument m as the forecasting horizon.

Let us consider a CFAR(1) process with the following convolutional coefficient function

φ(s) =
10√
2π

e−50s2
, s ∈ [−1, 1], (8)

where φ(·) is the probability density function of a Gaussian random variable with mean 0 and standard
deviation 0.1 truncated in the interval [−1, 1]. For the O-U process, ρ = 5 and its standard deviation
is 1. The following R code simulates such a CFAR(1) process specified in Equation (8) with N = 50,
T = 1000, and burn-in period 100, conducts an F test, performs the estimation procedure, and provides
a one-step ahead prediction.

R> phi_func <- function(x){
+ return(dnorm(x, mean = 0, sd = 0.1))
+ }
R> t <- 1000; N <- 50
R> x <- g_cfar(t, rho = 5, phi_func, sigma = 1, ini = 100)
R> f <- x$cfar[, seq(1, 1001, 1000/N)]
R> F_test_cfar(f, p.max = 2, df_b = 10, grid = 1000)
Test and p-value of Order 0 vs Order 1:
[1] 1368.231 0.000
Test and p-value of Order 1 vs Order 2 :
[1] 0.6848113 0.7544222
R> model <- est_cfar(f, p = 1, df_b = 10, grid = 1000)
R> print(c(model$rho, model$sigma))
[1] 4.940534 1.005315
R> pred <- p_cfar(model, f, m = 3)

From the output, the p-values for F tests suggest that we choose CFAR(1) model for the data.
ρ̂ = 4.941 and the standard deviation of the noise process is estimated as 1.005, and they are both close
to their true values. Figure 2 plots the estimated convolutional coefficient function (dashed line) and
true function φ(·) (solid line). It can be seen that est_cfar performs well.

F_test_cfarh and est_cfarh in NTS can deal with heteroscedasticity and irregular observation
locations, while the existing R package ftsa designed for functional time series assumes that the
functional data are observed at regular locations. The two functions come with following arguments:
weight is the heteroscedasticity weight function of the noise process with grid+1 elements, num_obs is
a t-by-1 vector and collects the numbers of observations at different times, and x_pos is a t-by(N + 1)
matrix and shows the observation locations, where (N + 1) is the maximum number of observation at
a time. The R code below will yield the same results as the previous one does. Hence, the output is
omitted.

R> num_obs <- rep(N+1, t); x_pos <- matrix(rep(seq(0, 1, 1/N), each = t), t, N+1);
R> weight0 <- function(x){return(rep(1, length(x)))}

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 303

R> F_test_cfarh(f, weight0, p.max = 2, df_b = 10, grid = 1000, num_obs, x_pos)
R> modelh <- est_cfarh(f, weight0, p = 1, df_b = 10, grid = 1000, num_obs, x_pos)

State-space modelings via SMC methods

It is challenging to derive analytic solutions for filtering or smoothing of nonlinear or non-Gaussian
state-space models. The SMC approach fully utilizes the dynamic nature of the model, and is an
effective way to solve such complex problems (Tsay and Chen, 2018). Consider the state-space model:

State equation:xt = st(xt−1, εt) or xt ∼ qt(· | xt−1),

Observation equation:yt = ht(xt, et) or yt ∼ ft(· | xt),

where xt is the unobservable state variable and yt is the observation (t = 1, . . . T). The underlying states
evolve through the known function st(·) and the state innovation εt, following a known conditional
distribution qt(·). The information on the underlying states is observed indirectly through yt via the
known function ht(·) and with observational noise et. The function ht(·) and the distribution of et are
known with possibly unknown parameters to be estimated.

In general, there are four main statistical inference objectives associated with a state-space model:

1. Filtering: obtain the marginal posterior distribution of the current state xt given the entire
history of the observations up to the current time, that is, p(xt | y1, . . . yt).

2. Prediction: obtain the marginal posterior distribution of the future state given the current
available information, that is, p(xt+1 | y1, . . . , yt).

3. Smoothing: obtain the posterior distribution of the state at the time t given the entire available
information, that is, p(xt | y1, . . . , yT) for t < T.

4. Likelihood and parameter estimation. SMC uses a set of weighted samples {x(j)
t , w(j)

t } to evalu-
ate the likelihood function L(θ) = p(y1, . . . , yT | θ) =

∫
p(x1, . . . , xT , y1, . . . , yT | θ)dx1 . . . dxT .

SMC is a recursive procedure with three components:

• Propagation step: At time t for j = 1, . . . , m: draw x(j)
t from a trial distribution gt(xt | x(j)

t−1, yt),

where m is the Monte Carlo sample size. Attach it to x(j)
t−1 to form x(j)

t = (x(j)
t−1, x(j)

t). Compute

the new weight for x(j)
t .

• Resampling step: Sample a set of indices {I1, . . . , Im}, where Ik ∈ {1, . . . , m} according to a set

of priority scores α
(j)
t , j = 1, . . . , m. Replace the sample with {x(Ij)

t , w̃
(Ij)
t = w

(Ij)
t /α

(Ij)
t }.

• Inference Step: Estimation of Eπt [(h(xt)] for some integrable function h(·) using the generated

weighted samples (x(j)
t , w(j)

t), j = 1, . . . , m, where πt(·) is the target distribution.

The selection of the propagation trial distribution gt(xt | xt−1, yt) plays a key role for an efficient im-
plementation of SMC. Since the efficiency of SMC is determined by the variance of weight distribution,
one would naturally want to choose gt(·) so that the incremental weight is as close to a constant as
possible. Liu and Chen (1995, 1998) proposed the trial distribution

gt(xt | xt−1) = p(xt | xt−1, yt) ∝ qt(xt | xt−1) ft(yt | xt).

The proposed distribution utilizes information from both the state and observation equations, hence is
termed a full information propagation step.

Algorithm: Full information propagation step
At time t, for j = 1, . . . , m:

1. Draw x(j)
t from the local posterior distribution,

gt(xt | x(j)
t−1, yt) = p(xt | x(j)

t−1, yt) ∝ ft(yt | xt)qt(xt | x(j)
t−1).

2. Compute the incremental weight

u(j)
t =

∫
ft(yt | xt)qt(xt | x(j)

t−1)dxt,

and the new weight w(j)
t = w(j)

t−1u(j)
t .

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 304

Because using full information propagation allows for more efficient estimation procedure with
Rao-Blackwellization, in NTS we provide a specific function for it, different from the more general
function using any user designed propagation function.

It is shown that the variance of the weight distributions stochastically increases over time. Contin-
uing to propagate the samples with small weights forward is a waste of computational resources since
inference is based on weighted average of the samples. One solution is to use resampling schemes
to duplicate the importance samples and to eliminate the ones with low weights. Hence resampling
steps are essential in SMC implementations. Another issue to consider is how to make inference as
efficient as possible. Rao-Blackwellization is one of the effective tools that can be used.

Smoothing is another important inference to make when we analyze data with state-space models.
Delayed estimation (e. g. , making inference on p(xt−d | y1, . . . , yt)) is a special case of smoothing. It

can be achieved simply by using the weighted sample {(xt−d, w(j)
t)}. However, when d is large, this

sampling approach does not work well because resampling reduces the number of unique ancestors
and thus increases the estimation errors. A more efficient algorithm is to calculate the backward

smoothing weights, after obtaining the forward filtering weighted samples {(x(j)
t , w(j)

t), j = 1, . . . , m}.
The resulting weighted sample {(x(j)

t , w̃(j)
t), j = 1, . . . , m} is properly weighted.

Algorithm: Weight marginalization SMC smoother
Let w̃(j)

T = w(j)
T , j = 1, . . . , m. For t = T − 1, T − 2, . . . , 1 and j = 1, . . . , m:

Calculate

ũ(j)
t =

m

∑
i=1

qt+1(x(i)t+1 | x(j)
t)

∑m
k=1 qt+1(x(i)t+1 | x(k)t)w(k)

t

w̃(i)
t+1,

and the smoothing weight w̃(j)
t = w(j)

t ũ(j)
t .

Table 3 lists functions in NTS that implement the aforementioned SMC procedures. Compared to
the existing R package SMC coming with one generic function, NTS provides various functions for
statistical inference and are much more user-friendly.

Table 3: List of R functions about SMC in package NTS

Usage Function Description

Generic function SMC SMC method with delay but not using a full information propagation step
SMC.Smooth SMC smoothing method
SMC.Full SMC method using a full information propagation step

SMC.Full.RB
SMC method using a full information propagation step with
Rao-Blackwellization estimate and no delay

The SMC function can be called by:

R> SMC(Sstep, nobs, yy, mm, par, xx.init, xdim, ydim, resample.sch,
+ delay = 0, funH = identity)

The following arguments need to be specified for SMC.

• Sstep: A function that performs one step propagation using a proposal distribution. Its input
variables include (mm,xx,logww,yyy,par,xdim,ydim), where xx and logww are the prior iteration
samples and their corresponding log weights, and yyy is the observation at current time step. It
returns a list that contains xx (the sample xt) and logww (their corresponding log weights).

• nobs: the number of observations, T.
• yy: the observations with T columns and ydim rows.
• mm: the Monte Carlo sample size m.
• par: a list of parameter values to pass to Sstep.
• xx.init: the initial samples of x0.
• xdim,ydim: the dimension of the state variable xt and the observation yt.
• resample.sch: a binary vector of length nobs, reflecting the resampling schedule.

resample.sch[i]=1 indicates resample should be carried out at step i.
• delay: the maximum delay lag for delayed wighting estimation. Default is zero.
• funH: a user supplied function h(·) for estimating E(h(xt) | yt+d). Default is identify function

for estimating the mean with no delay. The function should be able to take vector or matrix as
input and operates on each element of the input.

The function returns xhat, an array with dimensions (xdim,nobs,delay+1) and the scaled log-likelihood
value loglike. The functions SMC.Smooth, SMC.Full and SMC.Full.RB have similar inputs and outputs,
except that SMC.Smooth needs another input function for the backward smoothing step and funH is a
function for estimating E(h(xt) | y1, . . . , yT).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 305

Here is an example demonstrating how to implement SMC methods using the NTS package.
Passive sonar is often used in military surveillance systems to track a target and to reduce the chance
to be detected by the target. Without using an active sonar, it collects the signals generated by the
motion of the target, and thus only the direction (or bearing) of the target is observed with error.
With multiple detectors, the location of the target can be identified (Peach, 1995; Kronhamn, 1998;
Arulampalam et al., 2004; Tsay and Chen, 2018).

Suppose the target is moving in a two-dimensional plane and there are two stationary detectors
located on the same plane at (ηi1, ηi2) (i = 1, 2) corresponding to a Cartesian coordinate. At each time
t the observations consist of two angles φit (i = 1, 2) of the target related to the detectors with noise.
Assume that the target is moving with random acceleration in both directions. We use d1t and d2t to
denote the true locations at time t in x axis and y axis respectively, and s1t and s2t to denote the speed
at time t in x axis and in y axis respectively. Let ∆T be the time duration between two consecutive
observations and we assume that the target maintains a random but constant acceleration between two
consecutive observations. ε1t and ε2t are the total acceleration within the period in x and y directions
which are assumed to follow N(0, q2

1) and N(0, q2
2), respectively. The motion model is

dit = dit−1 + st−1∆T + 0.5∆Tεit, εit ∼ N(0, q2
i),

sit = si,t−1 + εit, for i = 1, 2.

The unobserved state variable is xt = (d1t, d2t, s1t, s2t)
′. One observes only the directions of the

target with observational errors. Assume ∆T = 1, the system can be rewritten as

State equation xt = Hxt−1 + Wwt, (9)

Observation equation φit = arc tan
(

d2t − ηi2
d1t − ηi1

)
+ eit, for i = 1, 2, (10)

where

H =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , W =


0.5q1 0

0 0.5q2
q1 0
0 q2

 ,

wt = [wt1 wt2]
′, wit ∼ N(0, 1) and eit ∼ N(0, r2) for i = 1, 2. We restrict φit ∈ [−π/2, π/2]. This

problem is highly nonlinear.

In this example, the sensors are placed as (η11, η12) = (0, 0) and (η21, η22) = (20, 0), and the
measurement errors e1t and e2t follow N(0, 0.022). A target moves with an initial value x0 =
(10, 0, 0.01, 0.01) and a random acceleration with variance q2

1 = q2
2 = 0.032 in both directions.

We use the following code to generate data.

R> simPassiveSonar <- function(nn = 300, q, r, W, V, s2, start, seed){
+ set.seed(seed)
+ x <- matrix(nrow = 4, ncol = nn)
+ y <- matrix(nrow = 2, ncol = nn)
+ for(ii in 1:nn){
+ if(ii == 1) x[, ii] <- start
+ if(ii > 1) x[, ii] <- H%*%x[, ii - 1] + W%*%rnorm(2)
+ y[1, ii] <- atan(x[2, ii]/x[1, ii])
+ y[2, ii] <- atan(x[2, ii]/(x[1, ii] - s2))
+ y[, ii] <- (y[, ii] + V%*%rnorm(2) + 0.5*pi)%%pi -0.5*pi
+ }
+ return(list(xx = x, yy = y, H = H, W = W, V = V))
+ }

R> s2 <- 20; nobs <- 300
R> q <- c(0.03, 0.03); r <- c(0.02, 0.02)
R> start <- c(10, 10, 0.01, 0.01)
R> H <- c(1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0,1)
R> H <- matrix(H, ncol = 4, nrow = 4, byrow = T)
R> W <- c(0.5*q[1], 0, 0, 0.5*q[2], q[1], 0, 0, q[2])
R> W <- matrix(W, ncol = 2, nrow = 4, byrow = T)
R> V <- diag(r)
R> simu_out <- simPassiveSonar(nobs, q, r, W, V, s2, start, seed = 2000)
R> plot(simu_out$xx[1,], simu_out$xx[2,], xlab = 'x', ylab = 'y', type = "l")

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 306

−10 0 10 20 30 40 50
−

10
0

10
20

30
40

Target trajectory

x

y

Figure 3: Simulated path of the SMC example generated from Equation (9) and Equation (10).

R> points(c(0, 20), c(0, 0), pch = 15, cex = 2)

Figure 3 shows a simulated trajectory for t = 1, . . . , 300, which contains two sharp turns in the
middle of the observational period.

We consider using the state equation as the proposal distribution. Specifically, given x(i)t−1, generate

x(j)
t using (9). The incremental weight u(j)

t ∝ p(yt | x(j)
t) = ∑m

i=0 p(yt | x(j)
t) becomes

u(j)
t exp

− (φ1t − φ̂
(j)
1t)

2 + (φ2t − φ̂
(j)
2t)

2

2r2

 .

The following statements are user generated functions for SMC implementation.

R> SISstep.Sonar <- function(mm, xx, logww, yy, par, xdim = 1, ydim = 1){
+ H <- par$H; W <- par$W; V <- par$V; s2 <- par$s2;
+ xx <- H%*%xx + W%*%matrix(rnorm(2*mm), nrow = 2, ncol = mm)
+ y1 <- atan(xx[2,]/xx[1,])
+ y2 <- atan(xx[2,]/(xx[1,] - s2))
+ res1 <- (yy[1] - y1 + 0.5*pi)%%pi - 0.5*pi
+ res2 <- (yy[2] - y2 + 0.5*pi)%%pi - 0.5*pi
+ uu <- -res1**2/2/V[1, 1]**2 - res2**2/2/V[2, 2]**2
+ logww <- logww + uu
+ return(list(xx = xx, logww = logww))
+ }

R> SISstep.Smooth.Sonar <- function(mm, xxt, xxt1, ww, vv, par){
+ H <- par$H; W <- par$W;
+ uu <- 1:mm
+ aa <- 1:mm
+ xxt1p <- H%*%xxt
+ for(i in 1:mm){
+ res1 <- (xxt1[1, i] - xxt1p[1,])/W[1,1]
+ res2 <- (xxt1[2, i] - xxt1p[2,])/W[2, 2]
+ aa[i] <- sum(exp(-0.5*res1**2 - 0.5*res2**2)*ww)
+ }
+ for(j in 1:mm){
+ res1 <- (xxt1[1,] - xxt1p[1, j])/W[1, 1]
+ res2 <- (xxt1[2,] - xxt1p[2, j])/W[2, 2]
+ uu[j] <- sum(exp(-0.5*res1**2 - 0.5*res2**2)*vv/aa)
+ }
+ vv <- ww*uu
+ return(list(vv = vv))
+ }

Now we are ready to run the Monte Carlo sample with size m = 10000.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 307

−10 0 10 20 30 40

20
25

30
35

Delayed filtering results

x

y

delay 0
delay 5
delay 10

−10 0 10 20 30 40

20
25

30
35

SMC smoothing results

x

y

SMC Smoother

0 50 100 150 200 250 300

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Tracking error in x direction

Index

x
er

ro
r

delay 0
delay 5
delay 10

0 50 100 150 200 250 300

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1.
5

Tracking error in y direction

Index

y
er

ro
r

delay 0
delay 5
delay 10

Figure 4: Delayed filtering and smoothing results for the SMC example generated from Equation (9)
and Equation (10).

R> mm <- 100000
R> set.seed(1)
R> resample.sch <- rep(1,nobs)
R> xdim <- 4; ydim <- 2
R> mu0 <- start; SS0 <- diag(c(1, 1, 1, 1))*0.01
R> xx.init <- mu0 + SS0%*%matrix(rnorm(mm*4), nrow = 4, ncol = mm)
R> par <- list(H = H, W = W, V = V, s2 = s2)
R> delay <- 10
R> out <- SMC(SISstep.Sonar, nobs, yy, mm, par, xx.init, xdim, ydim, resample.sch, delay)
R> tt <- 100:nobs
R> plot(simu_out$xx[1, tt], simu_out$xx[2, tt], xlab = 'x', ylab = 'y')
R> for(dd in c(1, 6, 11)){
+ tt <- 100:(nobs - dd)
+ lines(out$xhat[1, tt, dd], out$xhat[2, tt, dd], lty = 23 - 2*dd, lwd = 1)
+ }
> legend(25, 22.5, legend = c("delay 0", "delay 5", "delay 10"), lty = c(21, 11, 1))

The top left panel in Figure 4 shows the delayed estimation using the delay weighting method
with delay d = 0, 5, and 10, and Monte Carlo sample size m = 10000. The bottom panels in Figure
4 plot the estimation error in the x and y directions. The benefit of using delayed estimation can be
clearly seen.

SMC smoothing can be implemented with the following R code. The top right panel in Figure 4
plots the smoothing results, and it shows that the SMC smoothing function performs very well.

R> set.seed(1)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 308

R> mm <- 5000
R> par <- list(H = H, W = W, V = V, s2 = s2)
R> xx.init <- mu0 + SS0%*%matrix(rnorm(mm*4), nrow = 4, ncol = mm)
R> out.s5K <- SMC.Smooth(SISstep.Sonar, SISstep.Smooth.Sonar, nobs, yy, mm, par,
+ xx.init, xdim, ydim, resample.sch)
R> plot(simu_out$xx[1, tt], simu_out$xx[2, tt], xlab = 'x', ylab = 'y')
R> lines(out.s5K$xhat[1, tt], out.s5K$xhat[2, tt], lty = 1, lwd = 2)
+ legend(17, 19.5, legend = c("SMC Smoother"), lty = 1, lwd = 2)

Conclusion

The paper introduces the R package NTS which offers a broad collection of functions for the analysis
of nonlinear time series data. We briefly review various nonlinear time series models, including TAR
models, ACMx models, CFAR models, and state-space models. The associated estimation, identifica-
tion, and forecasting procedures are discussed. The NTS package provides computational tools to fit
these models, to evaluate their performance, and to provide predictions. Furthermore, the functions
can be used, extended, and modified within the package to analyze larger univariate/multivariate,
Gaussian/non-Gaussian time series. These features enable users to carry out a comprehensive and
complex analysis of time series without the constraints from software availability.

Bibliography

D. Arulampalam, B. Ristic, N. Gordon, and T. Mansell. Bearings-only tracking of maneuvering targets
using particle filters. EURASIP Journal of Applied Signal Processing, 2004:2351–2365, 2004. URL
https://doi.org/10.1155/S1110865704405095. [p305]

O. Bjornstad. nlts: NonlinearTime Series Analysis, 2018. URL https://CRAN.R-project.org/package=
nlts. R package version 1.0-2. [p293]

D. Bosq. Linear Processes in Function Spaces, Theory and Applications. Springer-Verlag, New York, 2000.
URL http://doi.org/10.1007/978-1-4612-1154-9. [p294, 301]

A. Bowman and A. Azzalini. sm: Smoothing Methods for Nonparametric Regression and Density Estimation,
2018. URL https://CRAN.R-project.org/package=sm. R package version 2.2-5.6. [p293]

L. Breiman, A. Cutler, A. Liaw, and M. Wiener. randomForest: Breiman and Cutler’s Random Forests for
Classification and Regression, 2018. URL https://CRAN.R-project.org/package=randomForest. R
package version 4.6-14. [p293]

R. Chen. Threshold variable selection in open-loop threshold autoregressive models. Journal of Time
Series Analysis, 16:461–481, 1995. URL https://doi.org/10.1111/j.1467-9892.1995.tb00247.x.
[p294]

R. Chen and R. Tsay. On the ergodicity of tar(1) processes. The Annals of Applied Probability, 1:613–634,
1991. URL http://doi.org/10.1214/aoap/1177005841. [p294]

F. X. Diebold and C. Li. Forecasting the term structure of government bond yields. Journal of
Econometrics, 130:337–364, 2006. URL https://doi.org/10.1016/j.jeconom.2005.03.005. [p301]

D. Domian and D. Louton. A threshold autoregressive analysis of stock returns and real economic
activity. International Review of Economics and Finance, 6:167–179, 1997. URL https://doi.org/10.
1016/S1059-0560(97)90022-8. [p294]

C. Garcia and G. Sawitzki. nonlinearTseries: Nonlinear Time Series Analysis, 2020. URL https://CRAN.R-
project.org/package=nonlinearTseries. R package version 0.2.10. [p293]

G. Goswami. SMC: Sequential Monte Carlo (SMC) Algorithm, 2011. URL https://CRAN.R-project.org/
package=SMC. R package version 1.1. [p294]

S. Hormann and P. a. Kokoszka. Weakly dependent functional data. The Annals of Statistics, 38:
1845–1884, 2010. URL http://doi.org/10.1214/09-aos768. [p301]

L. Horváth, P. Kokoszka, and R. Reeder. Estimation of the mean of functional time series and a
two-sample problem. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75:
103–122, 2013. URL https://doi.org/10.1111/j.1467-9868.2012.01032.x. [p301]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1155/S1110865704405095
https://CRAN.R-project.org/package=nlts
https://CRAN.R-project.org/package=nlts
http://doi.org/10.1007/978-1-4612-1154-9
https://CRAN.R-project.org/package=sm
https://CRAN.R-project.org/package=randomForest
https://doi.org/10.1111/j.1467-9892.1995.tb00247.x
http://doi.org/10.1214/aoap/1177005841
https://doi.org/10.1016/j.jeconom.2005.03.005
https://doi.org/10.1016/S1059-0560(97)90022-8
https://doi.org/10.1016/S1059-0560(97)90022-8
https://CRAN.R-project.org/package=nonlinearTseries
https://CRAN.R-project.org/package=nonlinearTseries
https://CRAN.R-project.org/package=SMC
https://CRAN.R-project.org/package=SMC
http://doi.org/10.1214/09-aos768
https://doi.org/10.1111/j.1467-9868.2012.01032.x

CONTRIBUTED RESEARCH ARTICLE 309

R. Hyndman and H. L. Shang. ftsa: Functional Time Series Analysis, 2020. URL https://CRAN.R-
project.org/package=ftsa. R package version 6.0. [p294]

R. J. Hyndman and H. L. Shang. Forecasting functional time series. Journal of the Korean Statistical
Society, 38:199–211, 2009. URL https://doi.org/10.1016/j.jkss.2009.06.002. [p301]

T. Kronhamn. Bearings-only target motion analysis based on a multihypothesis kalman filter and
adaptive ownship motion control. IEE Proceedings- Radar, Sonar, and Navigation, 145:247–252, 1998.
URL http://doi.org/10.1049/ip-rsn:19982130. [p305]

D. Li and H. Tong. Nested sub-sample search algorithm for estimation of threshold models. Statistica
Sinica, 26:1543–1554, 2016. URL http://doi.org/10.5705/ss.2013.394t. [p294, 295]

T. Liboschik, R. Fried, K. Fokianos, P. Probst, and J. Rathjens. tscount: Analysis of Count Time series, 2020.
URL https://CRAN.R-project.org/package=tscount. R package version 1.4.3. [p293]

J. Liu and R. Chen. Blind deconvolution via sequential imputations. Journal of the American Statistical
Association, 90(430):567–576, 1995. URL https://doi.org/10.2307/2291068. [p303]

J. Liu and R. Chen. Sequential monte carlo methods for dynamic systems. Journal of the American
Statistical Association, 93:1032–1044, 1998. URL https://doi.org/10.2307/2669847. [p303]

X. Liu, R. Chen, and H. Xiao. Convolutional autoregressive models for functional time series. Journal
of Econometrics, 194:263–282, 2016. URL https://doi.org/10.1016/j.jeconom.2016.05.006. [p294,
301]

P. Narayan. The behavior of us stock prices: Evidence from a threshold autoregressive model.
Mathematics and Computers in Simulation, 71:103–108, 2006. URL https://doi.org/10.1016/j.
matcom.2005.11.016. [p294]

A. F. D. Narzo, J. L. Aznarte, M. Stigler, and H. Tsung-wu. tsDyn: Nonlinear Time series Models with
Regime Switching, 2020. URL https://CRAN.R-project.org/package=tsDyn. R package version
10-1.2. [p293]

N. Peach. Bearings-only tracking using a set of range-parameterized extended kalman filter. IEE
Proceedings- Control Theory and Applications, 142:73–80, 1995. URL http://doi.org/10.1049/ip-
cta:19951614. [p305]

B. Ripley. tree: Classification and Regression Trees, 2019. URL https://CRAN.R-project.org/package=
tree. R package version 1.0-40. [p293]

G. Tiao and R. Tsay. Model specification in multivariate time series. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 51:157–213, 1989. URL http://doi.org/10.1111/j.2517-
6161.1989.tb01756.x. [p294]

H. Tong. On a threshold model. Pattern Recognition and Signal Processing, 1978. Sihhoff& Noordhoof,
Amsterdam. [p294]

H. Tong and K. Lim. Threshold autoregression, limit cycles and cyclical data. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 42(3):245–292, 1980. URL http://doi.org/10.
1111/j.2517-6161.1980.tb01126.x. [p294]

R. Tsay. Testing and modeling threshold autoregressive process. Journal of the American Statistical
Association, 84:231–240, 1989. URL https://doi.org/10.2307/2289868. [p293, 298]

R. Tsay and R. Chen. Nonlinear Time Series Analysis. John Wiley & Sons, New Jersey, 2018. ISBN
978-1-119-26407-1. URL http://doi.org/10.1002/9781119514312. [p300, 303, 305]

R. Tsay, R. Chen, and X. Liu. NTS: Nonlinear Time Series Analysis, 2020. URL https://CRAN.R-
project.org/package=NTS. R package version 1.1.2. [p293]

H. Youssef. NlinTS: Models for Non Linear Causality Detection in Time Series, 2020. URL https://CRAN.R-
project.org/package=NlinTS. R package version 1.4.4. [p293]

H. Zhang and F. Nieto. TAR: Bayesian Modeling of Autoregressive Threshold Time Series Models, 2017. URL
https://CRAN.R-project.org/package=TAR. R package version 1.0. [p293]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ftsa
https://CRAN.R-project.org/package=ftsa
https://doi.org/10.1016/j.jkss.2009.06.002
http://doi.org/10.1049/ip-rsn:19982130
http://doi.org/10.5705/ss.2013.394t
https://CRAN.R-project.org/package=tscount
https://doi.org/10.2307/2291068
https://doi.org/10.2307/2669847
https://doi.org/10.1016/j.jeconom.2016.05.006
https://doi.org/10.1016/j.matcom.2005.11.016
https://doi.org/10.1016/j.matcom.2005.11.016
https://CRAN.R-project.org/package=tsDyn
http://doi.org/10.1049/ip-cta:19951614
http://doi.org/10.1049/ip-cta:19951614
https://CRAN.R-project.org/package=tree
https://CRAN.R-project.org/package=tree
http://doi.org/10.1111/j.2517-6161.1989.tb01756.x
http://doi.org/10.1111/j.2517-6161.1989.tb01756.x
http://doi.org/10.1111/j.2517-6161.1980.tb01126.x
http://doi.org/10.1111/j.2517-6161.1980.tb01126.x
https://doi.org/10.2307/2289868
http://doi.org/10.1002/9781119514312
https://CRAN.R-project.org/package=NTS
https://CRAN.R-project.org/package=NTS
https://CRAN.R-project.org/package=NlinTS
https://CRAN.R-project.org/package=NlinTS
https://CRAN.R-project.org/package=TAR

CONTRIBUTED RESEARCH ARTICLE 310

Xialu Liu
Department of Management Information Systems
San Diego State University
5500 Campanile Drive, San Diego, CA 92182
USA
xialu.liu@sdsu.edu

Rong Chen
Department of Statistics
Rutgers University
57 US Highway 1, New Brunswick, NJ 08901
USA
rongchen@stat.rutgers.edu

Ruey Tsay
Booth School of Business
University of Chicago
5807 S. Woodlawn Ave, Chicago, IL 60637
USA
ruey.tsay@chicagobooth.edu

Chen’s research is supported in part by National Science Foundation grants DMS-1503409, DMS-
1737857, IIS-1741390 and CCF-1934924. Tsay’s research is supported in part by the Booth School of
Business, University of Chicago.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:xialu.liu@sdsu.edu
mailto:rongchen@stat.rutgers.edu
mailto:ruey.tsay@chicagobooth.edu

CONTRIBUTED RESEARCH ARTICLE 311

Species Distribution Modeling using
Spatial Point Processes: a Case Study of
Sloth Occurrence in Costa Rica
by Paula Moraga

Abstract

Species distribution models are widely used in ecology for conservation management of species
and their environments. This paper demonstrates how to fit a log-Gaussian Cox process model to
predict the intensity of sloth occurrence in Costa Rica, and assess the effect of climatic factors on spatial
patterns using the R-INLA package. Species occurrence data are retrieved using spocc, and spatial
climatic variables are obtained with raster. Spatial data and results are manipulated and visualized by
means of several packages such as raster and tmap. This paper provides an accessible illustration of
spatial point process modeling that can be used to analyze data that arise in a wide range of fields
including ecology, epidemiology and the environment.

Introduction

Species distribution models are widely used in ecology to predict and understand spatial patterns,
assess the influence of climatic and environmental factors on species occurrence, and identify rare
and endangered species. These models are crucial for the development of appropriate strategies that
help protect species and the environments where they live. In this paper, we demonstrate how to
formulate spatial point processes for species distribution modeling and how to fit them with the
R-INLA package (Rue et al., 2009) (http://www.r-inla.org/).

Point processes are stochastic models that describe locations of events of interest and possibly
some additional information such as marks that inform about different types of events (Diggle, 2013;
Moraga and Montes, 2011). These models can be used to identify patterns in the distribution of the
observed locations, estimate the intensity of events (i.e., mean number of events per unit area), and
learn about the correlation between the locations and spatial covariates. The simplest theoretical point
process model is the homogeneous Poisson process. This process satisfies two conditions. First, the
number of events in any region A follows a Poisson distribution with mean λ|A|, where λ is a constant
value denoting the intensity and |A| is the area of region A. And second, the number of events in
disjoint regions are independent. Thus, if a point pattern arises as a realization of an homogeneous
Poisson process, an event is equally likely to occur at any location within the study region, regardless
of the locations of other events.

In many situations, the homogeneous Poisson process is too restrictive. A more interesting point
process model is the log-Gaussian Cox process which is typically used to model phenomena that
are environmentally driven (Diggle et al., 2013). A log-Gaussian Cox process is a Poisson process
with a varying intensity which is itself a stochastic process of the form Λ(s) = exp(Z(s)) where
Z = {Z(s) : s ∈ R2} is a Gaussian process. Then, conditional on Λ(s), the point process is a Poisson
process with intensity Λ(s). This implies that the number of events in any region A is Poisson
distributed with mean

∫
A Λ(s)ds, and the locations of events are an independent random sample

from the distribution on A with probability density proportional to Λ(s). The log-Gaussian Cox
process model can also be easily extended to include spatial explanatory variables providing a flexible
approach for describing and predicting a wide range of spatial phenomena.

In this paper, we formulate and fit a log-Gaussian Cox process model for sloth occurrence data in
Costa Rica that incorporates spatial covariates that can influence the occurrence of sloths, as well as
random effects to model unexplained variability. The model allows to estimate the intensity of the
process that generates the data, understand the overall spatial distribution, and assess factors that can
affect spatial patterns. This information can be used by decision-makers to develop and implement
conservation management strategies.

The rest of the paper is organized as follows. First, we show how to retrieve sloth occurrence data
using the spocc package (Chamberlain, 2018) and spatial climatic variables using the raster package
(Hijmans, 2019). Then, we detail how to formulate the log-Gaussian Cox process and how to use
R-INLA to fit the model. Then, we inspect the results and show how to obtain the estimates of the
model parameters, and how to create create maps of the intensity of the predicted process. Finally, the
conclusions are presented.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://www.r-inla.org/
https://CRAN.R-project.org/package=spocc
https://CRAN.R-project.org/package=raster

CONTRIBUTED RESEARCH ARTICLE 312

Sloth occurrence data

Sloths are tree-living mammals found in the tropical rain forests of Central and South America. They
have an exceptionally low metabolic rate and are noted for slowness of movement. There are six
sloth species in two families: two-toed and three-toed sloths. Here, we use the R package spocc
(Chamberlain, 2018) to retrieve occurrence data of the three-toed brown-throated sloth in Costa Rica.

The spocc package provides functionality for retrieving and combining species occurrence data
from many data sources such as the Global Biodiversity Information Facility (GBIF) (https://www.
gbif.org/), and the Atlas of Living Australia (ALA) (https://www.ala.org.au/). We use the occ()
function from spocc to retrieve the locations of brown-throated sloths in Costa Rica recorded between
2000 and 2019 from the GBIF database (GBIF.org, 2020; GBIF: The Global Biodiversity Information
Facility, 2020). In the function, we specify arguments query with the species scientific name (Bradypus
variegatus), from with the name of the database (GBIF), and date with the start and end dates (2000-01-
01 to 2019-12-31). We also specify we wish to retrieve occurrences in Costa Rica by setting gbifopts to
a named list with country equal to the 2-letter code of Costa Rica (CR). Moreover, we only retrieve
occurrence data that have coordinates by setting has_coords = TRUE, and specify limit equal to 1000
to retrieve a maximum of 1000 occurrences.

library("spocc")
df <- occ(query = "Bradypus variegatus", from = "gbif",

date = c("2000-01-01", "2019-12-31"),
gbifopts = list(country = "CR"),
has_coords = TRUE, limit = 1000)

occ() returns an object with slots for each of data sources. We can see the slot names by typing
names(df).

names(df)

[1] "gbif" "bison" "inat" "ebird" "ecoengine" "vertnet" "idigbio" "obis" "ala"

In this case, since we only retrieve data from GBIF, the only slot with data is df$gbif while the
others are empty. df$gbif contains information about the species occurrence and also other details
about the retrieval process. We can use the occ2df() function to combine the output of occ() and
create a single data frame with the most relevant information for our analysis, namely, the species
name, the decimal degree longitude and latitude values, the data provider, and the dates and keys of
the occurrence records.

d <- occ2df(df)

A summary of the data can be seen with summary(d). We observe the data contain 707 locations of
sloths occurred between 2000-01-24 and 2019-12-30.

summary(d)

name longitude latitude prov
Length:707 Min. :-85.51 Min. : 8.340 Length:707
Class :character 1st Qu.:-84.15 1st Qu.: 9.391 Class :character
Mode :character Median :-84.01 Median : 9.795 Mode :character
Mean :-83.87 Mean : 9.902
3rd Qu.:-83.51 3rd Qu.:10.450
Max. :-82.62 Max. :11.038
date key
Min. :2000-01-24 Length:707
1st Qu.:2014-01-12 Class :character
Median :2017-05-30 Mode :character
Mean :2015-12-19
3rd Qu.:2019-01-18
Max. :2019-12-30

We can visualize the locations of sloths retrieved in Costa Rica using several mapping packages
such as tmap (Tennekes, 2018), ggplot2 (Wickham, 2016), leaflet (Cheng et al., 2018), and mapview
(Appelhans et al., 2019). Here, we choose to create maps using tmap. First, we use the SpatialPoints()
function from the sp package (Pebesma and Bivand, 2005) to create a SpatialPoints object called dpts
with the coordinates of the sloth locations.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://www.gbif.org/
https://www.gbif.org/
https://www.ala.org.au/
https://CRAN.R-project.org/package=tmap
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=leaflet
https://CRAN.R-project.org/package=mapview
https://CRAN.R-project.org/package=sp

CONTRIBUTED RESEARCH ARTICLE 313

library(sp)
dpts <- SpatialPoints(d[, c("longitude", "latitude")])

Then we create the map plotting the locations of dpts. tmap allows to create both static and
interactive maps by using tmap_mode("plot") and tmap_mode("view"), respectively. Here, we create
an interactive map using use a basemap given by the OpenStreetmap provider, and plot the sloth
locations with tm_shape(dpts) + tm_dots().

library(tmap)
tmap_mode("view")
tm_basemap(leaflet::providers$OpenStreetMap) +
tm_shape(dpts) + tm_dots()

Figure 1: Snapshot of the interactive map depicting sloth locations in Costa Rica. The map shows
some areas with no sloths and other areas with sloth aggregations.

The map created is shown in Figure 1. The map shows an inhomogeneous pattern of sloths with
concentrations in several locations of Costa Rica. We will use a log-Gaussian Cox point process model
to predict the intensity of the process that generates the sloth locations and assess the potential effect
of climatic variables on the occurrence pattern.

Spatial climatic covariates

In the model, we include a spatial explanatory variable that can potentially affect sloth occurrence.
Specifically, we include a variable that denotes annual minimum temperature observed in the study
region. This variable can be obtained using the raster package (Hijmans, 2019) from the WorldClim
database (http://www.worldclim.org/bioclim). We use the getData() function of the raster package
by specifying the name of the database ("worldclim"), the variable name ("tmin"), and a resolution
of 10 minutes of a degree ("10"). getData() returns a RasterStack with minimum temperature
observations with degree Celsius x 10 units for each month. We average the values of the RasterStack
and compute a raster that represents annual average minimum temperature.

library(raster)
rmonth <- getData(name = "worldclim", var = "tmin", res = 10)
rcov <- mean(rmonth)

Implementing and fitting the spatial point process model

Log-Gaussian Cox process model

We assume that the spatial point pattern of sloth locations in Costa Rica, {xi : i = 1, . . . , n}, has been
generated as a realization of a log-Gaussian Cox process with intensity given by Λ(s) = exp(η(s)).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://www.worldclim.org/bioclim

CONTRIBUTED RESEARCH ARTICLE 314

This model can be easily fitted by approximating it by a latent Gaussian model by means of a gridding
approach (Illian et al., 2012). First, we discretize the study region into a grid with n1 × n2 = N cells
{sij}, i = 1, . . . , n1, j = 1, . . . , n2. In the log-Gaussian Cox process, the mean number of events in
cell sij is given by the integral of the intensity over the cell, Λij =

∫
sij

exp(η(s))ds, and this integral

can be approximated by Λij ≈ |sij|exp(ηij), where |sij| is the area of the cell sij. Then, conditional on
the latent field ηij, the observed number of locations in grid cell sij, yij, are independent and Poisson
distributed as follows,

yij|ηij ∼ Poisson(|sij|exp(ηij)).

In our example, we model the log-intensity of the Poisson process as

ηij = β0 + β1 × cov(sij) + fs(sij) + fu(sij).

Here, β0 is the intercept, cov(sij) is the covariate value at sij, and β1 is the coefficient of cov(sij). f_s()
is a spatially structured random effect reflecting unexplained variability that can be specified as a
second-order two-dimensional CAR-model on a regular lattice. f_u() is an unstructured random
effect reflecting independent variability in cell sij.

Computational grid

In order to fit the model, we create a regular grid that covers the region of Costa Rica. First, we obtain
a map of Costa Rica using the ne_countries() function of the rnaturalearth package (South, 2017).
In the function we set type = "countries", country = "Costa Rica" and scale = "medium" (scale
denotes the scale of map to return and possible options are small, medium and large).

library(rnaturalearth)
map <- ne_countries(type = "countries", country = "Costa Rica", scale = "medium")

Then, we create a raster that covers Costa Rica using raster() where we provide the map of Costa
Rica and set resolution = 0.1 to create cells with size of 0.1 decimal degrees. This creates a raster
with 31 × 33 = 1023 cells, each having an area equal to 0.12 decimal degrees2 (or 11.132 Km2 at the
equator).

resolution <- 0.1
r <- raster(map, resolution = resolution)
(nrow <- nrow(r))
[1] 31
(ncol <- ncol(r))
[1] 33
nrow*ncol
[1] 1023

We initially set to 0 the values of all the raster cells by using r[] <-0. Then, we use cellFromXY()
to obtain the number of sloths in each of the cells, and assign these counts to each of the cells of the
raster.

r[] <- 0
tab <- table(cellFromXY(r, dpts))
r[as.numeric(names(tab))] <- tab

Finally, we convert the raster r to a SpatialPolygonsDataFrame object called grid using rasterToPolygons().
This grid will be used to fit the model with the R-INLA package.

grid <- rasterToPolygons(r)

Data

Now, we add to grid the data needed for modeling. Since the spatial model that will be used in
R-INLA assumes data are sorted by columns, we first transpose grid. Then, we add variables id with
the id of the cells, Y with the number of sloths, and cellarea with the cell areas.

grid <- grid[as.vector(t(matrix(1:nrow(grid), nrow = ncol, ncol = nrow))),]

grid$id <- 1:nrow(grid)
grid$Y <- grid$layer
grid$cellarea <- resolution*resolution

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=rnaturalearth

CONTRIBUTED RESEARCH ARTICLE 315

We also add a variable cov with the value of the minimum temperature covariate in each of the
cells obtained with the extract() function of raster.

grid$cov <- extract(rcov, coordinates(grid))

Finally, we delete the cells of grid that lie outside Costa Rica. First, we use raster::intersect()
to know which cells lie within the map, and then subset these cells in the grid object.

gridmap <- raster::intersect(grid, map)
grid <- grid[grid$id %in% gridmap$id,]

A summary of the data can be seen as follows,

summary(grid)

Object of class SpatialPolygonsDataFrame
Coordinates:
min max
x -85.908008 -82.60801
y 8.089453 11.18945
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0]
Data attributes:
layer id Y cellarea cov
Min. : 0.00 Min. : 3.0 Min. : 0.00 Min. :0.01 Min. : 78.0
1st Qu.: 0.00 1st Qu.: 291.5 1st Qu.: 0.00 1st Qu.:0.01 1st Qu.:176.7
Median : 0.00 Median : 566.0 Median : 0.00 Median :0.01 Median :202.4
Mean : 1.38 Mean : 533.1 Mean : 1.38 Mean :0.01 Mean :189.0
3rd Qu.: 0.00 3rd Qu.: 762.5 3rd Qu.: 0.00 3rd Qu.:0.01 3rd Qu.:211.2
Max. :95.00 Max. :1009.0 Max. :95.00 Max. :0.01 Max. :223.2
NA's :2

We observe that the minimum temperature covariate has 2 missing values. We decide to impute
these missing values with a simple approach where we set these values equal to the values of the cells
next to them.

indNA <- which(is.na(grid$cov))
indNA

[1] 6 220

grid$cov[indNA] <- grid$cov[indNA+1]

We use tmap to create maps of the number of sloths (Y) and the covariate values (cov). In the
maps, we plot the border of grid that we obtain with the gUnaryUnion() function of the rgeos package
(Bivand and Rundel, 2019).

library(rgeos)
gridborder <- gUnaryUnion(grid)

We use tm_facets(ncol = 2) to plot maps in the same row and two columns, and tm_legend() to
put the legends in the left-bottom corner of the plots (Figure 2).

tmap_mode("plot")
tm_shape(grid) +
tm_polygons(col = c("Y", "cov"), border.col = "transparent") +
tm_shape(gridborder) + tm_borders() +
tm_facets(ncol = 2) + tm_legend(legend.position = c("left", "bottom"))

Fitting the model using R-INLA

We fit the log-Gaussian Cox process model to the sloths data using the R-INLA package. This package
implements the integrated nested Laplace approximation (INLA) approach that permits to perform
approximate Bayesian inference in latent Gaussian models (Rue et al., 2009; Moraga., 2019). R-INLA

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=rgeos

CONTRIBUTED RESEARCH ARTICLE 316

Figure 2: Maps with the number of sloths (left) and minimum temperature values (right) in Costa
Rica. The intensity of sloths occurrence is modeled using minimum temperature as a covariate.

is not on CRAN because it uses some external C libraries that make difficult to build the binaries.
Therefore, when installing the package, we need to specify the URL of the R-INLA repository. We
also need to add the https://cloud.r-project.org repository to enable the installation of CRAN
dependencies as follows,

install.packages("INLA", repos = c("https://inla.r-inla-download.org/R/stable",
"https://cloud.r-project.org"), dep = TRUE)

Note that the R-INLA package is large and its installation may take a few minutes. Moreover,
R-INLA suggests the graph and Rgraphviz packages which are part of the Bioconductor project.
These packages have to be installed by using their tools, for example, by using
BiocManager::install(c("graph","Rgraphviz"),dep = TRUE)).

To fit the model in INLA we need to specify a formula with the linear predictor, and then call
the inla() function providing the formula, the family, the data, and other options. The formula is
written by writing the outcome variable, then the ∼ symbol, and then the fixed and random effects
separated by + symbols. By default, the formula includes an intercept. The outcome variable is Y (the
number of occurrences in each cell) and the covariate is cov. The random effects are specified with the
f() function where the first argument is an index vector specifying which elements of the random
effect apply to each observation, and the other arguments are the model name and other options. In
the formula, different random effects need to have different indices vectors. We use grid$id for the
spatially structured effect, and create an index vector grid$id2 with the same values as grid$id for
the unstructured random effect. The spatially structured random effect is specified with the index
vector id, the model name that corresponds to ICAR(2) ("rw2d"), and the number of rows (nrow) and
columns (ncol) of the regular lattice. The unstructured random effect is specified with the index vector
id2 and the model name "iid".

library(INLA)

grid$id2 <- grid$id

formula <- Y ~ 1 + cov +
f(id, model="rw2d", nrow = nrow, ncol = ncol) +
f(id2, model="iid")

Finally, we call inla() where we provide the formula, the family ("poisson") and the data
(grid@data). We write E = cellarea to denote that the expected values in each of the cells are
in variable cellarea of the data. We also write control.predictor = list(compute = TRUE) to
compute the marginal densities for the linear predictor.

res <- inla(formula, family = "poisson", data = grid@data,
E = cellarea, control.predictor = list(compute = TRUE))

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://cloud.r-project.org
https://www.bioconductor.org/packages/release/bioc/html/graph.html
https://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html

CONTRIBUTED RESEARCH ARTICLE 317

Results

The execution of inla() returns an object res that contains information about the fitted model
including the posterior marginals of the parameters and the intensity values of the spatial process. We
can see a summary of the results as follows,

summary(res)

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -1.904 2.426 -6.832 -1.852 2.734 -1.754 0
cov 0.016 0.009 -0.002 0.016 0.035 0.016 0
##
Random effects:
Name Model
id Random walk 2D
id2 IID model
##
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode
Precision for id 0.474 0.250 0.158 0.420 1.11 0.328
Precision for id2 0.287 0.055 0.193 0.282 0.41 0.272
##
Expected number of effective parameters(stdev): 196.11(7.06)
Number of equivalent replicates : 2.61
##
Marginal log-Likelihood: -1620.60
Posterior marginals for the linear predictor and the fitted values are computed

The intercept β̂0 = −1.904 with 95% credible interval (−6.832, 2.734), the minimum temperature
covariate has a positive effect on the intensity of the process with a posterior mean β̂1 = 0.016 and
95% credible interval (−0.002, 0.035). We can plot the posterior distribution of the coefficient of the
covariate β̂1 with ggplot2 (Figure 3). First, we calculate a smoothing of the marginal distribution
of the coefficient with inla.smarginal() and then call ggplot() specifying the data frame with the
marginal values.

library(ggplot2)
marginal <- inla.smarginal(res$marginals.fixed$cov)
marginal <- data.frame(marginal)
ggplot(marginal, aes(x = x, y = y)) + geom_line() +
labs(x = expression(beta[1]), y = "Density") +
geom_vline(xintercept = 0, col = "black") + theme_bw()

Figure 3: Posterior distribution of the coefficient of covariate minimum temperature and a vertical
line at 0. The posterior mean is positive and the 95% credible interval includes 0.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 318

The estimated spatially structured effect is in res$summary.random$id. This object contains 1023
elements that correspond to the number of cells in the regular lattice. We can add to the grid object
the posterior mean of the spatial effect corresponding to each of the cells in Costa Rica as follows,

grid$respa <- res$summary.random$id[grid$id, "mean"]

We can also obtain the posterior mean of the unstructured random effect as follows,

grid$reiid <- res$summary.random$id2[, "mean"]

Then we can create maps of the random effects with tmap.

tm_shape(grid) +
tm_polygons(col = c("respa", "reiid"), style = "cont", border.col = "transparent") +
tm_shape(gridborder) + tm_borders() +
tm_facets(ncol = 2) + tm_legend(legend.position = c("left", "bottom"))

Figure 4: Maps with the values of the spatially structured (left) and unstructured (right) random
effects. Maps show there is spatially structured and unstructured residual variation.

Figure 4 shows the maps of the spatially structured and unstructured random effects. We observe
a non-constant pattern of the spatially structured random effect suggesting that the intensity of the
process that generates the sloth locations may be affected by other spatial factors that have not been
considered in the model. Morevoer, the unstructured random effect shows several locations with high
values that modify the intensity of the process in individual cells independently from the rest.

The mean and quantiles of the predicted intensity (mean number of events per unit area) in each
of the grid cells are in res$summary.fitted.values. In the object grid, we add a variable NE with the
mean number of events of each cell by assigning the predicted intensity multiplied by the cell areas.
We also add variables LL and UL with the lower and upper limits of 95% credible intervals for the
number of events by assigning quantiles 0.025 and 0.975 multiplied by the cell areas.

cellarea <- resolution*resolution
grid$NE <- res$summary.fitted.values[, "mean"] * cellarea
grid$LL <- res$summary.fitted.values[, "0.025quant"] * cellarea
grid$UL <- res$summary.fitted.values[, "0.975quant"] * cellarea

We use tmap to create maps with the mean and lower and upper limits of 95% credible intervals
for the number of sloths in each of the cells. We plot the three maps with a common legend that has
breaks from 0 to the maximum number of cases in grid$UL.

tm_shape(grid) +
tm_polygons(col = c("NE", "LL", "UL"),

style = 'fixed', border.col = "transparent",
breaks = c(0, 10, 50, 100, ceiling(max(grid$UL)))) +

tm_shape(gridborder) + tm_borders() +
tm_facets(ncol = 3) + tm_legend(legend.position = c("left", "bottom"))

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 319

Figure 5: Maps with the predicted mean number of sloths (left), and lower (center) and upper (right)
limits of 95% credible intervals. Maps show low intensity of sloth occurrence overall, and some specific
locations with high intensity.

Maps created are shown in Figure 5. We observe that overall, the intensity of sloth occurrence is
low, with less than 10 sloths in each of the cells. We also see there are some locations of high sloth
intensity in the west and east coasts and the north of Costa Rica. The maps with the lower and upper
limits of 95% credible intervals denote the uncertainty of these predictions. The maps created inform
about the spatial patterns in the period where the data were collected. In addition, maps of the sloth
numbers over time can also be produced using spatio-temporal point process models and this would
help understand spatio-temporal patterns. The modeling results can be useful for decision-makers to
identify areas of interest for conservation management strategies.

Summary

Species distribution models are widely used in ecology for conservation management of species and
their environments. In this paper, we have described how to develop and fit a log-Gaussian Cox
process model using the R-INLA package to predict the intensity of species occurrence, and assess
the effect of spatial explanatory variables. We have illustrated the modeling approach using sloth
occurrence data in Costa Rica retrieved from the Global Biodiversity Information Facility database
(GBIF) using spocc, and a spatial climatic variable obtained with raster. We have also shown how to
examine and interpret the results including the estimates of the parameters and the intensity of the
process, and how to create maps of variables of interest using tmap.

Statistical packages such as Stan (Carpenter et al., 2017) or JAGS (Plummer, 2003) could have been
used instead of R-INLA to fit our data. However, these packages use Markov chain Monte Carlo
(MCMC) algorithms and may be high computationally demanding and become infeasable in large
spatial data problems. In contrast, INLA produces faster inferences which allows us to fit large spatial
datasets and explore alternative models.

The objective of this paper is to illustrate how to analyze species occurrence data using spatial
point process models and cutting-edge statistical techniques in R. Therefore, we have ignored the data
collection methods and have assumed that the spatial pattern analyzed is a realization of the true
underlying process that generates the data. In real investigations, however, it is important to under-
stand the sampling mechanisms, and assess potential biases in the data such as overrepresentation of
certain areas that can invalidate inferences. Ideally, we would analyze data that have been obtained
using well-defined sampling schemes. Alternatively, we would need to develop models that adjust
for biases in the data to produce meaningful results (Giraud et al., 2015; Dorazio, 2014; Fithian et al.,
2015). Moreover, expert knowledge is crucial to be able to develop appropriate models that include
important predictive covariates and random effects that account for different types of variability.

To conclude, this paper provides an accessible illustration of spatial point process models and
computational approaches that can help non-statisticians analyze spatial point patterns using R. We
have shown how to use these approaches in the context of species distribution modeling, but they
are also useful to analyze spatial data that arise in many other fields such as epidemiology and the
environment.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 320

Bibliography

T. Appelhans, F. Detsch, C. Reudenbach, and S. Woellauer. mapview: Interactive Viewing of Spatial Data
in R, 2019. URL https://CRAN.R-project.org/package=mapview. R package version 2.7.0. [p312]

R. Bivand and C. Rundel. rgeos: Interface to Geometry Engine - Open Source (’GEOS’), 2019. URL
https://CRAN.R-project.org/package=rgeos. R package version 0.4-3. [p315]

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo,
P. Li, and A. Riddell. Stan: A probabilistic programming language. Journal of Statistical Software, 76
(1), 2017. doi: https://doi.org/10.18637/jss.v076.i01. [p319]

S. Chamberlain. spocc: Interface to Species Occurrence Data Sources, 2018. URL https://CRAN.R-
project.org/package=spocc. R package version 0.9.0. [p311, 312]

J. Cheng, B. Karambelkar, and Y. Xie. leaflet: Create Interactive Web Maps with the JavaScript ’Leaflet’
Library, 2018. URL https://CRAN.R-project.org/package=leaflet. R package version 2.0.2. [p312]

P. J. Diggle. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. Chapman & Hall/CRC,
2013. [p311]

P. J. Diggle, P. Moraga, B. Rowlingson, and B. M. Taylor. Spatial and Spatio-Temporal Log-Gaussian
Cox Processes: Extending the Geostatistical Paradigm. Statistical Science, 28(4):542–563, 2013. URL
https://doi.org/10.1214/13-STS441. [p311]

R. M. Dorazio. Accounting for imperfect detection and survey bias in statistical analysis of presence-
only data. Global Ecology and Biogeography, 23, 2014. doi: https://doi.org/10.1111/geb.12216.
[p319]

W. Fithian, J. Elith, T. Hastie, and D. A. Keith. Bias correction in species distribution models: pooling
survey and collection data for multiple species. Methods in Ecology and Evolution, 6(4):428–438, 2015.
doi: https://doi.org/10.1111/2041-210X.12242. [p319]

GBIF: The Global Biodiversity Information Facility. What is GBIF?, 2020. URL https://www.gbif.
org/what-is-gbif. Accessed on 2 October 2020. [p312]

GBIF.org. GBIF Home Page, 2020. URL https://www.gbif.org. Accessed on 2 October 2020. [p312]

C. Giraud, C. Calenge, C. Coron, and R. Julliard. Capitalizing on opportunistic data for monitoring
relative abundances of species. Biometrics, 72, 2015. doi: https://doi.org/10.1111/biom.12431.
[p319]

R. J. Hijmans. raster: Geographic Data Analysis and Modeling, 2019. URL https://CRAN.R-project.org/
package=raster. R package version 2.9-5. [p311, 313]

J. B. Illian, S. H. Sorbye, H. Rue, and D. Hendrichsen. Using INLA To Fit A Complex Point Process
Model With Temporally Varying Effects - A Case Study. Journal of Environmental Statistics, 3, 2012.
[p314]

P. Moraga. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman &
Hall/CRC Biostatistics Series, 2019. [p315]

P. Moraga and F. Montes. Detection of spatial disease clusters with LISA functions. Statistics in
Medicine, 30:1057–1071, 2011. URL https://doi.org/10.1002/sim.4160. [p311]

E. J. Pebesma and R. S. Bivand. Classes and methods for spatial data in R. R News, 5, 2005. URL
https://cran.r-project.org/doc/Rnews/. [p312]

M. Plummer. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling.
In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), 2003.
[p319]

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian Inference for Latent Gaussian Models
Using Integrated Nested Laplace Approximations (with discussion). Journal of the Royal Statistical
Society B, 71:319–392, 2009. URL https://doi.org/10.1111/j.1467-9868.2008.00700.x. [p311,
315]

A. South. rnaturalearth: World Map Data from Natural Earth, 2017. URL https://CRAN.R-project.org/
package=rnaturalearth. R package version 0.1.0. [p314]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mapview
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=spocc
https://CRAN.R-project.org/package=spocc
https://CRAN.R-project.org/package=leaflet
https://doi.org/10.1214/13-STS441
https://www.gbif.org/what-is-gbif
https://www.gbif.org/what-is-gbif
https://www.gbif.org
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://doi.org/10.1002/sim.4160
https://cran.r-project.org/doc/Rnews/
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://CRAN.R-project.org/package=rnaturalearth
https://CRAN.R-project.org/package=rnaturalearth

CONTRIBUTED RESEARCH ARTICLE 321

M. Tennekes. tmap: Thematic Maps in R. Journal of Statistical Software, 84(6):1–39, 2018. doi: 10.18637/
jss.v084.i06. [p312]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p312]

Paula Moraga
Computer, Electrical and Mathematical Sciences and Engineering Division
King Abdullah University of Science and Technology (KAUST)
Thuwal, 23955-6900
Saudi Arabia
ORCiD: 0000-0001-5266-0201
Webpage: http://www.paulamoraga.com/
paula.moraga@kaust.edu.sa

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://ggplot2.tidyverse.org
http://www.paulamoraga.com/
mailto:paula.moraga@kaust.edu.sa

CONTRIBUTED RESEARCH ARTICLE 322

A Graphical EDA Tool with ggplot2:
brinton
by Pere Millán-Martínez, Ramon Oller

Abstract We present brinton package, which we developed for graphical exploratory data analysis in
R. Based on ggplot2, gridExtra and rmarkdown, brinton package introduces wideplot() graphics for
exploring the structure of a dataset through a grid of variables and graphic types. It also introduces
longplot() graphics, which present the entire catalog of available graphics for representing a particular
variable using a grid of graphic types and variations on these types. Finally, it introduces the plotup()
function, which complements the previous two functions in that it presents a particular graphic for a
specific variable of a dataset. This set of functions is useful for understanding the structure of a data
set, discovering unexpected properties in the data, evaluating different graphic representations of
these properties, and selecting a particular graphic for display on the screen.

Introduction

In 1977, J.W. Tukey noted that “The greatest value of a picture is when it forces us to notice what we
never expected to see” (Tukey, 1977, p.iv). This statement aligns with expectation disconfirmation
theory (Oliver, 1977), which links consumers’ satisfaction to their expectations. The field of exploratory
data analysis (EDA) is characterized precisely by not requiring an expectation, since in this approach
hypotheses may not be pre-established. Rather, they are allowed to emerge through the observation
of the data. Additionally, because we cannot automate the processes of defining a problem or the
corresponding hypotheses —as signaled by J. Bertin that same year (Bertin, 1977, p.2)—, we face
the challenge of automating graphical representations so that users can examine the data, develop
hypotheses and then select the appropriate statistical graphic that will enable them to satisfy their
recently created expectations.

The tools for generating graphics and statistics for a dataset automatically are called automated
exploratory data analysis or autoEDA (Staniak and Biecek, 2019). These tools facilitate some of
the characteristic tasks of EDA, such as describing variables and validating observations or the
relationships established between the values of one or more variables. brinton, a new package we
have developed for use within R, shows only graphics, leading us to classify it as a tool for automated
graphical exploratory data analysis or autoGEDA. We can include in this category tools such as GGobi
(Cook et al., 2007) and Mondrian (Theus and Urbanek, 2008). These tools differ from brinton in that
they use interactive techniques extensively, and therefore are usually classified as visual analytics.

Multiple strategies exist for automating statistical diagramatic representations. Millán-Martínez
and Valero-Mora (2018) differentiate strategies according to whether they are based on the character-
istics of the data (functional design, Kamps (1999)), on the habits of a group of users (collaborative
filtering), on those of a single user (content-based filtering), on the tasks that the user is meant to
perform (task design), on the characteristics of human perception (perceptual design), on the limita-
tions of the communication channel or the screen on which the graphics are projected (responsive
design), or, finally, on the selection of characteristics of the desired graphics or models of representation
(representation model design or deterministic design).

The statistical programming environment R has two graphics systems (Friendly, 2018). One is
the standard graphics system of the package graphics with low-level functions, such as lines(),
points(), legend() (which define concrete elements of a graphic) and high-level functions, such
as plot(), pie(), and barplot() (which present a complete graphic). The other graphics system is
based on the grid package, with low-level functions such as those of the gridExtra package (Auguie,
2017) and high-level ones such as those of the packages lattice (Sarkar, 2008) and ggplot2 (Wickham,
2016), which produce complete graphics. Both in graphics and grid we find examples of the strategies
mentioned above. We find functional design, for example, in the plot() function. If we apply it to
the dataset cars, it produces a scatterplot, because it contains two numerical variables and is of the
data.frame class. If we apply it to the dataset airmiles, it produces a line graph because this dataset
has a single numerical variable and is of the ts class. We find task design in multiple packages, for
example survminer (Therneau, 2015), which includes the function ggsurvplot() to generate graphics
specifically for survival analysis. We find representation model design in basic functions such as
barplot(), which produces a bar graph; hist(), which produces a histogram; and pie(), which
produces a pie chart. We also see lower-level functions, such as the geom_point() function of ggplot2,
which reduces the graphic to a kind of point plot. We can also find in ggplot2 examples of perceptual
design in decisions such as the default size, shape and color of the points, the grid lines and the panel

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=brinton
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=GGobi
https://CRAN.R-project.org/package=Mondrian
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=survminer

CONTRIBUTED RESEARCH ARTICLE 323

background.

Despite all of the solutions already implemented in R, we are lacking an approach based on
functional design that uses higher-level functions to show systematically not only a complete graphic
but also a wide range of available graphics using the same data. Examining multiple graphics could
lead the user to raise questions, which he or she could then answer using the presented graphics,
new more specific graphics, or a particular graphic that could be adapted as needed (deterministic
design). brinton package is our proposal for filling this gap in the R programming environment. We
have named it after Willard Cope Brinton, whose Graphic Presentation (Brinton, 1939) solved a similar
problem for physical libraries.

The article is organized as follows: Section 2 briefly reviews the autoGEDA packages within R and
also the variants of multipanel graphics. Section 3 presents the three functions of brinton package and
the available graphic types in the specimen. Section 4 details the graphical degrees of freedom that
this package enjoys in the moment of expanding the specimen. Section 5 describes the situations in
which the functions are useful and Section 6 offers our conclusions and outline future work.

AutoGEDA and multipanel graphics

We classify brinton package within the autoGEDA tools we have described above. Another essential
feature of this package is that it extensively combines different graphic types referring to the same
records and variables in the form of multipanel graphics. A range of autoGEDA tools exist both
outside and inside R. For the purposes of contextualizing brinton, we will concentrate on the solutions
based in R.

The landscape of autoGEDA in R

Among the R packages dedicated to autoEDA (Staniak and Biecek, 2019) only a few have a graphic
orientation. We classify these packages according to their graphic solutions (although packages can
have functions that offer different solutions).

Packages such as tabplot (Tennekes et al., 2013), visdat (Tierney, 2017) and inspectdf (Rushworth,
2019) use the structure plot, a graphic type that compacts all of the values of a dataset into a single
panel. More specifically, tabplot and visdat essentially offer variants of tableplots, which are static
versions of the table lens (Rao and Card, 1994), while inspectdf presents spine plots or bar charts,
according to the type of summary to which the function show_plot() is applied. Another set of
packages groups the variables of a dataset by type and represents the distribution of each variable
in the cell of a multipanel graphic. This is the basic orientation of the packages xray (Seibelt, 2017),
DataExplorer (Cui, 2019) and SmartEDA (Dayanand Ubrangala et al., 2019).

The packages dataMaid (Petersen and Ekstrøm, 2019) and summarytools (Comtois, 2019) offer
another way to observe all variables. These packages have functions that produce a descriptive
summary of the variables along with a histogram or bar graph, depending on the type of variable. We
also find packages with miscellaneous functions, each of which is aimed at facilitating the generation
of an adhoc graphic type. This is the case, for example, of ExPanDaR, dlookr, summarytools and
explore.

AutoEDA packages tend to have a double presentation of results: tabulated and graphical. Some
of them, such as dataMaid, summarytools and SmartEDA, make it possible to generate automatic
reports and even adapt these reports to the needs of a particular user. Despite the utility of the
packages described here, they tend to offer few options for graphic presentation beyond the most
widely used graphics. The relationships between the values of the variables can be revealed much
more easily if multiple graphic types are presented. These packages lack a wider range of graphic
alternatives.

Multipanel graphics

There are different types of multipanel graphics depending on the diversity of graphic types and the
origin of the data. On one hand, we have dashboards, which generally combine different graphic
types in a limited space. Dashboards can draw from different data sources and are particularly useful
for monitoring complex processes. Graphics of this type are implemented in R through packages
such as shinydashboard (Chang and Borges Ribeiro, 2018) and flexdashboard (Iannone et al., 2018).
The plot_grid() function of the package cowplot (Wilke, 2019) offers the possibility of combining
graphics of the same or different type without space restrictions by creating multipanel graphics.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tabplot
https://CRAN.R-project.org/package=visdat
https://CRAN.R-project.org/package=inspectdf
https://CRAN.R-project.org/package=visdat
https://CRAN.R-project.org/package=xray
https://CRAN.R-project.org/package=DataExplorer
https://CRAN.R-project.org/package=SmartEDA
https://CRAN.R-project.org/package=dataMaid
https://CRAN.R-project.org/package=summarytools
https://CRAN.R-project.org/package=ExPanDaR
https://CRAN.R-project.org/package=dlookr
https://CRAN.R-project.org/package=explore
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=flexdashboard
https://CRAN.R-project.org/package=cowplot

CONTRIBUTED RESEARCH ARTICLE 324

This can also be achieved with the patchwork package (Pedersen, 2019) that adds versatility to the
composition of multipanel graphics by introducing operators that partition the canvas.

A second type of multipanel graphic is the conditioning plot1. In these, the same graphic type is
repeated in different panels at the same scale, representing subsets of data according to the level of
one or more variables. A third type of multipanel graphic is the matrix of plots, which links pairs
of variables of the same type and from the same dataset. A classic example is the scatterplot matrix
(Hartigan, 1975), or, more recently, the HE plot (Friendly, 2007). The diagonal of these grids can be
populated with a different graphic type, since a single variable is involved. A variant of the matrix of
plots uses source variables of different types that, when paired, result in a grid with multiple graphic
types, depending on how the variables are combined. This graphic type is known as a generalized
pairs plot (Emerson et al., 2013).

The brinton package

We created brinton package to facilitate exploratory data analysis following the visual information-
seeking mantra (Shneiderman, 1996): “Overview first, zoom and filter, then details on demand.”
The main idea is to assist the user during these three phases through three functions: wideplot(),
longplot() and plotup(). A distinctive feature is the following: the wideplot() function provides a
limited selection of available graphics for all the variables in a data frame, the longplot() function
provides all the range of available graphics for a limited selection of variables and, finally, the plotup()
function provides one single graphic for a limited selection of variables. While each of these functions
has its own arguments and purpose, all three serve to facilitate exploratory data analysis and the
selection of a suitable graphic.

The wideplot() function allows the user to explore a dataset as a whole using a grid of graphics
in which each variable is represented through multiple graphics. Once we have explored the dataset
as a whole, the longplot() allows us to explore other graphics for a given variable. This function
also presents a grid of graphics, but instead of showing a selection of graphics for each variable, it
presents the full range of graphics available in the package to represent a single variable. Once we
have narrowed in on a certain graphic, we can use the plotup() function, which presents the values of
a variable on a single graphic. We can access the code of the resulting graphic and adapt it as needed.
These three functions expand the graphic types that are presented automatically by the autoGEDA
packages in the R environment.

brinton package is based primarily in the grammar of graphics (Wilkinson, 2005) implemented in
R by the package ggplot2. Additionally, it draws on the package gridExtra (Auguie, 2017) for creating
multipanel graphics and on rmarkdown (Allaire et al., 2019) for dynamically composing the results.

In the context of graphics packages in R based on the grid system, the package lattice allows the
user to create a range of some 13 graphic types, which can be adapted to a very fine level of detail.
ggplot2 makes it possible to control even the finest detail of a graphic, but this comes at the price of
learning its grammar and its layer system. In contrast, brinton package makes it possible for the user
to select statistical graphics by name from a wide range of available graphics and, if he or she knows
the grammar of ggplot2, adapt them as needed. To create a statistical graphic in R, if the desired
graphic is already implemented in brinton package, the user must simply specify the data source and
the graphic type to be produced.

The package can be installed easily from the Comprehensive R Archive Network (CRAN) using
the R console. When the package is loaded into memory, it provides a startup message that pays
homage to Henry D. Hubbard’s enthusiastic introduction to the book Graphic Presentation (Brinton,
1939):

install.packages("brinton")
library(brinton)

M a G i C i N G R a P H S

The wideplot function

When a dataset is loaded into R, the next function to be used tends to be str(). This occurs because
if we don’t determine the nature of the values explicitly, the functions for loading datasets make

1The terminology for conditioning plots is not unanimous. These plots were first described by J. Bertin as séries
homogènes (Bertin, 1967, p.26). Later, E. Tufte introduced them as small multiples (Tufte, 1983). W.S. Cleveland
called them juxtaposed panels (Cleveland, 1985, p.200) and also trellis graphics (Becker et al., 1996). In the R
environment they are generally known as lattice graphics (Sarkar, 2008) or facet plots, based on the description of
this technique by L. Wilkinson (2005) and later implemented in ggplot2

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=patchwork

CONTRIBUTED RESEARCH ARTICLE 325

assumptions about it. The function str() shows in the console the type of object to which the function
is being applied, the number of rows, the number and names of columns, their class (number, factor,
etc.) and the initial observations for each variable. The wideplot() function takes inspiration from
this function, but instead of describing the dataset in textual or tabular form, it does it graphically.
We can easily compare the results of these two functions, for example, with the dataset esoph from
a case-control study of esophageal cancer in Ille-et-Vilaine, France. The dataset has three ordered
factor-type variables and two numerical variables:

str(esoph)

#> 'data.frame': 88 obs. of 5 variables:
#> $ agegp : Ord.factor w/ 6 levels "25-34"<"35-44"<..: 1 1 1 1 1 1 1 1 1 1 ...
#> $ alcgp : Ord.factor w/ 4 levels "0-39g/day"<"40-79"<..: 1 1 1 1 2 2 2 2 3 3 ...
#> $ tobgp : Ord.factor w/ 4 levels "0-9g/day"<"10-19"<..: 1 2 3 4 1 2 3 4 1 2 ...
#> $ ncases : num 0 0 0 0 0 0 0 0 0 0 ...
#> $ ncontrols: num 40 10 6 5 27 7 4 7 2 1 ...

wideplot(data = esoph)

Figure 1: Output of wideplot(esoph). A grid of graphics in which each row corresponds to a variable
in the dataset esoph and each column displays different available graphics.

The wideplot() function creates html files, as side-effects, with a graphical summary
(See Figure 1) of the variables included in the dataset to which it has been applied. First it
groups the variables according to the following sequence: logical, ordered, factor, character,
datetime and numeric. Next, it creates a multipanel graphic in html format, in which each
variable of the dataset is represented in a row of the grid, while each column displays the
different available graphics for each variable. We called the resulting graphic type wideplot
because it shows a range of graphics for all of the columns of the dataset. The structure of
the function, the arguments it permits and its default values are as follows:

#> wideplot(data, dataclass = NULL, logical = NULL, ordered = NULL,
#> factor = NULL, character = NULL, datetime = NULL, numeric = NULL,
#> group = NULL, ncol = 7, label = 'FALSE')

The only argument necessary to obtain a result is data that expects a data.frame class
object; dataclass selects and sorts the types of variables to be shown; ncol filters the first n
columns of the grid, between 3 and 7, which will be shown. The fewer columns displayed,
the larger the size of the resulting graphics, a feature that is especially useful if the scale

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 326

labels dwarf the graphics area; label adds to the grid a vector below each group of rows
according to the variable type, with the names and order of the graphics; logical, ordered,
factor, character, datetime and numeric make it possible to choose which graphics, from
among the ones included by the specimen (Sec. 2.3.4), appear in the grid and in what order,
for each variable type. Finally, group changes the selection of graphics that are shown by
default according to the criteria of Table 1.

If the order and graphic types to be shown for each variable type are not specified and
if the graphic types aren’t filtered using the argument group, then the default graphic will
contain an opinion-based selection of graphics for each variable type, organized especially
to facilitate comparison between graphics of the same row and between graphics of the same
column. The user can overwrite this selection of graphics as needed, using the arguments
logical, ordered, factor, character, datetime and numeric.

group graphic type

sequence includes the sequence in which the values are observed so that an axis
develops this sequence. e.g. line graph, point-to-point graph

scatter marks represent individual observations. e.g. point graph, stripe graph
bin marks represent aggregated observations based on class intervals.

e.g. histogram, bar graph
model represents models based on observations. e.g. density plot, violin plot
symbol represents models based on observations. and not only points, lines or areas

e.g. box plot
GOF represents the goodness of fit of some values with respect to a model

e.g. qq plot
random chosen at random

Table 1: Possible values for the group argument of the wideplot() function.

The longplot function

To facilitate economy of calculation, the wideplot() function presents a limited number of
graphics in each row. If the user wants to expand the range of suggested graphics for a
given variable, he or she should use the longplot function, which returns a grid with all of
the graphics considered by the package (See Figure 2) for that variable. The structure of the
function is very simple longplot(data,vars,label = TRUE) and we can easily check the
outcome of applying this function to the variable alcgp of the dataset esoph:

longplot(data = esoph, vars = "alcgp")

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 327

Figure 2: Output of longplot(esoph, ’alcgp’). A grid of graphics where the variable alcgp in the
dataset esoph is displayed for the full range of graphics considered by the package.

We named the resulting graphic type longplot because it shows the full range of available
graphics to represent the relationships among the values of a limited selection of variables
(although for now, in this package we have only included graphics for a single variable).

The arguments of the function are data, which must be a data.frame class object; vars,
which requires the name of a specific variable of the dataset; and label, which does not
have to be defined and which adds a vector below each row of the grid indicating the name
of each graphic. Unlike the grid of the wideplot function, the grid of the longplot function
does not include parameters to limit the range of graphics to be presented. We made this
decision because the main advantage of this function is precisely that it presents all of the
graphic representations available for a given variable. However, we do not rule out adding
filters that limit the number of graphics to be shown if this feature seems useful as the
catalog fills with graphics. Each graphic presented can be called explicitly by name using
the functions wideplot() and plotup(), which is why the argument label has been set to
TRUE by default in this case.

The range of graphics that the longplot() function returns is sorted so that in the rows
we find different graphic types and in the columns different variations of the same graphic
type. This organization, however, is not absolute and in some cases in order to compress the
results, we find different graphic types in the same row.

The plotup function

The plotup() function has the following structure: plotup(data,vars,diagram,output =
'plots pane'). By default, this function returns an object belonging to class gg and ggplot
whose graphic can be rendered in the plots pane of RStudio. This graphic is based on a
variable from a given dataset and the name of the desired graphic, from among the names
included by the specimen that we present in the next subsection. We can easily check the
outcome of applying this function to produce a line graph from the variable ncases of the
dataset esoph (See Figure 3) :

plotup(data = esoph, vars = 'ncases', diagram = 'line graph', output = 'html')

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 328

Figure 3: Output of plotup(esoph, ’ncases’, ’line graph’). A line graph from the variable ncases
in the dataset esoph.

This function requires three arguments: data, vars and diagram. The fourth argument,
output, is optional and has the default value of plots pane. However, if is set to it html or
console, instead of returning a c("gg","ggplot") object, the function cause a side-effect:
either creating and displaying a temporary html file, or printing the ggplot2 code to the
console. This feature is especially useful to adapt the default graphic to the specific needs
and preferences of the user.

The diagram argument accepts any of the values admitted by the logical, ordered,
factor, character, datetime and numeric arguments of the wideplot() function. These
values coincide with the names of the graphics considered by the package and included in
the specimen. The naming convention of these graphs is implicitly addressed in Section 4
“Graphical degrees of freedom”.

plotup(data = esoph, vars = 'ncases', diagram = 'line graph',
output = 'console')

#> ggplot(esoph, aes(x=seq_along(ncases), y=ncases)) +
#> geom_line() +
#> labs(x='seq') +
#> theme_minimal() +
#> theme(panel.grid = element_line(colour = NA),
#> axis.ticks = element_line(color = 'black'))

The specimen

The documentation of the package includes the vignette “1v specimen”, which contains a
specimen with images of all the graphic types for a single variable, incorporated into the
package according to the variable type. These graphics serve as an example so that the user
can rapidly check whether a graphic has been incorporated, the type or types of variable
for which it has been incorporated, and the label with which it has been identified. The
suitability of a particular graphic will depend on the datasets of interest and the variables
of each particular user. We have incorporated this specimen in its current version as
supplementary material.

Graphical degrees of freedom

The utility of this package is based on the fact that different graphical representations of the
same data make it possible not only to observe different characteristics of the data, but also
to show a certain characteristic more effectively. For this reason, the graphics considered by
this package enjoy a large number of graphical degrees of freedom. This makes it possible
for the catalog to include both commonly used graphics and graphics that have not yet been
developed. The concept of graphical degrees of freedom has been used by Benger and Hege

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 329

(2006) to refer to Bertin’s visual variables (1967, p.43) but with some modifications. Here we
use the concept in a broader sense, as detailed below.

• Type of graphic. The main degree of freedom of the graphics catalog is the graphic
type. The different graphic types are not necessarily ones that differ greatly from each
other. To the contrary, very similar graphics coexist because a high number of users
prefer each of them. This is the case, for example, of the density plot and the violin
plot shown in Figure 4.

wideplot(data = esoph[5],
numeric = c('filled violin plot', 'filled density plot'))

Figure 4: 1st degree of freedom (type of graphic). Density and violin plots of variable ncontrols (in
the dataset esoph).

• Chromatic scales. The same graphic can have different versions depending on the
chromatic scale associated with a variable in the data or computed from it. We can see
an example of this in the following figure 5. Despite the fact that color can be broken
down into the three visual variables of hue, saturation and value, for the purposes of
this package we have only taken into account hue in the case of the color scale and
value in the case of the grayscale, following Bertin’s classification of visual variables
(1967, p.43).

wideplot(data = esoph[5],
numeric = c('histogram', 'bw histogram', 'color histogram'))

Figure 5: 2nd degree of freedom (chromatic scale). Plots of variable ncontrols (in the dataset esoph)
with different chromatic scales.

• Agreggation method: scattered or binned. The same values can be represented such
that each mark represents either a single value or an aggregate value. An example of
this feature can be observed in Figure 6.

wideplot(data = esoph[5],
numeric = c('stripe graph', 'binned stripe graph', 'bar graph',

'histogram'))

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 330

Figure 6: 3rd degree of freedom (aggregation method). Plots of variable ncontrols (in the dataset
esoph) with single or aggregate values.

• Nested panels. One possibility (which has been little explored) is that of subdividing
into different panels the cells of the multipanel graphic, to create systems of coordinates
inside systems of coordinates. This solution is similar to the treemap. In the example
in Figure 7, the graphic on the right has three panels that can substitute the first three
graphics.

wideplot(data = esoph[5],
numeric = c('violin plot', 'stripe graph', 'box plot', '3 uniaxial'))

Figure 7: 4th degree of freedom (nested panels). Plots of variable ncontrols (in the dataset esoph)
with single and multiple panels (the first three ones and the last one respectively).

• Shape. The same information can be represented with marks of different shapes.
This possibility is exemplified in Figure 8, which compares two graphics with similar
composition but different marks: circular or square.

wideplot(data = esoph[5],
numeric = c('color binned point graph', 'color binned heatmap'))

Figure 8: 5th degree of freedom (shape). Plots of variable ncontrols (in the dataset esoph) with marks
of different shapes.

• Implantation. The same values can be represented with marks of a different type of
implantation, such as a point, a line, an area or a combination of these. For example,
Figure 9 compares a point graph, a line graph, and a point-to-point graph.

wideplot(data = esoph[5],
numeric = c('point graph', 'line graph', 'point-to-point graph'))

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 331

Figure 9: 6th degree of freedom (implantation). Plots of variable ncontrols (in the dataset esoph) with
marks of a different type of implantation.

• Transition. The transition or itinerary between two points can help reflect the discrete
nature of the changes in the values observed. Figure 10 compares two line graphs with
different transitions between points.

wideplot(data = esoph[5],
numeric = c('line graph', 'stepped line graph'))

Figure 10: 7th degree of freedom (transition). Plots of variable ncontrols (in the dataset esoph) with
different transitions between points.

• Collation. The values of variables, especially those that aren’t related to order, can be
sorted according to different criteria. This package, as shown in Figure 11 uses three:
the order of appearance in the sequence of observations, the frequency with which the
values are observed and alphabetical order.

wideplot(data = data.frame('Region' = state.region),
factor = c('tile plot',

'freq. reordered tile plot',
'alphab. reordered tile plot'))

Figure 11: 8th degree of freedom (collation). Plots of variable Region with the values sorted according
to different criteria.

• Superposition. The final degree of freedom that we consider is the possibility of
including graphics that superpose marks whose data source is the same but that have
different degrees of transformation (see Figure 12).

wideplot(data = esoph[5],
numeric = c('color point graph',

'color point graph with trend line'))

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 332

Figure 12: 9th degree of freedom (superposition). Plots of variable ncontrols (in the dataset esoph)
with and without the superposition of a trend line.

To construct the specimen we have ruled out some degrees of freedom, for example, the
group of imposition (Bertin, 1967, p.52) and the permutation of spacial variables (Bertin, 1967,
p.43). In other words, brinton package exclusively presents diagrams and not networks
or maps, nor does it show alternatives whose only difference is that the x and y axes are
switched.

Application to real datasets

The main application of a package for exploratory data analysis is to help the user make
sense of the data. This includes describing the number and nature of the variables, the
number of observations and examples of the variables–this is precisely what the str()
function does. It also includes evaluating the validity and quality of the data and the
properties of the values found.

We can deduce the number of variables from the number of rows in the grid of the
wideplot graphic. The names of the variables are found in each of the graphics that the
catalog now contains. We can determine the variables’ nature–in terms of the measurement
scale—-by observing the range of graphics selected and specifying the value label = TRUE
for the grids of wideplot and longplot graphics. We can discern the number of observations
by examining the graphics that include the sequence of observations or, in the case of
categorical variables, by counting the categories and the number of observations for each
one. Wideplot graphics, in contrast to the textual summary of the str() function, show
examples not only of the first observations but of all observations. To evaluate the validity of
the data, we can observe specific graphics that allow us to identify outliers, missing values
or discontinuity in the observations. The same goes for the properties of the values found.
There is a huge range of graphics, each of which makes it possible to highlight different
properties. Below we list a series of tasks for which the functions included in brinton are
useful, and describe the process for carrying them out.

Identify multi-column sorting

Here we describe how to use the wideplot() function to determine whether the observations
of the dataset aids of the package KMsurv are sorted according to one of the variables. This
dataset has three variables, infect (infection time for AIDS in years), induct (induction
time for AIDS in years), and adult (indicator of adult: 1=adult, 0=child). To accomplish the
task, we first install the package, then load it into memory and run the wideplot function
with its default output.

install.packages('KMsurv')
data(aids, package = 'KMsurv')
wideplot(data = aids, label = TRUE)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=KMsurv

CONTRIBUTED RESEARCH ARTICLE 333

Figure 13: A grid of graphics generated by wideplot(aids, label = T). Each row corresponds to a
variable in the dataset aids. The line graph shows that the dataset is sorted first by the variable adult
and then by the variable infect.

From the result in Figure 13, we observe that the line graph is the one that best shows
that the dataset is sorted first by the variable adult and then by the variable infect. To
finish selecting the most suitable graphic we can then execute the same function but limit
the graphic types such that only two variations of line graph are shown. We can moreover
limit the function so that it displays, for example, only five columns, so that the graphics
will be larger.

wideplot(data = aids,
numeric = c('line graph', 'stepped line graph'), ncol = 5)

Figure 14: A grid of graphics generated by wideplot(aids, numeric = c(’line graph’, ’stepped
line graph’), ncol=5). Each row corresponds to a variable in the dataset aids. Graphic types are
limited to line and stepped line types.

The result is two variations of the line graph for each variable, in which we can clearly
see that the data set is sorted first by the variable adult and then by the variable infect. In
this case, there may be equally valid arguments for using the graphics of the first column as
the graphics of the second column.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 334

This same example also works for datasets with categorical variables, such as the
dataset MentalHealth of the package Stat2Data. This dataset consists of three variables:
Month (month of the year); Moon (relationship to full moon: After, Before, or During); and
Admission (number of emergency room admissions). The first two variables are categorical
and the third is numerical. If we examine the line graph and also the tile plot for the factor-
type variables and the binned heatmap graphic for the numerical variables, we can easily
see that the dataset is sorted by the variable Moon and then by the variable Month (see Figure
15).

install.packages('Stat2Data')
data(MentalHealth, package = 'Stat2Data')
wideplot(data = MentalHealth, label = TRUE)

Figure 15: A grid of graphics generated by wideplot(MentalHealth, label = T). Each row cor-
responds to a variable in the dataset MentalHealth. It is observed that the dataset is sorted by the
variable Moon and then by the variable Month.

Identify variables that can be reclassified

When loading a dataset it is important to check which assumptions the function has made
and which variables can be reclassified. We can see an example of this in Figure 14, which
shows that the variable adult of the dataset aids is better treated as a logical-type variable
than an integer. If we recode the variable type more appropriately, when we apply the
wideplot() function again, the graphics also tend to be more appropriate. In Figure 16 we
see the result after the variable adult is reclassified.

aids$adult <- as.logical(aids$adult)
wideplot(data = aids)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Stat2Data

CONTRIBUTED RESEARCH ARTICLE 335

Figure 16: A grid of graphics generated by wideplot(aids). Each row corresponds to a variable in
the dataset aids. The variable adult has been reclassified from integer to logical in order to obtain
more appropriate graphics.

Identify key variables

The best way to identify key variables is by using complementary graphics. Figure 17 makes
it possible, for example, to identify rapidly the variable patient of the dataset azt in the
package KMsurv, as a key variable, given that it assigns a sequential number to each record,
each of which is observed a single time. We can draw these two conclusions from the line
graph and the color bar graph.

data(azt, package = 'KMsurv')
wideplot(data = azt, label = TRUE)

Figure 17: A grid of graphics generated by wideplot(azt, label=TRUE). Each row corresponds to a
variable in the dataset azt. The line graph and the color bar graph recognize the variable patient as a
key variable that assigns a sequential number to each record.

In the case of categorical key variables, the same line graph and color bar graph would
also help us to identify the key variable. Figure 18 shows these two graphs for the factor-type
variable of the dataset SpeciesArea in the package Stat2Data, which allow us to identify
rapidly the variable Name as a key variable.

data(SpeciesArea, package = 'Stat2Data')

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 336

wideplot(data = SpeciesArea, dataclas = c('factor'),
factor = c('line graph', 'color bar graph'), ncol = 5)

Figure 18: Line and color bar graphs of the factor-type variable Name (in the dataset SpeciesArea)
produced by the function wideplot(). It is observed that the variable Name is a key variable since the
values are not repeated and observed once.

Be surprised by serendipity

Next we describe isolated cases in which we are surprised by the values that the data depict.
We use the following procedure to locate unexpected aspects of the data: first we obtain
a general view of the dataset using the function wideplot(); next we focus our attention
on one variable in particular and explore all of the compatible graphics using the function
longplot(); finally, we use the function plotup() to obtain the graphic that best enables us
to identify, narrow down and communicate the aspect of the data that we have found.

• The first example of an unexpected funding appears in the variable experience (years
of potential work experience) of the dataset HI in the package Ecdat. This dataset
contains 22,272 records of 13 variables that link health insurance policies to the weekly
hours worked by the wives of the policyholders, while the variable experience refers
to the years of potential work experience of the wives. If we look at the bar graph
applied to this numerical variable (see Figure 19), we see that the frequency of the
whole values is systematically greater than the frequency of the real non-whole values.
This behavior could indicate that the variable can be informed with high precision
and whoever informed the variable experience tended to round to the unit. Another
possibility is that the dataset was constructed by joining two data sources with different
degrees of precision2

data(HI, package = 'Ecdat')
HI_sam <- HI[sample(nrow(HI), 5000),]
wideplot(data = HI_sam) # Output not reproduced here
longplot(data = HI_sam, vars = 'experience') # Output not reproduced here
plotup(data = HI_sam, vars = 'experience', diagram = 'bar graph')

Figure 19: Bar plot of the variable experience (in the dataset HI) produced by the function plotup().
It is observed that the frequency of the whole values is systematically greater than the frequency of the
real non-whole values.

2In the following example we have decided to limit the number of records to 5,000 to reduce the calculation
time and facilitate the reproduction of these same examples.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Ecdat

CONTRIBUTED RESEARCH ARTICLE 337

• In the same dataset we can see that we could reach mistaken conclusions about the
distribution of the variable husby (husband’s income in thousands of dollars) if we
only looked at a histogram. As we can see in Figure 20, the distribution, and in
particular the value zero, acquires a different value if we compare the histogram (left)
with another graphic that isn’t as common for numerical variables: the bar graph
(right), which shows the count of unique values. The bar graph makes it possible to
clearly differentiate two groups: the informants whose husbands have no income and
the informants whose husbands do have income (and to whom, therefore, it makes
more sense to ask approximate income).

library(patchwork)
plotup(HI_sam, 'husby', 'histogram') + plotup(HI_sam, 'husby', 'bar graph')

Figure 20: Histogram (left) and bar plot (right) of the variable husby (in the dataset HI_sam) produced
by the function plotup(). The bar plot makes it possible to identify the zero as a value with a special
meaning.

Combine graphics that best explains a specific data characteristic

Just as multipanel graphics make it possible to reveal different aspects of the data, it can also
be helpful to use a selection of graphics to present a certain characteristic of the data. Next,
we show an example of how brinton package can help us improve the default graphics in
order to combine them later to show a particular feature.

• A recurring problem when we deal with datasets with many records is that when
marks overlap, we cannot correctly interpret the set of observations. The presentation
of multiple graphics to represent the same values enables us to identify these overlaps
and improve the representation that the package shows by default. For example,
in Figure 21 we can see how the point graph for the same variable husby is unclear
because the marks overlap.

plotup(data = HI_sam, vars = 'husby', diagram = 'point graph')

Figure 21: Point plot of the variable husby (in the dataset HI_sam) produced by the function plotup().
The point plot does not identify the zero as a value with a special meaning because the marks overlap.

• We do not have to accept the default result. Rather we can retrieve the package’s
ggplot2 function using the argument output = 'console' and then improve it:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 338

plotup(data = HI_sam, vars = 'husby', diagram = 'point graph',
output = 'console')

#> ggplot(HI_sam, aes(x=seq_along(husby), y=husby)) +
#> geom_point() +
#> labs(x='seq') +
#> theme_minimal() +
#> theme(panel.grid = element_line(colour = NA),
#> axis.ticks = element_line(color = 'black'))

• In this case we can, for example, improve the graphic by reducing the size of the points
and adding an alpha channel (see Figure 22).

newpointgraph <- ggplot(HI_sam, aes(x=seq_along(husby), y=husby)) +
geom_point(size = 0.3, alpha = 0.15) +
labs(x='seq') +
theme_minimal() +
theme(panel.grid = element_line(colour = NA),
axis.ticks = element_line(color = 'black'))

newpointgraph

Figure 22: New point plot of the variable husby (in the dataset HI_sam) produced by the functions
plotup() and ggplot(). Now the point plot makes it possible to identify the zero as a value with a
special meaning.

• One option for this graphic that isn’t affected by the overlapping of marks is the
heatmap, and yet another is the bar graph that represents the frequency with which
the unique values are observed. Combining the three graphics helps to highlight
different aspects in order to make it easier to understand the data. Figure 23 shows
how to combine the three graphics. Note that the bar graph has been rotated 90
degrees to become a marginal plot, following the grammar implemented in ggplot2,
to facilitate the correspondence between individual observations, the density that can
be deduced from them, and the frequency of unique values. Also, the axis labels have
been adjusted to avoid unnecessary repetition.

newpointgraph + labs(y = "husband's income * 1000$") +
plotup(data = HI_sam, vars = 'husby', diagram = 'color heatmap') +
labs(y = '') +
plotup(data = HI_sam, vars = 'husby', diagram = 'bar graph') +
labs(x = '') + coord_flip()

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 339

Figure 23: Multipanel graphic as a composition of three plots of the variable husby (in the dataset
HI_sam). The source of each plot is the function plotup(). Combining the three plots helps to highlight
different aspects of the distribution of the variable husby.

The resulting multipanel graphic shows that throughout the dataset, the revenue distri-
bution remains essentially constant, highlighting the number of husbands without income
and rounding the reported values to nice numbers such as 25, 30, 40, 50 and 100–although in
reality, the value that draws a horizontal line around 100 is, surprisingly, 99,999. And here
we have another mystery to solve.

Conclusions

We have introduced brinton package, a graphical EDA tool designed to facilitate the presen-
tation, selection and editing of statistical graphics built on ggplot2. This package maximizes
the deterministic strategy of graphic selection by presenting a range of graphics that a user
can choose by name, automating the construction of graphics and even allowing the user to
recover the underlying ggplot2 function in order to adapt the graphics as necessary. This
package makes it easier for a user to become familiar with a dataset and generate hypotheses
based on it.

This is a project in progress and new software implementations are being updated and
released. We plan to create a fuller catalog that will include graphics that can combine up to
three variables, improve the aesthetics of the default graphics and add new functions for
autoGEDA.

Acknowledgements

We thank Michael Friendly and Pedro Valero-Mora for corresponding with AUTHOR 1
about the package cowplot, which inspired the wideplot() function that forms the core of
this package. We acknowledge Susan Frekko for translating so accurately the manuscript
from Catalan.

Bibliography

J. Allaire, Y. Xie, J. McPherson, J. Luraschi, K. Ushey, A. Atkins, H. Wickham, J. Cheng,
W. Chang, and R. Iannone. rmarkdown: Dynamic Documents for R, 2019. URL https:
//rmarkdown.rstudio.com. R package version 1.12. [p324]

B. Auguie. gridExtra: Miscellaneous Functions for "Grid" Graphics, 2017. URL https://CRAN.R-
project.org/package=gridExtra. R package version 2.3. [p322, 324]

R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The visual design and control of trellis display.
Journal of computational and Graphical Statistics, 5(2):123–155, 1996. [p324]

W. Benger and H.-C. Hege. Strategies for direct visualization of second-rank tensor fields.
In J. Weickert and H. Hagen, editors, Visualization and Processing of Tensor Fields, pages 191–
214. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-31272-7. doi:
10.1007/3-540-31272-2_11. URL https://doi.org/10.1007/3-540-31272-2_11. [p329]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://rmarkdown.rstudio.com
https://rmarkdown.rstudio.com
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gridExtra
https://doi.org/10.1007/3-540-31272-2_11

CONTRIBUTED RESEARCH ARTICLE 340

J. Bertin. Sémiologie graphique. Les diagrammes, les réseaux, les cartes. Mouton, Paris, 1967.
[p324, 329, 332]

J. Bertin. La graphique et le traitement graphique de l’information. Flammarion, Paris, 1977.
[p322]

W. Brinton. Graphic Presentation. McGraw-Hill Book Company Inc., New York City, 1939.
URL https://archive.org/details/graphicpresentat00brinrich. [p323, 324]

W. Chang and B. Borges Ribeiro. shinydashboard: Create Dashboards with ’Shiny’, 2018. URL
https://CRAN.R-project.org/package=shinydashboard. R package version 0.7.1. [p323]

W. Cleveland. The Elements of Graphing Data. Hobart Press, Summit, New Jersey, 1985. [p324]

D. Comtois. summarytools: Tools to Quickly and Neatly Summarize Data, 2019. URL https:
//CRAN.R-project.org/package=summarytools. R package version 0.9.3. [p323]

D. Cook, D. F. Swayne, and A. Buja. Interactive and dynamic graphics for data analysis: with R
and GGobi. Springer Science & Business Media, 2007. [p322]

B. Cui. DataExplorer: Automate Data Exploration and Treatment, 2019. URL https://CRAN.R-
project.org/package=DataExplorer. R package version 0.8.0. [p323]

Dayanand Ubrangala, K. R, R. Prasad Kondapalli, and S. Putatunda. SmartEDA: Summarize
and Explore the Data, 2019. URL https://CRAN.R-project.org/package=SmartEDA. R
package version 0.3.2. [p323]

J. W. Emerson, W. A. Green, B. Schloerke, J. Crowley, D. Cook, H. Hofmann, and H. Wickham.
The generalized pairs plot. Journal of Computational and Graphical Statistics, 22(1):79–91,
2013. doi: 10.1080/10618600.2012.694762. URL https://doi.org/10.1080/10618600.
2012.694762. [p324]

M. Friendly. He plots for multivariate general linear models. Journal of Computational and
Graphical Statistics, 16(4):421–444, 2007. [p324]

M. Friendly. Lecture 2: Standard graphics in r, 2018. URL http://www.datavis.ca/courses/
RGraphics/. OpenCourseWare. [p322]

J. A. Hartigan. Printer graphics for clustering. Journal of Statistical Computation and Simulation,
4(3):187–213, 1975. [p324]

R. Iannone, J. Allaire, and B. Borges. flexdashboard: R Markdown Format for Flexible Dashboards,
2018. URL https://CRAN.R-project.org/package=flexdashboard. R package version
0.5.1.1. [p323]

T. Kamps. Diagram Design: A Constructive Theory. Springer Berlin Heidelberg, 1999. [p322]

P. Millán-Martínez and P. Valero-Mora. Automating statistical diagrammatic representations
with data characterization. Information Visualization, 17(4):316–334, 2018. [p322]

R. L. Oliver. Effect of expectation and disconfirmation on postexposure product evaluations:
An alternative interpretation. Journal of applied psychology, 62(4):480, 1977. [p322]

T. L. Pedersen. patchwork: The Composer of Plots, 2019. URL https://CRAN.R-project.org/
package=patchwork. R package version 1.0.0. [p324]

A. H. Petersen and C. T. Ekstrøm. dataMaid: Your assistant for documenting supervised
data quality screening in R. Journal of Statistical Software, 90(6):1–38, 2019. doi: 10.18637/
jss.v090.i06. [p323]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2018. URL https://www.R-project.org/. [p]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://archive.org/details/graphicpresentat00brinrich
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=summarytools
https://CRAN.R-project.org/package=summarytools
https://CRAN.R-project.org/package=DataExplorer
https://CRAN.R-project.org/package=DataExplorer
https://CRAN.R-project.org/package=SmartEDA
https://doi.org/10.1080/10618600.2012.694762
https://doi.org/10.1080/10618600.2012.694762
http://www.datavis.ca/courses/RGraphics/
http://www.datavis.ca/courses/RGraphics/
https://CRAN.R-project.org/package=flexdashboard
https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=patchwork
https://www.R-project.org/

CONTRIBUTED RESEARCH ARTICLE 341

R. Rao and S. K. Card. The table lens: Merging graphical and symbolic representations
in an interactive focus + context visualization for tabular information. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’94, pages 318–322,
New York, NY, USA, 1994. ACM. ISBN 0-89791-650-6. doi: 10.1145/191666.191776. URL
http://doi.acm.org/10.1145/191666.191776. [p323]

A. Rushworth. inspectdf: Inspection, Comparison and Visualisation of Data Frames, 2019. URL
https://CRAN.R-project.org/package=inspectdf. R package version 0.0.4. [p323]

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer, New York, 2008. URL
http://lmdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5. [p322, 324]

P. Seibelt. xray: X Ray Vision on your Datasets, 2017. URL https://CRAN.R-project.org/
package=xray. R package version 0.2. [p323]

B. Shneiderman. The eyes have it: a task by data type taxonomy for information visualiza-
tions. In Proceedings 1996 IEEE Symposium on Visual Languages, pages 336–343, Sep. 1996.
doi: 10.1109/VL.1996.545307. [p324]

M. Staniak and P. Biecek. The landscape of r packages for automated exploratory data
analysis. arXiv preprint arXiv:1904.02101, 2019. [p322, 323]

M. Tennekes, E. de Jonge, P. J. Daas, et al. Visualizing and inspecting large datasets with
tableplots. Journal of Data Science, 11(1):43–58, 2013. [p323]

T. M. Therneau. A Package for Survival Analysis in S, 2015. URL https://CRAN.R-project.
org/package=survival. version 2.38. [p322]

M. Theus and S. Urbanek. Interactive Graphics for Data Analysis: Principles and Examples
(Computer Science and Data Analysis). Chapman & Hall/CRC, 2008. ISBN 1584885947,
9781584885948. [p322]

N. Tierney. visdat: Visualising whole data frames. JOSS, 2(16):355, 2017. doi: 10.21105/joss.
00355. URL http://dx.doi.org/10.21105/joss.00355. [p323]

E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, 1983.
[p324]

J. Tukey. Exploratory Data Analysis. Addison-Wesley series in behavioral science. Addison-
Wesley Publishing Company, 1977. ISBN 9780201076165. URL https://books.google.
es/books?id=UT9dAAAAIAAJ. [p322]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
ISBN 978-3-319-24277-4. URL http://ggplot2.org. [p322]

C. O. Wilke. cowplot: Streamlined Plot Theme and Plot Annotations for ’ggplot2’, 2019. URL
https://CRAN.R-project.org/package=cowplot. R package version 1.0.0. [p323]

L. Wilkinson. The Grammar of Graphics. Statistics and Computing. Springer, 2nd edition,
2005. [p324]

Pere Millán-Martínez
Servei Català de Trànsit
Carrer Diputació, 355 08009 Barcelona, Spain
Research Group on Methodology, Methods, Models and Outcomes of Health and Social Sciences
(M3O)
Faculty of Health and Welfare Sciences
Universitat de Vic - UCC
Sagrada Família, 7 08500 Vic, Spain
ORCID: 0000-0003-0879-9358
info@sciencegraph.org

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://doi.acm.org/10.1145/191666.191776
https://CRAN.R-project.org/package=inspectdf
http://lmdvr.r-forge.r-project.org
https://CRAN.R-project.org/package=xray
https://CRAN.R-project.org/package=xray
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
http://dx.doi.org/10.21105/joss.00355
https://books.google.es/books?id=UT9dAAAAIAAJ
https://books.google.es/books?id=UT9dAAAAIAAJ
http://ggplot2.org
https://CRAN.R-project.org/package=cowplot
mailto:info@sciencegraph.org

CONTRIBUTED RESEARCH ARTICLE 342

Ramon Oller
Data Analysis and Modeling Research Group
Departament d’Economia i Empresa
Universitat de Vic - UCC
Sagrada Família 7, 08500 Vic, Spain
ORCID: 0000-0002-4333-0021
ramon.oller@uvic.cat

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:ramon.oller@uvic.cat

CONTRIBUTED RESEARCH ARTICLE 343

MoTBFs: An R Package for Learning
Hybrid Bayesian Networks Using
Mixtures of Truncated Basis Functions
by Inmaculada Pérez-Bernabé, Ana D. Maldonado, Antonio Salmerón and Thomas D. Nielsen

Abstract This paper introduces MoTBFs, an R package for manipulating mixtures of truncated
basis functions. This class of functions allows the representation of joint probability distributions
involving discrete and continuous variables simultaneously, and includes mixtures of truncated
exponentials and mixtures of polynomials as special cases. The package implements functions for
learning the parameters of univariate, multivariate, and conditional distributions, and provides
support for parameter learning in Bayesian networks with both discrete and continuous variables.
Probabilistic inference using forward sampling is also implemented. Part of the functionality of the
MoTBFs package relies on the bnlearn package, which includes functions for learning the structure
of a Bayesian network from a data set. Leveraging this functionality, the MoTBFs package supports
learning of MoTBF-based Bayesian networks over hybrid domains. We give a brief introduction to
the methodological context and algorithms implemented in the package. An extensive illustrative
example is used to describe the package, its functionality, and its usage.

Introduction

Mixtures of truncated basis functions (MoTBFs) (Langseth et al., 2012a) have been proposed as a
general framework for handling hybrid Bayesian networks, i.e., Bayesian networks where discrete
and continuous variables coexist. As special cases, the framework includes the so-called mixtures of
truncated exponentials (MTEs) (Moral et al., 2001) and mixtures of polynomials (MoPs) (Shenoy and
West, 2011; López-Cruz et al., 2012).

One of the advantages of MoTBFs is that they allow for hybrid Bayesian networks with no
structural restrictions on the relations between the continuous and discrete variables; this is in contrast
to conditional Gaussian (CG) models (Lauritzen, 1992), where discrete variables are not allowed to
have continuous parents. Restricting arc directions is problematic, for instance in situations where the
network structure is given a causal interpretation; the fact that MoTBFs have no such restriction make
them suitable for this kind of analysis. Furthermore, MoTBFs are closed under addition, multiplication,
and integration, which facilitates the use of exact probabilistic inference methods like the Shenoy-
Shafer architecture (Shenoy and Shafer, 1990) or the variable elimination algorithm (Zhang and Poole,
1996).

Methods for learning MoTBFs from data have previously been studied and cover algorithms for
learning both marginal (Langseth et al., 2012b,a) and conditional MoTBF densities from data (Langseth
et al., 2009, 2014; Pérez-Bernabé et al., 2015). To address situations where data availability is limited,
Pérez-Bernabé et al. (2016) proposed a methodology for integrating prior knowledge when learning
univariate and conditional MoTBFs from data. The underlying idea of the integration is to represent
the prior knowledge as an MoTBF density that is later combined with the density learned from data,
thus resulting in a new MoTBF density. Together, the learning algorithms for MoTBF-based Bayesian
networks facilitate learning in data-rich domains as well as domains where limited quantitative data
is counterbalanced by qualitative domain knowledge.

The aim of the MoTBFs package is to provide a free and accessible implementation of algorithms
for learning MoTBFs from data. The package implements state-of-the-art learning algorithms for
univariate, conditional, and joint MoTBF densities. By extension, functionality is also provided for
learning MoTBF-based Bayesian networks by leveraging functionality from the bnlearn package (Scu-
tari, 2010). Hybrid Bayesian networks supported by bnlearn are restricted to CG models, which
implies that conditional distributions of discrete variables given continuous ones are not permitted.
Other packages like deal (Bøttcher and Dethlefsen, 2003) and pcalg (Kalisch et al., 2012) are also
restricted to CG models. By adopting the MoTBF framework, the MoTBFs package sidesteps this
restriction on the possible network structures. Furthermore, the MoTBFs package also provides
methods for integrating prior domain knowledge in the learning process, thus also supporting data
sparse domains.

Another package that includes hybrid Bayesian networks functionality is HydeNet (Dalton and
Nutter, 2019). This package is able to handle conditional distributions beyond the Gaussian model
class, but discrete variables conditional on continuous ones are modeled using generalized linear
models, and inference is only possible using Markov Chain Monte Carlo through an interface to

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=MoTBFs
https://CRAN.R-project.org/package=bnlearn
https://CRAN.R-project.org/package=deal
https://CRAN.R-project.org/package=pcalg
https://CRAN.R-project.org/package=HydeNet

CONTRIBUTED RESEARCH ARTICLE 344

JAGS (Plummer, 2003). Unlike MoTBFs and bnlearn, HydeNet does not provide functionality for
learning the network structure. HydeNet is especially appropriate for modeling decision problems,
since it implements influence diagrams, which are extensions of Bayesian networks that include
decision and utility nodes, similarly to decision trees.

The package abn (Kratzer et al., 2019) deals with so-called additive Bayesian networks, which are
Bayesian networks where each node holds a generalized linear model, and the effect of the parents of
each node is additive in terms of the exponential family expression of the conditional distribution.
Unlike HydeNet, abn is able to learn the network structure from data, and adopts a fully Bayesian
approach, thus allowing the specification of prior distributions on the parameters in a natural way.
The main difference with respect to package MoTBFs is that MoTBF distributions do not belong to the
exponential family, and in that sense both packages are complementary.

Mixtures of truncated basis functions

The MoTBF framework (Langseth et al., 2012a) is based on the abstract notion of real-valued basis
functions, which includes both polynomial and exponential functions as special cases.

More formally, let X be a mixed n-dimensional random vector. Let Y = (Y1, . . . , Yd) and Z =
(Z1, . . . , Zc) be the discrete and continuous parts of X, respectively, with c + d = n. Let Ψ = {ψi(·)}∞

i=0
with ψi : R → R define a collection of real basis functions. We say that a function f̂ : ΩX 7→ R+

0 is
a mixture of truncated basis functions potential to level k wrt. Ψ if one of the following two conditions
holds:

• f can be written as

f (x) = f (y, z) =
k

∑
i=0

c

∏
j=1

a(j)
i,y ψi

(
zj

)
, (1)

where a(j)
i,y are real numbers.

• There is a partition Ω1
X, . . . , Ωm

X of ΩX for which the domain of the continuous variables, ΩZ, is
divided into hyper-cubes and such that f is defined as

f (x) = f`(x) if x ∈ Ω`
X,

where each f`, ` = 1, . . . , m can be written in the form of Equation 1.

Typically, a univariate MoTBF for a variable X does not rely on a partitioning of ΩX .

To see the relationship between MoTBFs and MoPs (Shenoy and West, 2011), we can instantiate
the basis functions as polynomials (i.e., ψi(x) = xi, for i = 0, . . . , k) in which case the MoTBF model
reduces to an MoP model. For example, with polynomial basis functions, a univariate MoTBF of level
k for a variable X is given by

f (x) =
k

∑
i=0

θi ψi (x) .

Similarly, by having exponential basis functions the MoTBF model implements an MTE model (Moral
et al., 2001). For ease of exposition, we shall in the remainder of this paper assume polynomial basis
functions unless explicitly stated otherwise.

An MoTBF potential is a density if ∑y∈ΩY

∫
Ωz

f (y, z)dz = 1. Similarly, we say that an MoTBF
f (y, z) is a conditional density for Z′ ⊆ Z and Y′ ⊆ Y given (Z \ Z′) and (Y \ Y′) if

∑
y′∈ΩY′

∫
Ωz′

f (y′, y′′, z′, z′)dz′ = 1,

for all z′′ ∈ ΩZ\Z′ and y′′ ∈ ΩY\Y′ . Following Langseth et al. (2012a) we furthermore assume that
the influence that a set of continuous parent variables Z have on their child variable X is encoded
only through the partitioning of ΩZ into hyper-cubes, and not directly in the functional form of f (x|z)
inside the hyper-cube Ωj

Z. That is, for a partitioning P = {Ω1
Z , . . . , Ωm

Z} of ΩZ , the conditional MoTBF

is defined for z ∈ Ωj
Z , 1 ≤ j ≤ m, as

f (j)
k (x|z ∈ Ωj

Z) =
k

∑
i=0

θ
(j)
i ψ

(j)
i (x). (2)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=abn

CONTRIBUTED RESEARCH ARTICLE 345

In the remainder of this paper we shall assume that a conditional MoTBF density includes only a
single ‘head’ variable, i.e., |Z′ ∪ Y′| = 1.

Learning univariate MoTBFs from data

Langseth et al. (2014) present a method for learning univariate MoTBF distributions from data. This
method is also implemented in the MoTBFs package and is briefly described here together with
its extension to both conditional and joint distributions. The estimation procedure relies on the
empirical cumulative distribution function (CDF) as a representation of the data, which, for a sample
D = {x1, . . . , xN}, is defined as

GN(x) =
1
N

N

∑
`=1

1{x` ≤ x}, x ∈ R, (3)

where 1{·} is the indicator function.

The algorithm developed by Langseth et al. (2014) fits a potential, whose derivative is an MoTBF,
to the empirical CDF using least squares. As an example, if we use polynomials as basis functions,
Ψ = {1, x, x2, x3, . . .}, the parameters of the CDF, denoted as c0, . . . , ck, are estimated by solving the
optimization problem

minimize
c0,...,ck

N

∑
`=1

(
GN(x`)−

k

∑
i=0

ci xi
`

)2

subject to
k

∑
i=1

i ci xi−1 ≥ 0 ∀x ∈ Ω, (4)

k

∑
i=0

ci αi = 0 and
k

∑
i=0

ci βi = 1,

where the constraints ensure that the obtained parameter estimates define a valid CDF, with α and β
being the minimum and maximum values of the data sample, respectively. More precisely, the first
constraint guarantees that the corresponding density is non-negative and the last two restrictions
ensure that it integrates to 1. The latter is equivalent to stating that the CDF should be equal to 0 at the
minimum and equal to 1 at the maximum. Note that the estimated function is not actually a density,
but a CDF instead. An MoTBF density can be obtained by simply taking the derivative of the CDF.

Note that the optimization program above is convex, and can be efficiently solved in theory.
However, the infinite number of constraints introduced by imposing that dF(x)

dx ≥ 0 for all x ∈ ΩX
complicates the implementation on a computer. In practice, we only check that the constraint is
fulfilled for a limited set of points spread across ΩX .

In learning scenarios involving a large amount of data (i.e., when N is large), solving the program
can be time consuming. In such cases we define a grid on ΩX , that is selected so that the number of
observations is the same between each pair of consecutive grid-points. The grid-points are used to
evaluate the objective function instead of the sample points.

The level k of the estimated MoP can be decided using different model selection techniques. For
the results presented in this paper we have performed a greedy search, choosing the value for k
maximizing the Bayesian information criterion (BIC) (Schwarz, 1978):

BIC(f , D) =
N

∑
`=1

log f (x`)−
k + 2

2
log N. (5)

This choice is motivated by Langseth et al. (2014), who showed that the estimators based on
Equation 4 are consistent in terms of the mean squared error for all x ∈ ΩX .

Learning conditional MoTBFs from data

In a conditional MoTBF density, the continuous parent variables Z only influence the child variable X
through the partitioning of the domain of Z into hyper-cubes, and not directly in the functional form
of f (x|z) inside each hyper-cube (Langseth et al., 2012a). Thus, learning a conditional MoTBF basically
consists in finding a partitioning of the domain of the parent variables and using the procedure above
for estimating the density of the child variable for each of these partitions.

This procedure is formally described by Langseth et al. (2014), where the domain of the parent

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 346

variables, ΩZ, is incrementally split as long as the BIC score improves. Equal frequency binning is
used to determine candidate split points. After splitting a variable Z, the algorithm fits a univariate
MoTBF density for each induced sub-partition Ω1

Z and Ω2
Z . A candidate partition ΩZ′ is only accepted

if the BIC score is improved, i.e., if

BIC-Gain(Ω′Z , Z) = BIC(f ′, D)− BIC(f , D) > 0,

where f ′ is the conditional MoTBF potential defined over the candidate partition.

Learning joint MoTBFs from data

The procedure for learning joint densities is an extension of the program in Equation 4 to random
vectors of arbitrary dimension (Pérez-Bernabé et al., 2015). In the multivariate case, the sample is a set
of d-dimensional observations, D = {x1, . . . , xN}, x ∈ ΩX ⊂ Rd. We say that the event x` ≤ x is true
if and only if x`,i ≤ xi for each dimension i = 1, . . . , d. For notational convenience we use Ω−X ∈ Rd to
denote the minimal point of ΩX (obtained by choosing the minimum of ΩX in each dimension), and
let Ω+

X ∈ Rd be the corresponding maximal point. Then, the empirical CDF is defined as

GN(x) =
1
N

N

∑
`=1

1{x` ≤ x}, x ∈ ΩX ⊂ Rd.

The goal is to find a representation of the empirical CDF of the form

F(x) =
k

∑
`1=0

. . .
k

∑
`d=0

c`1,`2,...,`d

d

∏
i=1

x`i
i ,

obtained by solving the optimization problem

minimize
N

∑
`=1

(GN(x`)− F(x`))
2

subject to
∂dF(x)

∂x1, . . . , ∂xd
≥ 0 ∀x ∈ ΩX, (6)

F
(
Ω−X
)
= 0 and F

(
Ω+

X
)
= 1.

The solution to this problem is the parameter-set that defines the joint CDF, and the density can be
obtained by differentiation of the joint CDF. As in the univariate case, it is a quadratic optimization
problem, that can be solved efficiently if the objective function is only evaluated on a set of grid-points.

Incorporating prior knowledge

There are real world situations, where the amount of available data is insufficient for accurate density
estimation. The MoTBFs package includes implementations oriented to face these kinds of situa-
tions by allowing prior knowledge to be taken into account during density estimation. In Bayesian
statistics (Bernardo and Smith, 2009), prior information is encoded as prior probability distributions
over the parameters. As an example, consider the case of a random variable representing the body
temperature of a patient in a hospital, and assume that the variable is normally distributed with mean
µ and standard deviation σ. Prior knowledge could be provided in the form of a prior distribution on
µ by establishing that µ ∼ N (37, 0.1). However, in the case of MoTBF distributions, the parameters do
not have a meaning in general. Therefore, there is no clear way in which a practitioner could provide
prior information on any of the parameters, although some information could still be specified. For
instance, in the body temperature example, the practitioner could choose not to give prior information
on any single parameter, but instead provide a full distribution of the variable, reflecting his or her
prior knowledge when no data is available. Such prior information could, e.g., include that the body
temperature follows a normal distribution with mean 37 and standard deviation 0.5. This is the
approach followed by Pérez-Bernabé et al. (2016), where prior knowledge is encoded as an MoTBF
distribution over the random variable, which is then later combined with the MoTBF density learned
from data.

In order to represent such a prior distribution as an MoTBF, a sample is drawn from the prior – e.g.,
N (37, 0.1) in the example above – and the sample is then used to learn an MoTBF using the methods
previously described in this paper. Alternatively, one may also rely on direct translation schemes as
described in, e.g., (Langseth et al., 2010; Cobb et al., 2006).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 347

Given a prior MoTBF density fprior over a variable X, Pérez-Bernabé et al. (2016) obtain a posterior
density fpost by making a linear combination of the prior density and the density fdata learned from
data, expressed as

fpost = wp fprior + wd fdata ,

where wp is the weight of fprior and wd is the weight of fdata, with 0 ≤ wp ≤ 1, 0 ≤ wd ≤ 1 and
wp + wd = 1. The weights wp and wd reflect the way in which they explain the observed data. They
are computed by measuring the difference between the log-likelihood produced by each one of the
densities (fprior and fdata) and the expected log-likelihood that would be produced by a randomly
generated MoTBF. See (Pérez-Bernabé et al., 2016) for a detailed explanation of the procedure.

Probabilistic inference

In a Bayesian network, probabilistic inference is the task of computing the posterior distribution of
any variable X given that some other variables Y have been observed to take some value y. Therefore,
the goal of probabilistic inference is to compute the density f (x|y), where the value y is fixed.

An easy approach to estimate this density is by forward sampling (Henrion, 1988). The idea is to
draw a sample of configurations of the variables in the Bayesian network by simulating each variable
using its conditional distribution following a top-down order. Prior to sampling, all the densities in
the network are restricted to the value Y = y and when a variable is to be sampled, its conditional
distribution is restricted to the values already obtained for its parents. Sampling is always possible
since the variables are sampled following the topological ordering of the network. Once the sample
has been obtained, f (x|y) is estimated as a univariate MoTBF as we described before.

Package description and illustrative example

The MoTBFs package is designed using S3 objects. The functions provided by the package implement
the methods explained in the previous sections. The package implements functions for learning
univariate, multidimensional, and conditional distributions, and provides support for parameter
learning in hybrid Bayesian networks. In addition, it includes functions for incorporating prior
knowledge when there is lack of data and for carrying out probabilistic inference. Moreover, two
classes are incorporated in the package, "motbf" for defining univariate mixtures of truncated basis
functions and "jointmotbf" for specifying multidimensional MoTBFs.

The functionality of the MoTBFs package is illustrated through an analysis carried out on a real
world dataset. More precisely, we use the ecoli dataset (Lichman, 2013), which is provided along with
the package. The dataset contains information about Escherichia coli and consists of n = 336 records,
8 input variables, and 1 output variable (the class). It is a bacterium of the genus Escherichia that is
commonly found in the lower intestine of warm-blooded organisms. This dataset can be downloaded
from http://archive.ics.uci.edu/ml/datasets/Ecoli.

To begin the analysis, the package and the data are loaded by

> install.packages("MoTBFs")
> library("MoTBFs")
> data("ecoli", package = "MoTBFs")
> str(ecoli)

'data.frame': 336 obs. of 9 variables:
$ Sequence.Name: chr "AAT_ECOLI" "ACEA_ECOLI" "ACEK_ECOLI" "ACKA_ECOLI" ...
$ mcg : num 0.49 0.07 0.56 0.59 0.23 0.67 0.29 0.21 0.2 0.42 ...
$ gvh : num 0.29 0.4 0.4 0.49 0.32 0.39 0.28 0.34 0.44 0.4 ...
$ lip : chr "0.48" "0.48" "0.48" "0.48" ...
$ chg : chr "0.5" "0.5" "0.5" "0.5" ...
$ aac : num 0.56 0.54 0.49 0.52 0.55 0.36 0.44 0.51 0.46 0.56 ...
$ alm1 : num 0.24 0.35 0.37 0.45 0.25 0.38 0.23 0.28 0.51 0.18 ...
$ alm2 : num 0.35 0.44 0.46 0.36 0.35 0.46 0.34 0.39 0.57 0.3 ...
$ class : chr "cp" "cp" "cp" "cp" ...

The ecoli dataset is a data frame with 336 rows corresponding to proteins and 9 columns corre-
sponding to variables. The dataset contains 4 discrete variables, stored as characters, and 5 continuous
variables. The variables provide measurements of the cells used for predicting the localization site
of proteins. The first variable, Sequence.Name, which is the accession number for the SWISS-PROT
database, and the output variable class will not be used in this running example, and we will therefore
remove them from the data frame. The discrete variables lip and chg are binary attributes, where

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://archive.ics.uci.edu/ml/datasets/Ecoli

CONTRIBUTED RESEARCH ARTICLE 348

character numbers are used as states; "0.48" and "1", and "0.5" and "1", respectively. For validation
purposes, the dataset is split into a training and a test set.

> data <- ecoli[,-c(1,9)]
> set.seed(2)
> dataTT <- TrainingandTestData(data, percentage_test = 0.2)
> trainingData <- dataTT$Training
> testData <- dataTT$Test

The seed value determines the partitioning of the data into training and test, and is therefore key
to reproducing the experiments. From now on, we will carry out all the analyses on the training data,
leaving the test dataset for estimating the predictive capabilities of the learned models.

Our illustrative example basically consists of fitting MoTBF densities to a previously learned
Bayesian network structure over the variables in the dataset. The structure can, for instance, be
obtained, using the function hc() from the bnlearn package. This function returns a directed acyclic
graph obtained from the dataset using a local search method. For the sake of simplicity, we have
included the function LearningHC() in our package, which automatically converts into factors those
columns that are non-numeric, before calling the function hc() in bnlearn. LearningHC() can also be
used to discretize the dataset before calling hc(), but we are not using this functionality in the running
example.

> dag <- LearningHC(trainingData)
> dag

Bayesian network learned via Score-based methods

model:
[lip][alm1][mcg|lip:alm1][chg|lip][aac|alm1][gvh|mcg][alm2|gvh:lip:alm1]
nodes: 7
arcs: 8
undirected arcs: 0
directed arcs: 8
average markov blanket size: 3.14
average neighbourhood size: 2.29
average branching factor: 1.14

learning algorithm: Hill-Climbing
score: BIC (cond. Gauss.)
penalization coefficient: 2.797356
tests used in the learning procedure: 102
optimized: TRUE

> plot(dag)

The network structure obtained is shown in Figure 1.

Figure 1: Directed acyclic graph learned from 80 percent of the ecoli dataset used as training data.

Before describing how to learn the MoTBF distributions associated with the network structure,
we first present the basic functionality for learning different types of MoTBF representations, i.e.,
univariate, conditional, and joint MoTBF densities.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 349

We illustrate the learning of a univariate MoTBF density by considering the continuous variable
mcg.

> f1 <- univMoTBF(trainingData[,1], POTENTIAL_TYPE = "MTE", nparam = 13)
> f2 <- univMoTBF(trainingData[,1], POTENTIAL_TYPE = "MOP", nparam = 11)

The univMoTBF() function is used for learning univariate densities. The function is at the core of
a collection of functions included in the package to learn densities of class "motbf" from data. Least
squares optimization is used to minimize the mean squared error between the empirical cumulative
distribution and the estimated MoTBF.

The function takes two mandatory arguments, data and POTENTIAL_TYPE, where the latter can
either be "MOP" or "MTE" if polynomial or exponential basis functions should be used, respectively.
univMoTBF() also accepts optional arguments: it is possible to specify the domain over which the
model will be fitted, evalRange, the exact number of basis functions to be used, nparam, and the
maximum number of parameters in the function, maxParam, which selects the best fit using the log-
likelihood score. If nparam or maxParam are not given, then the Bayesian information criterion (BIC)
(Schwarz, 1978) is used for scoring and function selection: it evaluates the two next functions and if
the BIC value does not improve then the function with the best BIC score so far is returned.

An overview of the obtained results is shown via print() and summary().1

R> print(f1)

[1] 31692.5765-19886.9389*exp(2*x)-3430.0930*exp(-2*x)+6520.8968*exp(4*x)
-91374.9603*exp(-4*x)-1269.7572*exp(6*x)+189285.9358*exp(-6*x)
+145.8260*exp(8*x)-186348.2886*exp(-8*x)-8.9962*exp(10*x)+94460.6774*exp(-10*x)
+0.2244*exp(12*x)-19787.1017*exp(-12*x)

> summary(f2)

MoTBFs FOR UNIVARIATE DISTRIBUTIONS

Model:
0.0009+31.8820*x-1161.8247*x^2+16513.1506*x^3-121362.4662*x^4+529132.7157*x^5
-1434074.5145*x^6+2426253.6805*x^7-2482246.1917*x^8+1401057.0127*x^9-334304.5309*x^10

Class: motbf
Subclass: mop

Coefficients:
0.001 31.8821 -1161.825 16513.15 -121362.5 529132.7 -1434075 2426254
-2482246 1401057 -334304.5

Domain:
(0, 0.89)

Number of Iterations: 7

Processing Time: 0.002254009 secs

The object returned by univMoTBF() is a list containing several elements, including its mathematical
expression and other hidden elements related to the learning task. The processing time is one of the
values returned by this function and it can be extracted by $Time. Although the learning process is
always the same for a particular data sample, the processing time can vary inasmuch as it depends on
the CPU.

> hist(trainingData[,1], prob = TRUE , main = "", xlab = "X")
> plot(f1, xlim = range(trainingData[,1]), col = "red", add = TRUE)
> plot(f2, xlim = range(trainingData[,1]), col = "blue", add = TRUE)

Figure 2 shows the model fits, provided by univMoTBF(), displayed using the generic method
plot().

1In order to save space and increase readability, we are only printing the 4 most significant digits in the examples
in this paper.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 350

Figure 2: Univariate learning with blue dashed line for MOPs and red solid line for MTEs overlaying
the histogram of the training data of the mcg variable.

To evaluate the predictive ability of the models we use the generic method as.function() devel-
oped for the "motbf" class to get the log-likelihood as well as BICMoTBF() to obtain the BIC score.

> sum(log(as.function(f1)(testData[,1])))
[1] 9.1945

> sum(log(as.function(f2)(testData[,1])))
[1] 8.7249

> BICMoTBF(f1,testData[,1])
[1] -20.2383

> BICMoTBF(f2,testData[,1])
[1] -16.5032

An alternative way to visually check the goodness of fit of the estimated models is to simulate a
data sample from the learned functions and compare it with the training data. For doing this, we use
the inverse transform method, a technique for generating random samples from a specific probability
distribution based on evaluating the inverse of the CDF on a uniform random number, yielding a
value for the random variable being sampled. This is done by function rMoTBF(). For the sake of
reproducibility, we fix the seed for the random numbers to be used by the rMoTBF() function, which is
set to 5 in this example. In the next code snippet, the previous function fitted with a polynomial basis,
f2, will be used.

> set.seed(5)
> X <- rMoTBF(size = 400, fx = f2)
> ks.test(trainingData[,1], X)

Two-sample Kolmogorov-Smirnov test

data: trainingData[, 1] and X
D = 0.065167, p-value = 0.5018
alternative hypothesis: two-sided

In this example the two-sample Kolmogorov-Smirnov test is used. The p-value is notably above
0.05, so there is no evidence to reject the null hypothesis that both samples are drawn from the same
population.

> hist(X, prob = TRUE, col = "deepskyblue3", main = "", ylim = c(0,2.2))
> hist(trainingData[,1], prob = TRUE, col = adjustcolor("gold",
+ alpha.f = 0.5), add = TRUE)
> plot(ecdf(trainingData[,1]), cex = 0, main = "")
> plot(integralMoTBF(f2), xlim = range(trainingData[,1]), col = "red", add = TRUE)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 351

(a) (b)

Figure 3: Histogram of variable mcg plotted over the histogram of the generated sample (a). Illustration
of the inverse transform method (b), red solid line is the CDF of the generated sample, and black
dashed line is the empirical CDF of the training data for variable mcg.

Figure 3 shows two plots comparing the training data of variable mcg and the sample simulated
from the distribution learned using the same training data.

We can also manipulate the distributions with a collection of methods for class "motbf". Here is
an example of the use of three of them, coef(), integralMoTBF(), and derivMoTBF().

> coef(f1)
[1] 3.1692e+04 -1.9886e+04 -3.4300e+03 6.5208e+03 -9.1374e+04
[6] -1.2697e+03 1.8928e+05 1.4582e+02 -1.8634e+05 -8.9962e+00
[11] 9.4460e+04 2.2449e-01 -1.9787e+04

> integralMoTBF(f2)
[1] 0.0009*x+15.9410*x^2-387.2749*x^3+4128.2876*x^4-24272.4932*x^5+88188.7859*x^6
-204867.7877*x^7+303281.7100*x^8-275805.1324*x^9+140105.7012*x^10-30391.3209*x^11

> integralMoTBF(f2, min = min(trainingData[,1]), max = max(trainingData[,1]))
[1] 1

> derivMoTBF(f2)
[1] 31.8820-2323.6495*x+49539.4519*x^2-485449.8648*x^3+2645663.5790*x^4
-8604447.0881*x^5+16983775.7655*x^6-19857969.5358*x^7+12609513.1160*x^8
-3343045.3101*x^9

The learning process for multidimensional variables is similar to the previous one. The function
parametersJointMoTBF() is used to solve the quadratic optimization problem. It returns Parameters,
Range and Time, among other values. The function jointMoTBF() is used for obtaining the analytical
expression, where the returned object is of class "jointmotbf". The expression is the only visible
element, while the others can be retrieved using attributes(). In this example only two variables are
used, mcg and alm1, in order to be able to plot the results.

> parameters <- parametersJointMoTBF(X = trainingData[,c("mcg", "alm1")],
+ dimensions = c(5,5))
> P <- jointMoTBF(parameters)
> attributes(P)

$names
[1] "Function" "Domain" "Iterations" "Time"
$class
[1] "jointmotbf"

> plot(P, data = trainingData[,c(1,6)])
> plot(P, data = trainingData[,c(1,6)], filled = FALSE)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 352

> plot(P, type = "perspective", data = trainingData[,c(1,6)], orientation=c(60,20))

(a) (b) (c)

Figure 4: Filled contour (a), simple contour (b) and perspective (c) plots of the joint MoTBF f (Y, X) of
variables mcg and alm1.

The plots in Figure 4 are generated using plot(), developed for objects of class "jointmotbf". This
function accepts optional arguments such as type, where one can choose between "perspective" and
"contour", ranges, used to specify the plotting range, orientation, which indicates the orientation of
the perspective graph, and filled for getting a filled contour plot.

The function print() can be used to obtain an expression of the learned joint density, while
summary() yields a more thorough excerpt of the "jointmotbf" object.

> summary(P)

MoTBFs FOR MULTIVARIATE DISTRIBUTIONS

Model:
0.0355-0.2915*y+0.8351*y^2-0.9711*y^3+0.3939*y^4-2.9706*x+88.6144*x*y
-339.2388*x*y^2+451.7559*x*y^3-198.1810*x*y^4-9.2802*x^2+494.5320*x^2*y
-1392.3658*x^2*y^2+1175.9828*x^2*y^3-268.7925*x^2*y^4+35.3166*x^3
-1708.9509*x^3*y+5662.3268*x^3*y^2-5878.6313*x^3*y^3+1889.8292*x^3*y^4
-22.2566*x^4+1164.5531*x^4*y-4117.2185*x^4*y^2+4479.3097*x^4*y^3-1504.3348*x^4*y^4

Class: jointmotbf

Coefficients:
0.0355 -0.2915 0.8351 -0.9711 0.3939 -2.9706 88.6144 -339.2388 451.7559
-198.1811 -9.2802 494.5321 -1392.366 1175.983 -268.7926 35.3166 -1708.951
5662.327 -5878.631 1889.829 -22.2566 1164.553 -4117.219 4479.31 -1504.335

Domain x:
(0, 0.89)
Domain y:
(0.03, 1)

Number of Iterations: 96

Processing Time: 1.144651 secs

As in the univariate case, the processing time, P$Time, can vary depending on the CPU, but the
learning outcome will always be the same for a specific data sample. The marginalJointMoTBF()
function computes the marginals of joint densities. In this example we have two variables, so there are
two marginal densities.

> marginalJointMoTBF(P, var = 1)
[1] 0.0031+1.6119*x+14.1692*x^2-23.7487*x^3+6.7540*x^4

> marginalJointMoTBF(P, var = 2)
[1] -0.2716+13.0463*y-32.4520*y^2+32.5558*y^3-12.8781*y^4

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 353

Figure 5: Conditional density of gvh given mcg.

The next step in our analysis is learning conditional densities, which is implemented by the
function conditionalMethod(). Five of its arguments are compulsory: data, the dataset; nameParents,
a character vector indicating the name of the parents; nameChild, a character string containing the
name of the child; numIntervals, the maximum number of intervals for splitting the domain of
the parent variables; POTENTIAL_TYPE, the type of basis function. Other arguments are optional, like
maxParam, indicating the maximum number of parameters for each function, and s, the expert’s relative
confidence in any prior knowledge, and priorData if prior knowledge is incorporated in the analysis.

We will do the conditional analysis for only two variables in order to be able to make a 2-
dimensional plot of the obtained results using plotConditional(). For example, taking into account
the relationship found by the dag, we consider the child variable gvh with parent variable mcg.

> P <- conditionalMethod(trainingData, nameParents = "mcg", nameChild = "gvh",
+ numIntervals = 5, POTENTIAL_TYPE ="MOP")
> printConditional(P)

Parent: mcg Range: 0 < mcg < 0.44
[1] 115.8704-1783.8943*x+10688.6518*x^2-32342.1750*x^3+54497.1689*x^4-52033.2599*x^5
+26393.6470*x^6-5536.0079*x^7
Parent: mcg Range: 0.44 < mcg < 0.89
[1] -37.3009+733.0877*x-5676.3802*x^2+22283.2874*x^3-47834.5916*x^4+56908.0376*x^5
-35242.7482*x^6+8867.5576*x^7

> plotConditional(P, data = trainingData, nameChild = "gvh", points = TRUE)

Figure 5 shows the resulting conditional density (a MOP in this case) with the sample points
overlaid. It can be noticed that the learning algorithm decides to split the domain of the parent into
two intervals even though we have set the argument numIntervals to five. This is because the BIC
score is not improved any further by splitting the domain into more than two intervals.

The last step is to learn the distributions tied to the Bayesian network learned previously. For doing
this task, the MoTBFs_Learning() function of the MoTBFs package is used. The graph is a mandatory
argument, that can be of class "bn", "graphNEL" or "network". Other mandatory arguments are the
data, the maximum number of intervals for splitting the domain of the parents, and the type of basis
function. The function also accepts additional arguments, but they are not listed here.

In the example, the DAG was obtained using the bnlearn package and therefore it is an object of
class "bn". As an example, we will use a maximum of 4 intervals and "MTE" potentials when learning
the densities (i.e. exponential basis functions).

> bn <- MoTBFs_Learning(dag, data = trainingData, numIntervals = 4,
+ POTENTIAL_TYPE = "MTE")
> printBN(bn)

Potential(mcg)
Parent: alm1 Range: 0.03 < alm1 < 0.33
Parent: lip Range = "0.48"
[1] 77.3522-39.7786*exp(2*x)-4.7525*exp(-2*x)+7.4896*exp(4*x)
-110.4468*exp(-4*x)-0.48548*exp(6*x)+71.3407*exp(-6*x)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 354

Parent: alm1 Range: 0.33 < alm1 < 1
Parent: lip Range = "0.48"
[1] -5.4620+3.3347*exp(2*x)+3.6655*exp(-2*x)-0.4237*exp(4*x)-1.0852*exp(-4*x)
Parent: lip Range = "1"
[1] -11.4070+6.0014*exp(2*x)+4.4488*exp(-2*x)-0.7109*exp(4*x)+2.3944*exp(-4*x)

Potential(gvh)
Parent: mcg Range: 0 < mcg < 0.51
[1] -97.6780+34.1822*exp(2*x)-282.2167*exp(-2*x)-2.7274*exp(4*x)+2028.8986*exp(-4*x)
-0.12096*exp(6*x)-3609.5088*exp(-6*x)+0.0175*exp(8*x)+2069.4440*exp(-8*x)
Parent: mcg Range: 0.51 < mcg < 0.89
[1] 685.6507-360.2896*exp(2*x)+252.1477*exp(-2*x)+79.5432*exp(4*x)-3074.9108*exp(-4*x)
-8.3530*exp(6*x)+4377.0877*exp(-6*x)+0.3410*exp(8*x)-2004.8518*exp(-8*x)

Potential(lip)
0.9630 0.0369

Potential(chg)
Parent: lip Range = "0.48"
1 0
Parent: lip Range = "1"
0.8181 0.1818

Potential(aac)
Parent: alm1 Range: 0.03 < alm1 < 1
[1] -3742.3665+2528.6429*exp(2*x)+1860.6477*exp(-2*x)-894.0268*exp(4*x)
+2121.1450*exp(-4*x)+175.4771*exp(6*x)-3473.1126*exp(-6*x)-18.0836*exp(8*x)
+1679.6126*exp(-8*x)+0.7634*exp(10*x)-238.3277*exp(-10*x)

Potential(alm1)
[1] 158.6127-95.2652*exp(2*x)-56.9318*exp(-2*x)+25.4631*exp(4*x)-97.0824*exp(-4*x)
-3.1624*exp(6*x)+52.8052*exp(-6*x)+0.1480*exp(8*x)+17.6287*exp(-8*x)

Potential(alm2)
Parent: alm1 Range: 0.03 < alm1 < 0.33
Parent: gvh Range: 0.16 < gvh < 1
Parent: lip Range = "0.48"
[1] 193.4903-112.6569*exp(2*x)-52.9058*exp(-2*x)+28.5291*exp(4*x)-185.8167*exp(-4*x)
-3.3698*exp(6*x)+155.0492*exp(-6*x)+0.1517*exp(8*x)-21.3863*exp(-8*x)
Parent: alm1 Range: 0.33 < alm1 < 0.45
Parent: gvh Range: 0.16 < gvh < 1
Parent: lip Range = "0.48"
[1] 395.0603-217.7061*exp(2*x)+16.0642*exp(-2*x)+51.0248*exp(4*x)-1009.4114*exp(-4*x)
-5.6246*exp(6*x)+1224.5254*exp(-6*x)+0.2387*exp(8*x)-454.1703*exp(-8*x)
Parent: alm1 Range: 0.45 < alm1 < 0.71
Parent: gvh Range: 0.16 < gvh < 1
Parent: lip Range = "0.48"
[1] -3.0260+3.1097*exp(2*x)+6.9062*exp(-2*x)-0.8013*exp(4*x)-12.5762*exp(-4*x)
+0.0578*exp(6*x)+6.3306*exp(-6*x)
Parent: lip Range = "1"
[1] 1.9648-0.2660*exp(2*x)-0.2660*exp(-2*x)
Parent: alm1 Range: 0.71 < alm1 < 1
Parent: gvh Range: 0.16 < gvh < 1
Parent: lip Range = "0.48"
[1] -1.2697+0.6353*exp(2*x)+0.6353*exp(-2*x)
Parent: lip Range = "1"
[1] 1.0101+0*exp(2*x)

The results are reported using the printBN() function. Notice how nodes in the DAG with only
discrete parents contain as many functions as configurations of the parents, nodes that have continuous
parents have at most 4 functions for each parent and nodes that have mixed parents contain as many
functions as configurations of the discrete parents times the number of regions into which the domain

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 355

of the continuous parents is split. The BIC criterion is used to decide the number of splitting points of
the domain of the continuous parent nodes and to choose the number of basis functions used. The
function BiC.MoTBFBN() can be used to compute the log-likelihood and the BIC score of a dataset
given the Bayesian network.

> bic <- BiC.MoTBFBN(bn, data = testData)
> attributes(bic)
$names
[1] "LogLikelihood" "BIC"

> bic$LogLikelihood
[1] 173.5496
> bic$BIC
[1] -51.40147

We will now exemplify the use of prior knowledge in the learning process. In order to illustrate
the approach, we first select a small subset of the Ecoli dataset using TrainingandTestData(). In the
next example the percentage of the test data is 99%, which means the training data is only 1% of the
full dataset.

> set.seed(4)
> dataTT <- TrainingandTestData(data, percentage_test = 0.99)
> trainingData <- dataTT$Training
> testData <- dataTT$Test
> nrow(trainingData)
[1] 13

There are 13 entries in the training dataset. We are going to fit MoTBFs with and without prior
information. To generate an artificial prior dataset the generateNormalPriorData() function can be
used.

> means <- sapply(data, mean)
> set.seed(4)
> priorData <- generateNormalPriorData(dag, data = trainingData, size = 5000,
+ means = means)

Learning univariate and conditional distributions and Bayesian networks can be done using
the functions learnMoTBFpriorInformation() and MoTBFs_Learning(). The arguments for these
functions are the same as previously explained and, in addition, it is necessary to specify the expert
confidence in the prior knowledge, s, and the prior dataset priorData. Argument s takes values on
the interval [0, N], where N is the sample size, and is used to synchronize the support of the prior
knowledge and the sample. We refer the reader to (Pérez-Bernabé et al., 2016) for the details. In this
example we will use the aac variable from the data set, have s = 5 as confidence level, and set "MOP"
as potential type.

> f <- learnMoTBFpriorInformation(priorData$aac, trainingData$aac,
+ s = 5, POTENTIAL_TYPE = "MOP")
> attributes(f)

$names
[1] "coeffs" "posteriorFunction" "priorFunction"
[4] "dataFunction" "domain"

> print(f)

$coeffs
[1] 0.5509206 0.4490794

$posteriorFunction
[1] 0.2911+2.7626*x+4.3721*x^2-30.4218*x^3-0.8389*x^4+965.8444*x^5-4183.3860*x^6
+7735.8433*x^7-7321.9450*x^8+3498.9449*x^9-671.5104*x^10

$priorFunction
[1] 0.0673+1.7639*x+11.8532*x^2-55.2199*x^3-1.5228*x^4+1753.1465*x^5-7593.4470*x^6
+14041.6676*x^7-13290.3826*x^8+6351.0879*x^9-1218.8879*x^10

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 356

Figure 6: Univariate density estimation using prior knowledge. Solid black, dashed red and dotted
blue lines represent the posterior, the data, and the prior function, respectively.

$dataFunction
[1] 0.5656+3.9878*x-4.8055*x^2

$domain
[1] -0.1232 0.9531

> sum(log(as.function(f$posteriorFunction)(testData$aac)))
[1] 134.566
> sum(log(as.function(f$dataFunction)(testData$aac)))
[1] 78.96405

The best model, taking into account the log-likelihood, is the MoTBF which uses the prior data,
f$posteriorFunction. The generic method plot() for "motbf" object is used for displaying the
functions depicted in Figure 6.

> plot(f$posteriorFunction, xlim = f$domain, ylim = c(0,2.1))
> plot(f$dataFunction, xlim = f$domain, add = TRUE, col = 2)
> plot(f$priorFunction, xlim = f$domain, add = TRUE, col = 4)

The last step is to incorporate the prior knowledge in the full Bayesian network. For this analysis
we are not going to print out the results, because the structure is similar to the previous Bayesian
network representations. As an example, we will use numIntervals = 2, POTENTIAL_TYPE = "MOP",
and s = 5.

> priorBN <- MoTBFs_Learning(dag, trainingData, numIntervals = 2,
+ POTENTIAL_TYPE = "MOP", s = 5, priorData = priorData)
> BN <- MoTBFs_Learning(dag, trainingData, numIntervals = 2, POTENTIAL_TYPE = "MOP")

> logLikelihood.MoTBFBN(priorBN, data = testData)
[1] 124.384
> logLikelihood.MoTBFBN(BN, data = testData)
[1] 14.64589

Looking at the log-likelihood corresponding to the network with and without prior data, we can
see that, in this example, incorporating prior knowledge is better when data is scarce.

After a Bayesian network has been constructed, the MoTBFs package can be used to obtain the
conditional density of any variable in the network given that some other variables have been observed.
The conditional distribution is obtained by forward sampling. As an example, consider a network
estimated from the ecoli dataset:

> data("ecoli", package = "MoTBFs")
> data <- ecoli[,-c(1,9)]
> dag <- LearningHC(data)
> bn <- MoTBFs_Learning(dag, data = data, numIntervals = 4, POTENTIAL_TYPE = "MTE")

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 357

The observed values are specified using a data frame. In the example, we are assuming that we want
to compute the conditional density of alm2 given that lip="0.48", alm1 = 0.55 and gvh = 1. This
is achieved by using the function forward_sampling were we have chosen a sample size equal to 10
specified by parameter size = 10.

> obs <- data.frame(lip = "0.48", alm1 = 0.55, gvh = 1, stringsAsFactors=FALSE)
> node <- "alm2"
> set.seed(5)
> forward_sampling(bn, dag, target = node, evi = obs, size = 10, maxParam = 15)

Processing Time: 0.209545850753784secs

$fx
[1] -4.3738+2.4552*exp(2*x)+1.5054*exp(-2*x)-0.2392*exp(4*x)+2.0045*exp(-4*x)

$sample
mcg gvh lip chg aac alm1 alm2
1 0.7450156 1 0.48 0.5 0.3564026 0.55 0.53709571
2 0.2493266 1 0.48 0.5 0.4873396 0.55 0.55395502
3 0.4075408 1 0.48 0.5 0.5052861 0.55 0.74832025
4 0.3205169 1 0.48 0.5 0.4844040 0.55 0.82546475
5 0.4448844 1 0.48 0.5 0.4248584 0.55 0.07672959
6 0.5717975 1 0.48 0.5 0.4611889 0.55 0.35412707
7 0.7548104 1 0.48 0.5 0.5695499 0.55 0.68322911
8 0.5475842 1 0.48 0.5 0.7797320 0.55 0.45343460
9 0.3048408 1 0.48 0.5 0.5251502 0.55 0.73064241
10 0.7281756 1 0.48 0.5 0.3819332 0.55 0.70396470

The output consists of the posterior density and the sample from which the density parameters
were estimated.

Conclusions

This paper has presented the R package MoTBFs for learning Mixtures of Truncated Basis Functions
in hybrid Bayesian networks. It provides a free and accessible implementation of algorithms for
learning the parameters of MoTBFs densities as well as MoTBF-based Bayesian networks relying on
state-of-the-art learning algorithms.

The MoTBFs package is designed to provide the required implementation to tackle experimental
data analysis with both discrete and continuous data. Not only does the package provide methods for
learning distributions from data, it also includes a set of auxiliary functions to perform descriptive
statistics as well as other basic operations like inference using forward sampling.

The MoTBFs package expands the functionality for handling hybrid Bayesian networks already
provided by packages bnlearn and HydeNet, by implementing MoTBF distributions, resulting in
unrestricted network structures, regardless of the discrete or continuous nature of the variables
involved, and by providing methods for building models from data that are compatible with exact
inference methods. The package MoTBFs is complementary to abn in the sense that the former is
based on MoTBF densities, which do not belong to the exponential family.

Acknowledgments

This research has been partly funded by the Spanish Ministry of Science and Innovation, through
projects TIN2016-77902-C3-3-P, PID2019-106758GB-C32 and by ERDF-FEDER funds.

Bibliography

J. M. Bernardo and A. F. Smith. Bayesian theory, volume 405. Wiley. com, 2009. [p346]

S. G. Bøttcher and C. Dethlefsen. deal: A package for learning Bayesian networks. Journal of Statistical
Software, 8:1–40, 2003. URL https://doi.org/10.18637/jss.v008.i20. [p343]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.18637/jss.v008.i20

CONTRIBUTED RESEARCH ARTICLE 358

B. Cobb, P. Shenoy, and R. Rumí. Approximating probability density functions with mixtures of
truncated exponentials. Statistics and Computing, 16:293–308, 2006. URL https://doi.org/10.1007/
s11222-006-8175-8. [p346]

J. E. Dalton and B. Nutter. HydeNet: Hybrid Bayesian Networks Using R and JAGS, 2019. URL https:
//CRAN.R-project.org/package=HydeNet. R package version 0.10.9. [p343]

M. Henrion. Propagating uncertainty by logic sampling in Bayes’ networks. In J. Lemmer and L. Kanal,
editors, Uncertainty in Artificial Intelligence, volume 2, pages 317–324. North-Holland (Amsterdam),
1988. [p347]

M. Kalisch, M. Maechler, D. Colombo, M. H. Maathuis, and P. Buehlmann. Causal inference using
graphical models with the R package pcalg. Journal of Statistical Software, 47:1–26, 2012. URL
https://doi.org/10.18637/jss.v047.i11. [p343]

G. Kratzer, F. I. Lewis, A. Comin, M. Pittavino, and R. Furrer. Additive bayesian network modelling
with the r package abn, 2019. [p344]

H. Langseth, T. Nielsen, R. Rumí, and A. Salmerón. Maximum likelihood learning of conditional MTE
distributions. ECSQARU 2009. Lecture Notes in Computer Science, 5590:240–251, 2009. [p343]

H. Langseth, T. Nielsen, R. Rumí, and A. Salmerón. Parameter estimation and model selection for
mixtures of truncated exponentials. International Journal of Approximate Reasoning, 51:485–498, 2010.
URL https://doi.org/10.1016/j.ijar.2010.01.008. [p346]

H. Langseth, T. Nielsen, R. Rumí, and A. Salmerón. Mixtures of truncated basis functions. International
Journal of Approximate Reasoning, 53:212–227, 2012a. URL https://doi.org/10.1016/j.ijar.2011.
10.004. [p343, 344, 345]

H. Langseth, T. Nielsen, and A. Salmerón. Learning mixtures of truncated basis functions from data.
In Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM’2012), pages
163–170, 2012b. [p343]

H. Langseth, T. Nielsen, I. Pérez-Bernabé, and A. Salmerón. Learning mixtures of truncated basis
functions from data. International Journal of Approximate Reasoning, 55:940–956, 2014. URL https:
//doi.org/10.1016/j.ijar.2013.09.012. [p343, 345]

S. Lauritzen. Propagation of probabilities, means and variances in mixed graphical association models.
Journal of the American Statistical Association, 87:1098–1108, 1992. URL https://doi.org/10.2307/
2290647. [p343]

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml. [p347]

P. L. López-Cruz, C. Bielza, and P. Larrañaga. Learning mixtures of polynomials from data using
B-spline interpolation. In A. Cano, M. Gómez-Olmedo, and T. D. Nielsen, editors, Proceedings of the
6th European Workshop on Probabilistic Graphical Models (PGM’12), pages 211–218, 2012. [p343]

S. Moral, R. Rumí, and A. Salmerón. Mixtures of truncated exponentials in hybrid Bayesian networks.
In ECSQARU’01. Lecture Notes in Artificial Intelligence, volume 2143, pages 135–143, 2001. [p343, 344]

I. Pérez-Bernabé, A. Salmerón, and H. Langseth. Learning conditional distributions using mixtures of
truncated basis functions. ECSQARU’2015. Lecture Notes in Artificial Intelligence, 9161:397–406, 2015.
[p343, 346]

I. Pérez-Bernabé, A. Fernández, R. Rumí, and A. Salmerón. Parameter learning in hybrid Bayesian
networks using prior knowledge. Data Mining and Knowledge Discovery, 30:576–604, 2016. URL
https://doi.org/10.1007/s10618-015-0429-7. [p343, 346, 347, 355]

M. Plummer. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling, 2003.
[p344]

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978. [p345, 349]

M. Scutari. Learning bayesian networks with the bnlearn R package. Journal of Statistical Software, 35
(3):1–22, 2010. URL https://doi.org/10.18637/jss.v035.i03. [p343]

P. Shenoy and G. Shafer. Axioms for probability and belief function propagation. In R. Shachter,
T. Levitt, J. Lemmer, and L. Kanal, editors, Uncertainty in Artificial Intelligence 4, pages 169–198.
North Holland, Amsterdam, 1990. [p343]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1007/s11222-006-8175-8
https://doi.org/10.1007/s11222-006-8175-8
https://CRAN.R-project.org/package=HydeNet
https://CRAN.R-project.org/package=HydeNet
https://doi.org/10.18637/jss.v047.i11
https://doi.org/10.1016/j.ijar.2010.01.008
https://doi.org/10.1016/j.ijar.2011.10.004
https://doi.org/10.1016/j.ijar.2011.10.004
https://doi.org/10.1016/j.ijar.2013.09.012
https://doi.org/10.1016/j.ijar.2013.09.012
https://doi.org/10.2307/2290647
https://doi.org/10.2307/2290647
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/s10618-015-0429-7
https://doi.org/10.18637/jss.v035.i03

CONTRIBUTED RESEARCH ARTICLE 359

P. Shenoy and J. West. Inference in hybrid Bayesian networks using mixtures of polynomials. Interna-
tional Journal of Approximate Reasoning, 52:641–657, 2011. URL https://doi.org/10.1016/j.ijar.
2010.09.003. [p343, 344]

N. Zhang and D. Poole. Exploiting causal independence in Bayesian network inference. Journal of
Artificial Intelligence Research, 5:301–328, 1996. URL https://doi.org/10.1613/jair.305. [p343]

Inmaculada Pérez-Bernabé
Department of Mathematics
University of Almería
Almería, 04120, Spain
iperez@ual.es

Ana D. Maldonado
Department of Mathematics
University of Almería
Almería, 04120, Spain
(ORCiD: 0000-0001-8253-2526)
ana.d.maldonado@ual.es

Thomas D. Nielsen
Department of Computer Science
Aalborg University
Aalborg, 9220, Denmark
tdn@cs.aau.dk

Antonio Salmerón
Department of Mathematics and
Center for the Development and Transfer of Mathematical Research to Industry (CDTIME)
University of Almería
Almería, 04120, Spain
(ORCiD: 0000-0003-4982-8725)
antonio.salmeron@ual.es

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1016/j.ijar.2010.09.003
https://doi.org/10.1016/j.ijar.2010.09.003
https://doi.org/10.1613/jair.305
mailto:iperez@ual.es
mailto:ana.d.maldonado@ual.es
mailto:tdn@cs.aau.dk
mailto:antonio.salmeron@ual.es

CONTRIBUTED RESEARCH ARTICLE 360

Analyzing Basket Trials under
Multisource Exchangeability
Assumptions
by Michael J. Kane, Nan Chen, Alexander M. Kaizer, Xun Jiang, H. Amy Xia, Brian P. Hobbs

Abstract Basket designs are prospective clinical trials that are devised with the hypothesis that the
presence of selected molecular features determine a patient’s subsequent response to a particular
“targeted” treatment strategy. Basket trials are designed to enroll multiple clinical subpopulations to
which it is assumed that the therapy in question offers beneficial efficacy in the presence of the targeted
molecular profile. The treatment, however, may not offer acceptable efficacy to all subpopulations
enrolled. Moreover, for rare disease settings, such as oncology wherein these trials have become
popular, marginal measures of statistical evidence are difficult to interpret for sparsely enrolled
subpopulations. Consequently, basket trials pose challenges to the traditional paradigm for trial
design, which assumes inter-patient exchangeability. The package basket for the R programmming
environment facilitates the analysis of basket trials by implementing multi-source exchangeability
models. By evaluating all possible pairwise exchangeability relationships, this hierarchical modeling
framework facilitates Bayesian posterior shrinkage among a collection of discrete and pre-specified
subpopulations. Analysis functions are provided to implement posterior inference of the response
rates and all possible exchangeability relationships between subpopulations. In addition, the package
can identify “poolable” subsets of and report their response characteristics. The functionality of the
package is demonstrated using data from an oncology study with subpopulations defined by tumor
histology.

Keywords: Bayesian analysis, basket design, hierarchical model, master protocol, oncology, patient
heterogeneity

Introduction

Basket designs are prospective clinical trials that are devised with the hypothesis that the presence of
selected molecular features determine a patient’s subsequent response to a particular “targeted” treat-
ment strategy. Central to the design are assumptions 1) that a patient’s expectation of treatment benefit
can be ascertained from accurate characterization of their molecular profile and 2) that biomarker-
guided treatment selection supersedes traditional clinical indicators for the studied populations, such
as primary site of origin or histopathology. Thus, basket trials are designed to enroll multiple clinical
subpopulations to which it is assumed that the therapy(s) in question offers beneficial efficacy in the
presence of the targeted molecular profile(s). These designs have become popular as drug developers
seek to conform therapeutic interventions to the individuals being treated with precision medicine
and biomarker-guided therapies. Most basket trials have been conducted within exploratory settings
to evaluate agent-specific estimates of tumor response. Cunanan et al. (Cunanan et al., 2017a) describe
three studies implemented in oncology settings which extend the basic formulation of a basket trial
to multiple targets and/or agent combinations. Most commonly uncontrolled trials, extensions have
recently accommodated a wide variety of potential motivations beyond exploratory studies.

Molecularly targeted treatment strategies may not offer acceptable efficacy to all putatively promis-
ing clinical indications. Early basket trials were criticized for their reliance on basketwise analysis
strategies that suffered from limited power in the presence of imbalanced enrollment as well as failed
to convey to the clinical community evidentiary measures of heterogeneity among the studied clinical
subpopulations, or “baskets”. Acknowledging the potential for differential effectiveness among the
enrolled patient subpopulations by design, heterogeneity exists as an intrinsic hypothesis in evalua-
tions of treatment efficacy. Moreover, for rare disease settings, such as oncology wherein these trials
have become popular, marginal measures of statistical evidence are difficult to interpret on the basis
of individual basket-wise analyses for sparsely enrolled subpopulations. Consequently, basket trials
pose specific challenges to the traditional paradigm for trial design, which assume that the patients
enrolled represent a statistically exchangeable cohort.

Hobbs and Landin (2018) extended the Bayesian multisource exchangeability model (MEM) frame-
work to basket trial design and subpopulations inference. Initially proposed by Kaizer et al. (2017), the
MEM framework addressed the limitations associated with “single-source” Bayesian hierarchical mod-
els, which rely on a single parameter to determine the extent of influence, or shrinkage, from all sources.
In the presence of subpopulations that arise as mixtures of exchangeable and non-exchangeable sub-
populations, single-source hierarchical models (SEM) are characterized by limited borrowing, even in

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=basket

CONTRIBUTED RESEARCH ARTICLE 361

the absence of heterogeneity (Kaizer et al., 2017). Moreover, when considering the effectiveness of a
particular treatment strategy targeting a common disease pathway that is observed among differing
histological subtypes, SEMs fail to admit statistical measures that delineate which patient subtypes
should be considered “non-exchangeable” based on the observed data. By way of contrast, MEM
provides a general Bayesian hierarchical modeling strategy accommodating source-specific smoothing
parameters. MEMs yield multi-resolution smoothed estimators that are asymptotically consistent and
accommodate both full and non-exchangeability among discrete subpopulations. The inclusion of
methods for shrinkage of multiple sources is not restricted to use in basket trial master protocols, but
has also been extended in the MEM framework to a sequential combinatorial platform trial design
where it demonstrated improved efficiency relative to approaches without information sharing (Kaizer
et al., 2018).

This paper introduces the basket (Chen et al., 2019) package for the R-programming environment
to analyze basket trials under MEM assumptions. The main analyses conduct full posterior inference
with respect to a set of response rates corresponding to the studied subpopulations. The posterior
exchangeability probability (PEP) matrix is calculated, which describes the probability that any pair
of baskets are exchangeable. Based on the resultant PEP, subpopulations are clustered into meta-
baskets. Additionally, posterior effective sample sizes are calculated for each basket, describing the
extent of posterior shrinkage achieved. Posterior summaries are reported for both “basketwise” and
“clusterwise” analyses.

The package used in the examples below is available on CRAN at https://cran.r-project.org/
package=basket and it fits into the general category of the “Design and Analysis of Clinical Trials”
(Zhang and Zhang, 2018) focusing on uncontrolled, early-phase trial analysis. The interface is designed
to be simple and will readily fit into clinical trial frameworks. It has been tested using R version 3.5
and the basket package version 0.9.9.

Exchangeability for Trials with Subpopulations

The Single-Source Exchangeability Model

Y1 Y2 Y3 ... YJ

θ1 θ2 θ3 ... θJ

θ

Figure 1: A conventional single-source Bayesian hierarchical model with J subtypes.

Basket trials intrinsically include subpopulations, which require a priori consideration for inference.
When ignored the trial simply pools patients, conducting inference with the implicit assumption
of inter-patient statistical exchangeability, which can induce bias and preclude the identification of
unfavorable/favorable subtypes in the presence of heterogeneity. At the other extreme, subpopulation-
specific analyses assume independence. While attenuating bias, this approach suffers from low power,
especially in rare subpopulations enrolling limited sample size. Bayesian hierarchical models address
this polarity, facilitating information sharing by “borrowing strength” across subtypes with the intent
of boosting the effective sample size of inference for individual subtypes.

Single-source exchangeability models (SEM), represent one class of Bayesian hierarchical models.
In the context of a basket trial design, statistical approaches using the SEM framework rely on a
single parametric distributional family to characterize heterogeneity across all subpopulations, which
is computationally tractable but intrinsically reductive in characterization of heterogeneity. In the
presence of both exchangeable and non-exchangeable arms, the SEM framework tends to favor the
extremes of no borrowing or borrowing equally from all sources, effectively ignoring disjointed
singleton subpopulations and meta-subtypes.

Consider a basket trial which enrolls patients from J subpopulations (or subtypes) (j = 1, ..., J),

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://cran.r-project.org/package=basket
https://cran.r-project.org/package=basket

CONTRIBUTED RESEARCH ARTICLE 362

where Yj represents the responses observed among patients in the jth subtypes. Using i to index each
patient, the SEM generally relies on model specifications that assume that patient-level responses, Yi,j,
are exchangeable Bernoulli random variables conditional on subtype-specific model parameters, e.g.
θj. The second-level of the model hierarchy assumes that the collection of subtype-specific model
parameters, θ1, ... , θJ , are statistically exchangeable through the specification of a common parent
distribution. Figure 1 illustrates this structure, wherein each Yj has its own subtype-specific θj which
are further assumed exchangeable to estimate the overall θ.

Examples of SEM approaches are introduced and discussed by (Berry et al., 2010, chapter 2), Thall
et al. (2003), and Berry et al. (2013), with Hobbs and Landin (2018) providing additional background
on these specific SEM implementations. SEM approaches are also implemented in packages by Nia
and Davison (2012) and Savage et al. (2018) and have been extended to more specialized applications
in fMRI studies (Stocco, 2014), modeling clearance rates of parasites in biological organisms (Sharifi-
Malvajerdi et al., 2019), modeling genomic bifurcations (Campbell and Yau, 2017), modeling ChIP-seq
data through hidden Ising models (Mo, 2018), modeling genome-wide nucleosome positioning with
high-throughput short-read data (Samb et al., 2015), and modeling cross-study analysis of differential
gene expression (Scharpf et al., 2009).

While integrating inter-cohort information, SEMs are limited by assumptions of exchangeability
among all cohorts. That is, the joint distribution P(Y1, Y2, ..., Yk) is invariant under a permutation
describing subpopulation subsets. P(Y1, Y2, ..., Yk) = (Yk, ..., Y2, Y1). SEMs are “single-source” in
the sense that the model uses a single set of parameters to characterize heterogeneity such that the
statistical exchangeability of model parameters is always assumed. Violations of these assumptions
with analyses of response rates in clinical trials yields bias, potentially inflating the estimated evidence
of an effective response rate for poorly responding cohort or minimizing the effect in effective subsets.
These assumptions have resulted in poor results for frequentist power when controlling for strong
type I error, leading some cancer trialists to question the utility of Bayesian hierarchical models for
phase II trials enrolling discrete subtypes (Freidlin and Korn, 2013; Cunanan et al., 2017b).

The Multi-source Exchangeability Model

Limitations of SEM can be overcome through model specification devised to explicitly characterize
the evidence for exchangeability among collections of subpopulations enrolling in a clinical trial.
Multi-source exchangeability models (MEM) produce cohort-specific smoothing parameters that can
be estimated in the presence of the data to facilitate dynamic multi-resolution smoothed estimators
that reflect the extent to which subsets of subpopulations should be consider exchangeable. Shown to
be asymptotically consistent, MEMs were initially proposed by Kaizer et al. (2017) for “asymmetric”
cases wherein a primary data source is designated for inference in the presence of potentially non-
exchangeable supplemental data sources. The framework was extended by Hobbs and Landin (2018)
to the “symmetric” case wherein no single source or subtype is designated as primary (e.g., a basket
trial). The symmetric MEM approach considers all possible pairwise exchangeability relationships
among J subpopulations and estimates the probability that any subset of subpopulations should be
considered statistically exchangeable (or poolable).

The symmetric MEM is the motivation and focus of the basket package. While SEMs are pa-
rameterized by a single set of parameters θ, the MEM may have up to J (the number of subtypes)
sources of exchangeability with each set of data Yj contributing to only one set of parameters. All
possible combinations of exchangeability can be enumerated, denoted as K possible configurations
(Ωk, k = 1, ..., K).

Y1 Y2 Y3

θ1 θ2

(a) Model where Y1 and Y2 are exchangeable.

Y1 Y2 Y3

θ1 θ2

(b) Model where Y1 and Y3 are exchangeable.

Figure 2: Two example exchangeability configurations of the MEM.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 363

Model Description

Figure 2 depicts two possible MEMs among three subpopulations wherein at least two subpopulations
are statistically exchangeable. Both examples comprise two “sources” of exchangeability for inference,
with Y1 and Y2 combined to represent one “source” to estimate θ1 and Y3 to estimate θ2 in (a) and Y1
and Y3 combined in (b). Implementation of basket considers the number of “sources” ranging from
one (as in the single-source case), wherein all subtypes are pooled together, to J, the total number of
subtypes. The MEM Bayesian model specification facilitates posterior inference with respect to all
possible pairwise exchangeability relationships among J subpopulations. The framework facilitates
estimation of disjointed subpopulations comprised of meta-subtypes or singelton subtypes and thereby
offers additional flexibility when compared to SEM specifications.

The set space of all possible pairwise exchangeability relationships among a collection of J discrete
cohorts can be represented by a symmetric J × J matrix Ω with element Ωij = Ωji ∈ [0, 1] with value 1
(0) indicating that patients of subtype i are statistically exchangeable with (independent of) patients of
subtype j. Without additional patient-level characteristics, it is assumed patients within an identical
subtype are assumed to be statistically exchangeable. That is Ωii = 1 for {i : 1, ..., J}. There are
K = ∏J−1

j=1 2j possible configurations of Ω, each representing one possible pairwise exchangeability
relationship among the J subtypes. The framework differs fundamentally from SEM in that it allows for
the existence of multiple closed subpopulations (or cliques) comprised of fully exchangeable subtypes.
Therefore, following the terminology of Kaizer et al. (2017) we refer to each possible configuration of
Ω as a MEM.

For a basket trial designed to enroll a total of N patients in J baskets, let yij = 1 indicate the
occurrence of a successful response for the ith patient enrolled in basket j, and 0 indicate treatment
failure. Let nj denote the number of patients observed in basket j and denote the total number of

responses in basket j by Sj = ∑
nj

i=1 yij. The set {S1, S2, ..., SJ} is denoted S. Let π = {π1, π2, ...πJ}
vectorize the set of response rates such that πj denotes the probability of response for jth basket and
Sj ∼Bin(nj, πj) with prior distribution πj ∼ Beta(aj, bj). Let B() denote the beta function. Given an
exchangeability configuration Ωj, the marginal density of Sj follows as (see Hobbs and Landin, 2018,
for details)

m(Sj |Ωj, S(−j)) ∝
B
(

a + ∑J
h=1 Ωj,hSh, b + ∑J

k=1 Ωj,k(nk − Sk

)
B(a, b)

×

J

∏
i=1

(
B(a + Si, b + ni − Si)

B(a, b)

)1−Ωj,i

.

(1)

Marginal posterior inference with respect to πj | S averages the conditional posterior of πj | Ωj, S
with respect to the marginal posterior probability of G = 2J−1 possible exchangeability configurations
of Ωj. Let ω = {ω1, ..., ωG} denote the collection of vectors each of length J that collectively span the
sample space of Ωj. The marginal posterior distribution can be represented by a finite mixture density

q(πj|S) ∝
G

∑
g=1

q(πj | S, Ωj = ωg)Pr(Ωj = ωg | S), (2)

where the posterior probability of exchangeability configuration ωg given the observed data follows
from Bayes’ Theorem in proportion to the marginal density of the data given ωg and its unconditional
prior probability

Pr(Ωj = ωg | S) ∝
m(Sj |Ωj = ωg, S(−j))Pr(Ωj = ωg)

∑G
u=1 m(Sj |Ωj = ωu, S(−j))Pr(Ωj = ωu)

. (3)

Model specification for the symmetric MEM method is described in detail by Hobbs and Landin
(2018).

Estimating Basketwise Exchangeability

The basket package computes the posterior probability that subpopulations i and j should be consid-
ered statistically exchangeable. The collection of all pairwise posterior exchangeability probabilities
(PEP) is denoted in the output as the PEP matrix. Additionally, basket identifies the maximum a
posteriori (MAP) multisource exchangeability model.

Let O denote the entire sample domain of Ω comprised of K = ∏J−1
j=1 2j strictly symmetric MEMs.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 364

The PEP matrix is obtained by evaluating the union of MEMs for which Ωij = 1 over the sample
domain of O,

P(Ωij = 1|S) = ∑
Ω∈O

1{Ωij=1} P(Ω|S),

where P(Ω|S) is the product of row-wise calculations specified in Equation 3. Note that there are
K/2https://www.overleaf.com/project/5c982c6d19014f441ddd8c2d MEM configurations in the space
of O where Ωij = 1. The MAP follows as the MEM configuration that attains maximum Pr(Ω | S)
over O.

Effective Sample Size

Measurement of the extent to which information has been shared across sources in the context of a
Bayesian analysis is best characterized by the effective sample size (ESS) of the resultant posterior
distribution Hobbs et al. (2013); Murray et al. (2015). ESS quantifies the extent of information sharing,
or Bayesian “shrinkage,” as the number of samples that would be required to obtain the extent of
posterior precision achieved by the candidate posterior distribution when analyzed using a vague
“reference” or maximum entropy prior. Calculation of the ESS in basket deviates from the approach
suggested in Hobbs and Landin (2018), which is sensitive to heavy-tailed posteriors. Robustness is
introduced with basket through beta distributional approximation, which yields more conservative
estimates of ESS. Specifically, the simulated annealing algorithm (implemented with GenSA package
Yang Xiang et al. (2013)) is used to identify the parametric beta distribution with minimal Euclidean
distance between the interval boundaries obtained from the posterior estimated HPD interval and
the corresponding beta 1−hpd_alpha Bayesian credible interval. Shape parameters attained from the
“nearest” parametric beta distribution are summed to yield estimates of posterior ESS for each basket
and cluster.

Posterior Probability

Basket trials are devised for the purpose of testing the hypothesis that a targeted treatment strategy
achieves sufficiently promising activity among a partition of the targeted patient population. The
MEM framework acknowledges the potential for heterogeneity with respect to the effectiveness of the
enrolled patient subpopulations or baskets. Within the MEM framework, this testing procedure follows
from the cumulative density function (cdf) of the marginal posterior distribution (2). Specifically, the
posterior probability that πj exceeds a null value π0 is computed by the weighted average of cdfs
for all possible exchangeability configurations. basket implements this computation and allows for
subpopulation-specific values of the null hypothesis, π0, which quantify differing benchmarks for
effectiveness among the studied baskets. Note that this feature accommodates basket formulation on
the basis of varying levels of clinical prognosis.

Package Overview

The basket package facilitates implementation of the binary, symmetric multi-source exchangeability
model with posterior inference arising with both exact computation and Markov chain Monte Carlo
sampling. The user is required to input vectors that describe the number of samples (size) and
observed successes (responses) corresponding to each subpopulation (or basket). Analysis output
includes full posterior samples, highest posterior density (HPD) interval boundaries, effective sample
sizes (ESS), mean and median posterior estimates, posterior exchangeability probability matrices, and
the maximum a posteriori MEM. Subgroups can be combined into meta-baskets, or clusters, by setting
logical argument cluster_analysis to TRUE. Cluster analyses use graphical clustering algorithms
implemented with the igraph package.

A specific clustering algorithm needs to be specified via argument cluster_function. The
cluster_function is a user defined function that first creates a graph using the MAP, then assigns
the baskets to discrete clusters using one of the community detection algorithms implemented in the
igraph package. The default value of cluster_function is cluster_membership, a function defined in
the basket package that implements cluster analysis based on the "cluster_louvain" method. Users
can define their own cluster_function using different clustering methods in the igraph package.
cluster_analysis is set to FALSE by default. The package includes similar calculations, summaries,
and visualization for “clusterwise” and “basketwise” results. Additionally, plotting tools are provided
to visualize basket and cluster densities as well as their pairwise exchangeability.

Analysis requires the specification of beta shape parameters (shape1 and shape2) for the prior
distributions of the basketwise response probabilities πj. Shape parameter arguments may be specified

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=igraph

CONTRIBUTED RESEARCH ARTICLE 365

as single positive real values, by which identical prior distributions are assumed for all πj, or as vectors
of length J with each pair of shape1 and shape2 values corresponding to each basket. Arguments
shape1 and shape2 assume values 0.5 by default characterizing prior distributions with the effective
sample size of 1 patient for each πj.

The user must additionally specify the symmetric matrix of prior exchangeability probabilities
(prior). The model assumes that exchangeable information is contributed among patients enrolling
into a common basket. Thus, all diagonal entries of prior must assume value 1. Off-diagonal entries,
however, quantify the a priori belief that each pair of subpopulations represents an exchangeable unit.
Thus, off-diagonal cells of prior may assume any values on the unit interval. The basket package
assumes the “reference” prior proposed by Hobbs and Landin (2018) as the default setting for which all
off-diagonal cells assume prior probability 0.5, and thus are unbiased with respect to exchangeability
in the absence of the data.

Evidence for sufficient activity is reported by basket and cluster as posterior probabilities. Posterior
probability calculations require the further specification of either a null response rate or vector of
null response rates corresponding to each basket (p0 set to 0.15 by default) as well as the direction
of evaluation (alternative set to “greater” by default). Additionally, summary functions report the
posterior estimates by basket and cluster. The highest posterior density (HPD) is calculated for a given
a level of probabilistic significance (hpd_alpha set to 0.05 by default).

Bayesian computation is implemented by two methods: the exact method (mem_exact() function)
and the Markov chain Monte Carlo (MCMC) sampling method (mem_mcmc() function). mem_mcmc()
is the preferred method. mem_exact() provides slightly more precise estimates than the former but
scales poorly in number of baskets. The discrepancy in precision between exact and sampling-based
implementations is easily controlled by specifying a larger number of MCMC iterations (num_iter set
to 2e+05 by default) in mem_mcmc().

The Exact Method and the MCMC Method

Implementation of mem_exact() conducts posterior inference through enumeration of the entire
sample domain of MEMs, denoted O above. Facilitating precise calculation of the posterior estimators,
mem_exact() is computationally feasible only in the presence of a small number of subpopulations.
Increasing the size of J increases the number of configurations in O by order of O(2J2

). Thus, the exact
computation is impractical for large values of J. We recommend its use for J < 7.

Our MCMC sampling method, formulated from the Metropolis algorithm (see e.g. Gelman et al.,
2013), extends the model’s implementation to larger collections of subpopulations, which currently
accommodates more than J = 20 baskets. Specifically, MCMC sampling is used to approximate
the posterior distribution P(Ωj = ωg| S). Implementation of mem_mcmc() requires the specification
of an initial MEM matrix (initial_mem) used as the starting point for Ω from which to initiate the
Metropolis algorithm. Argument initial_mem is set to round(prior -0.001) by default, which for
the default setting of prior yields the identity matrix.

The MCMC algorithm proceeds in iterative fashion with each step selecting a random number
of cells of Ω to flip from 0 to 1 or from 1 to 0 to produce a new candidate MEM which we denote
Ω∗. Acceptance criteria for the candidate Ω∗ compares the marginal posterior density of Ω∗ and
its unconditional prior distribution with respect to the last accepted MEM matrix configuration.
Denote the sum of log marginal posterior density and prior distribution with new candidate MEM
configuration by D∗ and previously accepted configuration by D0, respectively. If D∗ − D0 ≥ 0, the
candidate configuration is accepted. Otherwise, the new configuration is accepted randomly with
probability exp (D∗ − D0). For each sampled Ω configuration, πj, is sample from its conditional
posterior distribution for all j = 1, ..., J.

The algorithm initiates with a burn-in period (mcmc_burnin set to 50,000 by default). Discarding
the burn-in samples, PEP calculation with mem_mcmc() evaluates the distribution of sampled MEMs,
reporting for all basket pair combinations the proportion of samples that identify basket i as exchange-
able with basket j. The MAP calculation reports the posterior mode or most frequently sampled
MEM. Bayesian computation facilitated by mem_mcmc() scales MEM analyses to more than 20 baskets.
Specification of the size of the MCMC iterations (num_iter) is pivotal to attaining precise estimates of
the resultant posterior quantities. Our investigations support the default value of 2e+05 as a practical
lower bound. In practice, one may gradually increase the number of the MCMC iterations until the
resultant PEP matrix converges to stable values.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 366

Method Return Description
basket_pep Basketwise PEP matrix
basket_map Basketwise maximum a posteriori probability (MAP) matrix
cluster_baskets Basket assignments for each cluster
cluster_pep Clusterwise PEP matrix
cluster_map Clusterwise MAP matrix

Table 1: MEM model accessor functions.

MEM Data Structure and Associated Methods

Analysis functions mem_mcmc() and mem_exact() are parameterized almost identically, with the former
requiring extra arguments that control the MCMC algorithm: the current seed (for reproducibility),
the length of burn-in and number of MCMC iterations for computation of posterior quantities, and
an initial MEM matrix from which to start the algorithm. Function arguments are specified with
reasonable default values for implementation of either analysis type. Both functions return a common
list data structure. Both are derived from an abstract S3 "exchangeability_model" class with concrete
type "mem_mcmc" or "mem_exact" depending on which function generated the analysis. The two data
structures differ only by extra elements included with "mem_mcmc" objects to control implementation
of the MCMC algorithm. For convenience, and to promote using "mem_mcmc" by default, a wrapper
function basket() was created. The method argument allows the user to specify the analysis function
as either MCMC (via "mcmc") or exact (via "exact"). By default the argument is set to "mcmc".

MEM or “exchangeability” objects are composed of named elements. The first, "call" is the
expression used to generate the analysis. Second is the "basket" element, which is a list with concrete
class mem_basket, derived from the mem abstract class. Basket reports posterior estimates of trial
subpopulations including the PEP, HPD interval, posterior probability, ESS, and other distribution
characteristics. The "cluster" element comprises a list with concrete class mem_cluster and abstract
class mem which contains posterior estimates for clusters rather than baskets. In addition to these three
elements, an mem_mcmc object will also contain the seed used to generate the results. This value can be
used to reproduce subsequent analyses.

Because they are relatively complex, a summary function is implemented to summarize the compo-
nents relevant to exchangeability models for trial analysis. The
summary.exchangeability_model() method returns an object of type "mem_summary". A
print.mem_summary() method is provided for a user-readable summary of the trial. Because there is
little distinction between an exchangeability_model object and its summary,
print.exchageability_model() method prints the summary object.

The mem_summary object provides access to the overall study characteristic. Accessor methods are
also provided to extract other key information from the analysis objects at both the basket and cluster
levels. These functions and their descriptions are given in Table 1. In addition, a complete MEM
analysis is computationally intensive; altering the null response rate need not imply rerunning the
entire analysis. To facilitate partial analysis updates under a new null (argument p0), the update_p0()
function is provided. Likewise samples can be drawn from the posterior distribution of the basket and
cluster models using the sample_posterior() function.

Visualizations

Two types of functions are provided for visualizing the results of an MEM analysis, both of which
are supported at basket and cluster levels of inference. Density plotting is available with the
plot_density() functions, which produce graphs depicting the posterior distributions of response
probabilities at the basket and cluster level. Additionally, functions for visualizing exchangeability
relationships are provided in a manner similar to correlograms. Since the values visualized are ex-
changeability, rather than correlation, we have termed these plots exchangeograms. These can be plotted
for PEP and MAP matrices using the plot_pep() and plot_map() functions, respectively. A network
graphical visualization integrating the resultant PEP and posterior probability is provided via function
plot_PEP_graph().

Case Study: The Vemurafenib Basket Trial

The “Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations” study (Hyman
et al., 2015), enrolled patients into predetermined baskets that were determined by organ site with

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 367

Basket Enrolled Evaluable Responses Response Rate
NSCLC 20 19 8 0.421
CRC (vemu) 10 10 0 0.000
CRC (vemu+cetu) 27 26 1 0.038
Bile Duct 8 8 1 0.125
ECD or LCH 18 14 6 0.429
ATC 7 7 2 0.286

Table 2: Vemurafenib trial enrollment and responses.

primary end point defined by Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1
(Eisenhauer et al., 2009) or the criteria of the International Myeloma Working Group (IMWG) (Durie
et al., 2006). Statistical evidence for preliminary clinical efficacy was obtained through estimation of
the organ-specific objective response rates at 8 weeks following the initiation of treatment. This section
demonstrates the implementation of basket through analysis of six organs comprising non–small-cell
lung cancer (NSCLC), cholangiocarcinoma (Bile Duct), Erdheim–Chester disease or Langerhans’-cell
histiocytosis (ECD or LCH), anaplastic thyroid cancer (ATC), and colorectal cancer (CRC) which
formed two cohorts. Patients with CRC were initially administered vemurafenib. The study was later
amended to evaluate vemurafenib in combination with cetuximab for CRC which comprised a new
basket. Observed outcomes are summarized in Table 2 by basket. Included in the basket package, the
dataset is accessible in short vemu_wide as well as long formats vemu.

Inspection of Table 2 reveals heterogeneity among the studied baskets. CRC (vemu), CRC
(vemu+cetu), and Bile Duct had relatively low response rates when compared to other baskets,
suggesting that patients presenting the BRAF V600 mutation may not yield exchangeable information
for statistical characterization of the effectiveness of the targeted therapy. Therefore, the MEM frame-
work is implemented to measure the extent of basketwise heterogeneity and evaluate the effectiveness
of the targeted therapy on the basis of its resultant multi-resolution smoothed posterior distributions.
Hobbs et al. (2018) present a permutation study which extends the evaluation of heterogeneity to
evaluate summaries of patient attributes reported in Table 1 of the aforementioned trial report. This
case study reports posterior probabilities evaluating the evidence that the response probability for
each organ-site exceeds the null rate of p0 = 0.25.

The analysis can be reproduced by loading the vemu_wide data, which is included with the package.
The data set includes the number of evaluable patients (column evaluable), the number of responding
patients (column responders), and the associated baskets for the respective results (column baskets).
The model is fit by passing these values to the basket() function along with an argument specifying
the null response rate of 0.25 for evaluation of each basket. The results are shown by passing the fitted
model object to the summary() function. Code to perform the analysis as well as produce the output is
shown below.

library(basket)
data(vemu_wide)
vm <- basket(vemu_wide$responders, vemu_wide$evaluable,
vemu_wide$baskets, p0 = 0.25, cluster_analysis = TRUE)
summary(vm)

-- The MEM Model Call --

mem_mcmc(responses = responses, size = size, name = name, p0 = p0,
shape1 = shape1, shape2 = shape2, prior = prior, hpd_alpha = hpd_alpha,
alternative = alternative, mcmc_iter = mcmc_iter, mcmc_burnin = mcmc_burnin,
initial_mem = initial_mem, seed = seed, cluster_analysis = cluster_analysis,
call = call, cluster_function = cluster_function)

-- The Basket Summary --

The Null Response Rates (alternative is greater):
NSCLC CRC (vemu) CRC (vemu+cetu) Bile Duct ECD or LCH ATC

Null 0.250 0.250 0.25 0.250 0.25 0.250
Posterior Prob 0.972 0.003 0.00 0.225 0.97 0.891

Posterior Mean and Median Response Rates:
NSCLC CRC (vemu) CRC (vemu+cetu) Bile Duct ECD or LCH ATC

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 368

Mean 0.394 0.055 0.053 0.148 0.394 0.358
Median 0.392 0.046 0.045 0.097 0.391 0.361

Highest Posterior Density Interval with Coverage Probability 0.95:
NSCLC CRC (vemu) CRC (vemu+cetu) Bile Duct ECD or LCH ATC

Lower Bound 0.242 0.00 0.001 0.005 0.238 0.17
Upper Bound 0.550 0.13 0.122 0.403 0.551 0.56

Posterior Effective Sample Size:
NSCLC CRC (vemu) CRC (vemu+cetu) Bile Duct ECD or LCH ATC

37.254 49.039 54.514 10.528 36.148 21.786

-- The Cluster Summary ---

Cluster 1
"CRC (vemu)" "CRC (vemu+cetu)" "Bile Duct"

Cluster 2
"NSCLC" "ECD or LCH" "ATC"

The Null Response Rates (alternative is greater):
Cluster 1 Cluster 2

Null 0.250 0.250
Posterior Prob 0.076 0.944

Posterior Mean and Median Response Rates:
Cluster 1 Cluster 2

Mean 0.085 0.382
Median 0.057 0.382

Highest Posterior Density Interval with Coverage Probability 0.95:
Cluster 1 Cluster 2

Lower Bound 0.000 0.221
Upper Bound 0.313 0.559

Posterior Effective Sample Size:
Cluster 1 Cluster 2

9.786 30.12

Bayesian MEM analysis using the MCMC sampler with reference prior distribution for exchange-
ability identifies the most likely MEM to be comprised of two closed subgraphs (or meta-baskets).
Cluster 1 consists of CRC (vemu) with CRC (vemu+cetu) and BD, while cluster 2 is comprised of
NSCLC, ECD or LCH, and ATC. Cluster 1 results in an estimated posterior mean response rate of
0.087. The posterior probability that baskets assigned to cluster 1 exceed the null response rate of
0.25 is only 0.082. Conversely, attaining a posterior probability of 0.944 and posterior mean of 0.382,
indications identified in cluster 2 demonstrate more promising indications of activity. Figures 3a and
3b depict full posterior distributions of response probabilities for each basket and cluster produced by
the plot_density() function.

plot_density(vm, type = "basket")
plot_density(vm, type = "cluster")

The resultant posterior probability of each pairwise exchangeability relationship (PEP) is sum-
marized with the basket_pep() function and depicted in Figure 4 by application of the plot_pep()
function. The results demonstrate that the posterior exchangeability between the high-response
baskets is higher than that of the lower responding baskets. For example, the posterior probability
that NSCLC and ED.LH patients are exchangeable with respect to evaluating their response to Vemu-
rafenib is 0.938. Similarly, the analysis resulted in PEPs of 0.86 for the pairwise relationships between
NSCLC with ATC and ED.LH with ATC, suggesting that these indications can be averaged. The study
provided strong support to conclude that vemurafenib is identically ineffective among CRC (vemu)
and CRC (vemu+cetu) subtypes with PEP = 0.92. The effectiveness of BD was identified as marginally
exchangeable with CRC (vemu) and CRC (vemu+cetu) with PEP = 0.64 and 0.63, respectively. Con-
versely, both NSCLC and ED.LH resulted in PEPs of 0 for each CRC basket, demonstrating strong
evidence of differential activity among these indications. Thus, definitive trials devised to estimate
population-averaged effects should not expect these subtypes to comprise statistically exchangeable

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 369

(a) Posterior basket response density. (b) Posterior cluster response density.

Figure 3: Posterior distributions of the MEM analysis.

patients.

Figure 5 provides a network graphical representation of the results from analysis of the Ve-
murafenib study. This graph is generated using the plot_pep_graph() function. Nodes represent
individual baskets. A node’s color depicts the Bayesian evaluation of the null hypothesis that the
posterior probability that the objective response rate exceeds 0.25 for the corresponding basket. Edge
thickness between any pair of baskets is determined by PEP. Edges with shorter length and thicker
width denote basket pairs with higher magnitudes of pairwise posterior exchangeability. For example,
baskets ATC, NSCLC, and ECD or LCH, depicted with yellow colored nodes, resulted in higher poster
probability when compared to the other three baskets. The relatively thick edges between these baskets
confer their large PEP values, suggesting that these indications can be averaged.

basket_pep(vm)
plot_pep(vm$basket)
plot_pep_graph(vm)

NSCLC CRC (vemu) CRC (vemu+cetu) Bile Duct ECD or LCH ATC
NSCLC 1.000 0.002 0.000 0.231 0.938 0.866
CRC (vemu) 0.002 1.000 0.917 0.643 0.002 0.068
CRC (vemu+cetu) 0.000 0.917 1.000 0.626 0.000 0.031
Bile Duct 0.231 0.643 0.626 1.000 0.243 0.536
ECD or LCH 0.938 0.002 0.000 0.243 1.000 0.861
ATC 0.866 0.068 0.031 0.536 0.861 1.000

Figure 4: The exchangeogram depicting PEP resulting from analysis of the Vemurafenib study.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 370

Figure 5: Network graphical representation of PEP resulting from analysis of the Vemurafenib study.

Summary

With the emergence of molecularly targeted therapies, contemporary trials are devised to enroll po-
tentially heterogeneous patient populations defined by a common treatment target. Consequently,
characterization of subpopulation heterogeneity has become central to the design and analysis of
clinical trials, in oncology in particular. By partitioning the study population into subpopulations that
comprise potentially non-exchangeable patient cohorts, the basket design framework can be used to
study treatment heterogeneity in a prospective manner. When applied in this context, the Bayesian
multisource exchangeability model (MEM) methodology refines the estimation of treatment effec-
tiveness to specific subpopulations. Additionally, the MEM inferential strategy objectively identifies
which patient subpopulations should be considered exchangeable and to what extent.

This article introduced the R package basket as well as demonstrated its implementation for
basket trial analysis using the MEM methodology. An oncology case study using data acquired from a
basket trial was presented and used to demonstrate the main functionality of the package. The basket
package is the first available software package implementing Bayesian analysis with the MEM. The
package is being actively maintained and used in ongoing trials.

Acknowledgements: This work was partially supported by Amgen, Inc. as well as The Yale Comprehen-
sive Cancer Center (P30CA016359), and The Case Comprehensive Cancer Center (P30 CA043703).

Bibliography

S. M. Berry, B. P. Carlin, J. J. Lee, and P. Müller. Bayesian Adaptive Methods for Clinical Trials. Chapman
and Hall/CRC Press, Boca Raton, FL, 2010. [p362]

S. M. Berry, K. R. Broglio, S. Groshen, and D. A. Berry. Bayesian hierarchical modeling of patient
subpopulations: Efficient designs of phase II oncology clinical trials. Clinical Trials, 10(5):720–734,
2013. [p362]

K. R. Campbell and C. Yau. Probabilistic modeling of bifurcations in single-cell gene expression
data using a bayesian mixture of factor analyzers. Wellcome open research, 2, 2017. doi: 10.12688/
wellcomeopenres.11087.1. URL http://dx.doi.org/10.12688/wellcomeopenres.11087.1. [p362]

N. Chen, B. Hobbs, A. Kaizer, and M. J. Kane. basket: Basket Trial Analysis, 2019. R package version
0.9.2. [p361]

K. M. Cunanan, M. Gonen, R. Shen, D. M. Hyman, G. J. Riely, C. B. Begg, and A. Iasonos. Basket trials in
oncology: A trade-off between complexity and efficiency. Journal of Clinical Oncology, 35(3):271–273,
2017a. doi: 10.1200/JCO.2016.69.9751. URL https://doi.org/10.1200/JCO.2016.69.9751. PMID:
27893325. [p360]

K. M. Cunanan, A. Iasonos, R. Shen, D. M. Hyman, G. J. Riely, M. Gönen, and C. B. Begg. Specifying
the true-and false-positive rates in basket trials. JCO Precision Oncology, 1:1–5, 2017b. [p362]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://dx.doi.org/10.12688/wellcomeopenres.11087.1
https://doi.org/10.1200/JCO.2016.69.9751

CONTRIBUTED RESEARCH ARTICLE 371

B. G. Durie, J. Harousseau, J. Miguel, J. Blade, B. Barlogie, K. Anderson, M. Gertz, M. Dimopoulos,
J. Westin, P. Sonneveld, et al. International uniform response criteria for multiple myeloma. Leukemia,
20(9):1467, 2006. [p367]

E. A. Eisenhauer, P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck,
S. Gwyther, M. Mooney, et al. New response evaluation criteria in solid tumours: revised recist
guideline (version 1.1). European journal of cancer, 45(2):228–247, 2009. [p367]

B. Freidlin and E. Korn. Borrowing information across subgroups in phase II trials: Is it useful? Clinical
Cancer Research, 19:1326–1334, 2013. [p362]

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Chapman and Hall/CRC
Press, Boca Raton, FL, 3rd edition, 2013. [p365]

B. Hobbs, M. Kane, D. Hong, and R. Landin. Statistical challenges posed by uncontrolled master
protocols: sensitivity analysis of the vemurafenib study. Annals of Oncology, 29(12):2296–2301, 2018.
[p367]

B. P. Hobbs and R. Landin. Bayesian basket trial design with exchangeability monitoring. Statistics in
medicine, 37(25):3557–3572, 2018. [p360, 362, 363, 364, 365]

B. P. Hobbs, B. P. Carlin, and D. J. Sargent. Adaptive adjustment of the randomization ratio using
historical control data. Clinical Trials, 10:430–440, 2013. [p364]

D. M. Hyman, I. Puzanov, V. Subbiah, J. E. Faris, I. Chau, J.-Y. Blay, J. Wolf, N. S. Raje, E. L. Diamond,
A. Hollebecque, et al. Vemurafenib in multiple nonmelanoma cancers with braf v600 mutations.
New England Journal of Medicine, 373(8):726–736, 2015. [p366]

A. M. Kaizer, J. S. Koopmeiners, and B. P. Hobbs. Bayesian hierarchical modeling based on multisource
exchangeability. Biostatistics, 19(2):169–184, 2017. [p360, 361, 362, 363]

A. M. Kaizer, B. P. Hobbs, and J. S. Koopmeiners. A multi-source adaptive platform design for testing
sequential combinatorial therapeutic strategies. Biometrics, 74(3):1082–1094, 2018. [p361]

Q. Mo. iSeq: Bayesian Hierarchical Modeling of ChIP-seq Data Through Hidden Ising Models, 2018. R
package version 1.34.0. [p362]

T. A. Murray, B. P. Hobbs, and B. P. Carlin. Combining nonexchangeable functional or survival data
sources in oncology using generalized mixture commensurate priors. Annals of Applied Statistics, 9
(3):1549–1570, 2015. [p364]

V. P. Nia and A. C. Davison. High-dimensional bayesian clustering with variable selection: The R
package bclust. Journal of Statistical Software, 47(5):1–22, 2012. URL http://www.jstatsoft.org/
v47/i05/. [p362]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2019. URL https://www.R-project.org/. [p]

R. Samb, K. Khadraoui, P. Belleau, A. Deschênes, L. Lakhal-Chaieb, and A. Droit. Using informative
multinomial-dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions
for genome-wide profiling. Statistical Applications in Genetics and Molecular Biology, 14, 2015. doi:
10.1515/sagmb-2014-0098. URL https://doi.org/10.1515/sagmb-2014-0098. [p362]

R. Savage, E. Cooke, R. Darkins, and Y. Xu. BHC: Bayesian Hierarchical Clustering, 2018. R package
version 1.34.0. [p362]

R. B. Scharpf, H. Tjelmeland, G. Parmigiani, and A. Nobel. A bayesian model for cross-study differen-
tial gene expression. JASA, 2009. URL 10.1198/jasa.2009.ap07611. [p362]

S. Sharifi-Malvajerdi, F. Zhu, C. B. Fogarty, M. P. Fay, R. M. Fairhurst, J. A. Flegg, K. Stepniewska,
and D. S. Small. Malaria parasite clearance rate regression: an r software package for a bayesian
hierarchical regression model. Malaria Journal, 18(1):4, Jan 2019. ISSN 1475-2875. doi: 10.1186/s12936-
018-2631-8. URL https://doi.org/10.1186/s12936-018-2631-8. [p362]

A. Stocco. Coordinate-based meta-analysis of fmri studies with r. R Journal, 6(2), 2014. [p362]

P. Thall, J. Wathen, B. Bekele, R. Champlin, L. Baker, and R. Benjamin. Hierarchical bayesian approaches
to phase II trials in diseases with multiple subtypes. Statistics in Medicine, 22:763–780, 2003. [p362]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://www.jstatsoft.org/v47/i05/
http://www.jstatsoft.org/v47/i05/
https://www.R-project.org/
https://doi.org/10.1515/sagmb-2014-0098
10.1198/jasa.2009.ap07611
https://doi.org/10.1186/s12936-018-2631-8

CONTRIBUTED RESEARCH ARTICLE 372

Yang Xiang, S. Gubian, B. Suomela, and J. Hoeng. Generalized simulated annealing for efficient
global optimization: the GenSA package for R. The R Journal Volume 5/1, June 2013, 2013. URL
https://journal.r-project.org/archive/2013/RJ-2013-002/index.html. [p364]

E. Zhang and H. G. Zhang. CRAN Task View: Clinical Trial Design, Monitoring, and Analysis.
https://CRAN.R-project.org/view=ClinicalTrials, 2018. Version 2018-06-18. [p361]

Michael J. Kane
School of Public Health
Biostatistics Department
Yale University
New Haven, CT, USA
E-mail: michael.kane@yale.edu

Nan Chen
MD Anderson Cancer Center
The University of Texas
Houston, TX, USA
E-mail: nchen2@mdanderson.org

Alex Kaizer
Colorado School of Public Health
Department of Biostatistics and Informatics
University of Colorado-Anschutz Medical Campus
Aurora, CO, USA
E-mail: alex.kaizer@cuanschutz.edu

Xun Jiang
Amgen Inc. Thousand Oaks, CA, USA
E-mail: xunj@amgen.com

H. Amy Xia
Biostatistics and Design & Innovation
Amgen Inc. Thousand Oaks, CA, USA
E-mail: hxia@amgen.com

Brian Hobbs
Taussig Cancer Center
The Cleveland Clinic
Cleveland, OH, USA
E-mail: HobbsB@ccf.org

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://journal.r-project.org/archive/2013/RJ-2013-002/index.html
https://CRAN.R-project.org/view=ClinicalTrials
mailto:michael.kane@yale.edu
mailto:nchen2@mdanderson.org
mailto:alex.kaizer@cuanschutz.edu
mailto:xunj@amgen.com
mailto:hxia@amgen.com
mailto:HobbsB@ccf.org

CONTRIBUTED RESEARCH ARTICLE 373

OpenLand: Software for Quantitative
Analysis and Visualization of Land Use
and Cover Change
by Reginal Exavier and Peter Zeilhofer

Abstract There is an increasing availability of spatially explicit, freely available land use and cover
(LUC) time series worldwide. Because of the enormous amount of data this represents, the continuous
updates and improvements in spatial and temporal resolution and category differentiation, as well
as increasingly dynamic and complex changes made, manual data extraction and analysis is highly
time consuming, and making software tools available to automatize LUC data assessment is becom-
ing imperative. This paper presents a software developed in R, which combines LUC raster time
series data and their transitions, calculates state-of-the-art LUC change indicators, and creates spatio-
temporal visualizations, all in a coherent workflow. The functionality of the application developed is
demonstrated using an LUC dataset of the Pantanal floodplain contribution area in Central Brazil.

Introduction

Land use and land cover (LUC) monitoring provides key information on the ecological state and
biophysical properties of the land surface and is widely used in climatic, hydrological, and ecological
modelling (Brovkin et al., 2013; Verburg et al., 2015). Global population growth over the last decades
has led to increased rates of LUC change (LUCC), which has affected all major ecosystem services,
including biodiversity, climate, and water supply, and has altered carbon cycling (Ballantyne et al.,
2015; Nelson et al., 2010; Song et al., 2018).

The importance of these applications is supported by the continuous expansion of remote sensing
data acquisition programs, making freely available an increasing amount of spatially explicit LUC
time series data worldwide (Prestele et al., 2016). The huge volume of these datasets, their timely
actualization, ever-increasing spatial resolution and category differentiation, and a variety of data
formats, render their manual extraction and analysis increasingly time consuming. This is especially
true when trying to compare or harmonize LUC datasets of the same study area generated from
different sources, with different methodological approaches across different spatial and temporal
scales, in order to output the factual LUC in a region of interest (Yang et al., 2017).

Human interference on LUC is complex, and the intensity and frequency of LUC transitions
are increasing. Therefore, the development of sound LUC models is highly dependent on a deep
understanding of past and ongoing LUCC processes (Müller and Munroe, 2014). This means that LUC
patterns have to be constantly reviewed to underpin our understanding of these processes (Lambin,
1997; Lambin and Geist, 2006), develop a baseline analysis for projections of future LUC (Hurtt et al.,
2011), and to construct, calibrate and validate LUCC simulations (Prestele et al., 2016). Such efforts
require tools for data extraction, pre-processing, visualization, and calculation of LUC metrics to relieve
the burden from labour-intensive and time-consuming manual data processing and analysis (Yu et al.,
2019). If the procedures implemented to do so follow standards in land cover characterization, and
use formalized methodological approaches in LUC analysis, the resulting analytics become more
transparent, robust, and auditable (Herold et al., 2006; Müller and Munroe, 2014; Yang et al., 2017).

Aldwaik and Pontius (2012) developed an approach called Intensity Analysis (IA), which examines
changes in LUC categories by comparing the intensity of change between categories during a given
time interval with a hypothesized uniform change intensity. Since then, several case studies have
emphasized the potential of Intensity Analysis to synthetize complex LUCC under different spatial and
temporal scales, such as urban environments (Akinyemi et al., 2017; Subasinghe et al., 2016), regional
studies (Melo et al., 2018; Mwangi et al., 2017; de Souza et al., 2017), and country-wide comparisons
(Chaudhuri and Mishra, 2016). Furthermore, Huang et al. (2018) concluded that intensity analysis
metrics outperform other indicators of land use dynamics in the comparison between candidate
regions, while Varga et al. (2019) showed that IA metrics are a helpful tool for assessing the quality of
LUC modelling outputs.

In IA, the uniform change intensity of a time period is compared with the observed intensities
of transitions between LUC categories. The calculations are carried out using transition matrices
between LUC categories, assessing specific: (i) time intervals, (ii) categories or classes and (iii) types of
transitions. The first assessment level examines in which time intervals global annual change rates
are faster, slower or comparable to an average rate of change. The second level determines which
category transitions are relatively dormant or more active within a given time interval, based on an

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 374

analysis of gross change. The gross gains and losses for each category in a given time interval are
compared with an averaged, uniform annual change. The third level of assessment seeks to identify
which transitions are particularly intensive during the time interval considered. In order to do so each
transition is compared with a uniform transition intensity. The mathematical notations used for the IA
indicators measuring size and intensities of temporal changes among LUC categories (Equations 1-8)
can be found in Aldwaik and Pontius (2012) and Aldwaik and Pontius (2013).

Analytical tools for the analysis of LUC time series are commonly available in compiled languages
and distributed as software packages or extensions to proprietary geographic information systems
such as ArcGIS or Idrisi (Moulds et al., 2015). Consequently, the source code for such tools, used for
land use change analysis and modelling, is often unavailable (Rosa et al., 2014). This makes adopting
the applications of new approaches and reproducing scientific results difficult (Morin et al., 2012;
Peng, 2011). GIS software has made widely available spatially explicit visualization capabilities for
multi-temporal LUC, which is crucial for documentation and analysis of LUC distribution. However,
maps can become blurred and non-interpretable when extensive time series or complex landscapes
with different category transitions need to be analysed. This is particularly true when multi-category
changes have to be analysed at multiple time steps to improve the understanding of landscape
processes, in which case non-spatial forms of LUCC will have to be explored.

By contrast, the availability of packages to perform analyses of LUC categories in time series data
is limited. intensity.analysis, developed by Pontius Jr. and Khallaghi (2019), is an application of IA,
with functionality limited to the calculation of the three IA assessment levels described above and their
plotting; this package does not allow any personalization. Little pre-processing capability is available.
If needed, input rasters cannot be checked for spatial and thematic consistency, and they have to
be manually imported to R and stored. No other commonly used LUC metrics can be calculated or
plotted. Tools to visualize LUC changes are limited to standard plots of the three IA analysis levels.
lulcc (Moulds et al., 2015) is another package developed for LUC change analysis and focuses on the
application of tools for LUC change modelling.

This highlights the need for flexible and comprehensive tools for multipurpose analyses of complex
LUC time series data. This paper aims to demonstrate that we have developed a solution, available
as freeware, which allows the agile consistency analysis, extraction, pre-processing, analysis, and
visualization of multiresolution time series data in a straightforward workflow, thereby increasing
productivity in information extraction for an improved understanding of LUCC processes at different
spatial scales. Originating primarily from the application of the intensity analysis method, the
formatted tabular representation of multiple transition steps can be a valuable tool to support the
quick calculation of LUCC indicators.

Conceptual overview

The software was developed to provide comprehensive support for LUCC analysis over time and
implement the intensity analysis conceptual approach proposed by Aldwaik and Pontius (2012), and
further described in Aldwaik and Pontius (2013).

The source language of the OpenLand package (Exavier and Zeilhofer, 2020) is R, and it was
conceived using the integrated development environment (IDE) RStudio (RStudio Team, 2016). For
full functionality, OpenLand depends on selected, third-party functions of the raster, dplyr and tidyr
R packages (Hijmans, 2019; Wickham et al., 2019; Wickham and Henry, 2019) (Fig. 1). Visualization
tools make use of ggplot2, circlize, gridExtra and networkD3 R packages (Allaire et al., 2017; Auguie,
2017; Gu et al., 2014; Wickham, 2016). Designed as an iterative workflow, the pre-processing of a raw
LUC time series is followed by the extraction and visualization of single or multistep LUC transitions
and/or a complete IA.

The main processing workflow should begin with a consistency check of the input files, which
have to be a sequence of LUC maps in a tif format (Fig. 1). In the following step, a contingency table
of LUC transitions for each time step can be calculated. Two complementary analysis workflows are
then available. First, a set of miscellaneous non-spatial visualization tools allows for a quick screening
of LUC dynamics. Second, a complete intensity analysis (Aldwaik and Pontius, 2012, 2013) can be
implemented, including tools to visualize change intensities over time, category and transition levels.
Ancillary functionalities include allow for extraction and spatial visualization of LUCC frequencies.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=intensity.analysis
https://CRAN.R-project.org/package=lulcc
https://CRAN.R-project.org/package=OpenLand
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=circlize
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=networkD3

CONTRIBUTED RESEARCH ARTICLE 375

-

Figure 1: Conceptual overview of the OpenLand package showing reused R functionalities. The
package is composed by three major blocks for i) pre-processing of raster time series and calculus of
LUC transitions, ii) spatial and non-spatial visualization of LUCC and iii) intensity analysis including
tailored visualization tools.

Functionality and implementation

The São Lourenço river basin example dataset

The OpenLand functionality is demonstrated using an LUC dataset of the São Lourenço river basin,
of major importance to the Pantanal wetland into which it flows. The data is as provided in the 4th

edition of the Monitoring of Changes in Land cover and Land Use in the Upper Paraguay River Basin -
Brazilian portion - Review Period: 2012 to 2014 (Instituto SOS Pantanal and WWF-Brasil, 2015), and
the time series is composed of five LUC maps (2002, 2008, 2010, 2012 and 2014). The study area is
located in the Cerrado savanna biome, in the southeastern corner of the Brazilian state of Mato Grosso,
and covers approximately 22,400 km2. Some level of LUCC has occurred in about 12% of the area over
the past 12 years, including some deforestation and intensification of existing agricultural uses. In
order to be processed using the OpenLand package, the original multi-year shapefile was clipped to
the extent of the São Lourenço basin, transformed into rasters and saved as a 5-layer RasterStack; it is
available from a public repository (https://doi.org/10.5281/zenodo.3685229) as an .RDA file which
can be loaded into R.

Installing the released version of OpenLand from CRAN
install.packages("OpenLand")

Loading the OpenLand package
library(OpenLand)

downloading the SaoLourencoBasin multi-layer raster and make it available into R
url <- "https://zenodo.org/record/3685230/files/SaoLourencoBasin.rda?download=1"

temp <- tempfile()
download.file(url, temp, mode = "wb")
load(temp)

looking on the metadata of the example dataset
SaoLourencoBasin

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://www.embrapa.br/pantanal/bacia-do-alto-paraguai
https://www.embrapa.br/pantanal/bacia-do-alto-paraguai
https://zenodo.org/record/3685230#.Xl7cDMgReUk

CONTRIBUTED RESEARCH ARTICLE 376

#> class : RasterStack
#> dimensions : 6372, 6546, 41711112, 5 (nrow, ncol, ncell, nlayers)
#> resolution : 30, 30 (x, y)
#> extent : 654007.5, 850387.5, 8099064, 8290224 (xmin, xmax, ymin, ymax)
#> crs : +proj=utm +zone=21 +south +ellps=GRS80 +units=m +no_defs
#> names : landscape_2002, landscape_2008, landscape_2010, ..., landscape_2014
#> min values : 2, 2, 2, ..., 2
#> max values : 13, 13, 13, ..., 13

To visualize the output of the LUC analysis in OpenLand, we simplified the legend of the original
dataset and used the following 11 LUC categories for the basin: forest formation (FF), three Cerrado
savanna formations (SF, SA, SG), anthropogenized vegetation (aa), i.e. mostly altered Cerrado forma-
tions used for grazing, composed of natural species, cattle farming (Ap), crop farming (Ac), mining
areas (Im), urban areas (Iu), water bodies (Agua), and reforestation (R) (Table 1).

Table 1: The original legend of LUC classes and categories from Instituto SOS Pantanal and WWF-
Brasil (2015) including colour coding.

Pixel Value Legend Class Category Colour
2 Ap Anthropogenic Cattle farming #DDCC77
3 FF Natural Forest formation #117733
4 SA Natural Park savanna #44AA99
5 SG Natural Gramineous savanna #88CCEE
7 aa Anthropogenic Anthropogenized vegetation #CC6677
8 SF Natural Wooded savanna #999933
9 Agua Natural Water bodies #332288
10 Iu Anthropogenic Urban areas #AA4499
11 Ac Anthropogenic Crop farming #661100
12 R Anthropogenic Reforestation #882255
13 Im Anthropogenic Mining areas #6699CC

Consistency check and data extraction from raster time series

Two auxiliary functions allow users to check for consistency in the input gridded LUC time series,
including extent, projection, cell resolution and categories. The summary_map() function returns the
number of pixels in each category for each single raster layer, whereas the summary_dir() function
lists the spatial extent, spatial resolution, cartographic projection and the category range of a set of
LUC maps.

For the initial spatial screening of the time series, the acc_changes() function determines the
number of LUC transitions during the entire time interval of the series. The results of percentage area
by transition frequencies in the study area are stored in a table and a grid layer is generated, which
can be plotted (Fig. 2) using for example the tmap package.

the acc_changes() function, with the SaoLourencoBasin dataset
SL_changes <- acc_changes(SaoLourencoBasin)
SL_changes

#> [[1]]
#> class : RasterLayer
#> dimensions : 6372, 6546, 41711112 (nrow, ncol, ncell)
#> resolution : 30, 30 (x, y)
#> extent : 654007.5, 850387.5, 8099064, 8290224 (xmin, xmax, ymin, ymax)
#> crs : +proj=utm +zone=21 +south +ellps=GRS80 +units=m +no_defs
#> names : layer
#> values : 0, 2 (min, max)
#>
#>
#> [[2]]
#> # A tibble: 3 x 3
#> PxValue Qt Percent
#> <int> <int> <dbl>
#> 1 0 21819779 87.6

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 377

#> 2 1 2787995 11.2
#> 3 2 301086 1.21

55.5°W 55.0°W 54.5°W 54.0°W

17
.0

°S
16

.5
°S

16
.0

°S
15

.5
°S

São Lourenço River Basin

Accumulated changes from 2002 to 2014

Data created with OpenLand package

LUC Sources: Instituto SOS Pantanal and WWF−Brasil (2015)

Datum: SIRGAS 2000 0 10 20 30 40 km

N

Changes in the interval
2002 − 2014

0 Change (87.6%)
1 Change (11.19%)
2 Changes (1.21%)

Figure 2: Number of LUCC between 2002 and 2014 at four time points (2002, 2008, 2010, 2012, 2014)
in the São Lourenço river basin (Instituto SOS Pantanal and WWF-Brasil, 2015). LUCC occurred
throughout the basin, with one-step changes concentrated in the central-northern regions and two-step
changes in the central south.

As most deforestation occurred in the 20th century, unchanged areas totalled 87.6%. Approx-
imately 35% of the watershed had already been deforested in 1985, versus 46% in 2014 (Project
MapBiomas, 2019). 11.19% showed a unique alteration and 1.21% a two-folded alteration for the five
time points of the input series considered. All further analytical and visualization tools are based on the
contingencyTable() function, which builds a matrix of transitions between LUC categories according
to the temporal resolution of the original time series. Multiple grid scanning by contingencyTable()
returns 5 objects: lulc_Multistep, lulc_Onestep, tb_legend, totalArea, totalInterval. The first
two objects are contingency tables; the first (lulc_Multistep) takes into account the grid cells of the
entire time series, whereas the second (lulc_Onestep) calculates LUC transitions only between the
first and last year of the series. The third object (tb_legend) is a table containing the category name
associated with pixel values and a colour scheme. As category values and colours are initially created
randomly, their values must be edited to produce meaningful plot legends and colour schemes. The
fourth object (totalArea) is a table containing the extent of the study area in km2 and in pixel units.
The fifth table (totalInterval) stores the range of years between the first (Yt=1) and last year (YT) of
the series. Table 2 presents the fields created, together with their format, description and labelling as
per a table output by the contingencyTable() function.

As mentioned, the tb_legend object must be edited with the real category names and colours
associated with the category values. In our case, the category names and colours follow the conventions
given by (Instituto SOS Pantanal and WWF-Brasil, 2015) (access document here, page 17) like the
values in (Table 1).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://www.embrapa.br/documents/1354999/1529097/BAP+-+Mapeamento+da+Bacia+do+Alto+Paraguai+-+estudo+completo/e66e3afb-2334-4511-96a0-af5642a56283

CONTRIBUTED RESEARCH ARTICLE 378

Table 2: Structure of the contingency table that stores LUC transitions at chosen time intervals.

[Yt, Yt+1] Categoryi Categoryj Ctij (km2) Ctij (pixel) Yt+1 − Yt Yt Yt+1

chr int int dbl int int int int
Period of
analysis

from
time

point t to
time

point t+1

A cate-
gory at
inter-
val’s
initial
time
point

A cate-
gory at
inter-
val’s
final
time
point

Number of
elements in

km2 that
transits

from
category i to
category j

Number of
elements in
pixel that
transits

from
category i to
category j

Interval
in years
between

time
point t

and time
point t+1

Initial
Year of

the
interval

Final
Year of

the
interval

Period From To km2 QtPixel Interval yearFrom yearTo

Users should be aware that acc_changes() and contingencyTable() process the entire input time
series analyzing successive raster pairs. Processing time of contingencyTable(), the computationally
most demanding function of OpenLand may range between 3 and 7 minutes for the SaoLourencoBasin
dataset if using common desktop computers (8 MB Ram, i3-i7 processors, Windows 64bits versions).

creating the contingency table
SL_2002_2014 <- contingencyTable(input_raster = SaoLourencoBasin,

pixelresolution = 30)
names(SL_2002_2014)

#> [1] "lulc_Multistep" "lulc_Onestep" "tb_legend" "totalArea"
#> [5] "totalInterval"

editing the category names
SL_2002_2014tb_legendcategoryName <- factor(c("Ap", "FF", "SA", "SG", "aa", "SF",

"Agua", "Iu", "Ac", "R", "Im"),
levels = c("FF", "SF", "SA", "SG", "aa", "Ap",

"Ac", "Im", "Iu", "Agua", "R"))

adding the colours by the same order of the legend
SL_2002_2014tb_legendcolor <- c("#DDCC77", "#117733", "#44AA99", "#88CCEE",

"#CC6677", "#999933", "#332288", "#AA4499",
"#661100", "#882255", "#6699CC")

Miscellaneous non-spatial visualization tools

Evolution of LUC areas

Exploratory data analysis based on the contingencyTable() function may begin with the visualization
of the absolute and/or percentage area of each LUC category at each time point using a grouped bar
plot (Fig. 3), in order to show the evolution of the LUC categories at each time point of the series.

barplotLand(dataset = SL_2002_2014$lulc_Multistep,
legendtable = SL_2002_2014$tb_legend,
xlab = "Year",
ylab = bquote("Area (" ~ km^2~ ")"),
area_km2 = TRUE)

Net and gross changes

For the analysis of long time series with high temporal resolution, information extraction from
evolution bar plots may become demanding and alterations between categories through time points
are only as net changes. For a category-wise, simultaneous assessment of net and gross changes,
multistep transitions can be balanced through a stacked bar chart (Fig. 4). In the São Lourenço river
basin, all natural vegetation categories suffered an equal net and gross loss (FF, SF, SA, SG) between
2002 and 2014. In contrast, mining (Im) and urbanized (Iu) areas as well as waterbodies (Agua) and
reforestation (R) had equal amounts of net and gross gains. Principally anthropogenized vegetation
(aa) and pastures showed differences in net and gross changes, pointing to more complex underlying
LUCC processes.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 379

0

2000

4000

6000

8000

2002 2008 2010 2012 2014
Year

A
re

a
(k

m
2)

LUC Categories

FF

SF

SA

SG

aa

Ap

Ac

Im

Iu

Agua

R

Figure 3: Evolution bar plot quantifying LUC categories at the five time points between 2002 and 2014,
highlighting the increase of cattle farming (Ap) in the river basin.

netgrossplot(dataset = SL_2002_2014$lulc_Multistep,
legendtable = SL_2002_2014$tb_legend,
xlab = "LUC Category",
ylab = bquote("Area (" ~ km^2 ~ ")"),
changesLabel = c(GC = "Gross Changes", NG = "Net Gain", NL = "Net Loss"),
color = c(GC = "#e0c2a2", NG = "#541f3f", NL = "#c1766f"),
area_km2 = TRUE)

To further explore specifically those non-linear transitions, single-step Chord (Fig. 5) and Sankey
diagrams (Fig. 6a and 6b) can be composed for each time point in the series. Considering the entire
observation period, the major gross change was from anthropogenized areas (aa) to cattle farming
(Ap). Both the Chord and Sankey diagrams show however that pastures did not directly gain from
clear-cut deforestation, but from the previous degradation of natural vegetation categories principally
until 2008 (FF, SF, SA, SG), and a subsequent transition from aa to Ap between 2010 and 2014.

Chord diagram (2002 – 2014)

chordDiagramLand(dataset = SL_2002_2014$lulc_Onestep,
legendtable = SL_2002_2014$tb_legend,
area_km2 = TRUE)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 380

−1000

0

1000

FF SF SA SG aa Ap Ac Im Iu Agua R
LUC Category

A
re

a
(k

m
2)

Changes

Gross Changes

Net Gain

Net Loss

Figure 4: Combined stacked bar plot of gross changes, net gains and net losses of LUC categories
(2002 – 2014). Anthropogenized vegetation (aa) and cattle farming (Ap) experimented both gross gains
and losses, however net losses and net gains, respectively.

Single-step Sankey diagram (2002 – 2014)

sankeyLand(dataset = SL_2002_2014$lulc_Onestep,
legendtable = SL_2002_2014$tb_legend)

Multistep sankey diagram

If between-category transitions have to be visualized simultaneously for the entire time series, a
multistep version of the Sankey plot can be output (Fig. 6b).

sankeyLand(dataset = SL_2002_2014$lulc_Multistep,
legendtable = SL_2002_2014$tb_legend)

The sankeyLand() function returns html output, as it depends on the networkD3 R package which
uses such format as default.

Intensity analysis

Intensity Analysis (IA) is a quantitative method for the analysis of LUC maps over several time steps,
using cross-tabulation matrices, where each matrix summarizes the LUC change for each time interval.
IA evaluates the deviation between observed change intensity and hypothesized uniform change
intensity in three levels. Thereby, each level details information given by the previous analysis level.
First, the interval level indicates how the size and rate of change vary over time intervals. Second,
the category level examines for each time interval how the size and intensity of gross losses and
gross gains in each category vary across categories for each time interval. Third, the transition level
determines the size and intensity of each transition from one category to another during each time
interval. At each level, the method also tests for stationarity of patterns across time intervals (Aldwaik
and Pontius, 2012). In the OpenLand package, the intensityAnalysis() function computes the three
levels of analysis. It requires the object returned by the contingenceTable() function and that the
user predefines two LUC categories n and m. Generally, n is a target category that experienced relevant
gains and m a category with important losses.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 381

0
10

00
20

00
0

0

10
00

0

1000

2000

3000
4000

0
1000200001000

2000
3000

4000

5000

6000

0

1000

2000

3000
4000

00
00

0
10

00
20

00
30

00
40

00
50

00

60
00

7000
0

1000 2000 0 1000 00 1000 2000 3000
4000

0 00

0
1000

0
0

1000
2000

3000

2002

2014

FF
SF
SA
SG
aa
Ap
Ac
Im
Iu
Agua
R

Categories

Figure 5: Chord diagram of single-step transitions between LUC categories (2002 – 2014). The major
change during the period was from anthropogenized vegetation (aa) to cattle farming (Ap).

testSL <- intensityAnalysis(dataset = SL_2002_2014, category_n = "Ap",
category_m = "SG", area_km2 = TRUE)

it returns a list with 6 objects
names(testSL)

#> [1] "lulc_table" "interval_lvl" "category_lvlGain"
#> [4] "category_lvlLoss" "transition_lvlGain_n" "transition_lvlLoss_m"

The intensityAnalysis() function returns 6 objects: lulc_table, interval_lvl, category
_lvlGain, category_lvlLoss, transition_lvlGain_n, transition_lvlLoss_m. The object-oriented
approach adopted here allowed us to set specific methods for plotting the intensity objects. Specifically,
we used the S4 class, which requires the formal definition of classes and methods (Chambers, 2008).
The first object is a contingency table similar to the lulc_Multistep object with the unique difference
that the columns From and To are replaced by their appropriate denominations in the LUC legend.

The second object interval_lvl is an "Interval" object, the third category_lvlGain and the fourth
category_lvlLoss are "Category" objects, while the fifth transition_lvlGain_n and the transition
_lvlLoss_m are "Transition" objects.

An "Interval" object has one slot containing a table of the interval level results ((St equation (1)
and U equation (2) values). A "Category" object has three slots: the first contains the colour associated
with the legend item as name attribute, the second slot contains a table of the category level results
(gain (Gtj) equation (3) or loss (Lti) equation (4) values), and the third slot contains a table storing the
results of a stationarity test. A "Transition" object also has three slots: the first contains the colour
associated with the respective legend item defined as name attribute, the second slot contains a table
of the transition level results (gain n (Rtin equation (5) and Wtn equation (6)) or loss m (Qtmj equation (7)
and Vtm equation (8)) values). The third slot contains a table storing the results of a stationarity test.
Aldwaik and Pontius (2012) consider a case stationary only when the intensities for all time intervals

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 382

FF

SF

SA

SG

aa

Ap

Ac

Im
Iu
Agua
R

FF

SF

SA

SG

aa

Ap

Ac

Im
Iu
Agua
R

(a) Onestep transition 2002 - 2014

FF FF FF FF

SF SF SF

SA SA SA

SG SG SG

aa aa aa

Ap Ap Ap Ap

Ac Ac Ac Ac

Im Im Im Im
Iu Iu Iu Iu
Agua Agua Agua Agua
R R R R

FF

SF

SA

SG

aa

Ap

Ac

Im
Iu
Agua
R

SG

aa

SA

SF

(b) Multistep transition 2002-2008-2010-2012-2014

Figure 6: Sankey plots of single- and multistep transitions between LUC categories (2002 – 2014).
Major overall transition was from anthropogenized vegetation (aa) to cattle farming (Ap) (a), but aa
received important contributions by the loss of natural vegetation classes (FF, SF, SA, SG) as well,
principally from 2002 to 2008 (b).

are on one side of the uniform intensity, i.e. they are consistently either smaller or larger than the
uniform rate over the entire period.

St =
∑J

j=1

[
(∑J

i=1 Ctij)− Ctjj

]
(Yt+1 − Yt)

(
∑J

j=1 ∑J
i=1 Ctij

) × 100% (1)

U =
∑T−1

t=1

{
(Yt+1 − Yt)∑J

j=1

[(
∑J

i=1 Ctij

)
− Ctjj

]}
(YT − Y1)∑T−1

t=1

[
(Yt+1 − Yt)

(
∑J

j=1 ∑J
i=1 Ctij

)] × 100% (2)

Gtj =

[(
∑J

i=1 Ctij

)
− Ctjj

]
/(Yt+1 − Yt)

∑J
i=1 Ctij)

× 100% (3)

Lti =

[(
∑J

j=1 Ctij

)
− Ctii

]
/(Yt+1 − Yt)

∑J
j=1 Ctij)

× 100% (4)

Rtin =
Ctin/(Yt+1 − Yt)

∑J
j=1 Ctij)

× 100% (5)

Wtn =

[(
∑J

i=1 Ctin

)
− Ctnn

]
/(Yt+1 − Yt)

∑J
j=1

[(
∑J

i=1 Ctij

)
− Ctnj

] × 100% (6)

Qtmj =
Ctmj/(Yt+1 − Yt)

∑J
i=1 Ctij

× 100% (7)

Vtm =

[(
∑J

j=1 Ctmj

)
− Ctmm

]
/(Yt+1 − Yt)

∑J
i=1

[(
∑J

j=1 Ctij

)
− Ctim

] × 100% (8)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 383

Graphs (output of the intensity analysis)

Visualizations of the IA results are obtained with the plot(intensity-object) method. For more
details on the function arguments, please see the documentation of the plot() method implemented.

Interval Level

The IA interval level is a measure of the overall rate of LUC changes over consecutive time intervals in
the series. The plot (Fig. 7) has two sides: on the left the percentage of change during the corresponding
time step, and on the right the percentage of change per year showing the reference line of the Uniform
rate.

plot(testSL$interval_lvl,
labels = c(leftlabel = "Interval change area (%)",

rightlabel = "Annual change area (%)"),
marginplot = c(-8, 0), leg_curv = c(x = .3, y = .1),
color_bar = c(fast = "#541f3f", slow = "#c1766f", area = "#888888"))

012345

1.13 %1.13 %1.13 %1.13 %

2002−2008

2008−2010

2010−2012

2012−2014

0.0 0.5 1.0 1.5 2.0

Changes

Fast

Slow

Uniform Intensity

U

Interval change area (%) Annual change area (%)

Figure 7: IA Interval Level plot of LUCC for the time intervals of the sample data set. Left-side bars
represent LUCC during the time interval and right-side bars show the annualized rates. Strongest
annual LUCC occurred between 2010 and 2012.

In the São Lourenço river basin, the interval level plot shows that LUC change has accelerated
over the last decade, with a peak between 2010 and 2012, when the actual rate of change was almost
double the Uniform rate. This recent acceleration in LUC in the Cerrado biome has been interpreted
partially as a spillover effect of conservation efforts in the Amazon basin (Dou et al., 2018).

Category Level (Gain and Loss Area)

After the analysis of LUC change intensity independently from LUC categories, the category level
allows further examination into which land categories are relatively dormant versus active in a given
time interval and whether this pattern is stable across time intervals (Aldwaik and Pontius, 2012).

Gain area
plot(testSL$category_lvlGain,

labels = c(leftlabel = bquote("Gain Area (" ~ km ^ 2 ~ ")"),
rightlabel = "Intensity Gain (%)"),

marginplot = c(.3, .3), leg_curv = c(x = 1, y = .5))

Loss area
plot(testSL$category_lvlLoss,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 384

labels = c(leftlabel = bquote("Loss Area (" ~ km ^ 2 ~ ")"),
rightlabel = "Loss Intensity (%)"),

marginplot = c(.3, .3), leg_curv = c(x = 1, y = .5))

2002−2008

2008−2010

2010−2012

2012−2014

0200400600

1.66 %1.66 %1.66 %1.66 %1.66 %

2.12 %2.12 %2.12 %2.12 %2.12 %

0.44 %0.44 %0.44 %0.44 %0.44 %0.44 %0.44 %

0.86 %0.86 %0.86 %0.86 %0.86 %0.86 %

2002−2008

2008−2010

2010−2012

2012−2014

0 5 10 15 20

Categories

aa

Ap

Ac

Im

Iu

Agua

R

Uniform
Intensity

St

Gain Area (km2) Intensity Gain (%)
0

(a) Gain area

2002−2008

2008−2010

2010−2012

2012−2014

0200400600

1.66 %1.66 %1.66 %1.66 %1.66 %1.66 %1.66 %

2.12 %2.12 %2.12 %2.12 %2.12 %2.12 %2.12 %

0.44 %0.44 %0.44 %0.44 %0.44 %0.44 %0.44 %

0.86 %0.86 %0.86 %0.86 %0.86 %0.86 %0.86 %0.86 %

2002−2008

2008−2010

2010−2012

2012−2014

0 5 10

Categories

FF

SF

SA

SG

aa

Ap

Ac

R

Uniform
Intensity

St

Loss Area (km2) Loss Intensity (%)
0

(b) Loss area

Figure 8: IA Category level (a) gain and (b) loss plots. Cattle farming (Ap), for example, had the
highest areal gain of all categories (2010 – 2012), whereas water bodies had a very high intensity gain
between 2008 and 2010 due to the implantation of a large hydropower plant reservoir.

To facilitate legibility, we chose to split the category level plots (Fig. 8) into area gains (Fig. 8a) and
losses (Fig. 8b). Area gains in land categories (R) and (aa) were more intense over the first six-year
period (2002-2008) than they were at any other subsequent time point. The very intense area gain in
water bodies during the second time interval (2008-2010) corresponds to the São Lourenço hydropower
plant reservoir being filled. In the third and fourth intervals, the expansion of pasture areas (Ap) was
more intense than during previous time steps. In parallel, the land category (aa) is in sharp decline.

Transition level (gain of the category n “Ap” and loss of the category m “SG”)

In the transition level, the analysis focuses on the intensity of gain of a particular category n from all
the individual categories in the landscape and/or on the intensity of loss of a particular category m to
all the individual categories in the landscape for each time interval.

Gain of the category `n` "Ap"
plot(testSL$transition_lvlGain_n,

labels = c(leftlabel = bquote("Gain of Ap (" ~ km^2 ~ ")"),
rightlabel = "Intensity Gain of Ap (%)"),

marginplot = c(.3, .3),
leg_curv = c(x = 1, y = .2))

Loss of the category `m` "SG"
plot(testSL$transition_lvlLoss_m,

labels = c(leftlabel = bquote("Loss of SG (" ~ km^2 ~ ")"),
rightlabel = "Intensity Loss of SG (%)"),

marginplot = c(.3, .3),
leg_curv = c(x = .1, y = .4))

The area gains in the (Ap) category and losses in the SG category of the SaoLourencoBasin dataset
are used here as an example. Results in (Fig. 9a) show that areas in (Ap) were principally gained from
the aa category, and that this transition was particularly intense in the third and fourth time periods.
Meanwhile, area losses in the (SG) savannah formation persisted over the entire span of the time series
(Fig. 9b). However, there was a change in the land uses these areas were lost to: during the first three
intervals, (SG) was lost principally to (aa), while in the last time interval, the loss was more intensely
due directly to the (Ap) category.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 385

2002−2008

2008−2010

2010−2012

2012−2014

0200400600

2.03 %2.03 %2.03 %2.03 %2.03 %

2.26 %2.26 %2.26 %2.26 %2.26 %

0.06 %0.06 %0.06 %0.06 %0.06 %

0.32 %0.32 %0.32 %0.32 %0.32 %

2002−2008

2008−2010

2010−2012

2012−2014

0 5 10

Categories

FF

SF

SA

SG

aa

Uniform
Intensity

Wtn

Gain of Ap (km2) Intensity Gain of Ap (%)
0

(a) Gain of category n (Ap)

2002−2008

2008−2010

2010−2012

2012−2014

050100150200

0.13 %0.13 %0.13 %

0.07 %0.07 %0.07 %

0.09 %0.09 %0.09 %0.09 %

0.27 %0.27 %0.27 %0.27 %

2002−2008

2008−2010

2010−2012

2012−2014

0.0 0.4 0.8 1.2

Categories

aa

Ap

Ac

Iu

R

Uniform
Intensity

Vtm

Loss of SG (km2) Intensity Loss of SG (%)
0

(b) Loss of category m (SG)

Figure 9: IA Transition level plots of cattle farming (Ap) gains and Gramineous savanna (SG) losses.
Left-side bars represent the areal gain/loss of a LUC category and right-side bars show the intensity
of gain/loss. The SG category had the highest and most intense loss to anthropogenized vegetation
(aa) category between 2002 and 2008.

Conclusions and further research

In response to added and refined temporal, spatial and thematic dimensions increasing the volume of
LUC data, the OpenLand package provides a comprehensive and integrated suite for the exploratory
analysis of LUC changes. It offers seamless processing workflows beginning with time series con-
sistency checking, data extraction, analysis and plotting of commonly used LUC metrics, as well as
an implementation of Intensity Analysis, a state-of-the-art top-down hierarchical methodological
framework to quantify the intensity of LUC changes. Regardless of the complexity of an LUC time
series, all transitions and metrics are automatically extracted, quantified and stored as objects, without
any need for further tabular data manipulation for analysis. Visualization tools create pre-formatted
print-ready plots, which can be easily modified through function arguments.

Aldwaik and Pontius (2013) presented an extension of IA, which allows us to consider hypothetical
classification errors in input LUC maps as part of the comparison between observed and uniform
intensities in IA. The implementation of their method in OpenLand could further help users to assess
the implications of errors on the strength of the evidence in the outputs of their Intensity Analysis and
therefore, improve their understanding of LUC change processes.

Acknowledgements

Reginal Exavier is supported by the Brazilian Funding Agency CAPES (Coordination for the Improve-
ment of Higher Level Personnel) through a Master studentship (2018 - 2020) at the Department of
Geography of the Federal University of Mato Grosso. The research received financial support from the
Critical Ecosystem Partnership Fund - CEPF (Grant Agreement CEPF-104254) and FAPEMAT (Grant
Agreement 219228/2015).

Bibliography

F. O. Akinyemi, R. G. Pontius, and A. K. Braimoh. Land change dynamics: insights from Intensity
Analysis applied to an African emerging city. J. Spat. Sci., 62(1):69–83, 2017. ISSN 14498596.
doi: 10.1080/14498596.2016.1196624. URL http://dx.doi.org/10.1080/14498596.2016.1196624.
[p373]

S. Z. Aldwaik and R. G. Pontius. Intensity analysis to unify measurements of size and station-

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://dx.doi.org/10.1080/14498596.2016.1196624

CONTRIBUTED RESEARCH ARTICLE 386

arity of land changes by interval, category, and transition. Landsc. Urban Plan., 106(1):103–114,
2012. ISSN 01692046. doi: 10.1016/j.landurbplan.2012.02.010. URL http://dx.doi.org/10.1016/j.
landurbplan.2012.02.010. [p373, 374, 380, 381, 383]

S. Z. Aldwaik and R. G. Pontius. Map errors that could account for deviations from a uniform intensity
of land change. Int. J. Geogr. Inf. Sci., 27(9):1717–1739, 2013. ISSN 13658816. doi: 10.1080/13658816.
2013.787618. URL http://dx.doi.org/10.1080/13658816.2013.787618. [p374, 385]

J. J. Allaire, C. Gandrud, K. Russell, and C. J. Yetman. networkD3: D3 JavaScript Network Graphs
from R, 2017. URL https://cran.r-project.org/package=networkD3. [p374]

B. Auguie. gridExtra: Miscellaneous Functions for "Grid" Graphics, 2017. URL https://cran.r-project.
org/package=gridExtra. [p374]

A. P. Ballantyne, R. Andres, R. Houghton, B. D. Stocker, R. Wanninkhof, W. Anderegg, L. A. Cooper,
M. DeGrandpre, P. P. Tans, J. B. Miller, C. Alden, and J. W. White. Audit of the global carbon budget:
Estimate errors and their impact on uptake uncertainty. Biogeosciences, 12(8):2565–2584, 2015. ISSN
17264189. doi: 10.5194/bg-12-2565-2015. [p373]

V. Brovkin, L. Boysen, V. K. Arora, J. P. Boisier, P. Cadule, L. Chini, M. Claussen, P. Friedlingstein,
V. Gayler, B. J. Van den hurk, G. C. Hurtt, C. D. Jones, E. Kato, N. De noblet ducoudre, F. Pacifico,
J. Pongratz, and M. Weiss. Effect of anthropogenic land-use and land-cover changes on climate and
land carbon storage in CMIP5 projections for the twenty-first century. J. Clim., 26(18):6859–6881,
2013. ISSN 08948755. doi: 10.1175/JCLI-D-12-00623.1. [p373]

J. Chambers. Software for Data Analysis. Statistics and Computing. Springer New York, New York, NY,
2008. ISBN 978-0-387-75935-7. doi: 10.1007/978-0-387-75936-4. URL http://link.springer.com/
10.1007/978-0-387-75936-4. [p381]

G. Chaudhuri and N. B. Mishra. Spatio-temporal dynamics of land cover and land surface temperature
in Ganges-Brahmaputra delta: A comparative analysis between India and Bangladesh. Appl. Geogr.,
68:68–83, mar 2016. ISSN 01436228. doi: 10.1016/j.apgeog.2016.01.002. URL https://linkinghub.
elsevier.com/retrieve/pii/S0143622816300029. [p373]

C. H. W. de Souza, W. R. Cervi, J. C. Brown, J. V. Rocha, and R. A. C. Lamparelli. Mapping and
evaluating sugarcane expansion in Brazil’s savanna using MODIS and intensity analysis: a case-
study from the state of Tocantins. J. Land Use Sci., 12(6):457–476, nov 2017. ISSN 1747-423X. doi: 10.
1080/1747423X.2017.1404647. URL https://www.tandfonline.com/doi/full/10.1080/1747423X.
2017.1404647. [p373]

Y. Dou, R. F. B. da Silva, H. Yang, and J. Liu. Spillover effect offsets the conservation effort in the
Amazon. J. Geogr. Sci., 28(11):1715–1732, nov 2018. ISSN 1009-637X. doi: 10.1007/s11442-018-1539-0.
URL http://link.springer.com/10.1007/s11442-018-1539-0. [p383]

R. Exavier and P. Zeilhofer. OpenLand: Quantitative Analysis and Visualization of LUCC, 2020. URL
https://CRAN.R-project.org/package=OpenLand. R package version 1.0.1. [p374]

Z. Gu, L. Gu, R. Eils, M. Schlesner, and B. Brors. circlize implements and enhances circular visualization
in R. Bioinformatics, 30(19):2811–2812, 2014. [p374]

M. Herold, J. S. Latham, A. Di Gregorio, and C. C. Schmullius. Evolving standards in land cover
characterization. J. Land Use Sci., 1(2-4):157–168, dec 2006. ISSN 1747-423X. doi: 10.1080/
17474230601079316. URL http://www.tandfonline.com/doi/abs/10.1080/17474230601079316.
[p373]

R. J. Hijmans. raster: Geographic Data Analysis and Modeling, 2019. URL https://cran.r-project.org/
package=raster. [p374]

B. Huang, J. Huang, R. Gilmore Pontius, and Z. Tu. Comparison of Intensity Analysis and the land
use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai,
China. Ecol. Indic., 89:336–347, jun 2018. ISSN 1470160X. doi: 10.1016/j.ecolind.2017.12.057. URL
https://linkinghub.elsevier.com/retrieve/pii/S1470160X1730849X. [p373]

G. C. Hurtt, L. P. Chini, S. Frolking, R. A. Betts, J. Feddema, G. Fischer, J. P. Fisk, K. Hibbard, R. A.
Houghton, A. Janetos, C. D. Jones, G. Kindermann, T. Kinoshita, K. Klein Goldewijk, K. Riahi,
E. Shevliakova, S. Smith, E. Stehfest, A. Thomson, P. Thornton, D. P. van Vuuren, and Y. P. Wang.
Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual
land-use transitions, wood harvest, and resulting secondary lands. Clim. Change, 109(1-2):117–161,
nov 2011. ISSN 0165-0009. doi: 10.1007/s10584-011-0153-2. URL http://link.springer.com/10.
1007/s10584-011-0153-2. [p373]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://dx.doi.org/10.1016/j.landurbplan.2012.02.010
http://dx.doi.org/10.1016/j.landurbplan.2012.02.010
http://dx.doi.org/10.1080/13658816.2013.787618
https://cran.r-project.org/package=networkD3
https://cran.r-project.org/package=gridExtra
https://cran.r-project.org/package=gridExtra
http://link.springer.com/10.1007/978-0-387-75936-4
http://link.springer.com/10.1007/978-0-387-75936-4
https://linkinghub.elsevier.com/retrieve/pii/S0143622816300029
https://linkinghub.elsevier.com/retrieve/pii/S0143622816300029
https://www.tandfonline.com/doi/full/10.1080/1747423X.2017.1404647
https://www.tandfonline.com/doi/full/10.1080/1747423X.2017.1404647
http://link.springer.com/10.1007/s11442-018-1539-0
https://CRAN.R-project.org/package=OpenLand
http://www.tandfonline.com/doi/abs/10.1080/17474230601079316
https://cran.r-project.org/package=raster
https://cran.r-project.org/package=raster
https://linkinghub.elsevier.com/retrieve/pii/S1470160X1730849X
http://link.springer.com/10.1007/s10584-011-0153-2
http://link.springer.com/10.1007/s10584-011-0153-2

CONTRIBUTED RESEARCH ARTICLE 387

Instituto SOS Pantanal and WWF-Brasil. Monitoramento das alterações da cobertura vegetal e uso
do Solo na Bacia do Alto Paraguai – Porção Brasileira – Período de Análise: 2012 a 2014. Technical
report, Brasilia, 2015. URL https://d3nehc6yl9qzo4.cloudfront.net/downloads/publicacao_
bap_relatorio_2012_2014_web.pdf. [p375, 376, 377]

E. F. Lambin. Modelling and monitoring land-cover change processes in tropical regions. Prog. Phys.
Geogr. Earth Environ., 21(3):375–393, sep 1997. ISSN 0309-1333. doi: 10.1177/030913339702100303.
URL http://journals.sagepub.com/doi/10.1177/030913339702100303. [p373]

E. F. Lambin and H. Geist, editors. Land-Use and Land-Cover Change. Global Change - The IGBP Series.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 978-3-540-32201-6. doi: 10.1007/3-540-
32202-7. URL http://link.springer.com/10.1007/3-540-32202-7. [p373]

M. R. d. S. Melo, J. V. Rocha, V. D. Manabe, and R. A. C. Lamparelli. Intensity of land use changes
in a sugarcane expansion region, Brazil. J. Land Use Sci., 00(00):1–16, 2018. ISSN 17474248. doi:
10.1080/1747423X.2018.1499829. URL https://doi.org/10.1080/1747423X.2018.1499829. [p373]

A. Morin, J. Urban, P. D. Adams, I. Foster, A. Sali, D. Baker, and P. Sliz. Shining Light into Black Boxes.
Science (80-.)., 336(6078):159–160, apr 2012. ISSN 0036-8075. doi: 10.1126/science.1218263. URL
http://www.sciencemag.org/cgi/doi/10.1126/science.1218263. [p374]

S. Moulds, W. Buytaert, and A. Mijic. An open and extensible framework for spatially explicit land use
change modelling: the lulcc R package. Geosci. Model Dev., 8(10):3215–3229, oct 2015. ISSN 1991-9603.
doi: 10.5194/gmd-8-3215-2015. URL https://www.geosci-model-dev.net/8/3215/2015/. [p374]

D. Müller and D. K. Munroe. Current and future challenges in land-use science. J. Land Use Sci.,
9(2):133–142, apr 2014. ISSN 1747-423X. doi: 10.1080/1747423X.2014.883731. URL http://www.
tandfonline.com/doi/abs/10.1080/1747423X.2014.883731. [p373]

H. Mwangi, P. Lariu, S. Julich, S. Patil, M. McDonald, and K.-H. Feger. Characterizing the Intensity
and Dynamics of Land-Use Change in the Mara River Basin, East Africa. Forests, 9(1):8, dec 2017.
ISSN 1999-4907. doi: 10.3390/f9010008. URL http://www.mdpi.com/1999-4907/9/1/8. [p373]

G. Nelson, M. Rosegrant, A. Palazzo, and I. G. ... Food security and climate change: Chal-
lenges to 2050 and beyond. International Food Policy Research Institute, 2010. doi: 10.2499/
9780896291874. URL https://cgspace.cgiar.org/handle/10568/33400http://ebrary.ifpri.
org/cdm/ref/collection/p15738coll2/id/6778. [p373]

R. D. Peng. Reproducible Research in Computational Science. Science (80-.)., 334(6060):1226–1227, dec
2011. ISSN 0036-8075. doi: 10.1126/science.1213847. URL http://www.sciencemag.org/cgi/doi/
10.1126/science.1213847. [p374]

R. G. Pontius Jr. and S. Khallaghi. intensity.analysis: Intensity of Change for Comparing Categorical
Maps from Sequential Intervals, 2019. URL https://cran.r-project.org/package=intensity.
analysis. [p374]

R. Prestele, P. Alexander, M. D. A. Rounsevell, A. Arneth, K. Calvin, J. Doelman, D. A. Eitelberg,
K. Engström, S. Fujimori, T. Hasegawa, P. Havlik, F. Humpenöder, A. K. Jain, T. Krisztin, P. Kyle,
P. Meiyappan, A. Popp, R. D. Sands, R. Schaldach, J. Schüngel, E. Stehfest, A. Tabeau, H. Van
Meijl, J. Van Vliet, and P. H. Verburg. Hotspots of uncertainty in land-use and land-cover change
projections: a global-scale model comparison. Glob. Chang. Biol., 22(12):3967–3983, dec 2016. ISSN
13541013. doi: 10.1111/gcb.13337. URL http://doi.wiley.com/10.1111/gcb.13337. [p373]

Project MapBiomas. Collection 3.1 of Brazilian Land Cover & Use Map Series, 2019. URL https:
//mapbiomas.org/. [p377]

I. M. D. Rosa, S. E. Ahmed, and R. M. Ewers. The transparency, reliability and utility of tropical
rainforest land-use and land-cover change models. Glob. Chang. Biol., 20(6):1707–1722, jun 2014.
ISSN 13541013. doi: 10.1111/gcb.12523. URL http://doi.wiley.com/10.1111/gcb.12523. [p374]

RStudio Team. RStudio: Integrated Development Environment for R, 2016. URL http://www.rstudio.
com/. [p374]

X. P. Song, M. C. Hansen, S. V. Stehman, P. V. Potapov, A. Tyukavina, E. F. Vermote, and J. R. Townshend.
Global land change from 1982 to 2016. Nature, 560(7720):639–643, 2018. ISSN 14764687. doi:
10.1038/s41586-018-0411-9. URL http://dx.doi.org/10.1038/s41586-018-0411-9. [p373]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://d3nehc6yl9qzo4.cloudfront.net/downloads/publicacao_bap_relatorio_2012_2014_web.pdf
https://d3nehc6yl9qzo4.cloudfront.net/downloads/publicacao_bap_relatorio_2012_2014_web.pdf
http://journals.sagepub.com/doi/10.1177/030913339702100303
http://link.springer.com/10.1007/3-540-32202-7
https://doi.org/10.1080/1747423X.2018.1499829
http://www.sciencemag.org/cgi/doi/10.1126/science.1218263
https://www.geosci-model-dev.net/8/3215/2015/
http://www.tandfonline.com/doi/abs/10.1080/1747423X.2014.883731
http://www.tandfonline.com/doi/abs/10.1080/1747423X.2014.883731
http://www.mdpi.com/1999-4907/9/1/8
https://cgspace.cgiar.org/handle/10568/33400 http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/6778
https://cgspace.cgiar.org/handle/10568/33400 http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/6778
http://www.sciencemag.org/cgi/doi/10.1126/science.1213847
http://www.sciencemag.org/cgi/doi/10.1126/science.1213847
https://cran.r-project.org/package=intensity.analysis
https://cran.r-project.org/package=intensity.analysis
http://doi.wiley.com/10.1111/gcb.13337
https://mapbiomas.org/
https://mapbiomas.org/
http://doi.wiley.com/10.1111/gcb.12523
http://www.rstudio.com/
http://www.rstudio.com/
http://dx.doi.org/10.1038/s41586-018-0411-9

CONTRIBUTED RESEARCH ARTICLE 388

S. Subasinghe, R. Estoque, and Y. Murayama. Spatiotemporal Analysis of Urban Growth Using
GIS and Remote Sensing: A Case Study of the Colombo Metropolitan Area, Sri Lanka. ISPRS
Int. J. Geo-Information, 5(11):197, oct 2016. ISSN 2220-9964. doi: 10.3390/ijgi5110197. URL http:
//www.mdpi.com/2220-9964/5/11/197. [p373]

O. G. Varga, R. G. Pontius, S. K. Singh, and S. Szabó. Intensity Analysis and the Figure
of Merit’s components for assessment of a Cellular Automata – Markov simulation model.
Ecol. Indic., 101(January):933–942, jun 2019. ISSN 1470160X. doi: 10.1016/j.ecolind.2019.
01.057. URL https://linkinghub.elsevier.com/retrieve/pii/S1470160X19300743https://doi.
org/10.1016/j.ecolind.2019.01.057. [p373]

P. H. Verburg, N. Crossman, E. C. Ellis, A. Heinimann, P. Hostert, O. Mertz, H. Nagendra, T. Sikor, K. H.
Erb, N. Golubiewski, R. Grau, M. Grove, S. Konaté, P. Meyfroidt, D. C. Parker, R. R. Chowdhury,
H. Shibata, A. Thomson, and L. Zhen. Land system science and sustainable development of the
earth system: A global land project perspective. Anthropocene, 12(November):29–41, 2015. ISSN
22133054. doi: 10.1016/j.ancene.2015.09.004. URL http://dx.doi.org/10.1016/j.ancene.2015.
09.004. [p373]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL http://ggplot2.org. [p374]

H. Wickham and L. Henry. tidyr: Tidy Messy Data, 2019. URL https://cran.r-project.org/package=
tidyr. [p374]

H. Wickham, R. François, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2019. URL
https://cran.r-project.org/package=dplyr. [p374]

H. Yang, S. Li, J. Chen, X. Zhang, and S. Xu. The Standardization and Harmonization of Land Cover
Classification Systems towards Harmonized Datasets: A Review. ISPRS Int. J. Geo-Information, 6
(5):154, may 2017. ISSN 2220-9964. doi: 10.3390/ijgi6050154. URL http://www.mdpi.com/2220-
9964/6/5/154. [p373]

J. Yu, W. Li, and C. Zhang. A framework of experimental transiogram modelling for Markov chain
geostatistical simulation of landscape categories. Comput. Environ. Urban Syst., 73:16–26, jan 2019.
ISSN 01989715. doi: 10.1016/j.compenvurbsys.2018.07.007. URL https://linkinghub.elsevier.
com/retrieve/pii/S0198971517305653. [p373]

Reginal Exavier
Department of Geography
Federal University of Mato Grosso
Avenida Fernando Corrêa da Costa, 2367 – Boa Esperança, Cuiabá – MT, 78060-900
ORCiD: 0000-0002-5237-523X
reginalexavier@rocketmail.com

Peter Zeilhofer
Department of Geography
Federal University of Mato Grosso
Avenida Fernando Corrêa da Costa, 2367 – Boa Esperança, Cuiabá – MT, 78060-900
zeilhoferpeter@gmail.com

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://www.mdpi.com/2220-9964/5/11/197
http://www.mdpi.com/2220-9964/5/11/197
https://linkinghub.elsevier.com/retrieve/pii/S1470160X19300743 https://doi.org/10.1016/j.ecolind.2019.01.057
https://linkinghub.elsevier.com/retrieve/pii/S1470160X19300743 https://doi.org/10.1016/j.ecolind.2019.01.057
http://dx.doi.org/10.1016/j.ancene.2015.09.004
http://dx.doi.org/10.1016/j.ancene.2015.09.004
http://ggplot2.org
https://cran.r-project.org/package=tidyr
https://cran.r-project.org/package=tidyr
https://cran.r-project.org/package=dplyr
http://www.mdpi.com/2220-9964/6/5/154
http://www.mdpi.com/2220-9964/6/5/154
https://linkinghub.elsevier.com/retrieve/pii/S0198971517305653
https://linkinghub.elsevier.com/retrieve/pii/S0198971517305653
mailto:reginalexavier@rocketmail.com
mailto:zeilhoferpeter@gmail.com

CONTRIBUTED RESEARCH ARTICLE 389

FarmTest: An R Package for
Factor-Adjusted Robust Multiple Testing
by Koushiki Bose, Jianqing Fan, Yuan Ke, Xiaoou Pan and Wen-Xin Zhou

Abstract We provide a publicly available library FarmTest in the R programming system. This
library implements a factor-adjusted robust multiple testing principle proposed by Fan et al. (2019) for
large-scale simultaneous inference on mean effects. We use a multi-factor model to explicitly capture
the dependence among a large pool of variables. Three types of factors are considered: observable,
latent, and a mixture of observable and latent factors. The non-factor case, which corresponds to
standard multiple mean testing under weak dependence, is also included. The library implements a
series of adaptive Huber methods integrated with fast data-driven tuning schemes to estimate model
parameters and to construct test statistics that are robust against heavy-tailed and asymmetric error
distributions. Extensions to two-sample multiple mean testing problems are also discussed. The
results of some simulation experiments and a real data analysis are reported.

Introduction

In the era of big data, large-scale multiple testing problems arise from a wide range of fields, including
biological sciences such as genomics and neuroimaging, social science, signal processing, marketing
analytics, and financial economics. When testing multitudinous statistical hypotheses simultaneously,
researchers appreciate statistically significant evidence against the null hypothesis with a guarantee
of controlled false discovery rate (FDR) (Benjamini and Hochberg, 1995). Since the seminal work
of Benjamini and Hochberg (1995), multiple testing with FDR control has been extensively studied
and successfully used in many applications. Most of the existing testing procedures are tailored to
independent or weakly dependent hypotheses or tests. See, Storey (2002), Genovese and Wasserman
(2004) and Lehmann and Romano (2005), to name a few. The independence assumption, however, is
restricted in real applications as correlation effects are ubiquitous in high dimensional measurements.
Ignoring such strong dependency and directly applying standard FDR controlling procedures can lead
to inaccurate false discovery control, loss of statistical power, and unreliable scientific conclusions.

Over the past decade, a multi-factor model has proven to be an effective tool for modeling cross-
sectional dependence, with applications in genomics, neuroscience, and financial economics. Related
references in the context of multiple testing include Leek and Storey (2008), Friguet et al. (2009), Fan
et al. (2012), Desai and Storey (2011) and Fan and Han (2017). A common thread of the aforementioned
works is that the construction of test statistics and p-values heavily relies on the assumed joint
normality of factors and noise, which is arguably another folklore regarding high dimensional data.
Therefore, it is imperative to develop large-scale multiple testing tools that adjust cross-sectional
dependence properly and are robust to heavy-tailedness at the same time.

Recently, Fan et al. (2019) developed a Factor-Adjusted Robust Multiple Test (FarmTest) procedure
for large-scale simultaneous inference with highly correlated and heavy-tailed data. Their emphasis is
on achieving robustness against both strong cross-sectional dependence and heavy-tailed sampling
distribution. Specifically, let X =

(
X1, . . . , Xp

)ᵀ be a random vector with mean µ =
(
µ1, . . . , µp

)ᵀ.
We are interested in testing the p hypotheses H0j : µj = 0, and wish to find a multiple comparison
procedure to test individual hypotheses while controlling the FDR. The FarmTest method models the
dependency among Xj’s through an approximate multi-factor model, namely Xj = µj + bᵀj f + uj,
where f is a zero-mean random vector capturing the dependence structure of X. The method applies to
either observable or unobservable factor f . The former includes the non-factor case which corresponds
to the standard multiple mean testing problem. For the latter, we estimate the factors in a data-driven
way. Test statistics are then calculated by subtracting out the realized common factors. Multiple
comparisons are then applied to these weakly dependent factor-adjusted test statistics. Also, adjusting
the factors before testing reduces signal-to-noise ratios, which enhances statistical power. Since a
data-driven eigenvalue ratio method is used to estimate the number of (latent) factors, the testing
procedure still works when the dependence is weak and therefore is rather flexible.

This article describes an R library named FarmTest, which implements the FarmTest procedure(s)
developed in Fan et al. (2019). It is a user-friendly tool to conduct large-scale hypothesis testing,
especially when one or several of the following scenarios are present: the dimensionality is far
larger than the sample size available; the data is heavy-tailed and/or asymmetric; there is strong
cross-sectional dependence among the data. FarmTest is implemented using the Armadillo library
(Sanderson and Curtin, 2016) with Rcpp interfaces (Eddelbuettel and Francois, 2011; Eddelbuettel and
Sanderson, 2014). A simple call of FarmTest package only requires the input of a data matrix and the

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=FarmTest
https://CRAN.R-project.org/package=FarmTest
https://CRAN.R-project.org/package=Rcpp

CONTRIBUTED RESEARCH ARTICLE 390

null hypotheses to be tested. It outputs the hypotheses that are rejected, along with the p-values and
some estimated parameters which may be of use in further analysis. Testing can be carried out for
both one-sample and two-sample problems.

Another key feature of our package is that it implements several recently developed robust
methods for fitting regression models (Zhou et al., 2018; Sun et al., 2020) and covariance estimation
(Ke et al., 2019). When data is generated from a heavy-tailed distribution, test statistics that are
based on the least-squares method are sensitive to outliers, which often causes significant false
discoveries and suboptimal power (Zhou et al., 2018). The effect of heavy-tailedness is amplified by
high dimensionality; even moderate-tailed distributions can generate very large outliers by chance,
making it difficult to separate the true signals from spurious variables. As a result, large-scale multiple
testing based on non-robust statistics may engender an excessive false discovery rate, which arguably
is one of the causes of the current crisis in reproducibility in science. Moreover, to choose the multiple
tuning parameters in robust regression and covariance estimation, we employ the recently developed
data-driven procedures (Wang et al., 2020; Ke et al., 2019), which are particularly designed for adaptive
Huber regression and are considerably faster than the cross-validation method used in Fan et al. (2019).

We further remark that most existing multiple testing R packages do not address the robustness
against both heavy-tailed distribution and strong dependence. The hypothesis testing function in R,
named t.test, neither adjusts for strong dependence in the data nor estimates the parameters in focus
robustly. The built-in function p.adjust or the package qvalue (Storey, 2002) only adjust user-input
p-values for multiple testing and do not address the problem of estimating the p-values themselves.
The package multcomp (Hothorn et al., 2008) provides simultaneous testing tools for general linear
hypotheses in parametric models under the assumptions that the central limit theorem holds. The
package multtest (Pollard et al., 2005) is developed to implement non-parametric bootstrap and
permutation resampling-based multiple testing procedures. The multtest can calculate test statistics
based on ranked data which is robust against outliers but yields biased mean estimators. In addition,
multtest cannot explicitly model the dependence structure in data. The package mutoss is designed to
apply many existing multiple hypothesis testing procedures with FDR control and p-value correction.
Nevertheless, none of the tools in mutoss is suitable to deal with both strong dependency and heavy-
tailedness. Moreover, existing packages are often difficult to navigate since users need to combine
many functions to perform multiple tests.

Factor-adjusted robust multiple testing

In this section, we revisit the problem of simultaneous inference on the mean effects under a factor
model and discuss the main ideas behind the FarmTest method developed by Fan et al. (2019).

Multiple testing with false discovery rate control

Suppose we observe n independent data vectors X1, . . . , Xn from a p-dimensional random vector

X =
(
X1, . . . , Xp

)ᵀ. Further, let µ =
(
µ1, . . . , µp

)ᵀ and Σ =
(

σjk

)
1≤j,k≤p

denote the mean vector and

covariance matrix of X, respectively. In the language of hypothesis testing, we are interested in one of
the following three types of hypotheses:

H0j : µj = h0
j versus H1j : µj 6= h0

j ; (1)

H0j : µj ≤ h0
j versus H1j : µj > h0

j ; (2)

H0j : µj ≥ h0
j versus H1j : µj < h0

j ; (3)

for j = 1, . . . , p. In the default setting, h0
j = 0 for all j.

Here we take the two-sided test (1) as an example to discuss the false discovery rate (FDR) control.
For 1 ≤ j ≤ p, let Tj be a generic test statistic for the jth hypothesis. Given a prespecified threshold
z > 0, we reject the jth null hypothesis if |Tj| ≥ z. The FDR is defined as the expected value of
the false discovery proportion (FDP): FDR (z) = E {FDP (z)} with FDP (z) = V (z) / max {R (z) , 1},
where R (z) = ∑

p
j=1 1

(
|Tj| ≥ z

)
is the number of total rejections and V (z) = ∑j:µj=h0

j
1
(
|Tj| ≥ z

)
is the number of false discoveries. If the FDP (z) were known, the rejection threshold will be zα =
inf {z ≥ 0 : FDP (z) ≤ α} in order to achieve FDP control. Notice that R (z) is observable given the
data while V (z) is an unobserved random quantity that needs to be estimated.

Assume that there are p0 = π0 p true nulls and p1 = (1− π0) p true alternatives. Suppose the
constructed test statistic Tj is close in distribution to standard normal for every j = 1, . . . , p, if the
test statistics are weakly dependent. Heuristically the number of false discoveries V (z) is close to

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://www.bioconductor.org/packages/release/bioc/html/qvalue.html
https://CRAN.R-project.org/package=multcomp
https://www.bioconductor.org/packages/release/bioc/html/multtest.html
https://CRAN.R-project.org/package=mutoss

CONTRIBUTED RESEARCH ARTICLE 391

2p0 Φ (−z) for any z ≥ 0. A conservative way is to replace V (z) by 2p Φ (−z). Assuming the normal
approximation is sufficiently accurate, 2p Φ (−z) provides an overestimate of the number of false
discoveries, resulting in an underestimate of the FDP (z). A more accurate method is to estimate

the unknown proportion of null hypotheses π0 = p0/p from the data. Let
{

Pj = 2Φ
(
−|Tj|

)}p

j=1
be

the approximate p-values. For a predetermined λ ∈ [0, 1), Storey (2002) suggest to estimate π0 by

π̂0 (λ) = {(1− λ) p}−1 ∑
p
j=1 1

(
Pj > λ

)
, because larger p-values are more likely to come from the true

null hypotheses. Consequently, a data-driven rejection threshold is ẑα = inf
{

z ≥ 0 : F̂DP (z) ≤ α
}

,

where F̂DP (z) = 2π̂0 (λ) p Φ (−z) /R (z).

Factor-adjusted test statistics

In this section, we discuss the construction of test statistics under strong cross-sectional dependency
captured by common factors. Specifically, we allow the p coordinates of X to be strongly correlated
through an approximate factor model of the form X = µ + B f + u, where B =

(
b1, . . . , bp

)ᵀ ∈
Rp×K represents the factor loading matrix, f = (f1, . . . , fK)

ᵀ ∈ RK is the common factor, and u =(
u1, . . . , up

)ᵀ ∈ Rp denotes a vector of idiosyncratic errors uncorrelated with f . The observed samples
thus follow

Xi = µ + B fi + ui, i = 1, . . . , n, (4)

where (fi, ui)’s are independent copies of (f , u). Assume that both f and u have zero means. Further,

denote by Σ f and Σu =
(

σu,jk

)
1≤j,k≤p

the covariance matrices of f and u, respectively.

Our package allows the common factor f to be either observable or unobservable. In the former
case, we observe {(Xi, fi)}n

i=1 so that model (4) is reduced to a multi-response linear regression
problem; for the latter, we only observe {Xi}n

i=1 and therefore need to recover the latent factors. The
latent factor model has identifiability issues; see Bai and Li (2012) for a set of possible solutions. For
simplicity, we assume that Σ f = IK and BᵀB is diagonal.

Robust estimation

As another key feature, the FarmTest method is robust against heavy-tailed sampling distributions.
Under such scenarios, the ordinary least squares estimators can be suboptimal. Recently, Fan et al.
(2017) and Sun et al. (2020) proposed the adaptive Huber regression method, the core of which is
Huber’s M-estimator (Huber, 1964) with a properly calibrated robustification parameter that adapts
to the sample size, dimensionality and noise level. They showed that the adaptive Huber estimator
admits a sub-Gaussian-type deviation bound under mild moment conditions. This package exploits
this approach to estimate the unknown parameters and to construct test statistics.

Algorithms

In this section, we formally describe the algorithms for the FarmTest procedure. We revisit and discuss
procedures for the two scenarios with observable and unobservable/latent factors (Zhou et al., 2018;
Fan et al., 2019). Notice that the two scenarios are inherently different in terms of estimating unknown
parameters and constructing test statistics. Moreover, the selection of tuning parameters is based on
the recent methods proposed by Ke et al. (2019) and Wang et al. (2020).

Observable factors

Suppose we observe independent data vectors {(Xi, fi)}n
i=1 from model (4). The testing procedure

for the hypotheses in (1)–(3) is described in Algorithm 1. Algorithm 1 automatically selects the ro-

bustification parameters
{

τj, υj

}p

j=1
following the data-driven method proposed by Ke et al. (2019).

See the Section of Selection of tuning parameters for more details. To enhance the finite sample
performance, alternatively we can use the weighted/multiplier bootstrap (Zhou et al., 2018; Chen and
Zhou, 2019) to compute p-values for all the marginal hypotheses. For b = 1, . . . , B, we obtain the corre-

sponding bootstrap draw of
(

µ̂j, b̂j

)
via

(
µ̂[

b,j, b̂[b,j

)
= argminµ, b ∑n

i=1 wb,ij`τj

(
Xij − µ− fᵀi b

)
, where{

wb,ij, i = 1, . . . , n, j = 1, . . . p
}

are independent and identically distributed (iid) random variables

that are independent from the data and satisfy E
(

wb,ij

)
= 1 and var

(
wb,ij

)
= 1. To retain convexity

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 392

Algorithm 1 FarmTest with known factors (Zhou et al., 2018)

Input: Data {(Xi, fi)}n
i=1, null hypotheses

{
h0

j

}p

j=1
, and α, λ ∈ (0, 1)

1: For j = 1, . . . , p, obtain the Huber estimators(
µ̂j, b̂j

)
∈ argminµ,b ∑n

i=1 `τj

(
Xij − µ− fᵀi b

)
.

2: Estimation of residual variances σu,jj’s: compute

(i) Σ̂ f = (1/n)∑n
i=1 fi fᵀi , θ̂j ∈ argminθ ∑n

i=1 `υj

(
X2

ij − θ
)

for j = 1, . . . , p;

(ii) σ̂u,jj = θ̂j − µ̂2
j − b̂ᵀj Σ̂ f b̂j if θ̂j > µ̂2

j + b̂ᵀj Σ̂ f b̂j; otherwise σ̂u,jj = θ̂j.

3: Construct test statistics Tj =
√

n/σ̂u,jj

(
µ̂j − h0

j

)
for j = 1, . . . , p.

4: Compute p-values
{

Pj
}p

j=1 =


{

2Φ
(
−
∣∣Tj
∣∣)}p

j=1 for (1),{
Φ
(
−Tj

)}p
j=1 for (2),{

Φ
(
Tj
)}p

j=1 for (3).

5: Estimate the proportion of true alternatives: π̂0 (λ) =
Card{Pj>λ}

(1−λ)p .
6: Order the p-values as P(1) ≤ · · · ≤ P(p).

Compute the rejection threshold t := max
{

1 ≤ j ≤ p : P(j) ≤
αj

π̂0(λ)p

}
7: Reject each hypothesis in the set

{
1 ≤ j ≤ p : Pj ≤ P(t)

}
.

Output: Rejected hypotheses, p-values, other estimated parameters

of the loss function, nonnegative random weights are preferred, such as wb,ij ∼ Exp (1)—exponential

distribution with rate 1, or wb,ij ∼ 2Ber (1/2)—P
(

wb,ij = 0
)
= P

(
wb,ij = 2

)
= 1/2. For two-sided al-

ternatives, the bootstrap p-values are then defined as P[
j = (1/B)∑B

b=1 I
(
|µ̂[

b,j − µ̂j| ≥ |µ̂j|
)

, followed
by Steps 5–7 in Algorithm 1.

An extension of Algorithm 1 to the two-sample problem is also implemented in the package.
Suppose we observe two independent samples

{(
Xi, f X

i
)}n1

i=1 and
{(

Yi, f Y
i
)}n2

i=1 from the models

X = µX + BX f X + uX and Y = µY + BY f Y + uY . (5)

We are interested in the p hypotheses H0j : µX
j − µY

j = h0
j versus H1j : µX

j − µY
j 6= h0

j or versus some
one-sided alternatives. To begin with, applying Step 1 in Algorithm 1 separately to each dataset to

obtain the estimates
{(

µ̂X
j , µ̂Y

j

)}p

j=1
and

{(
σ̂X

u,jj, σ̂Y
u,jj

)}p

j=1
. Next, define the two-sample counterparts

of the test statistics in Step 2 as Tj =
(

µ̂X
j − µ̂Y

j − h0
j

)
/
√

σ̂X
u,jj/n1 + σ̂Y

u,jj/n2 for j = 1, . . . , p. After that,

we follow Steps 3–7 as in Algorithm 1 to obtain the p-values and rejected hypotheses.

Latent factors

In this section, suppose we are given independent observations {Xi}n
i=1. The strong dependency

among the coordinates of Xi is captured by a latent factor fi (Leek and Storey, 2008). Due to the need of
recovering latent factors from the data, the corresponding testing procedure is more involved. We sum-

marize the major steps in Algorithm 2. All the tuning parameters required for Algorithm 2,
{

τj, υj

}p

j=1

and
{

υjk

}
1≤j<k≤p

, are automatically selected from the data; see Selection of tuning parameters.

An extension of Algorithm 2 to the two-sample problem is also included in the library. Suppose
we observe two independent samples {Xi}n1

i=1 and {Yi}n2
i=1, and wish to test the hypotheses H0j :

µX
j − µY

j = h0
j versus H1j : µX

j − µY
j 6= h0

j or some one-sided alternatives. In this case, Steps 1–

5 in Algorithm 2 are applied separately to each dataset to obtain the estimates
{(

µ̂X
j , µ̂Y

j

)}p

j=1
,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 393

Algorithm 2 FarmTest with latent factors (Fan et al., 2019)

Input: Data {Xi}n
i=1, null hypotheses

{
h0

j

}p

j=1
, and α, λ ∈ (0, 1)

1: For j = 1, . . . , p, compute

• µ̂j = argminµ ∑n
i=1 `τj

(
Xij − µ

)
, θ̂j = argminθ ∑n

i=1 `υj

(
X2

ij − θ
)

,

• σ̂jj =

{
θ̂j − µ̂2

j if θ̂j > µ̂2
j ,

θ̂j otherwise.

2: Define the paired data {Y1, Y2, . . . , YN} = {X1 − X2, X1 − X3, . . . , Xn−1 − Xn}, where
N = n (n− 1) /2. For 1 ≤ j < k ≤ p, compute

• σ̂jk = argminθ ∑N
i=1 `υjk

(
YijYik/2− θ

)
, and σ̂kj = σ̂jk.

3: Define the covariance matrix estimator Σ̂ =
(

σ̂jk

)
1≤j,k≤p

.

• Let λ1 ≥ λ2 ≥ · · · ≥ λp be the ordered eigenvalues of Σ̂ and denote by
v1, v2, . . . , vp the corresponding eigenvectors.

• Calculate K = argmax1≤k≤min(n,p)/2
λk

λk+1
. This step is omitted if K is user-specified.

• Calculate B̂ =
(

b̂1, . . . , b̂p

)ᵀ
=
(

λ1/2
1 v1, . . . , λ1/2

K vK

)
∈ Rp×K.

4: f̄ = argmin f∈RK ∑
p
j=1 `γ

(
X̄j − b̂ᵀj f

)
, where X̄j = (1/n)∑n

i=1 Xij.

5: For j = 1, . . . , p, compute σ̂u,jj =

σ̂jj −
∥∥∥b̂j

∥∥∥2

2
if σ̂jj >

∥∥∥b̂j

∥∥∥2

2
,

σ̂jj otherwise.

6: Construct test statistics Tj =
√

n/σ̂u,jj

(
µ̂j − b̂ᵀj f̄ − h0

j

)
, j = 1, . . . , p.

7: Compute p-values Pj =


{

2Φ
(
−
∣∣Tj
∣∣)}p

j=1 for (1),{
Φ
(
−Tj

)}p
j=1 for (2),{

Φ
(
Tj
)}p

j=1 for (3).

8: Estimate the proportion of true alternatives: π̂0 (λ) =
Card{Pj>λ}

(1−λ)p .

9: Compute the rejection threshold t := max
{

1 ≤ j ≤ p : P(j) ≤
αj

π̂0(λ)p

}
10: Reject each hypothesis in the set

{
1 ≤ j ≤ p : Pj ≤ P(t)

}
.

Output: Rejected hypotheses, p-values, other estimated parameters

{(
σ̂X

u,jj, σ̂Y
u,jj

)}p

j=1
, B̂X , B̂Y , f̄ X and f̄ Y . After replacing the test statistics in Step 6 with

Tj =

(
µ̂X

j −
〈

b̂X
j , f̄ X

〉)
−
(

µ̂Y
j −

〈
b̂Y

j , f̄ Y
〉)
− h0

j√
σ̂X

u,jj/n1 + σ̂Y
u,jj/n2

, j = 1, . . . , p,

one can follow Steps 7–10 to obtain the p-values and rejected hypotheses.

Partially observable factors

Motivated by applications to comparative microarray experiments (Leek and Storey, 2008; Friguet
et al., 2009) and mutual fund selection (Lan and Du, 2019), we further discuss the case where both
explanatory variables and latent factors are present. The statistical model is of the form

Xi = µ + B fi + Cgi + ui, i = 1, . . . , n,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 394

where fi ∈ RK is a vector of explanatory variables and gi ∈ RL represents the latent factor. Here L ≥ 1
may be user-specified or unknown. For multiple comparison of the mean effects under this model, the
FarmTest package can be used in a two-stage fashion. In the first stage, apply Algorithm 1 to fit model
(4) with observed data {(Xi, fi)}n

i=1 and compute fitted residuals Xres
i = Xi − B̂ fi; in the second stage,

run Algorithm 2 on
{

Xres
i
}n

i=1 to conduct factor-adjusted multiple testing.

Selection of tuning parameters

The FarmTest procedure involves multiple tuning parameters, including the number of factors K (if
not specified by the user) and robustification parameters for fitting factor models. For the former,
we apply the eigenvalue ratio method (Lam and Yao, 2012; Ahn and Horenstein, 2013) to estimate K,

that is, K̂ = argmax1≤k≤Kmax
λk

(
Σ̂
)

/λk+1

(
Σ̂
)

, where Σ̂ is a generic covariance matrix estimator with

eigenvalues λ1

(
Σ̂
)
≥ · · · ≥ λp

(
Σ̂
)

, and Kmax be a prescribed upper bound. In the library, we take
Kmax = min (n, p) /2. This method is chosen as it does not involve other hyperparameters (except
Kmax). When the factors are unobservable, the estimation of K is essentially an un-supervised learning
problem. We choose K to be the smallest nonnegative integer such that the residuals Xi − B fi are
weakly correlated. Therefore, slight overestimation of K does not affect much of the testing results. If
K is set to be zero, the FarmTest library directly applies a robust multiple testing procedure based on
Huber’s M-estimation partnered with multiplier bootstrap. See Zhou et al. (2018) for more details.

The robustification parameter in the Huber loss plays an important role in controlling the bias-
robustness tradeoff. According to the theoretical analysis in Zhou et al. (2018), the optimal choice of
τj in Algorithm 1 depends on the variance of Xj. Due to heterogeneity, we have p different τj’s that
need to be selected from the data. Furthermore, the covariance estimation step in Algorithm 2 entails
as many as p (p− 1) /2 parameters υjk. Cross-validation is therefore computationally expensive
when the dimension is large. Recently, Ke et al. (2019) and Wang et al. (2020) proposed fast data-
driven methods, which estimate the regression coefficients/covariances and calibrate the tuning
parameter simultaneously by solving a system of equations. Numerical studies therein suggest that
this data-driven method is considerably faster than cross-validation while performs equally as well.

Package overview

The FarmTest package is publicly available from the Comprehensive R Archive Network (CRAN) and
its GitHub page https://github.com/XiaoouPan/FarmTest. It contains four core functions. The main
function farm.test carries out the entire FarmTest procedure, and outputs the testing results along
with several useful estimated model parameters. User-friendly summary, print, and plot functions that
summarize and visualize the test outcome are equipped with farm.test. The other three functions,
huber.mean, huber.cov and huber.reg implement data-driven robust methods for estimating the
mean vector and covariance matrix (Ke et al., 2019) as well as the regression coefficients (Wang et al.,
2020). In particular, the huber.reg function uses the gradient descent algorithm with Barzilai and
Borwein step size (Barzilai and Borwein, 1988). In this section, we focus primarily on introducing the
farm.test function, and demonstrate its usage with numerical experiments.

A showcase example

We first present an example by applying the package to a synthetic dataset. To begin with, we use the
rstiefel package (Hoff, 2012) to simulate a uniformly distributed random orthonormal matrix as the
loading matrix B after rescaling. With sample size n = 120, dimension p = 400 and number of factors
K = 5, we generate data vectors {Xi}n

i=1 from model (4), where the factors fi ∈ RK follow a standard
multivariate normal distribution and the noise vectors ui ∈ Rp are drawn from a multivariate t3
distribution with zero mean and identity covariance matrix. For the mean vector µ =

(
µ1, . . . , µp

)ᵀ,
we set the first p1 = 100 coordinates to be 1 and the rest to be 0.

library(FarmTest)
library(rstiefel)
library(mvtnorm)
n <- 120
p <- 400
K <- 5
set.seed(100)
B <- rustiefel(p, K) %*% diag(rep(sqrt(p), K))

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://github.com/XiaoouPan/FarmTest
https://CRAN.R-project.org/package=rstiefel

CONTRIBUTED RESEARCH ARTICLE 395

FX <- rmvnorm(n, rep(0, K), diag(K))
p1 <- 100
strength <- 1
mu <- c(rep(strength, p1), rep(0, p - p1))
U <- rmvt(n, diag(p), 3)
X <- rep(1, n) %*% t(mu) + FX %*% t(B) + U

Function call with default parameters

Using the data generated above, let us call the main function farm.test with all default optional
parameters, and then print the outputs.

output <- farm.test(X)
output

One-sample FarmTest with unknown factors
n = 120, p = 400, nFactors = 5
FDR to be controlled at: 0.05
Alternative hypothesis: two.sided
Number of hypotheses rejected: 104

As shown in the snapshot above, the function farm.test correctly estimates the number of factors,
and rejects 104 hypotheses with 4 false discoveries. For this individual experiment, the FDP and power
are 0.038 and 1, respectively as calculated below. Here the power is referred to as the ratio between the
number of correct rejections and the number of nonnulls p1.

FDP <- sum(output$reject > p1) / length(output$reject)
FDP

[1] 0.03846154

power <- sum(output$reject <= p1) / p1
power

[1] 1

All the outputs are incorporated into a list, which can be quickly examined by names() function.
See Table 1 for detailed descriptions of the outputs.

names(output)

[1] "means" "stdDev" "loadings" "eigenVal" "eigenRatio" "nFactors"
[7] "tStat" "pValues" "pAdjust" "significant" "reject" "type"
[13] "n" "p" "h0" "alpha" "alternative"

We can present the testing results using the affiliated summary function.

head(summary(output))

means p-values p-adjusted significance
1 1.0947056 1.768781e-18 8.936997e-17 1
2 0.8403608 3.131733e-09 1.157817e-08 1
3 0.8668348 1.292850e-11 6.532295e-11 1
4 0.9273998 2.182485e-12 1.350281e-11 1
5 0.7257105 7.699350e-08 2.593465e-07 1
6 0.9473088 1.180288e-13 1.192712e-12 1

To visualize the testing results, in Figure 1 we present several plots based on the outputs. From
the histograms of estimated means and test statistics, we see that data are generally categorized into
two groups, one of which has µ̂j concentrated around 1 and test statistics bounded away from 0. It is
therefore relatively easy to identify alternatives/signals from the nulls. From the eigenvalue ratio plot,
we see that the fifth ratio (highlighted as a red dot) is evidently above the others, thus determining
the number of factors. The scree plot, on the other hand, reveals that the top 5 eigenvalues (above the
red dashed line) together explain the vast majority of the variance, indicating that the proportion of
common variance (due to common factors) is high.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 396

Output Implication Data type R class
means estimated means p-vector matrix
stdDev estimated standard deviations p-vector matrix

loadings estimated loading matrix (p× K)-matrix matrix
eigenVal eigenvalues of estimated covariance p-vector matrix
eigenRatio eigenvalue ratios of estimated covariance (min {n, p} /2)-vector matrix
nFactors (estimated) number of factors positive integer integer
tStat test statistics p-vector matrix

pValues p-values p-vector matrix
pAdjust adjusted p-values p-vector matrix

significant indicators of significance boolean p-vector matrix
reject indices of rejected hypotheses vector integer
type whether factor is known string character
n sample size positive integer integer
p data dimension positive integer integer
h0 null hypothesis p-vector numeric

alpha nominal FDR level numerical number numeric
alternative alternative hypothesis string character

Table 1: Objects in the output list of farm.test function with their implications, and description of
data type and class in R language.

-0.5 0.0 0.5 1.0 1.5

0
20

40
60

80

Histogram of estimated means

Estimated means µ̂

F
re
q
u
en
cy

-2 0 2 4 6 8 10

0
10

20
30

40
50

60

Histogram of test statistics

Test statistics T

F
re
q
u
en
cy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
.0

1
.5

2.
0

2.
5

3.
0

3.
5

4.
0

Eigenvalue ratios of estimated covariance

Index

E
ig
en
va
lu
e
ra
ti
o
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
00

0.
05

0.
10

0.
15

Scree plot of estimated covariance

Top 20 eigenvalues

P
ro
p
or
ti
o
n
of

va
ri
an

ce

Figure 1: Upper panel: histograms of estimated means and test statistics. Lower panel: eigenvalue
ratio plot with the largest ratio highlighted and scree plot of the eigenvalues of the estimated covariance
matrix.

Function call with options

In this section, we illustrate farm.test function with other options that allow us to call it more flexibly.
When the factors are observable, we can simply put the n× K factor matrix into argument fX, and the
output is formatted the same as before. As a remark, among all the items listed in Table 1, eigenVal
and eigenRatio, which are eigenvalues and eigenvalue ratios of estimated covariance matrix, are not
available in this case; see Algorithm 1.

output <- farm.test(X, fX = FX)
output

One-sample FarmTest with known factors
n = 120, p = 400, nFactors = 5

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 397

FDR to be controlled at: 0.05
Alternative hypothesis: two.sided
Number of hypotheses rejected: 101

Consider one-sided alternatives H1j : µj ≥ 0, j = 1, . . . p with a nominal FDR level 1%. We modify
the arguments alternative and alpha as follows:

output <- farm.test(X, alternative = "greater", alpha = 0.01)
output

One-sample FarmTest with unknown factors
n = 120, p = 400, nFactors = 5
FDR to be controlled at: 0.01
Alternative hypothesis: greater
Number of hypotheses rejected: 101

Users can specify null hypotheses by passing any vector with length p into argument h0. In the
next example, we consider the p null hypotheses as all the means are equal to 1, so that the number of
true nonnulls becomes 300.

output <- farm.test(X, h0 = rep(1, p), alpha = 0.01)
output

One-sample FarmTest with unknown factors
n = 120, p = 400, nFactors = 5
FDR to be controlled at: 0.01
Alternative hypothesis: two.sided
Number of hypotheses rejected: 300

When the factors are unknown, users can also specify the number of factors based on some
subjective grounds. In this case, Step 3 in Algorithm 2 is avoided. For example, we run the function
with the number of factors chosen to be KX = 2, which is less than the true parameter 5. This
misspecification results in a loss of power with two true alternatives unidentified.

output <- farm.test(X, KX = 2)
power <- sum(output$reject <= p1) / p1
power

[1] 0.98

As a special case, if we declare KX = 0 in the function, a robust multiple test without factor-
adjustment is conducted.

output <- farm.test(X, KX = 0)
output

One-sample robust multiple test without factor-adjustment
n = 120, p = 400
FDR to be controlled at: 0.05
Alternative hypothesis: two.sided
Number of hypotheses rejected: 95

Finally, we present an example of two-sample FarmTest. Using the same sampling distributions
for the factor loading matrix, factors and noise vectors, we generate another sample {Yi}m

i=1 from
model (5) with m = 150.

m <- 150
set.seed(200)
BY <- rustiefel(p, K) %*% diag(rep(sqrt(p), K))
FY <- rmvnorm(m, rep(0, K), diag(K))
uY <- rmvt(m, diag(p), 3)
Y <- FY %*% t(BY) + uY

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 398

Then farm.test function can be called with an additional argument Y.

output <- farm.test(X, Y = Y)
output

Two-sample FarmTest with unknown factors
X.n = 120, Y.n = 150, p = 400, X.nFactors = 5, Y.nFactors = 5
FDR to be controlled at: 0.05
Alternative hypothesis: two.sided
Number of hypotheses rejected: 105

The output is formatted similarly as in Table 1, except that means, stdDev, loadings, eigenVal,
eigenRatio, nFactors and n now consist of two items for samples X and Y.

names(output$means)

[1] "X.mean" "Y.mean"

Simulations

In this section, we assess and compare the performance of farm.test function in the FarmTest package
with the following methods:

• t-test using the R built-in function t.test;

• WMW-test (Wilcoxon-Mann-Whitney) using the onesamp.marginal function in the mutoss
package;

• RmTest (Robust Multiple test) without factor-adjustment by claiming KX = 0 in the farm.test
function.

For t-test and WMW-test, the functions we call produce vectors of p-values, to which the method
proposed in Storey (2002) is applied, see Steps 5–7 in Algorithm 1 or Steps 8–10 in Algorithm 2.

In all the numerical experiments, we consider two-sided alternatives with a nominal FDR level
α = 5%. The true number of factors is 5. Factors and loadings are generated the same way as in A
showcase example Section. To add dependency among idiosyncratic errors, the covariance matrix of u,
denoted by Σu, is taken to be a block-diagonal symmetric matrix with block size 5× 5. Within each
block, the diagonal entries are all equal to 3 and the off-diagonal entries are generated from U [0, 1]. In
the simulations, we drop the case where the generated Σu is not positive-definite. The distribution of
u is specified in two models as follows.

• Model 1. u ∼ N (0, Σu): centered multinormal distribution with covariance matrix Σu;

• Model 2. u ∼ t3 (0, Σu): multivariate t-distribution with degrees of freedom 3 and covariance
matrix Σu.

For each model, we consider various combinations of sample size n and dimensionality p, specifi-
cally, n ∈ {60, 80, 100, 120, 140} and p ∈ {200, 400, 600, 800, 1000}. The number of true alternatives p1
is taken to be 0.2 p, and the signal strength is set as 4

√
log (p) /n.

Figures 2 and 3 depict the FDR and power curves for either "fixed n growing p" or "fixed p growing
n" based on 200 simulations. Across various settings, FarmTest consistently maintains high empirical
power with FDR well controlled around the nominal level. In contrast, the competing methods
may lose as many as 10% to 30% powers, which can be ascribed to not accounting for the common
factors. In summary, we conclude that the FarmTest package provides an efficient implementation
of the FarmTest method, which carries out multiple testing for multivariate data with heavy-tailed
distribution and a strong dependency structure.

Real data example

In this section, we apply the FarmTest package to test the mean effects of stock returns. In capital
asset pricing theory, the stock’s risk-adjusted mean return or "alpha" is a quantity of interest since
it indicates the excessive return incurred from investing in a particular stock. If the efficient equity
market hypothesis holds, we expect "alpha" to be zero. Hence, detecting non-zero alphas can help
investors to identify market inefficiencies, that is, whether certain stocks exhibit an abnormal rate

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 399

60 80 100 120 140

0.
0
4

0.
0
5

0.
0
6

0.
0
7

Empirical FDR versus sample size

Sample size n

F
D
R

60 80 100 120 140

0.
7
5

0.
8
0

0.
8
5

0.
9
0

0.
9
5

1.
0
0

Power versus sample size

Sample size n

P
ow

er
200 400 600 800 1000

0.
0
4

0.
0
5

0.
0
6

0.
0
7

0.
0
8

Empirical FDR versus dimension

Dimension p

F
D
R

200 400 600 800 1000
0.
7
0

0.
7
5

0.
8
0

0.
8
5

0.
9
0

0.
9
5

1.
0
0

Power versus dimension

Dimension p
P
ow

er

FarmTest
RmTest
t-test
WMW-test

Figure 2: Comparison of FarmTest with three other methods in terms of FDR and power under Model
1 (multivariate normal distribution). In the upper panel, p is fixed at 600 and n grows from 60 to 140;
in the lower panel, n is fixed at 100 and p ranges from 200 to 1000.

60 80 100 120 140

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

Empirical FDR versus sample size

Sample size n

F
D
R

60 80 100 120 140

0.
80

0.
85

0.
90

0.
95

1.
00

Power versus sample size

Sample size n

P
ow

er

200 400 600 800 1000

0
.0
4

0.
05

0.
06

0
.0
7

0.
08

Empirical FDR versus dimension

Dimension p

F
D
R

200 400 600 800 1000

0
.7
0

0.
7
5

0
.8
0

0.
85

0.
90

0
.9
5

1.
00

Power versus dimension

Dimension p

P
ow

er

FarmTest
RmTest
WMW-test
t-test

Figure 3: Comparison of FarmTest with three other methods in terms of FDR and power under Model
2 (multivariate t-distribution). In the upper panel, p is fixed at 600 and n grows from 60 to 120; in the
lower panel, n is fixed at 100 and p ranges from 200 to 1000.

of return or are mispriced. As discussed in Cont (2001), both cross-sectional dependency and heavy
tailedness are silent features of stock returns.

In this study, we test the annual mean effects of stocks in the S&P500 index. The data is available
on COMPUSTAT and CRSP databases. We find that most of the stocks with continuous membership
in the S&P500 index from 2008 to 2016 have excess kurtosises greater than zero, indicating tails heavier
than that of a normal distribution. Also, more than 33% of the stocks are severely heavy-tailed as their

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 400

N
u
m
b
er

of
st
o
ck
s
ch
o
se
n

0
2
0

4
0

6
0

8
0

1
0
0

Jan-2008 Jan-2009 Jan-2010 Jan-2011 Jan-2012 Jan-2013 Jan-2014 Jan-2015 Jan-2016

FarmTest
WMW-test
RmTest

Figure 4: Stack bar plot of the numbers of discoveries via FarmTest, WMW-test and RmTest from 2008
to 2016, using rolling windows of one year. Within each time window, we report the number of stocks
in the S&P500 index that show significant statistical evidence against null hypotheses that there are no
excessive returns, with FDR controlled at 1%.

excess kurtosises exceed 6, which is the excess kurtosis of t5-distribution. We collect monthly returns
of stocks from the S&P500 index over rolling windows: for each month between 2008 and 2016, we
collect monthly returns of stocks who have continuous records over the past year. The average number
of stocks collected each year is 598. For each rolling window, we conduct multiple testing using the
four methods considered in the previous section, that is, FarmTest, t-test, WMW-test, and RmTest.

The nominal FDR level is set as α = 1%. Within each rolling time window, we have p ≈ 600
and n = 12. The numbers of discoveries of each method are depicted chronologically in Figure 4,
and Table 2 displays several key summary statistics. Since the t-test barely discovers any stock
throughout the whole procedure, we only present the results for the other three methods in Figure 4.
It is interesting to observe that across different time rolling windows, the testing outcomes of the
WMW-test are relatively stable and time-insensitive. FarmTest, on the other hand, selects much fewer
stocks in the year of 2009, coinciding to some extent with the financial crisis during which the market
volatility is much higher. RmTest typically selects the most stocks, which is partly due to the lack of
FDR control under strong dependency. A major, noticeable impact of dependence is that it results in
clusters of rejections: if a test is rejected, then there are likely to be further rejections for tests that are
highly correlated with this one. This phenomenon is in accord with our simulation results, showing
that FarmTest simultaneously controls the FDR and maintains high power while the other methods
either make too many false discoveries or fail to detect true signals.

Method Mean Std. Dev. Median Min Max

FarmTest 14.477 11.070 12 0 52
WMW-test 10.991 1.005 11 8 12
RmTest 8.147 14.414 3 0 68

Table 2: Summary statistics of the number of discoveries via FarmTest, WMW-test and RmTest between
2008 and 2016 using rolling windows of size 12 (months).

Summary

We provide an R package to implement FarmTest, a flexible large-scale multiple testing method that
is robust against strongly dependent and heavy-tailed data. The factor-adjustment procedure helps
to construct weakly dependent test statistics, and also enhances statistical power by reducing the
signal-to-noise ratio. Moreover, by exploiting the idea of adaptive Huber regression, the testing
procedure is robust against heavy-tailed noise. The efficacy of our package is demonstrated on both
real and simulated datasets.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 401

Bibliography

S. C. Ahn and A. R. Horenstein. Eigenvalue ratio test for the number of factors. Econometrica, 81(3):
1203–1227, 2013. URL https://doi.org/10.3982/ECTA8968. [p394]

J. Bai and K. Li. Statistical analysis of factor models of high dimension. The Annals of Statistics, 40(1):
436–465, 2012. URL https://doi.org/10.1214/11-AOS966. [p391]

J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA Journal of Numerical Analysis,
8(1):141–148, 1988. URL https://doi.org/10.1093/imanum/8.1.141. [p394]

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1):289–300, 1995.
URL https://doi.org/10.1111/j.2517-6161.1995.tb02031.x. [p389]

X. Chen and W.-X. Zhou. Robust inference via multiplier bootstrap. The Annals of Statistics, 2019. URL
https://arxiv.org/abs/1903.07208. [p391]

R. Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance,
1(2):223–236, 2001. URL https://doi.org/10.1080/713665670. [p399]

K. H. Desai and J. D. Storey. Cross-dimensional inference of dependent high-dimensional data.
Journal of the American Statistical Association, 107(497):135–151, 2011. URL https://doi.org/10.
1080/01621459.2011.645777. [p389]

D. Eddelbuettel and R. Francois. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. URL https://doi.org/10.18637/jss.v040.i08. [p389]

D. Eddelbuettel and C. Sanderson. RcppArmadillo: Accelerating R with high-performance C++ linear
algebra. Computational Statistics and Data Analysis, 71:1054–1063, 2014. URL https://doi.org/10.
1016/j.csda.2013.02.005. [p389]

J. Fan and X. Han. Estimation of the false discovery proportion with unknown dependence. Journal of
the Royal Statistical Society: Series B (Methodological), 79(4):1143–1164, 2017. URL https://doi.org/
10.1111/rssb.12204. [p389]

J. Fan, X. Han, and W. Gu. Estimating false discovery proportion under arbitrary covariance de-
pendence. Journal of the American Statistical Association, 107(499):1019–1035, 2012. URL https:
//doi.org/10.1080/01621459.2012.720478. [p389]

J. Fan, Q. Li, and Y. Wang. Estimation of high dimensional mean regression in the absence of symmetry
and light tail assumptions. Journal of the Royal Statistical Society: Series B (Methodological), 79(1):
247–265, 2017. URL https://doi.org/10.1111/rssb.12166. [p391]

J. Fan, Y. Ke, Q. Sun, and W.-X. Zhou. FarmTest: Factor-adjusted robust multiple testing with
approximate false discovery control. Journal of the American Statistical Association, 114(528):1880–
1893, 2019. URL https://doi.org/10.1080/01621459.2018.1527700. [p389, 390, 391, 393]

C. Friguet, M. Kloareg, and D. Causeur. A factor model approach to multiple testing under dependence.
Journal of the American Statistical Association, 104(488):1406–1415, 2009. URL https://doi.org/10.
1198/jasa.2009.tm08332. [p389, 393]

C. Genovese and L. Wasserman. A stochastic process approach to false discovery control. The Annals
of Statistics, 32(3):1035–1061, 2004. URL https://doi.org/10.1214/009053604000000283. [p389]

P. D. Hoff. Simulation of the matrix Bingham–von Mises–Fisher distribution, with applications to
multivariate and relational data. Journal of Computational and Graphical Statistics, 18(2):438–456, 2012.
URL https://doi.org/10.1198/jcgs.2009.07177. [p394]

T. Hothorn, F. Bretz, and P. Westfall. Simultaneous inference in general parametric models. Biometrical
Journal, 50(3):346–363, 2008. URL https://doi.org/10.1002/bimj.200810425. [p390]

P. J. Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1):
73–101, 1964. URL https://doi.org/10.1214/aoms/1177703732. [p391]

Y. Ke, S. Minsker, Z. Ren, Q. Sun, and W.-X. Zhou. User-friendly covariance estimation for heavy-tailed
distributions. Statistical Science, 34(3):454–471, 2019. URL https://doi.org/10.1214/10.1214/19-
STS711. [p390, 391, 394]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.3982/ECTA8968
https://doi.org/10.1214/11-AOS966
https://doi.org/10.1093/imanum/8.1.141
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://arxiv.org/abs/1903.07208
https://doi.org/10.1080/713665670
https://doi.org/10.1080/01621459.2011.645777
https://doi.org/10.1080/01621459.2011.645777
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1111/rssb.12204
https://doi.org/10.1111/rssb.12204
https://doi.org/10.1080/01621459.2012.720478
https://doi.org/10.1080/01621459.2012.720478
https://doi.org/10.1111/rssb.12166
https://doi.org/10.1080/01621459.2018.1527700
https://doi.org/10.1198/jasa.2009.tm08332
https://doi.org/10.1198/jasa.2009.tm08332
https://doi.org/10.1214/009053604000000283
https://doi.org/10.1198/jcgs.2009.07177
https://doi.org/10.1002/bimj.200810425
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/10.1214/19-STS711
https://doi.org/10.1214/10.1214/19-STS711

CONTRIBUTED RESEARCH ARTICLE 402

C. Lam and Q. Yao. Factor modeling for high-dimensional time series: Inference for the number of
factors. The Annals of Statistics, 40(2):694–726, 2012. URL https://doi.org/10.1214/12-AOS970.
[p394]

W. Lan and L. Du. A factor-adjusted multiple testing procedure with application to mutual fund
selections. Journal of Business and Economic Statistics, 37(1):147–157, 2019. URL https://doi.org/10.
1080/07350015.2017.1294078. [p393]

J. T. Leek and J. D. Storey. A general framework for multiple testing dependence. Proceedings of
the National Academy of Sciences of the United States of America, 105(48):18718–18723, 2008. URL
https://doi.org/10.1073/pnas.0808709105. [p389, 392, 393]

E. L. Lehmann and J. P. Romano. Generalizations of the familywise error rate. The Annals of Statistics,
33(3):1138–1154, 2005. URL https://doi.org/10.1214/009053605000000084. [p389]

K. S. Pollard, S. Dudoit, and M. J. van der Laan. Multiple testing procedures: the multtest package and
applications to genomics. Bioinformatics and Computational Biology Solutions Using R and Bioconductor,
Springer, pages 249–271, 2005. URL https://link.springer.com/chapter/10.1007/0-387-29362-
0_15. [p390]

C. Sanderson and R. Curtin. Armadillo: A template-based C++ library for linear algebra. Journal of
Open Source Software, 1(2):26, 2016. URL https://doi.org/10.21105/joss.00026. [p389]

J. Storey. A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B
(Methodological), 64(3):479–498, 2002. URL https://doi.org/10.1111/1467-9868.00346. [p389, 390,
391, 398]

Q. Sun, W.-X. Zhou, and J. Fan. Adaptive Huber regression. Journal of the American Statistical Association,
115(529):254–265, 2020. URL https://doi.org/10.1080/01621459.2018.1543124. [p390, 391]

L. Wang, C. Zheng, W. Zhou, and W.-X. Zhou. A new principle for tuning-free huber regression.
Statistica Sinica, to appear, 2020. URL https://doi:10.5705/ss.202019.0045. [p390, 391, 394]

W.-X. Zhou, K. Bose, J. Fan, and H. Liu. A new perspective on robust M-estimation: Finite sample
theory and applications to dependence-adjusted multiple testing. The Annals of Statistics, 46(5):
1904–1931, 2018. URL https://doi.org/10.1214/17-AOS1606. [p390, 391, 392, 394]

Koushiki Bose, Jianqing Fan
Department of Operations Research and Financial Engineering
Princeton University, Princeton, NJ 08544
USA
koush.bose@gmail.com, jqfan@princeton.edu

Yuan Ke
Department of Statistics
University of Georgia, Athens, GA 30602
USA
Yuan.Ke@uga.edu

Xiaoou Pan, Wen-Xin Zhou
Department of Mathematics
University of California, San Diego, La Jolla, CA 92093
USA
xip024@ucsd.edu, wez243@ucsd.edu

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1214/12-AOS970
https://doi.org/10.1080/07350015.2017.1294078
https://doi.org/10.1080/07350015.2017.1294078
https://doi.org/10.1073/pnas.0808709105
https://doi.org/10.1214/009053605000000084
https://link.springer.com/chapter/10.1007/0-387-29362-0_15
https://link.springer.com/chapter/10.1007/0-387-29362-0_15
https://doi.org/10.21105/joss.00026
https://doi.org/10.1111/1467-9868.00346
https://doi.org/10.1080/01621459.2018.1543124
https://doi:10.5705/ss.202019.0045
https://doi.org/10.1214/17-AOS1606
mailto:koush.bose@gmail.com
mailto:jqfan@princeton.edu
mailto:Yuan.Ke@uga.edu
mailto:xip024@ucsd.edu
mailto:wez243@ucsd.edu

CONTRIBUTED RESEARCH ARTICLE 403

Changes in R 3.6–4.0
by Tomas Kalibera, Sebastian Meyer and Kurt Hornik

Abstract We give a selection of the most important changes in R 4.0.0 and in the R 3.6 release series.
Some statistics on source code commits and bug tracking activities are also provided.

R 4.0.0 selected changes

R 4.0.0 (codename “Arbor Day”) was released on 2020-04-24. The following gives a selection of the
most important changes.

• matrix objects now also inherit from class "array", so e.g., class(diag(1)) is
c("matrix","array"). S3 methods for class "array" are now dispatched for matrix objects.
This reduces the need of code duplication between "array" and "matrix" classes, but invali-
dates code incorrectly assuming that class(matrix_obj)) has length one. In principle, to check
whether an object inherits from (any) class, one should always use inherits() (or is()). See
Martin Maechler’s blog post for more details.

• There is a new syntax for specifying raw character constants similar to the one used in C++:
r"(...)" with ... any character sequence not containing the sequence ‘)"’. This makes it easier
to write strings that contain backslashes and/or both single and double quotes:
r"(c:\Program files\R)" specifies a Windows directory without escaping backslashes.
r"(use both "double" and 'single' quotes)" mixes single and double quotes without
the need to escape either of them. For more details see ?Quotes.

• R now uses a ‘stringsAsFactors = FALSE’ default, and hence by default no longer converts
strings to factors in calls to data.frame() and read.table(). Automatic conversion of strings
to factors regardless of the context of the study at hand seems conceptually wrong. In addition,
when the automatically applied order is lexicographical order, the result is locale dependent
and even so when only ASCII characters are used. Historically, automatic conversions to factors
could have been disabled on demand, but unfortunately that meant that all code dealing with
data frames would have to support both ways. That was not the case, leading to surprising or
unpredictable results. A large number of packages relied on the previous behavior and so have
needed updating. Unlike in the case of matrices being treated as arrays, this was a change to
documented behavior, so even correct package code was affected. See Kurt Hornik’s blog post
for more details.

• Reference counting is now used instead of the NAMED mechanism for determining when objects
can be safely mutated in base C code. This reduces the need for copying in some cases and
should allow further optimizations in the future. It should help make the internal code easier
to maintain. In principle, even the NAMED mechanism was a variant of reference counting, but
a simple one where the number of references could only increase (up to a maximum value).
Even as simple operations as passing an R object (value) to a function that would only read
it would permanently increase the reference count of that object, even after that reading-only
function would return. Any modification of that object later on would require a copy. This
is one of the scenarios fixed by the new mechanism where the reference counts can and often
do decrease as well, so that R knows much more often that some R values are in fact private
and can be modified in place. This change should not impact existing code (does not break
packages) using supported coding practices in C/C++. It has no direct impact on R code other
than performance/memory usage.

• R now has a listening server socket object which allows to accept multiple incoming socket
connections. This simplifies implementation of servers and allows them to accept multiple
connections much faster. The time needed to set up a PSOCK cluster has been reduced using
this new API particularly for clusters with a large number of nodes. See a blog post of Tomas
Kalibera and Luke Tierney for more details.

• S3 method lookup now by default skips the elements of the search path between the global and
base environments, and there is a new function .S3method() to register S3 methods in R scripts.
See Kurt Hornik’s blog post for more details.

• The palette() function has a new default set of colors which are less saturated and have better
accessibility properties. There are also some new built-in palettes, which are listed by the new
palette.pals() function. The new palette.colors() function allows a subset of colors to be
selected from any of the built-in palettes. See a blog post of Achim Zeileis, Paul Murrell, Martin
Maechler, and Deepayan Sarkar for more details.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://developer.r-project.org/Blog/public/2019/11/09/when-you-think-class.-think-again
https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors
https://developer.r-project.org/Blog/public/2020/03/17/socket-connections-update
https://developer.r-project.org/Blog/public/2019/08/19/s3-method-lookup/index.html
https://developer.r-project.org/Blog/public/2019/11/21/a-new-palette-for-r

CONTRIBUTED RESEARCH ARTICLE 404

• The internal implementation of grid units has changed, but the only visible effects at user-
level should be a slightly different print format for some units (especially unit arithmetic),
better performance (for unit operations) and two new functions unitType() and unit.psum().
Packages that were directly accessing elements of the unit implementation needed updating.
See a blog post by Paul Murrell and Thomas Lin Pedersen for more details.

• The support for symbol fonts in cairo-based graphics devices has been improved and one can
now specify which symbol font to use. See Paul Murrell’s blog post for more details.

See https://CRAN.R-project.org/doc/manuals/r-patched/NEWS.html for all changes in the cur-
rent release series of R, which at the time of this writing is R 4.0.z. Overall, there are 156 news entries
for the 4.0.0 release, including 5 significant user-visible changes, 65 new features and 55 bug fixes.

R 3.6.z selected changes

R 3.6.0 (codename “Planting of a Tree”) was released on 2019-04-26 and the R 3.6 series closed with the
release of R 3.6.3 (“Holding the Windsock”) on 2020-02-29, marking the 20th anniversary of the R 1.0.0
release. The following gives a selection of the most important changes in the 3.6 series.

• The default method for generating from a discrete uniform distribution (used in sample(), for
instance) has been changed. This addresses the fact, pointed out by Ottoboni and Stark, that the
previous method made sample() noticeably non-uniform on large populations. See PR#17494
for a discussion. The previous method can be requested using RNGkind() or RNGversion() if
necessary for reproduction of old results. Thanks to Duncan Murdoch for contributing the patch
and Gabe Becker for further assistance.
The output of RNGkind() has been changed to also return the ‘kind’ used by sample().

• Serialization format version 3 becomes the default for serialization and saving of the workspace
(save(), serialize(), saveRDS(), compiler::cmpfile()). Serialized data in format 3 cannot be
read by versions of R prior to version 3.5.0. Serialization format version 2 is still supported and
can be selected by version = 2 in the save/serialization functions. The default can be changed
back for the whole R session by setting environment variables R_DEFAULT_SAVE_VERSION and
R_DEFAULT_SERIALIZE_VERSION to 2. For maximal back-compatibility, files ‘vignette.rds’ and
‘partial.rdb’ generated by R CMD build are in serialization format version 2, and resave by default
produces files in serialization format version 2 (unless the original is already in format version
3). The new serialization format is already supported since R version 3.5.0. It allows compact
representation of ALTREP objects, so that e.g. compact integer sequences are saved as compact.
All elements of such sequence have to be enumerated in format version 2. The new serialization
format also saves the current local encoding at the time of serialization and strings in native
encoding are translated when de-serialized in an R session with different native encoding.

• library() and require() now allow more control over handling search path conflicts when
packages are attached. The policy is controlled by the new conflicts.policy option. See Luke
Tierney’s blog post for more details.

• R now uses staged installation of R packages. A package is first installed into a temporary
library invisible to other R sessions and then moved to the final library location. This reduces
interference due to partially installed packages which has been observed particularly during
parallel installation. See Tomas Kalibera’s blog post for more details.

• New hcl.colors() function to provide wide range of HCL-based color palettes with much
better perceptual properties than the existing RGB/HSV-based palettes like rainbow(). Also
a new hcl.pals() function to list available palette names for hcl.colors(). Contributed by
Achim Zeileis. See blog post of Achim Zeileis and Paul Murrell for more details.

• There are two new options, keep.parse.data and keep.parse.data.pkgs, which control
whether parse data are included into source (source references) when keep.source or
keep.source.pkgs is TRUE. By default, keep.parse.data.pkgs is now FALSE, which changes
previous behavior and significantly reduces space and time overhead when sources are kept
when installing packages. See Tomas Kalibera’s blog post for more details on this and other
performance optimizations in the parser.

• R 3.6.2 has been fixed to pass hidden string length arguments when calling LAPACK from C.
Macros were provided also for packages that call LAPACK directly. This was urgently needed
after a new GNU Fortran release introduced optimizations which caused crashes with code
calling LAPACK (or other Fortran code) the “old way”, yet widely used in numerical software
including CBLAS and LAPACKE itself. GNU Fortran disabled again these optimizations by
default in later releases as a result of these findings. For more details, see Writing R Extensions

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://developer.r-project.org/Blog/public/2020/04/13/changes-to-grid-units
https://developer.r-project.org/Blog/public/2020/04/17/changes-to-symbol-fonts-for-cairo-graphics-devices
https://CRAN.R-project.org/doc/manuals/r-patched/NEWS.html
https://arxiv.org/abs/1809.06520
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17494
https://developer.r-project.org/Blog/public/2019/03/19/managing-search-path-conflicts
https://developer.r-project.org/Blog/public/2019/03/19/managing-search-path-conflicts
https://developer.r-project.org/Blog/public/2019/02/14/staged-install
https://developer.r-project.org/Blog/public/2019/04/01/hcl-based-color-palettes-in-grdevices
https://developer.r-project.org/Blog/public/2019/01/07/parser-speedups
https://CRAN.R-project.org/doc/manuals/r-release/R-exts.html#Fortran-character-strings

CONTRIBUTED RESEARCH ARTICLE 405

and the first and second blog post by Tomas Kalibera on this issue (the changes in R were
implemented and documented by Brian Ripley).

• New pointer protection C functions R_PreserveInMSet and R_ReleaseFromMSet have been
introduced to replace UNPROTECT_PTR, which is not safe to mix with UNPROTECT (and with
PROTECT_WITH_INDEX). Intended for use in parsers only. See Tomas Kalibera’s blog post for
more details.

• S3method() directives in ‘NAMESPACE’ can now also be used to perform delayed S3 method
registration. Again, see Kurt Hornik’s blog post for more details.

See https://CRAN.R-project.org/doc/manuals/r-devel/NEWS.3.html for all changes in the
R 3.y.z releases. Overall, there are 233 news entries for the 3.6.z releases, including 2 significant
user-visible changes, 75 new features and 106 bug fixes.

R 4.0.0 code statistics

From the source code Subversion repository, changes between April 27, 2019 and April 24, 2020, so the
overall code change between R 3.6.0 and R 4.0.0 was: over 24,000 added lines, 12,000 deleted lines
and 900 changed files. This is rounded to thousands/hundreds and excludes changes to common
generated files, partially generated files, bulk re-organizations, etc. (translations, parsers, autoconf,
LAPACK, R Journal bibliography, test outputs).

Figure 1 shows commits by month and weekday, respectively, counting line-based changes in
individual commits, excluding the files as above. A noticeable increase of activity is in March, so right
before code freeze for the release. A secondary peak of the number of commits can be observed in
August. The low amount of changes in July 2019 may be due to conferences and vacations.

C
om

m
its

0

50

100

150

200

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr*

−2000

0

2000

4000

D
el

et
io

ns
 |

In
se

rt
io

ns

C
om

m
its

0

50

100

150

200

250

Mon Tue Wed Thu Fri Sat Sun

−2000

0

2000

4000

D
el

et
io

ns
 |

In
se

rt
io

ns

Figure 1: Commit statistics by month (left) and weekday (right) during R 4.0.0 development. *Note
that the counts for April don’t correspond to a unique month.

R 3.6.0 code statistics

Changes between April 23, 2018 and April 26, 2019, so the overall code change between R 3.5.0 and
R 3.6.0 was: nearly 27,000 added lines, over 17,000 deleted lines and nearly 800 changed files. This is
again rounded to thousands/hundreds and excludes changes to common generated files.

Figure 2 again shows large changes in March before code freeze and in August, and decreased
activity in July during R conferences and usual vacations. The right panel suggests that R Core
members work a lot even during the weekends and it was even more so when working on R 3.6.0 than
on R 4.0.0 (compare Saturday and Wednesday).

R 4.0.0 bugs statistics

Summaries of bug-related activities during the development of R 4.0.0 (from April 27, 2019 to April
24, 2020) were derived from the database underlying R’s Bugzilla system. Figure 3 shows statistics of
reported/closed bugs and number of added comments (on any bug report) by calendar month and
weekday, respectively.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://developer.r-project.org/Blog/public/2019/05/15/gfortran-issues-with-lapack
https://developer.r-project.org/Blog/public/2019/09/25/gfortran-issues-with-lapack-ii/
https://developer.r-project.org/Blog/public/2018/12/10/unprotecting-by-value
https://developer.r-project.org/Blog/public/2019/08/19/s3-method-lookup/index.html
https://CRAN.R-project.org/doc/manuals/r-devel/NEWS.3.html
https://bugs.R-project.org/bugzilla3/

CONTRIBUTED RESEARCH ARTICLE 406

C
om

m
its

0

50

100

150

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr*

−2000

0

2000

4000

D
el

et
io

ns
 |

In
se

rt
io

ns

C
om

m
its

0

50

100

150

200

250

Mon Tue Wed Thu Fri Sat Sun

−4000

−2000

0

2000

4000

6000

D
el

et
io

ns
 |

In
se

rt
io

ns

Figure 2: Commit statistics by month (left) and weekday (right) during R 3.6.0 development. *Note
that the counts for April don’t correspond to a unique month.

N
um

be
r

of
 b

ug
s

0

10

20

30

40

50

60

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr*

New Closed

N
um

be
r

of
 c

om
m

en
ts

0

50

100

150

200

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr*

N
um

be
r

of
 b

ug
s

0

10

20

30

40

50

60

Mon Tue Wed Thu Fri Sat Sun

New Closed

N
um

be
r

of
 c

om
m

en
ts

0

50

100

150

200

Mon Tue Wed Thu Fri Sat Sun

Figure 3: Bug tracking activity by month (left) and weekday (right) during R 4.0.0 development. *Note
that the counts for April don’t correspond to a unique month.

Comments are added by reporters of the bugs, R Core members and external volunteers. When
a bug report is closed, the bug is either fixed or the report is found invalid. In principle, this can
happen multiple times for a single report, but those cases are rare. Hence the number of comments is
a measure of effort (yet a coarse one which does not distinguish thorough analyses from one-liners)
and the number of bug closures is a measure of success in dealing with bugs.

The numbers were impacted by an increase in external contributions to analyzing bugs following
a blog post of Tomas Kalibera and Luke Tierney, published October 9, 2019, asking the R community
for help, and to contribute those analyzes in the form of comments to R bug reports. There was a
considerable increase of comments in October which has lasted (at least) until April. Note that the
April numbers don’t cover a full month and are mostly from the 24 days of R 4.0 development in 2020,
so after the blog post (4 days are from April 2019). The rate of closing bugs has increased as well since
October. What the numbers don’t show is that this is also due to increased activity of R Core that
followed increased input from external volunteers. The numbers also seem to suggest that even new
bug reports are submitted at a higher rate once more external volunteers focus on analyzing bugs in R.

From the numbers by weekday in the right panel of Figure 3 we again see that the R community
keeps working during the weekends.

R 3.6.0 bugs statistics

Figure 4 summarizes bug tracking activities during the development of R 3.6.0 (from April 23, 2018 to
April 26, 2019). The decline observed in coding activity in July does not exist in bug-related activities;
the number of closed bugs actually peaked in July.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://developer.r-project.org/Blog/public/2019/10/09/r-can-use-your-help-reviewing-bug-reports

CONTRIBUTED RESEARCH ARTICLE 407

N
um

be
r

of
 b

ug
s

0

10

20

30

40

50

60

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr*

New Closed

N
um

be
r

of
 c

om
m

en
ts

0

50

100

150

200

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr*

N
um

be
r

of
 b

ug
s

0

10

20

30

40

50

60

Mon Tue Wed Thu Fri Sat Sun

New Closed

N
um

be
r

of
 c

om
m

en
ts

0

50

100

150

200

Mon Tue Wed Thu Fri Sat Sun

Figure 4: Bug tracking activity by month (left) and weekday (right) during R 3.6.0 development. *Note
that the counts for April don’t correspond to a unique month. For comparison with R 4.0.0, the y-axes
use the same scales as in Figure 3.

Acknowledgements

Tomas Kalibera’s work on the article and R development has received funding from the Czech Ministry
of Education, Youth and Sports from the Czech Operational Programme Research, Development, and
Education, under grant agreement No.CZ.02.1.01/0.0/0.0/15_003/0000421, and the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation programme,
under grant agreement No. 695412.

Tomas Kalibera
Czech Technical University, Czech Republic
Tomas.Kalibera@R-project.org

Sebastian Meyer
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
seb.meyer@fau.de

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:Tomas.Kalibera@R-project.org
mailto:seb.meyer@fau.de
mailto:Kurt.Hornik@R-project.org

CONTRIBUTED RESEARCH ARTICLE 408

Changes on CRAN
2020-09-01 to 2020-12-31

by Kurt Hornik, Uwe Ligges and Achim Zeileis

In the past 4 months, 818 new packages were added to the CRAN package repository. 100
packages were unarchived and 248 were archived. The following shows the growth of the
number of active packages in the CRAN package repository:

2000 2005 2010 2015 2020

0
50

00
10

00
0

15
00

0

Number of CRAN Packages

2000 2005 2010 2015 2020

50
10

0
20

0
50

0
10

00
20

00
50

00
10

00
0

Number of CRAN Packages (Log−Scale)

On 2020-12-31, the number of active packages was around 16851.

Changes in the CRAN Repository Policy

The Policy now says the following:

• For R version 4.0 or later (hence a version dependency is required or only conditional
use is possible), packages may store user-specific data, configuration and cache files in
their respective user directories obtained from tools::R_user_dir(), provided that
by default sizes are kept as small as possible and the contents are actively managed
(including removing outdated material).

• Security provisions must not be cicrumvented, for example by not verifying SSL
certificates.

• Downloads of additional [.] For downloads of more than a few MB, ensure
that a sufficiently large timeout is set.

• For a package update, please check that any packages depending on this one
still pass R CMD check: [.] If possible, check reverse strong depen-
dencies, reverse suggests and the recursive strong dependencies of these (by
tools::package_dependencies(reverse = TRUE, which = "most", recursive =
"strong")).

The CRAN URL checks info now says

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/URL_checks.html

CONTRIBUTED RESEARCH ARTICLE 409

• The CRAN submission checks run by R CMD check --as-cran check the availabil-
ity of URLs in files including ‘DESCRIPTION’, ‘CITATION’, ‘NEWS.Rd’, ‘NEWS.md’,
‘README.md’, and the ‘.Rd’ help pages and HTML files in ‘inst/doc’.

• A surprisingly large number of websites use redirection and the issues may apply to
a site redirected to. [.] Where redirection is permanent you should use the
redirected URL (see RFC 7231).

CRAN package submissions

CRAN mirror security

Currently, there are 104 official CRAN mirrors, 77 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

New packages in CRAN task views

Bayesian BGVAR, LAWBL, bayestestR, blavaan, loo.

Cluster FCPS, crimCV.

Distributions CaDENCE, DPQ, Distributacalcul, ForestFit, MPS, NonNorMvtDist, Pois-
sonBinomial, QBAsyDist, ROOPSD, betafunctions, cort, dgumbel, distributional,
distributionsrd, elfDistr, ggamma, mniw, scModels, tvgeom.

Econometrics NNS.

Finance FFdownload, bmgarch, garchx, simfinapi.

FunctionalData FDboost∗, fdaoutlier, refund∗.

Genetics SNPassoc.

HighPerformanceComputing flexiblas.

Hydrology weathercan.

MachineLearning mlr3proba.

MetaAnalysis boot.heterogeneity, clubSandwich, concurve, estimraw, gemtc, metabolic,
multinma.

MissingData SNPassoc.

OfficialStatistics reclin.

Optimization irace, qpmadr.

Psychometrics EstimateGroupNetwork, LAWBL, betafunctions, cops.

ReproducibleResearch ascii, flextable, flowr, groundhog, liftr, mschart, officer, openxlsx,
readODS, switchr, trackr, tth, worcs, xaringan, zoon.

Robust rlme.

TeachingStatistics bivariate.

TimeSeries FKF.SP, FoReco, RobKF, TSA, TSdist, breakfast, diffusion, fredr, greybox,
ifultools, modeltime, modeltime.ensemble, mssm, portes, readabs, tfarima, tsib-
bletalk, tsutils.

WebTechnologies Rlinkedin, ipaddress, rdrop2.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://tools.ietf.org/html/rfc7231#section-6.4.2
https://CRAN.R-project.org/view=Bayesian
https://CRAN.R-project.org/package=BGVAR
https://CRAN.R-project.org/package=LAWBL
https://CRAN.R-project.org/package=bayestestR
https://CRAN.R-project.org/package=blavaan
https://CRAN.R-project.org/package=loo
https://CRAN.R-project.org/view=Cluster
https://CRAN.R-project.org/package=FCPS
https://CRAN.R-project.org/package=crimCV
https://CRAN.R-project.org/view=Distributions
https://CRAN.R-project.org/package=CaDENCE
https://CRAN.R-project.org/package=DPQ
https://CRAN.R-project.org/package=Distributacalcul
https://CRAN.R-project.org/package=ForestFit
https://CRAN.R-project.org/package=MPS
https://CRAN.R-project.org/package=NonNorMvtDist
https://CRAN.R-project.org/package=PoissonBinomial
https://CRAN.R-project.org/package=PoissonBinomial
https://CRAN.R-project.org/package=QBAsyDist
https://CRAN.R-project.org/package=ROOPSD
https://CRAN.R-project.org/package=betafunctions
https://CRAN.R-project.org/package=cort
https://CRAN.R-project.org/package=dgumbel
https://CRAN.R-project.org/package=distributional
https://CRAN.R-project.org/package=distributionsrd
https://CRAN.R-project.org/package=elfDistr
https://CRAN.R-project.org/package=ggamma
https://CRAN.R-project.org/package=mniw
https://CRAN.R-project.org/package=scModels
https://CRAN.R-project.org/package=tvgeom
https://CRAN.R-project.org/view=Econometrics
https://CRAN.R-project.org/package=NNS
https://CRAN.R-project.org/view=Finance
https://CRAN.R-project.org/package=FFdownload
https://CRAN.R-project.org/package=bmgarch
https://CRAN.R-project.org/package=garchx
https://CRAN.R-project.org/package=simfinapi
https://CRAN.R-project.org/view=FunctionalData
https://CRAN.R-project.org/package=FDboost
https://CRAN.R-project.org/package=fdaoutlier
https://CRAN.R-project.org/package=refund
https://CRAN.R-project.org/view=Genetics
https://CRAN.R-project.org/package=SNPassoc
https://CRAN.R-project.org/view=HighPerformanceComputing
https://CRAN.R-project.org/package=flexiblas
https://CRAN.R-project.org/view=Hydrology
https://CRAN.R-project.org/package=weathercan
https://CRAN.R-project.org/view=MachineLearning
https://CRAN.R-project.org/package=mlr3proba
https://CRAN.R-project.org/view=MetaAnalysis
https://CRAN.R-project.org/package=boot.heterogeneity
https://CRAN.R-project.org/package=clubSandwich
https://CRAN.R-project.org/package=concurve
https://CRAN.R-project.org/package=estimraw
https://CRAN.R-project.org/package=gemtc
https://CRAN.R-project.org/package=metabolic
https://CRAN.R-project.org/package=multinma
https://CRAN.R-project.org/view=MissingData
https://CRAN.R-project.org/package=SNPassoc
https://CRAN.R-project.org/view=OfficialStatistics
https://CRAN.R-project.org/package=reclin
https://CRAN.R-project.org/view=Optimization
https://CRAN.R-project.org/package=irace
https://CRAN.R-project.org/package=qpmadr
https://CRAN.R-project.org/view=Psychometrics
https://CRAN.R-project.org/package=EstimateGroupNetwork
https://CRAN.R-project.org/package=LAWBL
https://CRAN.R-project.org/package=betafunctions
https://CRAN.R-project.org/package=cops
https://CRAN.R-project.org/view=ReproducibleResearch
https://CRAN.R-project.org/package=ascii
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=flowr
https://CRAN.R-project.org/package=groundhog
https://CRAN.R-project.org/package=liftr
https://CRAN.R-project.org/package=mschart
https://CRAN.R-project.org/package=officer
https://CRAN.R-project.org/package=openxlsx
https://CRAN.R-project.org/package=readODS
https://CRAN.R-project.org/package=switchr
https://CRAN.R-project.org/package=trackr
https://CRAN.R-project.org/package=tth
https://CRAN.R-project.org/package=worcs
https://CRAN.R-project.org/package=xaringan
https://CRAN.R-project.org/package=zoon
https://CRAN.R-project.org/view=Robust
https://CRAN.R-project.org/package=rlme
https://CRAN.R-project.org/view=TeachingStatistics
https://CRAN.R-project.org/package=bivariate
https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/package=FKF.SP
https://CRAN.R-project.org/package=FoReco
https://CRAN.R-project.org/package=RobKF
https://CRAN.R-project.org/package=TSA
https://CRAN.R-project.org/package=TSdist
https://CRAN.R-project.org/package=breakfast
https://CRAN.R-project.org/package=diffusion
https://CRAN.R-project.org/package=fredr
https://CRAN.R-project.org/package=greybox
https://CRAN.R-project.org/package=ifultools
https://CRAN.R-project.org/package=modeltime
https://CRAN.R-project.org/package=modeltime.ensemble
https://CRAN.R-project.org/package=mssm
https://CRAN.R-project.org/package=portes
https://CRAN.R-project.org/package=readabs
https://CRAN.R-project.org/package=tfarima
https://CRAN.R-project.org/package=tsibbletalk
https://CRAN.R-project.org/package=tsibbletalk
https://CRAN.R-project.org/package=tsutils
https://CRAN.R-project.org/view=WebTechnologies
https://CRAN.R-project.org/package=Rlinkedin
https://CRAN.R-project.org/package=ipaddress
https://CRAN.R-project.org/package=rdrop2

CONTRIBUTED RESEARCH ARTICLE 410

gR spectralGraphTopology.

(* = core package)

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Uwe Ligges
TU Dortmund, Germany
Uwe.Ligges@R-project.org

Achim Zeileis
Universität Innsbruck, Austria
Achim.Zeileis@R-project.org

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/view=gR
https://CRAN.R-project.org/package=spectralGraphTopology
mailto:Kurt.Hornik@R-project.org
mailto:Uwe.Ligges@R-project.org
mailto:Achim.Zeileis@R-project.org

CONTRIBUTED RESEARCH ARTICLE 411

News from the Bioconductor Project
by Bioconductor Core Team

Bioconductor provides tools for the analysis and comprehension of high-throughput ge-
nomic data. Bioconductor 3.12 was released on 28 October, 2020. It is compatible with R 4.0.3
and consists of 1974 software packages, 398 experiment data packages, 968 up-to-date anno-
tation packages, and 28 workflows. Books are a new addition, built regularly from source
and therefore fully reproducible; an example is the community-developed Orchestrating
Single-Cell Analysis with Bioconductor.

The Bioconductor 3.12 release announcement includes descriptions of 125 new soft-
ware packages, and updates to NEWS files for many additional packages. Start using
Bioconductor by installing the most recent version of R and evaluating the commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker images provides a very effective on-ramp for power users to rapidly obtain access to
standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.

• A list of available software, linking to pages describing each package.

• A question-and-answer style user support site and developer-oriented mailing list.

• A community slack (sign up) for extended technical discussion.

• The F1000Research Bioconductor channel for peer-reviewed Bioconductor work flows.

• The Bioconductor YouTube channel includes recordings of keynote and talks from
recent conferences including BioC 2020 and BioC Asia 2020, in addition to video
recordings of training courses and developer forums.

• Our package submission repository for open technical review of new packages.

Recent Bioconductor conferences include BioC2020 (July 27-31), BioC Asia 2020 (October
15-18), and the European Bioconductor Meeting (December 14-18). Each had invited and
contributed talks, as well as workshops and other sessions to enable community participa-
tion. Slides, videos, and workshop material for each conference are available on conference
web sites as well as the Courses and Conferences section of the Bioconductor web site. BioC
2021 is planned for August 4-6, with an abstract submission due date of March 9; the virtual
conference will be augmented by in-person activities if global health permits.

The Bioconductor project continues to mature as a community. The Technical and
Community Advisory Boards provide guidance to ensure that the project addresses leading-
edge biological problems with advanced technical approaches, and adopts practices (such
as a project-wide Code of Conduct) that encourages all to participate. We look forward to
welcoming you!

Bioconductor Core Team
Biostatistics and Bioinformatics
Roswell Park Comprehensive Cancer Center, Buffalo, NY
USA maintainer@bioconductor.org

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://bioconductor.org
https://bioconductor.org/books/release/
https://bioconductor.org/books/release/OSCA/
https://bioconductor.org/books/release/OSCA/
https://bioconductor.org/news/bioc_3_12_release/
https://www.bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html
https://bioconductor.org/help/docker/
https://bioconductor.org
https://bioconductor.org/packages
https://support.bioconductor.org
https://stat.ethz.ch/mailman/listinfo/bioc-devel
https://bioc-community.herokuapp.com/
https://f1000research.com/channels/bioconductor
https://www.youtube.com/user/bioconductor
https://github.com/Bioconductor/Contributions
https://bioc2020.bioconductor.org
https://biocasia2020.bioconductor.org/
https://eurobioc2020.bioconductor.org/
http://bioconductor.org/help/course-materials/
https://bioc2021.bioconductor.org/
https://bioc2021.bioconductor.org/
https://bioconductor.org/about/technical-advisory-board/
https://bioconductor.org/about/community-advisory-board/
https://bioconductor.org/about/code-of-conduct/
mailto:maintainer@bioconductor.org

CONTRIBUTED RESEARCH ARTICLE 412

R Foundation News
by Torsten Hothorn

Donations and members

Membership fees and donations received between 2020-09-09 and 2021-01-28.

Donations

WordPress Hosting Buddy (United States) b-data GmbH (Switzerland) JBL Digital Marketing
(Australia) Essex Bricklayers (United Kingdom) Jacopo Cerri (Italy) Vancouver Drafting
(Canada) The R Conference (United States) Lander Analytics (United States) The New
York Open Statistical Programming Meetup (United States) RV Detailing Pros of San Diego
(United States) Maple Ridge Handyman (Canada) Burnaby Handyman (Canada) Roger
Koenker (United Kingdom) Oleg V Kolesnikov (Ukraine) Bulk CBD Providers (United
States) Metal Roofing San Antonio (United States) Minato Nakazawa (Japan) Rashid Nassar
(United States) Appstam Consulting GmbH (Germany) Careful Movers (United States) San
Diego Piano Moving (United States) Bathroom Remodel Dayton (United States) Nursing
Home Vancouver (United States) Clearwater Roofing (United States) Clearwater Windows
(United States) Tree Service Brandon (United States) Jacksonville Pavers (United States)
Tampe Tree (United States) Fast Movers Tampa (United States) Allen’s Tree Works (United
States) Steve Smith (United States) Maple Ridge Tree Service (Canada) Rav Vaid (United
States) Merck Research Laboratories, Kenilwort (United States) Statistik Aargau, Aarau
(Switzerland)

Supporting benefactors

www.5slotsites.com , Alderley Edge (United Kingdom)

Supporting institutions

Code Ocean, New York (United States) Ef-prime, Inc., 日本橋茅場町 (Japan) Institute of
Botany of the Czech Academy of Sciences, Pruhonice (Czechia)

Supporting members

Tim Appelhans (Germany) Christopher Beltz (United States) Gordon Blunt (United King-
dom) Gilberto Camara (Brazil) Susan M Carlson (United States) Cédric Chambru (Switzer-
land) Michael Chirico (United States) Tom Clarke (United Kingdom) Terry Cox (United
States) Robin Crockett (United Kingdom) Robert Daly (Australia) Gergely Daroczi (Hun-
gary) Jasja Dekker (Netherlands) Fraser Edwards (United Kingdom) Dane Evans (United
States) Isaac Florence (United Kingdom) Neil Frazer (United States) Huancheng Fu (China)
Keita Fukasawa (Japan) Sven Garbade (Germany) Eduardo García Galea (Spain) Anne
Catherine Gieshoff (Switzerland) Brian Gramberg (Netherlands) Spencer Graves (United
States) Krushi Gurudu (United States) Hlynur Hallgrímsson (Iceland) Joe Harwood (United
Kingdom) Bela Hausmann (Austria) BaoGiang HoangVu (Vietnam) Lorenzo Isella (Bel-
gium) Sebastian Jeworutzki (Germany) Grant Joslin (United States) June Kee Kim (Korea,
Republic of) Miha Kosmac (United Kingdom) Daniel Krüerke (Switzerland) Jan Herman
Kuiper (United Kingdom) Luca La Rocca (Italy) Mauro Lepore (United States) Chin Soon
Lim (Singapore) Joseph Luchman (United States) Sharon Machlis (United States) Daniel
McNichol (United States) Bogdan-Alexandru Micu (Luxembourg) Jairo Montenegro Arjona
(Colombia) Guido Möser (Germany) yoshinobu nakahashi (Japan) Maciej Nasinski (Poland)
Tilers in Nottingham (United Kingdom) Bernard Offman (France) Berk Orbay (Turkey) Dan
Orsholits (Switzerland) George Ostrouchov (United States) Antonio Paez (Canada) Peter

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 413

Perez (United States) Elgin Perry (United States) jared peterson (United States) Kem Phillips
(United States) Fergus Reig Gracia (Spain) Ingo Ruczinski (United States) Choonghyun Ryu
(Korea, Republic of) Pieta Schofield (United Kingdom) Dejan Schuster (Germany) Jagat Sheth
(United States) Rachel Smith-Hunter (United States) Gerardo Soto-Campos (United States)
Tobias Strapatsas (Germany) Robert Szabo (Sweden) Ville Tenhunen (Netherlands) Con
Tumass-o’Pool (Australia) Uku Vainik (Estonia) Marcus Vollmer (Germany) Jaap Walhout
(Netherlands) Sandra Ware (Australia) Lim Zhong Hao (Singapore)

Torsten Hothorn
Universität Zürich, Switzerland Torsten.Hothorn@R-project.org

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:Torsten.Hothorn@R-project.org

CONTRIBUTED RESEARCH ARTICLE 414

News from the Forwards Taskforce
by Heather Turner

Forwards is an R Foundation taskforce working to widen the participation of under-
represented groups in the R project and in related activities, such as the useR! conference.
This report rounds up activities of the taskforce during the second half of 2020.

useR! 2020 breakout session: Supporting diversity in the R community

In this breakout session at useR! 2020, a panel shared their experience as members of
marginalized groups or as allies, then responded to Q&A from useR! participants. The panel
was chaired by Laura Ación (LatinR co-founder) and Shelmith Kariuki (AfricaR co-founder),
and the panelists were Yanina Bellini Saibene (R-Ladies Global Team and LatinR co-founder),
Laís Carvalho (Python Ireland board member), Richard Ngamita (KampalaR founder and
Forwards Community Team member), Danielle Smalls-Perkins (MiR co-founder), Robin
Williams (Blind R User Group member), and Greg Wilson (Software Carpentry co-founder
and Education team member at RStudio).

The panel discussed a range of barriers to participation, such as language barriers,
limited access to education and conferences, specific challenges faced by visually impaired
folk and feelings of isolation due to location or identity. They highlighted some positive
steps the R community has made to promote inclusion, for example, founding groups
such as Forwards, R-Ladies, AfricaR, MiR and the Blind R User Group; offering diversity
scholarships at R conferences and developing technical solutions to improve accessibility.
However, the panel also raised the need for greater inclusion of people from minority
groups in decision-making and for accessibility to be at the centre of R development and
R community events. Allies were recommended to work closely with affinity groups and
to base actions on established research, for example following the Ally Skills Workshop
(material available under CC BY-SA 4.0). Further suggestions made in the Q&A included
offering more tutorials/materials in languages other than English, subtitling videos and
offering live streaming.

The full video of the session is available on YouTube with live chat replay. This session
was organized by Forwards members Damiano Cerasuolo, Jonathan Godfrey, Liz Hare,
Tatjana Kecojevic, Imke Mayer, Kevin O’Brien, Noa Tamir and Heather Turner.

R Contribution Working Group

Partly in response to the useR! breakout session, Forwards established a group to work on
initiatives to encourage new contributors to R core, with a focus on diversity and inclusion.
The R Contribution Working Group is open to anyone interested in working towards this
goal and representatives from R Core, the R Foundation, Forwards, R-Ladies, MiR, the R
Consortium Diversity and Inclusion Working Group, as well as members of the general R
community have joined in. The group has met every 1-2 months since July 2020, alternating
between the second Friday of the month, 15:00 UTC and the second Tuesday of the month,
21:00 UTC.

The group recently created the R Contribution Site to host information for people inter-
ested in contributing to R core, which has information on a Slack group that people can join
to discuss related issues and support each other in progressing as R contributors. Other
initiatives include planning contributor-focused events for useR! 2021. Minutes of meetings
and work in progress is gathered in the public rcontribution repository on Forwards GitHub.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://forwards.github.io/
https://latin-r.com/
https://africa-r.org/
https://rladies.org/
https://www.meetup.com/Kampala-R-Users-Group/
https://www.mircommunity.com/
https://www.nfbnet.org/mailman/listinfo/blindrug_nfbnet.org
https://frameshiftconsulting.com/ally-skills-workshop/
https://youtu.be/gDO1OphmF5Q
https://forwards.github.io/rcontribution/
https://github.com/forwards/rcontribution

CONTRIBUTED RESEARCH ARTICLE 415

Introduction to R Workshop, Lomé, Togo

A 2-day Introduction to R workshop in Lomé, Togo, was held on 16-17 December 2020. The
workshop was organized by Anicet Ebou, a member of the AfricaR leadership team based
in Ivory Coast. The objective was to introduce people to R and plant the seeds for a local R
User Group (as far as we are aware, there is no R-related meetup in Togo). The workshop
was co-taught by Audrey Addablah, a leader of Abidjan R User Group (Ivory Coast) and
supported by the Why R? Foundation and the R Consortium, as well as Forwards and
AfricaR.

Figure 1: Anicet Ebou (left) and Audrey Addablah (right) teaching at the workshop in Lomé, Togo

Audrey and Anicet introduced the workshop participants to handling and visualising
data in R. More than 20 people attended the event, including students and professionals
from a range of sectors. The participants showed a real interest and we are hopeful that
training will continue online and in person in future months.

Latin America Survey

Paola Corrales and Claudia Huaylla joined the Forwards survey team to collaborate on a
survey of R users that were born or currently live in Latin America. The survey received
close to 1000 responses and they are currently working with other Latin American R users
to analyse the results, with a view to report further in 2021.

Package Development Modules

The teaching team have been working on modularizing the Forwards package development
workshop materials (developed under a grant from the R Consortium to run Workshops for
Women and Girls). Emma Rand and Mine Çetinkaya-Rundel plan to teach the first three
modules online, February 1-3, 2021, at 14:30-15:30 UTC each day. You can register for the
modules on eventbrite: Packages in a nutshell, Setting up your system, Your first package!.

Changes in Membership

New members

We welcome the following members to the taskforce:

• Community team: s gwynn sturdevant.

• Conferences team: Miljenka Vuko, Becca Wilson.

• On-ramps team: Jyoti Bhogal, Michael Chirico, Maya Gans, Saranjeet Kaur Bhogal.

• Social media team: Maria Prokofieva.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://forwards.github.io/blog/2019/09/22/workshops-for-women-and-girls/
https://forwards.github.io/blog/2019/09/22/workshops-for-women-and-girls/
https://www.eventbrite.co.uk/e/r-forwards-package-development-module-packages-in-a-nutshell-tickets-132109351627
https://www.eventbrite.co.uk/e/r-forwards-package-development-module-setting-up-your-system-tickets-132115790887
https://www.eventbrite.co.uk/e/r-forwards-package-development-module-your-first-package-tickets-132115738731

CONTRIBUTED RESEARCH ARTICLE 416

• Surveys team: Pavitra Chakravarty, Paola Corrales, Claudia Huaylla, Anna Vasylytsya
(co-leader).

• Teaching team: Mine Çetinkaya-Rundel (co-leader).

Previous members

The following members have stepped down:

• Conferences team: Jesse Mostipak.

• On-ramps team: Zhian N. Kamvar, Charlotte Wickham.

• Social media team: David Smith.

• Teaching team: Angela Li (co-leader), Dorris Scott.

We thank them for their contribution to the taskforce.

Heather Turner
University of Warwick, UK
Heather.Turner@R-project.org

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:Heather.Turner@R-project.org

CONTRIBUTED RESEARCH ARTICLE 417

e-Rum2020: how we turned a physical
conference into a successful virtual event
by Mariachiara Fortuna, Francesca Vitalini, Mirko Signorelli1, Emanuela Furfaro, Federico Marini,
Gert Janssenswillen, Riccardo Porreca, Riccardo L. Rossi, Andrea Guzzo, Roberta Sirovich, Andrea
Melloncelli, Lorenzo Salvi, Serena Signorelli, Filippo Chiarello

Abstract The European R Users Meeting 2020 (e-Rum2020) was a conference that was held virtually in
June 2020. Originally, e-Rum2020 had been planned as a physical event to be held in Milano. However,
the spread of the COVID-19 pandemic and the declaration of a nationwide lockdown induced the
Organizing Committee to fully rethink the event, and to turn it into a live virtual conference. In this
article, we describe the challenges that we encountered during the organization of e-Rum2020, and
how we reacted to them. In doing so, we aim to provide future conference organizers with useful
information on how to organize a successful virtual conference, and even to turn a physical conference
into a virtual meeting on a relatively short notice.

Introduction

The European R Users Meeting (eRum) is a series of international conferences that aims to bring
together members of the R Community from all over Europe. Hallmarks of this conference are its
openness to both the academic and the business world, and low registration fees that aim to minimize
the financial burden required to attend the conference.

The first two editions of eRum, eRum2016 and eRum2018, were hosted in Poznan, Poland, in
October 2016 (Beresewicz et al., 2017), and in Budapest, Hungary, in May 2018 (Daróczi, 2018). The
third edition of eRum, eRum2020, was originally planned to be held in Milano, Italy, in May 2020.
The organization of the 2020 conference was already at an advanced stage in February 2020, when
the outburst of the COVID-19 pandemic in Northern Italy casted serious doubts on the possibility to
hold a physical event in Milano in the upcoming months. After evaluating several alternative options,
the Organizing Committee took the decision to turn the event into a free virtual conference to be held
from June 17 to June 20, 2020. To mark this change into a virtual event, the 2020 edition was renamed
e-Rum2020.

The organization of an international conference typically requires the collaboration and coordina-
tion of several professionals, as well as continuous interactions with many stakeholders and service
providers. If organizing a conference can already be considered a challenging experience itself, having
to quickly turn a physical meeting into a virtual conference in the very middle of a pandemic and of
an unprecedented lockdown posed additional, unforeseen organizational challenges.

With this article we would like not only to report how e-Rum2020 went, but also to describe the
challenges that we encountered during the organization of the conference, and how we reacted to
them. In doing so, we aim to provide future conference organizers with useful information on how to
organize a successful virtual conference, and even to turn a physical conference into a virtual meeting
on a relatively short notice.

Pre-pandemic arrangements

The original plan was to hold eRum2020 at two universities located in Milano, Italy. The first three
days (May, 27th-29th) of the conference would have been hosted by the Università degli Studi di
Milano-Bicocca, and the last day (May, 30th), dedicated to workshops, by the Politecnico di Milano. We
planned a maximum capacity of 900 participants for the event. The conference would have included a
social event that was going to take place at a facility located in Sempione Park, a park in the historical
centre of Milano, next to the Sforza Castle.

To facilitate attendance from professionals with parenting responsibilities, at both venues we had
arranged a childcare service for kids aged 2-8 years old. An open call for travel grants was published,
resulting in 60 applications. A selection committee reviewed the applications and selected 10 awardees
based on criteria such as financial need, potential career and development prospects, and expected
community impact.

1Corresponding author

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 418

Decision to go virtual

In February 2020, Italy was the first European country to be hit by the COVID-19 pandemic, with initial
outbreaks right in Northern Italy, a few kilometers away from Milano. At that time, the conference
organization was already at a fairly advanced stage. In addition to having set the location (including
catering facilities, childcare, social event, etc), the scientific program was also being finalised: we
had already closed the call for contributions (which received about 220 submissions), we were in the
process of notifying authors of accepted contributions, keynote and invited speakers, and we had
already sold about 100 tickets. Sixteen between sponsors and organizing partners had signed up for
specific sponsorship packages that relied on physical presence, interaction and visibility during the
event.

All throughout February and March, we closely monitored the pandemic situation. We organized
weekly meetings to discuss the steps to take based on the daily evolution of the containment measures
and of the spread of COVID-19 itself. We initially considered three alternatives: (1) cancelling
eRum2020, (2) postponing it, or (3) turning the event into a virtual conference. While we were
preparing for the second option, Italy was becoming the first country to progressively implement a
nationwide lockdown amid COVID-19, and the pandemic was hitting more and more countries. The
uncertainty around the possibility of organizing large gatherings by the end of 2020 was growing,
and postponing the event was becoming too much of a risk: hence, on April 6th we announced to
our sponsors and organizing partners the intention of turning eRum2020 into an online conference
(e-Rum2020) and of postponing the event by three weeks to allow more time to re-adjust the format.

Up until that moment, the conference had been completely conceived as an in-person meeting,
with several arrangements driven by the pursuit of interaction and conviviality. Switching to an online
format was the best choice to preserve the work that we had done, but it also meant additional work to
completely rethink the event, and it required some courage to dismantle the old conference structure
that we had been working on for a year. In rethinking e-Rum2020, we strived to provide a virtual
experience that could be as close as possible to the physical one, and to make the transition as smooth
as possible, living up to the expectations of sponsors, speakers and attendees.

While buying time for re-organizing the format and exploring online conferencing platforms, we
needed to keep the attention high and the possible audience engaged. We therefore increased the
presence of e-Rum2020 on social media (generating additional contents and creating a dedicated
YouTube channel) and organized a contest featuring applications of R to data on the COVID-19
pandemic (CovidR contest). We adapted the sponsorship package to the new format by replacing
those benefits that required physical interaction (e.g., physical sponsors’ booths during the event)
with virtual equivalents. Additional visibility was offered through social media, online pre-conference
activities and virtual banners, and we also included the possibility of organizing virtual recruiting
sessions. Given the reduced costs that the virtual event entailed, we cancelled the registration fees,
turning e-Rum2020 in an event free of charge. We refunded previously purchased tickets, and reduced
the cost of sponsorship packages.

Following our “as close as possible to physical" principle, we decided that all talks were going to
be presented live, with Q&A sessions tailored to the different types of talks. In order to make up for
the absence of in-person interaction, we also decided to have dedicated networking areas and to add
yoga sessions at the beginning and at the end of each day. In a few days, we realised that the online
format was actually a great opportunity to come up with new ideas, and that we could leverage it to
bring the conference to a worldwide reach.

In the remainder of the article, we present the technical solutions that we adopted for the virtual
conference, the promotion strategy that we implemented to increase the reach of e-Rum2020, and the
organization and contents of e-Rum2020’s scientific program.

Technical solutions

A primary challenge in the organization of the virtual conference was the identification of technological
solutions that could be used to connect participants throughout the event. After comparing several
alternative services, we chose to resort to an online conferencing platform called Hopin (https:
//hopin.to). This choice was made because Hopin could efficiently recreate the spaces of a live
conference in digital format (reception area, main stage, parallel sessions, sponsors booths, etc). Key
factors that motivated our choice were the possibility to hold all sessions live, to have dedicated spaces
for both plenary events and parallel sessions, and networking spaces that made interactions between
speakers, attendees and sponsors possible.

The conference platform, however, was not the only technological tool needed to provide a
smooth conferencing experience. We soon realized that none of the available conferencing platforms,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://hopin.to
https://hopin.to

CONTRIBUTED RESEARCH ARTICLE 419

including Hopin, could provide us with a fully comprehensive set of tools, and therefore we decided
to complement it with additional tools.

For example, a limitation of Hopin was the lack of a system to communicate effectively “behind the
scenes”. To address this problem, we created a Slack channel to manage backstage communications
between staff members, speakers and session chairs, and to provide the attendees with technical
support. We also decided to manage the Q&A of keynote sessions with sli.do, and to stream part of
the event live on YouTube. We used Voicemod to launch applauses and other sounds during the live
streaming, and restream.io to handle breaking times and slideshows in the YouTube streaming.

An essential part of this technological setup was the need to explain how it would have worked,
and test it with our staff, speakers and session chairs. Four mock events were held with the Organizing
Committee members to check that the setup was functional and could accommodate our ideas.
Furthermore, we decided to hold a pre-conference event, called CovidR, that was used as dry-run for
the event platform, structure and backstage communication tools (we will come back to CovidR in a
later section). We wrote a set of guides with detailed instructions for speakers, sponsors and sessions
chairs. Lastly, we organized speaker tests to train speakers and session chairs. These tests proved
extremely useful not only for the speakers, who learned to use a new and complex tool, but also for us,
because it helped us to identify the most common problems and how to solve them before the virtual
event took place.

To ensure that sessions ran smoothly, we complemented session chairs with additional support
staff: each session had an OC member assigned as supervisor and a Q&A assistant who collected
questions during the sessions. We also planned back-ups for each role, in case of connection problems
or technical issues. Moreover, we organized technical assistance throughout the whole event.

Promotion of the event

The promotion e-Rum2020 was taken care of by a team of Organizing Committee members, who were
supported in their tasks by a graphic designer. The first tasks involved the creation of a logo for the
conference, and of the conference website. The logo was initially designed for the physical event that
was to be held in Milano; for this reason, it included a stylized representation of the Duomo di Milano,
one of the main landmarks of the city. When the decision to hold the event virtually was announced,
we decided to redesign the logo by updating event name and dates, and adding a wifi symbol on top
of the cathedral (Figure 1).

Figure 1: The conference logos designed for the physical conference (eRum2020) that should have
been held in May 2020 (left) and for the virtual event (e-Rum2020) that was held in June 2020 (right).

The conference website (https://2020.erum.io) was developed using Wordpress, using a color
palette and graphical style in line with those used in the conference logo. We opted for a multi-page
design with sections and subsections, with the purpose of easing information retrieval. The website
underwent frequent updates that reflected important milestones (e.g., opening of submission period,
opening of registrations, announcement of virtual event, publication of the program, etc.), with a
major reorganization carried out to adapt it to the virtual conference format.

The conference promotion strategy was designed to be fully virtual and costless; it mostly relied on
the use of social media (Twitter, Facebook and LinkedIn), on the blog of the MilanoR foundation and on
emails spread on target mailing lists. The social media communication strategy was organized using an

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://2020.erum.io

CONTRIBUTED RESEARCH ARTICLE 420

editorial calendar, in which all announcements and posts for each week were scheduled from the start,
thereby making sure that the style and content were uniform over different channels and over time.
After the decision to transition to an online conference, we created a dedicated e-Rum2020 YouTube
channel and we redrafted the editorial calendar, including additional contents (video interviews
with keynote speakers, information about the CovidR pre-conference event, etc.). Among the social
networks used, we found Twitter to be the one that generated the highest engagement; the number of
followers of eRum2020’s Twitter page doubled in a year (growing from 1108 in June 2019 to 2313 in
June 2020), with a steep increase observed when the conference was turned into a virtual event (Figure
2).

Figure 2: Evolution of the number of followers of the eRum Twitter page from June 2019 to June 2020.

The creation of the e-Rum2020 YouTube channel was instrumental to support the virtual event.
To increase e-Rum2020’s outreach, we recorded 5 interviews with the keynote speakers that were
published prior to the conference. The interviews were intentionally informal and provided a relaxed
narration of personal experiences and R-related stories of the speakers. The channel was also used to
stream plenary sessions live during the event, and to publish recordings of all conference sessions
after the end of the event. In total, the channel currently hosts 59 videos organized in 12 playlists, with
a total of 36 hours of edited material uploaded.

Scientific Program

The Scientific Program of e-Rum2020 comprised several types of sessions, which ranged from keynote
and invited sessions to different types of contributed sessions (workshops, regular talks, lightning
talks, shiny demos and posters). All sessions were organized around a 4-days schedule, with the last
day entirely dedicated to the workshops. Moreover, the conference was preceded by two satellite
events: the CovidR pre-conference event, and a hackathon on spatial networks.

To ensure a balanced representation of the main fields of application of R, we identified 6 tracks
that were used to guide the selection of both keynote and invited speakers, and of contributed
sessions. The tracks were: Machine Learning and Modelling, R World, Applications, Life Sciences,
Data Visualization and R in Production.

Keynote and invited sessions

The invited part of the program comprised six keynote sessions of 45 minutes, and three invited
sessions of 90 minutes each. Six keynote speakers were selected to represent the 6 conference tracks.
Of the 11 invited speakers, 9 were selected in representation of the 6 tracks, and two were invited to
present their work at eRum2020 after winning the CovidR contest.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 421

Contributed sessions

The call for contributed sessions was opened on December 11, 2019, and closed on January 29,
2020, well before the outbreak of the pandemic in Europe. Abstracts were submitted through the
Sessionize system, which offered a number of features for handling mass communications with
users, but was lacking a simple yet efficient mechanism for evaluation, with the widely used 1-5
notes for scoring each contribution. We therefore decided to complement it by developing assessR
(https://github.com/Milano-R/assessr), a Shiny app that seamlessly displayed the most relevant
information for each abstract. The app kept the author information hidden, as we believed that a
blinded procedure would encourage reviewers to assess the content in a fairer way.

For the evaluation of the submitted abstracts, we created a Program Committee (PC) whose
members were selected in representation of the conference tracks, and were asked to score contributions
specific to their field of expertise. The PC members were: Aldo Solari, Enrico Deusebio, Charlotte
Soneson, Branko Kovac, Andrie De Vries, Fulvia Pennoni, Goran Milovanović, Davide Cittaro, Hannah
Frick, Adolfo Alvaro, Olga Mierzwa-Sulima, Gergely Daróczi, Piercesare Secchi, Diane Beldame, Xavier
Adam, Davide Risso, Pier Luca Lanzi, Levi Waldron, Heather Turner, Martin Mächler, Stefano Maria
Iacus.

We received a total of 230 contributions (Figure 3), of which 32 for workshops. Of these, 94
(including 11 workshops) were selected for presentation at e-Rum2020. All contributed sessions, with
the exception of workshops, were organized in two parallel tracks (later assigned to specific rooms in
the system provided by Hopin), spread over 3 days. A separate day was dedicated to the workshops.

Applications

Data Visualization

Life Sciences

Machine Learning
 and Modellling

R in Production

R World

0 10 20 30 40

Session format
Lightning talk
Poster
Regular talk
Shiny demo

Submitted contributions by track and format

Figure 3: Submitted contributions by track and session type.

Definition of the final program

The final lineup of talks and contributions reflected a nice balance across the six tracks. As we expected
that due to the online format participants might have been able to join and stay focused for shorter
stretches of time, we decided to shorten the length of all talks.

Each session type was linked to a specific room configuration for Q&As: for example, invited
speakers had the possibility to individually host people at a virtual table, while panel Q&A sessions
were organized for regular and lightning talks. Considering the time zones of our speakers was
another important aspect to take into account. Most contributed sessions were submitted from Europe,
but we were also able to accommodate late afternoon slots from the Pacific Time Zone.

Titles, abstracts and authors of each contribution, arranged by format, were published as a booklet
using bookdown (https://2020.erum.io/program/contributed-sessions). That choice made easy
and flexible its updates, progressively following confirmations, renunciations and possible changes.
The final program of e-Rum2020, comprehensive of the conference schedule, was then published as a
brochure (https://2020.erum.io/program).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://github.com/Milano-R/assessr
https://2020.erum.io/program/contributed-sessions
https://2020.erum.io/program

CONTRIBUTED RESEARCH ARTICLE 422

Hackathon on spatial networks

The beginning of e-Rum2020 was preceded by a satellite event on spatial networks that was held the
day before the conference. The event comprised an online webinar and a hackathon, and it focused on
introducing and testing sfnetworks, a new R package for the analysis of spatial networks. The satellite
event was organized by Andrea Gilardi, Lorena Abad, Robin Lovelace and Lucas van der Meer.

CovidR pre-conference event

A significant addition to e-Rum2020, decided alongside with the transition to a virtual conference, was
CovidR: a contest and pre-conference event featuring open-source R contributions around the topic
of the COVID-19 pandemic. Since the beginning of the pandemic, the R community has been very
active in using R for analyzing data, developing models and providing useful visualizations. The idea
behind CovidR was to collect such contributions and motivate the community to share and spread
their work through a contest.

The CovidR submission process was based on a GitHub repository (https://github.com/Milano-
R/erum2020-covidr-contest) and a streamlined Pull Request mechanism, from which we constructed
an R Markdown gallery website (https://milano-r.github.io/erum2020-covidr-contest). The
website gallery was constructed using the R package rmdgallery (https://riccardoporreca.github.
io/rmdgallery), which was developed alongside the contest. The gallery allowed community engage-
ment through the possibility of thumb-up voting submitted contributions.

Out of the 35 submissions to the contest, 15 were selected to be presented at the CovidR pre-
conference event, which was held on May 29, 2020. The event featured 5-minute-long presentations and
virtual round tables for Q&As, with awards granted based on the overall quality of the contributions,
as well as on community feedback. The two winners of the contest were invited to give an extended
presentation of their work at e-Rum2020.

A secondary, but important aspect of this pre-conference was that it enabled us to test the technical
tools and the overall process of running a large virtual event. The technical preparation and smoothness
of the main conference owe a lot to the lessons learned and confidence gained during CovidR.

e-Rum2020 in figures

Conference tickets were sold out, with 2000 registered participants. After registration, 1379 partici-
pants actively attended the conference. The CovidR pre-conference event and the workshops were
respectively attended by 171 and 513 participants. Figure 4 shows the geographic distribution of the
conference attendees.

Number of participants 1 − 10 11 − 50 more than 50

Figure 4: Geographic distribution of the attendees of e-Rum2020.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://github.com/Milano-R/erum2020-covidr-contest
https://github.com/Milano-R/erum2020-covidr-contest
https://milano-r.github.io/erum2020-covidr-contest
https://riccardoporreca.github.io/rmdgallery
https://riccardoporreca.github.io/rmdgallery

CONTRIBUTED RESEARCH ARTICLE 423

The program consisted of 104 speakers, among which 6 keynote speakers, 12 invited speakers, and
86 contributed talks. The contributed talk included 39 regular talks, 23 lightning talks, 11 Shiny demos
and 13 poster presentations.

The conference staff was entirely composed by volunteers. It counted 21 Organizing Committee
members, 21 Program Committee members, 23 session chairs, 7 Q&A assistants, 7 technical support
assistants and 1 social media assistant.

Organizers

e-Rum2020 was jointly organized by the e-Rum2020 Organizing Committee, the MilanoR association,
two universities (Università di Milano-Bicocca and Politecnico di Milano), and two data science firms
(VanLog and Mirai Solutions). The event received the patronage of Comune di Milano.

The Organizing Committee of e-Rum2020 consisted of 21 volunteers based in 5 different Euro-
pean countries (Italy, Switzerland, Belgium, The Netherlands and Germany): Mariachiara Fortuna,
Francesca Vitalini, Emanuela Furfaro, Mirko Signorelli, Federico Marini, Riccardo L. Rossi, Roberta
Sirovich, Andrea Meloncelli, Lorenzo Salvi, Riccardo Porreca, Andrea Guzzo, Gert Janssenswillen,
Serena Signorelli, Filippo Chiarello, Matteo Pelagatti, Gabriele Orlando, Matteo Borrotti, Laura Terzera,
Marta Galvani, Matteo Fontana and Parvaneh Shafiei.

Sponsors

We would like to thank all the sponsors that supported the organization of e-Rum2020: RStudio, Open
Analytics, cynkra, the R Consortium, the SDG group, Revelo Datalabs, SolidQ, Appsilon Data Science,
datahouse and Kode, as well as our in-kind sponsors StickerMule and CRC Press.

Acknowledgments

As members of the e-Rum2020 Organizing Committee, we would like to thank all the volunteers that
contributed to the success of e-Rum2020: the Program Committee members, keynote, invited and
contributed speakers, and all the volunteers that helped as session chairs, or helped managing the
Q&A, technical support for attendees and social media coverage during the event.

Links

Further information about e-Rum2020 and the contributions presented during the conference can be
found at the following links:

1. conference website: https://2020.erum.io

2. e-Rum2020 Youtube channel: https://www.youtube.com/c/eRum2020

3. conference materials: https://github.com/Milano-R/erum2020program#readme

4. CovidR gallery with all submissions for the CovidR pre-conference event: https://milano-
r.github.io/erum2020-covidr-contest

5. AssessR shiny app: https://github.com/Milano-R/assessr

Bibliography

M. Beresewicz, A. Alvarez, P. Biecek, M. K. Dyderski, M. Kosinski, J. Nowosad, K. Rotter, A. Szabelska-
Beresewicz, M. Szymkowiak, Ł. Wawrowski, et al. Conference Report: European R Users Meeting
2016. R Journal, 9(1), 2017. [p417]

G. Daróczi. Conference Report: eRum 2018. R Journal, 10(1), 2018. [p417]

Mariachiara Fortuna
Vanlog
Via Amedeo Peyron 19, Torino

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://2020.erum.io
https://www.youtube.com/c/eRum2020
https://github.com/Milano-R/erum2020program#readme
https://milano-r.github.io/erum2020-covidr-contest
https://milano-r.github.io/erum2020-covidr-contest
https://github.com/Milano-R/assessr

CONTRIBUTED RESEARCH ARTICLE 424

Italy
mariachiara.fortuna@vanlog.it

Francesca Vitalini
Mirai Solutions GmbH
Gotthardstrasse 56, Zurich
Switzerland
francesca.vitalini@mirai-solutions.com

Mirko Signorelli
Department of Biomedical Data Sciences, Leiden University Medical Center
Einthovenweg 20, Leiden
The Netherlands
ORCID: 0000-0002-8102-3356
m.signorelli@lumc.nl

Emanuela Furfaro
Department of Statistics, University of California
1 Shields Ave, Davis
United States of America
ORCID: 0000-0002-2440-841X
efurfaro@ucdavis.edu

Federico Marini
Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes
Gutenberg University Mainz
Obere Zahlbacher Str. 69, Mainz
Germany
ORCID: 0000-0003-3252-7758
marinif@uni-mainz.de

Gert Janssenswillen
Faculty of Business Economics, Hasselt University
Agoralaan, 3590 Diepenbeek
Belgium
0000-0002-7474-2088
gert.janssenswillen@uhasselt.be

Riccardo Porreca
Mirai Solutions GmbH
Gotthardstrasse 56, Zurich
Switzerland
riccardo.porreca@mirai-solutions.com

Riccardo L. Rossi
Istituto Nazionale Genetica Molecolare
Via F. Sforza 35, Milano
Italy
ORCID: 0000-0002-4964-3264
rossi@ingm.org

Andrea Guzzo
Moxoff
Via Schiaffino 11/19, Milano
Italy
ORCID: 0000-0001-7840-1179
andrea.guzzo92@gmail.com

Roberta Sirovich
Department of Mathematics G. Peano, University of Torino
Via Carlo Alberto 10, Torino
Italy

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:mariachiara.fortuna@vanlog.it
mailto:francesca.vitalini@mirai-solutions.com
mailto:m.signorelli@lumc.nl
mailto:efurfaro@ucdavis.edu
mailto:marinif@uni-mainz.de
mailto:gert.janssenswillen@uhasselt.be
mailto:riccardo.porreca@mirai-solutions.com
mailto:rossi@ingm.org
mailto:andrea.guzzo92@gmail.com

CONTRIBUTED RESEARCH ARTICLE 425

ORCID: 0000-0002-3189-8269
roberta.sirovich@unito.it

Andrea Melloncelli
Vanlog
Via Amedeo Peyron 19, Torino
Italy
andrea.melloncelli@vanlog.it

Lorenzo Salvi
Comune di Torino
Piazza Palazzo di Città 1, Torino
Italy
lore.salvi81@gmail.com

Serena Signorelli
UBI Banca SpA
via Cefalonia 74, Brescia
Italy
serena.signorelli.87@gmail.com

Filippo Chiarello
University of Pisa
Lungarno Antonio Pacinotti 43, Pisa
Italy
filippochiarello.90@gmail.com

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:roberta.sirovich@unito.it
mailto:andrea.melloncelli@vanlog.it
mailto:lore.salvi81@gmail.com
mailto:serena.signorelli.87@gmail.com
mailto:filippochiarello.90@gmail.com

	Editorial
	In this issue

	The biglasso Package: A Memory- and Computation-Efficient Solver for Lasso Model Fitting with Big Data in R
	Introduction
	Method
	Memory mapping
	Efficient feature screening

	Implementation
	Memory-efficient design
	Parallel computation

	Benchmarking experiments
	Memory efficiency
	Computational efficiency: Linear regression
	Computational efficiency: Logistic regression
	Validation

	Data analysis example
	Set up the design matrix
	Single fit and cross-validation

	Application: Big Data case
	Conclusion

	Six Years of Shiny in Research - Collaborative Development of Web Tools in R
	Introduction
	Algorithms/methods for literature search
	Technical aspects
	Architectural overview
	Hosting
	Security
	Architectural issues
	Data size

	Literature analysis
	Complexity barrier
	Cross collaboration and dialogue
	Flexibility to link other software
	Generalising complex methodologies
	Responsible and open research
	An educational tool

	Conclusion
	Acknowledgements
	Appendix

	A Fast and Scalable Implementation Method for Competing Risks Data with the R Package fastcmprsk
	Introduction
	Preliminaries
	Data structure and model
	Parameter estimation for unpenalized Fine-Gray regression
	Estimating the cumulative incidence function
	Penalized Fine-Gray regression for variable selection

	Parameter estimation in linear time
	The fastcmprsk package
	Simulating competing risks data
	fastCrr: Unpenalized parameter estimation and inference
	Cumulative incidence function and interval/band estimation
	fastCrrp: Penalized Fine-Gray regression in linear time

	Simulation studies
	Comparison to the crr package
	Comparison to the crrp package

	Discussion
	Acknowledgements
	Data generation scheme

	ordinalClust: An R Package to Analyze Ordinal Data
	Introduction
	Statistical methods
	Data Notation
	The BOS model
	The co-clustering model
	The clustering model
	The classification model
	Handling ordinal data with several numbers of levels

	Application to the patients quality of life analysis in oncology
	Data sets
	Performing classification
	Performing clustering
	Performing co-clustering
	Missing values.
	Comparison of clustering and co-clustering.
	Setting the SEMburn and nbSEMburn arguments
	Handling data with different numbers of levels

	Conclusion
	Annexe
	Appendix
	Specificity and sensitivity
	ICL search for clustering
	ICL search for co-clustering
	Handling different numbers of levels

	KSPM: A Package For Kernel Semi-Parametric Models
	Introduction
	Kernel semi-parametric models
	Single kernel semi-parametric model
	The multiple kernel semi-parametric model
	Link with linear mixed models
	Estimation of parameters
	Tests of hypotheses in KSPM
	Interpretation of variable effects
	The choice of kernel functions

	Package presentation
	Fitting the kernel semi parametric model with ````kspm
	Methods applicable to objects of the class ````"kspm"
	Predictions
	Variable selection procedures for the single kernel semi-parametric model
	Graphical tools

	Example 1: the Movie ratings data
	Example 2: Consumption of energy data
	Example 3: Gene-gene interaction
	Summary
	Acknowledgements
	Supplement S1
	Supplement S2

	Comparing Multiple Survival Functions with Crossing Hazards in R
	Introduction
	Theoretical background
	Existing test statistics in R and their pitfalls
	EL ratio and test statistics
	Two-step procedure for one-sided testing
	Weight
	Bootstrap critical values

	User guide and numerical examples
	Program description
	Application of supELtest to threearm data
	Application of intELtest to hepatitis data

	Discussion
	Availability
	Acknowledgements
	Appendix: Comparison of survELtest with other existing tests in two simulated datasets

	A Unified Algorithm for the Non-Convex Penalized Estimation: The ncpen Package
	Introduction
	An algorithm for the non-convex penalized estimation
	A class of non-convex penalties
	CCCP-MLQA algorithm
	Efficient path construction over

	The R package ncpen
	Ridge regularization
	Observation and penalty weights
	Standardization
	Initial value

	Numerical illustrations
	Elapsed times
	Standardization effect
	Ridge regularization effect
	Initial based solution path

	Concluding remarks
	Acknowledgements

	TULIP: A Toolbox for Linear Discriminant Analysis with Penalties
	Introduction
	Discriminant analysis models and Bayes rules
	Bayes rule for classification
	The linear discriminant analysis model (LDA)
	Covariates adjustment
	The semiparametric LDA model
	Tensor discriminant analysis (TDA) and covariate adjustment

	Methods
	Direct sparse discriminant analysis (DSDA)
	Regularized optimal affine discriminant (ROAD)
	Sparse optimal scoring (SOS) in binary problems
	Semiparametric sparse discriminant analysis (SeSDA)
	Multiclass sparse discriminant analysis (MSDA)
	Covariate-adjusted tensor classification in high dimensions (CATCH)
	Covariates adjustment
	Selection of the tuning parameter

	Using the R package
	Core functions
	Other functions

	Real data example
	Discussion
	Appendices
	Appendices
	Tensor notation
	Simulation code
	Estimation of covariance matrices in the TDA/CATCH model
	Definition of F-test statistic

	fitzRoy - An R Package to Encourage Reproducible Sports Analysis
	Introduction
	What is fitzRoy?
	Building fitzRoy
	Applications of fitzRoy
	Building Sports Models
	Building Player Models
	Able to Compare Popular Models

	Future Developments
	Summary

	Assembling Pharmacometric Datasets in R - The puzzle Package
	Introduction
	Use of the puzzle function
	The argument of the puzzle function
	Pre-formatting requirements
	Pre-formatting requirements for the tabulated file containing the PK information
	Pre-formatting requirements for the tabulated file containing the PD information
	Pre-formatting requirements for the tabulated file containing the dosing records
	Pre-formatting requirements for the tabulated file containing the covariate information

	Discussion
	Conclusion

	RNGforGPD: An R Package for Generation of Univariate and Multivariate Generalized Poisson Data
	Introduction and motivation
	Scientific background
	Application fields

	Algorithm
	Generating univariate GPD data
	Generating multivariate GPD data
	Comparisons of five univariate methods

	The RNGforGPD package
	Simulation studies
	Artificial data modeled via multivariate GPD
	Univariate GPD simulation with large sample size
	Physician visits modeled via multivariate GPD

	Discussion

	Testing the Equality of Normal Distributed and Independent Groups' Means Under Unequal Variances by doex Package
	Introduction
	Tests for Testing Equality of Normal Distributed Groups' Means under Unequal Variance
	Alexander-Govern (AG) test
	Alvandi et. al. Generalized F (AGF) test
	Approximate F (AF) test
	Box (BX) test
	Brown-Forsythe (BF) test
	The B2 test
	Cochran (CF) test
	Fiducial Approach (FA) test
	Generalized F (GF) test
	Johansen (JF) test
	Modified Brown-Forsythe (MBF) test
	Adjusted Welch (AW) test
	Parametric Bootstrap (PB) test
	Permutation F (PF) test
	Scott-Smith (SS) test
	Welch (WE) test
	Welch-Aspin (WA) test

	Using doex package
	Monte-Carlo simulation study
	The properties of the tests to control the Type I error probability
	The results of the penalized powers

	Discussion
	Summary and Future works
	Acknowledgement

	AQuadtree: an R Package for Quadtree Anonymization of Point Data
	Introduction
	Quadtree anonymization
	The AQuadtree package
	Installation and dependencies
	Provided data
	The AQuadtree class

	Package functions
	Join AQuadtrees
	Aggregate points to an AQuadtree
	Create a fixed size grid

	Final remarks
	Acknowledgements

	miWQS: Multiple Imputation Using Weighted Quantile Sum Regression
	Introduction
	Data structure
	Example 1: WQS regression using complete data
	Example 2: BDLQ1 approach on interval-censored data
	BDLQ1 approach
	WQS analysis

	Example 3: Bootstrapping interval-censored data
	Example 4: Univariate Bayesian multiple imputation of BDL values
	Recommendations in using miWQS package
	Conclusion
	Computational details
	Acknowledgments
	Abbreviations
	Appendix
	Deciding whether the overall mixture effect is positively or negatively related to the outcome in WQS regression

	User-Specified General-to-Specific and Indicator Saturation Methods
	Introduction
	Model selection properties of GETS and ISAT methods
	User-specification: General principles
	The getsFun function
	User-specified estimation
	User-specified diagnostics
	User-specified goodness-of-fit
	More speed: turbo, max.paths, parallel computing

	User-specified GETS and ISAT methods: Illustrations
	GETS modelling of Generalised Linear Models (GLMs)
	Creating a ````gets method (S3) for the ````"lm" class of models
	Regression with ARMA error
	Faster ISAT when n is large

	Summary
	Acknowledgements

	Kuhn-Tucker and Multiple Discrete-Continuous Extreme Value Model Estimation and Simulation in R: The rmdcev Package
	Introduction
	Models
	Conceptual framework
	Multiple discrete-continuous extreme value model (MDCEV)
	Kuhn-Tucker model specifications in Environmental Economics (KT-EE)
	Latent class (LC-KT) models
	Random parameters (RP-LC) models
	A note on Bayesian versus classical maximum likelihood estimation

	The rmdcev package
	Data format
	KT model estimation
	Formula format
	Simulating KT demand and welfare scenarios
	Generating simulated data

	Conclusions
	Appendix A: Specific steps for simulating KT models
	Acknowledgements

	NTS: An R Package for Nonlinear Time Series Analysis
	Introduction: nonlinear time series analysis in R
	Models and methods available in NTS
	TAR models
	Threshold estimation for two-regime TAR models
	R functions for TAR models in NTS
	Analysis of non-Gaussian time series
	Functional time series

	State-space modelings via SMC methods
	Conclusion

	Species Distribution Modeling using Spatial Point Processes: a Case Study of Sloth Occurrence in Costa Rica
	Introduction
	Sloth occurrence data
	Spatial climatic covariates
	Implementing and fitting the spatial point process model
	Log-Gaussian Cox process model
	Computational grid
	Data
	Fitting the model using R-INLA
	Results

	Summary

	A Graphical EDA Tool with ggplot2: brinton
	Introduction
	AutoGEDA and multipanel graphics
	The landscape of autoGEDA in R
	Multipanel graphics

	The brinton package
	The wideplot function
	The longplot function
	The plotup function
	The specimen

	Graphical degrees of freedom
	Application to real datasets
	Identify multi-column sorting
	Identify variables that can be reclassified
	Identify key variables
	Be surprised by serendipity
	Combine graphics that best explains a specific data characteristic

	Conclusions
	Acknowledgements

	MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
	Introduction
	Mixtures of truncated basis functions
	Learning univariate MoTBFs from data
	Learning conditional MoTBFs from data
	Learning joint MoTBFs from data
	Incorporating prior knowledge
	Probabilistic inference

	Package description and illustrative example
	Conclusions
	Acknowledgments

	Analyzing Basket Trials under Multisource Exchangeability Assumptions
	Introduction
	Exchangeability for Trials with Subpopulations
	The Single-Source Exchangeability Model
	The Multi-source Exchangeability Model

	Package Overview
	The Exact Method and the MCMC Method
	MEM Data Structure and Associated Methods
	Visualizations

	Case Study: The Vemurafenib Basket Trial
	Summary

	OpenLand: Software for Quantitative Analysis and Visualization of Land Use and Cover Change
	Introduction
	Conceptual overview
	Functionality and implementation
	The São Lourenço river basin example dataset
	Consistency check and data extraction from raster time series
	Miscellaneous non-spatial visualization tools
	Intensity analysis

	Conclusions and further research
	Acknowledgements

	FarmTest: An R Package for Factor-Adjusted Robust Multiple Testing
	Introduction
	Factor-adjusted robust multiple testing
	Multiple testing with false discovery rate control
	Factor-adjusted test statistics
	Robust estimation

	Algorithms
	Observable factors
	Latent factors
	Partially observable factors
	Selection of tuning parameters

	Package overview
	A showcase example
	Function call with default parameters
	Function call with options

	Simulations
	Real data example
	Summary

	Changes in R 3.6–4.0
	R 4.0.0 selected changes
	R 3.6.z selected changes
	R 4.0.0 code statistics
	R 3.6.0 code statistics
	R 4.0.0 bugs statistics
	R 3.6.0 bugs statistics
	Acknowledgements

	Changes on CRAN
	Changes in the CRAN Repository Policy
	CRAN package submissions
	CRAN mirror security
	New packages in CRAN task views

	News from the Bioconductor Project
	R Foundation News
	Donations and members
	Donations
	Supporting benefactors
	Supporting institutions
	Supporting members

	News from the Forwards Taskforce
	useR! 2020 breakout session: Supporting diversity in the R community
	R Contribution Working Group
	Introduction to R Workshop, Lomé, Togo
	Latin America Survey
	Package Development Modules
	Changes in Membership
	New members
	Previous members

	e-Rum2020: how we turned a physical conference into a successful virtual event
	Introduction
	Pre-pandemic arrangements
	Decision to go virtual
	Technical solutions
	Promotion of the event
	Scientific Program
	Keynote and invited sessions
	Contributed sessions
	Definition of the final program
	Hackathon on spatial networks
	CovidR pre-conference event

	e-Rum2020 in figures
	Organizers
	Sponsors
	Acknowledgments
	Links

