The

Journal

Volume 12/2, December 2020

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial 4

Contributed Research Articles

The biglasso Package: A Memory- and Computation-Efficient Solver for Lasso Model

Fitting with Big DatainR 6
Six Years of Shiny in Research - Collaborative Development of Web ToolsinR 20
A Fast and Scalable Implementation Method for Competing Risks Data with the R

Package fastcmprsko 000000 oL 43
ordinalClust: An R Package to Analyze Ordinal Data. 61
KSPM: A Package For Kernel Semi-Parametric Models 82
Comparing Multiple Survival Functions with Crossing HazardsinR 107
A Unified Algorithm for the Non-Convex Penalized Estimation: The ncpen Package . 120
TULIP: A Toolbox for Linear Discriminant Analysis with Penalties 134
fitzRoy - An R Package to Encourage Reproducible Sports Analysis. 155
Assembling Pharmacometric Datasets in R - The puzzle Package. 163
RNGforGPD: An R Package for Generation of Univariate and Multivariate General-

ized PoissonData00 173
Testing the Equality of Normal Distributed and Independent Groups” Means Under

Unequal Variances by doex Package 189
AQuadtree: an R Package for Quadtree Anonymization of Point Data. 209
miWQS: Multiple Imputation Using Weighted Quantile Sum Regression 226
User-Specified General-to-Specific and Indicator Saturation Methods 251
Kuhn-Tucker and Multiple Discrete-Continuous Extreme Value Model Estimation and

Simulation in R: The rmdcev Package. 266
NTS: An R Package for Nonlinear Time Series Analysis 293
Species Distribution Modeling using Spatial Point Processes: a Case Study of Sloth

OccurrenceinCostaRica00 0L 311
A Graphical EDA Tool with ggplot2: brinton 322
MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of

Truncated Basis Functions. 0000 343

Analyzing Basket Trials under Multisource Exchangeability Assumptions 360

NEWS AND NOTES

OpenLand: Software for Quantitative Analysis and Visualization of Land Use and
CoverChange 373

FarmTest: An R Package for Factor-Adjusted Robust Multiple Testing. 389

News and Notes

ChangesinR3.6-4.0 403
Changeson CRAN. 408
News from the Bioconductor Project 411
R FoundationNewso 412
News from the Forwards Taskforce. 414
e-Rum?2020: how we turned a physical conference into a successful virtual event . . . 417

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

NEWS AND NOTES

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications
regarding this publication should be addressed to the
editors. All articles are licensed under the Creative
Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Michael Kane, Yale University, USA

Executive editors:
Dianne Cook, Monash University, Australia
Catherine Hurley, Maynooth University, Ireland
Simon Urbanek, University of Auckland, New Zealand

R Journal Homepage:
http://journal.r-project.org/

Email of editors and editorial board:
r-journal@R-project.org

The R Journal is indexed/abstracted by EBSCO, DOA]J,
Thomson Reuters.

The R Journal Vol. 12/2, December 2020

ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
http://journal.r-project.org/

CONTRIBUTED RESEARCH ARTICLE

Editorial

by Michael |. Kane

On behalf of the editorial board, I am pleased to present Volume 12 Issue 2 of the R Journal.
This is my third and final issue as the Editor-in-Chief. In the last year, we have made some
substantial changes to the journal that I believe will continue to increase our capacity to
support the growing data science and computational statistics communities, and continue to
raise the visibility of the journal. In the last few months we recruited 10 Associate Editors and
we are continuing the recruitment process. I'd like to publicly welcome our new Associate
Editors, and thank each of them for joining us, and for their contributions thus far to the
journal.

We have also been making substantial improvements to the R Journal infrastructure,
allowing us to more efficiently usher manuscripts through the review process. This effort
has been made possible through an investment by the R Consortium. Thanks very much
to Di Cook, Mitchell O’'Hara-Wild, and Stephanie Kobakian for the new capabilities - they
have made my job a lot easier.

I'd also like to welcome Di as the new Editor-in-Chief of the journal. She has been an
instrumental member of the editorial team, she has provided me with insight and guidance
with regard to the journal. I look forward to seeing how the journal progresses under her
direction.

In this issue

News from the R Foundation and CRAN are included in this issue along an update on the
e-Rum?2020 conference that was held earlier. In addition, this issue features 23 contributed
research articles that have been categorized below.

Papers focusing on health and clinical trial data

* A Fast and Scalable Implementation Method for Competing Risks Data with the R
Package fastcmprsk

¢ Assembling Pharmacometric Datasets in R - The puzzle Package
¢ Analyzing Basket Trials under Multisource Exchangeability Assumptions

¢ Comparing multiple survival functions with crossing hazards in R
Supervised and unsupervised model fitting

* The biglasso Package: A Memory- and Computation-Efficient Solver for Lasso Model
Fitting with Big Data in R

» User-Specified General-to-Specific and Indicator Saturation Methods

* miWQS: Multiple Imputation Using Weighted Quantile Sum Regression

* NTS: An R Package for Nonlinear Time Series Analysis

¢ ordinalClust: An R Package to Analyse Ordinal Data

* TULIP: A Toolbox for Linear Discriminant Analysis with Penalties

¢ A Unified Algorithm for the Non-Convex Penalized Estimation: The ncpen Package
¢ KSPM: A Package For Kernel Semi-Parametric Models

Probability distributions and processes

¢ Testing the Equality of Normally Distributed Groups’ Means Under Unequal Variances
by doex Package

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

* MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of
Truncated Basis Functions

¢ Kuhn-Tucker and Multiple Discrete-Continuous Extreme Value Model Estimation and
Simulation in R: The rmdcev Package

* Species Distribution Modeling using Spatial Point Processes: a Case Study of Sloth
Occurrence in Costa Rica

¢ AQuadtree: an R Package for Quadtree Anonymization of Point Data

¢ RNGforGPD: An R Package for Generation of Univariate and Multivariate General-
ized Poisson Data

¢ FarmTest: An R Package for Factor-Adjusted Robust Multiple Testing
Visualization, reproducibilty, and collaboration

¢ A Graphical EDA Tool with ggplot2: brinton
¢ Six Years of Shiny in Research; Collaborative Development of Web Tools in R
¢ fitzRoy: An R Package to Encourage Reproducible Sports Analysis

* OpenLand: Software for Quantitative Analysis and Visualization of Land Use and
Cover Change

Michael |. Kane
michael.kane@r-project.org
Yale University

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:michael.kane@r-project.org

CONTRIBUTED RESEARCH ARTICLE

The biglasso Package: A Memory- and
Computation-Efficient Solver for Lasso
Model Fitting with Big Data in R

by Yaohui Zeng and Patrick Breheny

Abstract Penalized regression models such as the lasso have been extensively applied to analyzing
high-dimensional data sets. However, due to memory limitations, existing R packages like glmnet
and ncvreg are not capable of fitting lasso-type models for ultrahigh-dimensional, multi-gigabyte
data sets that are increasingly seen in many areas such as genetics, genomics, biomedical imaging,
and high-frequency finance. In this research, we implement an R package called biglasso that tackles
this challenge. biglasso utilizes memory-mapped files to store the massive data on the disk, only
reading data into memory when necessary during model fitting, and is thus able to handle out-of-
core computation seamlessly. Moreover, it’s equipped with newly proposed, more efficient feature
screening rules, which substantially accelerate the computation. Benchmarking experiments show
that our biglasso package, as compared to existing popular ones like glmnet, is much more memory-
and computation-efficient. We further analyze a 36 GB simulated GWAS data set on a laptop with only
16 GB RAM to demonstrate the out-of-core computation capability of biglasso in analyzing massive
data sets that cannot be accommodated by existing R packages.

Introduction

The lasso model proposed by Tibshirani (1996) has fundamentally reshaped the landscape of high-
dimensional statistical research. Since its original proposal, the lasso has attracted extensive studies
with a wide range of applications to many areas, such as signal processing (Angelosante and Giannakis,
2009), gene expression data analysis (Huang and Pan, 2003), face recognition (Wright et al., 2009), text
mining (Li et al., 2015) and so on. The great success of the lasso has made it one of the most popular
tools in statistical and machine-learning practice.

Recent years have seen the evolving era of Big Data where ultrahigh-dimensional, large-scale data
sets are increasingly seen in many areas such as genetics, genomics, biomedical imaging, social media
analysis, and high-frequency finance (Fan et al., 2014). Such data sets pose a challenge to solving the
lasso efficiently in general, and for R specifically, since R is not naturally well-suited for analyzing
large-scale data sets (Kane et al., 2013). Thus, there is a clear need for scalable software for fitting
lasso-type models designed to meet the needs of big data.

In this project, we develop an R package, biglasso (Zeng and Breheny, 2016), to extend lasso model
fitting to Big Data in R. Specifically, sparse linear and logistic regression models with lasso and elastic
net penalties are implemented. The most notable features of biglasso include:

e It utilizes memory-mapped files to store the massive data on the disk, only loading data into
memory when necessary during model fitting. Consequently, it’s able to seamlessly handle
out-of-core computation.

e It is built upon pathwise coordinate descent algorithm and “warm start” strategy, which has
been proven to be one of fastest approaches to solving the lasso (Friedman et al., 2010).

* We develop new, hybrid feature screening rules that outperform state-of-the-art screening rules
such as the sequential strong rule (SSR) (Tibshirani et al., 2012), and the sequential EDPP rule
(SEDPP) (Wang et al., 2015) with additional 1.5x to 4x speedup.

* The implementation is designed to be as memory-efficient as possible by eliminating extra copies
of the data created by other R packages, making biglasso at least 2x more memory-efficient
than glmnet.

¢ The underlying computation is implemented in C++, and parallel computing with OpenMP is
also supported.

The methodological innovation and well-designed implementation have made biglasso a much
more memory- and computation-efficient and highly scalable lasso solver, as compared to existing
popular R packages like glmnet (Friedman et al., 2010), nevreg (Breheny and Huang, 2011), and
picasso (Ge et al., 2015). More importantly, to the best of our knowledge, biglasso is the first R
package that enables the user to fit lasso models with data sets that are larger than available RAM,
thus allowing for powerful big data analysis on an ordinary laptop.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=biglasso
https://CRAN.R-project.org/package=picasso

CONTRIBUTED RESEARCH ARTICLE

Method

Memory mapping

Memory mapping (Bovet and Cesati, 2005) is a technique that maps a data file into the virtual memory
space so that the data on the disk can be accessed as if they were in the main memory. Technically,
when the program starts, the operating system (OS) will cache the data into RAM. Once the data are
in RAM, the computation is at the standard in-memory speed. If the program requests more data after
the memory is fully occupied, which is inevitable in the data-larger-than-RAM case, the OS will move
data that is not currently needed out of RAM to create space for loading in new data. This is called the
page-in-page-out procedure, and is automatically handled by the OS.

The memory mapping technique is commonly used in modern operating systems such as Windows
and Unix-like systems due to several advantages:

(1) it provides faster file read /write than traditional I/O methods since data-copy from kernel to user
buffer is not needed due to page caches;

(2) it allows random access to the data as if it were in the main memory even though it physically
resides on the disk;

(3) it supports concurrent sharing in that multiple processes can access the same memory-mapped
data file simultaneously, making parallel computing easy to implement in data-larger-than-RAM
cases;

(4) it enables out-of-core computing thanks to the automatic page-in-page-out procedure.

We refer the readers to Rao et al. (2010), Lin et al. (2014), and Bovet and Cesati (2005) for detailed
techniques and some successful applications of memory mapping.

To take advantage of memory mapping, biglasso creates memory-mapped big matrix objects
based upon the R package bigmemory (Kane et al., 2013), which uses the Boost C++ library and
implements memory-mapped big matrix objects that can be directly used in R. Then at the C++ level,
biglasso uses the C++ library of bigmemory for underlying computation and model fitting.

Efficient feature screening

Another important contribution of biglasso is our newly developed hybrid safe-strong rule, named
SSR-BEDPP, which substantially outperforms existing state-of-the-art ones in terms of the overall
computing time of obtaining the lasso solution path. Here, we describe the main idea of hybrid rules;
for the technical details, see Zeng et al. (2021).

Feature screening aims to identify and discard inactive features (i.e., those with zero coefficients)
from the lasso optimization. It often leads to dramatic dimension reduction and hence significant
computation savings. However, these savings will be negated if the screening rule itself is too
complicated to execute. Therefore, an efficient screening rule needs to be powerful enough to discard
a large portion of features and also relatively simple to compute.

Existing screening rules for the lasso can be divided into two types: (1) heuristic rules, such as
the sequential strong rule (SSR) (Tibshirani et al., 2012), and (2) safe rules, such as the basic and the
sequential EDPP rules (Wang et al., 2015), denoted here as BEDPP and SEDPP respectively. Safe rules,
unlike heuristic ones, are guaranteed to never incorrectly screen a feature with a nonzero coefficient.
Figure 1 compares the power of the three rules in discarding features. SSR, though most powerful
among the three, requires a cumbersome post-convergence check to verify that it has not incorrectly
discarded an active feature. The SEDPP rule is both safe and powerful, but is inherently complicated
and time-consuming to evaluate. Finally, BEDPP is the least powerful, and discards virtually no
features when A is smaller than 0.45 (in this case), but is both safe and involves minimal computational
burden.

The rule employed by biglasso, SSR-BEDPP, as its name indicates, combines SSR with the simple
yet safe BEDPP rule. The rationale is to alleviate the burden of post-convergence checking for strong
rules by not checking features that can be safely eliminated using BEDPP. This hybrid approach
leverages the advantages of each rule, and offers substantial gains in efficiency, especially when
solving the lasso for large values of A.

Table 1 summarizes the complexities of the four rules when applied to solving the lasso along a
path of K values of A for a data set with n instances and p features. SSR-BEDPP can be substantially
faster than the other three rules when BEDPP is effective. Furthermore, it is important to note that
SSR (with post-convergence checking) and SEDPP have to scan the entire feature matrix at every
value of A, while SSR-BEDPP only needs to scan the features not discarded by BEDPP. This advantage

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=bigmemory

CONTRIBUTED RESEARCH ARTICLE

R R — ﬁ__
9_"} 0.84
=
I
Q
8 0.6 Rule
B SSR
3
2 = SEDPP
©
5 0.44 BEDPP
1=
9]
2
o)
a 0.2

0.01

1.0 0.8 0.6 0.4 0.2

M Amax

Figure 1: Percent of features discarded.

of SSR-BEDPP is particularly appealing in out-of-core computing, where fully scanning the feature
matrix requires disk access and therefore becomes the computational bottleneck of the procedure.

Rule Complexity
SSR O(npK)
SEDPP O(npK)
BEDPP O(np)
SSR-BEDPP O(n YK |S¢|))

Table 1: Complexity of computing screening rules along the entire path of K values of A. |Si| denotes
the cardinality of Sy, the safe set of features not discarded by BEDPP screening.

The hybrid screening idea is straightforward to extend to other lasso-type problems provided that
a corresponding safe rule exists. For the biglasso package, we also implemented a hybrid screening
rule, SSR-Slores, for lasso-penalized logistic regression by combining SSR with the so-called Slores
rule (Wang et al., 2014), a safe screening rule developed for sparse logistic regression.

Implementation

Memory-efficient design

In penalized regression models, the feature matrix X € R"*? is typically standardized to ensure that
the penalty is applied uniformly across features with different scales of measurement. In addition,
standardization contributes to faster convergence of the optimization algorithm. In existing R pack-
ages such as glmnet, ncvreg, and picasso, a standardized feature matrix X is calculated and stored,
effectively doubling memory usage. This problem is compounded by cross-validation, where these
packages also calculate and store additional standardized and unstandardized copies of X for each
fold. This approach does not scale up well for big data.

To make the memory usage more efficient, biglasso doesn’t store X. Instead, it saves only the
means and standard deviations of the columns of X as two vectors, denoted as ¢ and s. Then wherever
Xjj is needed, it is retrieved by “cell-wise standardization”, i.e., X;; = (x;; — ¢;)/s;. Additionally, the
estimated coefficient matrix is sparse-coded in C++ and R to save memory space.

Simplification of computations
Cell-wise standardization saves a great deal of memory space, but at the expense of computational

efficiency. To minimize this, biglasso uses a number of computational strategies to eliminate redundant
calculations.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

We first note that the computations related to X during whole model fitting process are mainly of
three types, and all can be simplified so that naive cell-wise standardization can be avoided:

“Tx Xij—Cj xj— 1 :
(1) X' % = X 757 5% = o (X %3y — neje);
x,/

@ Xy =¥ 5y = 5 (L — ¢ Xii);

~ Xij—Cj
(@) X r =X "t = ¢ (Lixigri — ¢ Sini);

j j

where ij is the jth column of)~(, X4 is the column corresponding to Amax, ¥ is the response vector, and
r € R" is current residual vector.

Type (1) and (2) are used only for initial feature screening, and require only one-time execution.
Type (3) occurs in both the coordinate descent algorithm and the post-convergence checking. Since
the coordinate descent algorithm is fast to converge and only iterates over features in the active set A
of nonzero coefficients, whose size is much smaller than p, the number of additional computations
this introduces is small. Moreover, we pre-compute and store), r;, which saves a great deal of
computation during post-convergence checking since r does not change during this step. As a result,
our implementation of cell-wise standardization requires only O(p) additional operations compared
to storing the entire standardized matrix.

Scalable cross-validation

Cross-validation is integral to lasso modeling in practice, as it is by far the most common approach
to choosing A. It requires splitting the data matrix X into training and test sub matrices, and fitting
the lasso model multiple times. This procedure is also memory-intensive, especially if performed in
parallel.

Existing lasso-fitting R packages split X using the “slicing operator” directly in R (e.g., X[1:1000, 1).
This introduces a great deal of overhead and hence is quite slow when X is large. Worse, the training
and test sub-matrices must be saved into memory, as well as their standardized versions, all of which
result in considerable memory consumption.

In contrast, biglasso implements a much more memory-efficient cross-validation procedure that
avoids the above issues. The key design is that the main model-fitting R function allows a subset of
X, indicated by the row indices, as input. To cope with this design, all underlying C++ functions are
enabled to operate on a subset of X given a row-index vector is provided.

Consequently, instead of creating and storing sub-matrices, only the indices of the training/test sets
and the descriptor of X (essentially, an external pointer to X) are needed for parallel cross validation
thanks to the concurrency of memory-mapping. The net effect is that only one memory-mapped data
matrix X is needed for K-fold parallel cross-validation, whereas other packages need up to 2K copies
of X: a copy and a standardized copy for each fold.

Parallel computation

Another important feature of biglasso is its parallel computation capability. There are two types of
parallel computation implemented in biglasso.

At the C++ level, single model fitting (as opposed to cross validation) is parallelized with OpenMP.
Though the pathwise coordinate descent algorithm is inherently sequential and thus does not lend
itself to parallelization, several components of the algorithm (computing ¢ and s, matrix-vector
multiplication, post-convergence checking, feature screening, etc.) do, and are parallel-enabled in
biglasso.

Parallelization can also be implemented at the R level to run cross-validation in parallel. This im-
plementation is straightforward and also implemented by ncvreg and glmnet. However, as mentioned
earlier, the parallel implementation of biglasso is much more memory- and computation-efficient by
avoiding extra copies and the overhead associated with copying data to parallel workers. Note that
when cross-validation is run in parallel in R, parallel computing at C++ level for single model-fitting
is disabled to avoid nested parallelization.

Benchmarking experiments

In this section, we demonstrate that our package biglasso (1.2-3) is considerably more efficient at
solving for lasso estimates than existing popular R packages glmnet (2.0-5), ncvreg (3.9-0), and picasso
(0.5-4). Here we focus on solving lasso-penalized linear and logistic regression, respectively, over the

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

10

entire path of 100 A values which are equally spaced on the scale of A/Amax from 0.1 to 1. To ensure
a fair comparison, we set the convergence thresholds to be equivalent across all four packages. All
experiments are conducted with 20 replications, and the average computing times (in seconds) are

reported. The benchmarking platform is a MacBook Pro with Intel Core i7 @ 2.3 GHz and 16 GB RAM.

Memory efficiency

To demonstrate the improved memory efficiency of biglasso compared to existing packages, we
simulate a feature matrix with dimensions 1,000 x 100, 000. The raw data is 0.75 GB, and stored on
the hard drive as an R data file and a memory-mapped file. We used Syrupy' to measure the memory
used in RAM (i.e., the resident set size, RSS) every 1 second during lasso-penalized linear regression
model fitting by each of the packages.

The maximum RSS during the model fitting is reported in Table 2. In the single fit case, biglasso

consumes 0.84 GB memory in RAM, 50% of that used by glmnet and 22% of that used by picasso.

Note that the memory consumed by glmnet, ncvreg, and picasso are respectively 2.2x, 2.1x, and 5.1x
larger than the size of the raw data.

More strikingly, biglasso does not require additional memory to perform cross-validation, unlike
other packages. For serial 10-fold cross-validation, biglasso requires just 27% of the memory used by
glmnet and 23% of that used by ncvreg, making it 3.6x and 4.3x more memory-efficient than glmnet
and ncvreg, respectively.

The memory savings offered by biglasso would be even more significant if cross-validation
were conducted in parallel. However, measuring memory usage across parallel processes is not
straightforward and not implemented in Syrupy.

Package ‘ picasso’ ncvreg glmnet biglasso

Single fit 3.84 1.60 1.67 0.84
10-fold CV (1 core) - 3.74 3.18 0.87

* Cross-validation is not implemented in picasso.

Table 2: The maximum RSS (in GB) for a single fit and 10 fold cross-validation (CV) with the raw data
of 0.75 GB.

Computational efficiency: Linear regression
Simulated data

We now show with simulated data that biglasso is more scalable in both # and p (i.e., number of
instances and features). We adopt the same model in Wang et al. (2015) to simulate data: y = XB + 0.1e,
where X and € are i.i.d. sampled from N(0,1). We consider two different cases: (1) Case 1: varying p.
We set n = 1,000 and vary p from 1,000 to 20,000. We randomly select 20 true features, and sample
their coefficients from Unif[-1, 1]. After simulating X and B, we then generate y according to the true
model; (2) Case 2: varying n. We set p = 10,000 and vary # from 200 to 20,000. B and y are generated
in the same way as in Case 1.

Figure 2 compares the mean computing time of solving the lasso over a sequence of 100 A values
by the four packages. In all the settings, biglasso (1 core) is uniformly 2x faster than glmnet and
ncvreg (which overlap in the figure), and 2.5x faster than picasso. Moreover, the computing time of
biglasso can be further reduced by half via parallel-computation of 4 cores. Using 8 cores doesn’t help
due to the increased overhead of communication between cores.

Real data

In this section, we compare the performance of the packages using diverse real data sets: (1) Breast
cancer gene expression data’ (GENE); (2) MNIST handwritten image data (MNIST) (LeCun et al.,
1998); (3) Cardiac fibrosis genome-wide association study data (GWAS) (Breheny, 2016); and (4) Subset
of New York Times bag-of-words data (NYT) (Dheeru and Karra Taniskidou, 2017). Note that for
data sets MNIST and NYT, a different response vector is randomly sampled from a test set at each
replication.

Ihttps://github.com/jeetsukumaran/Syrupy
thtp://myweb.uiowa.edu/pbreheny/data/bcTCGA.html

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://github.com/jeetsukumaran/Syrupy
http://myweb.uiowa.edu/pbreheny/data/bcTCGA.html

CONTRIBUTED RESEARCH ARTICLE

11

25 Package 2571 Package
picasso picasso
=== ncvreg === ncvreg
20+
204 == glmnet == glmnet
@ == biglasso (1 core) @ == biglasso (1 core)
@ = biglasso (2 cores; I == biglasso (2 cores
£ 15l g () £ 15 g ()
g, biglasso (4 cores) g’ biglasso (4 cores)
k= biglasso (8 cores)] biglasso (8 cores)
=% 2 4o
£ 109 £
S 3]
@] (&)
54 54
04 0-
0 50000 100000 150000 200000 0 5000 10000 15000 20000
Number of features Number of observations
(a) Varying p, n = 1,000. (b) Varying n, p = 10,000.

Figure 2: Mean computing time (in seconds) of solving the lasso over a sequence 100 A values as a
function of p (Left) and n (Right).

The size of the feature matrices and the average computing times are summarized in Table 3. In all
four settings, biglasso was fastest at obtaining solutions, providing 2x to 3.8x speedup compared to
glmnet and ncvreg, and 2x to 4.6x speedup compared to picasso.

Package GENE MNIST GWAS NYT
n = 536 n =784 n =313 n = 5,000
p=17,322 p=60,000 p=660,495 p = 55,000

picasso | 1.50 (0.01) 6.86 (0.06) 34.00 (0.47) 44.24 (0.46)
nevreg | 1.14(0.02) 5.60(0.06) 31.55(0.18) 32.78(0.10)
glmnet | 1.02(0.01) 5.63(0.05) 23.23(0.19) 33.38 (0.08)

biglasso | 0.54 (0.01) 1.48(0.10) 17.17(0.11) 14.35 (1.29)

Table 3: Mean (SE) computing time (seconds) for solving the lasso along a sequence of 100 A values.

Computational efficiency: Logistic regression
Simulated data

Similar to Section 4.2, here we first illustrate that biglasso is faster than other packages in fit-
ting the logistic regression model with simulated data. The true data-generating model is: y; ~
Bin(1, prob);logit(prob) = x; B, where each entry of x; is i.i.d. sampled from standard Gaussian distri-
bution. Again, two cases — varying p and varying n — are considered. 20 true features are randomly
chosen and their coefficients are sampled from Unif[-1, 1].

Figure 3 summarizes the mean computing times of solving the lasso-penalized logistic regression
over a sequence of 100 values of A by the four packages. In all the settings, biglasso (1 core) is around
1.5x faster than glmnet and ncvreg (which again largely overlap), and more than 3x faster than picasso.
Parallel computing with 4 cores using biglasso reduces the computing time by half.

Real data

We also compare the computing time of biglasso with other packages for fitting lasso-penalized
logistic regression based on four real data sets: (1) Subset of Gisette data set (Guyon et al., 2005); (2)
P53 mutants data set (Danziger et al., 2009); (3) Subset of NEWS20 data set (Keerthi and DeCoste,
2005); (4) Subset of RCV1 text categorization data set (Lewis et al., 2004). The P53 data set can be
found on the UCI Machine Learning Repository website’ (Lichman, 2013). The other three data sets
are obtained from the LIBSVM data repository site.

Shttps://archive.ics.uci.edu/ml/datasets/p53+Mutants
4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://archive.ics.uci.edu/ml/datasets/p53+Mutants
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

CONTRIBUTED RESEARCH ARTICLE

12

60
Package
picasso

50 ncvreg

== glmnet

N
S

== biglasso (1 core)
== biglasso (2 cores)

biglasso (4 cores)

w
S

biglasso (8 cores)

Computing time (s)

n
=1

104

Computing time (s)

40+

w
=3

N
o

i
[S)

Package
picasso
ncvreg
== glmnet
== biglasso (1 core)
== higlasso (2 cores)

biglasso (4 cores)

biglasso (8 cores)

0 50000

100000 150000

200000

0 5000

10000

15000 20000

Number of features Number of observations

(a) Varying p, n = 1,000. (b) Varying n, p = 10,000.
Figure 3: Mean computing time (in seconds) of solving the lasso-penalized logistic regression over a
sequence 100 A values as a function of p (Left) and n (Right).

Table 4 presents the dimensions of the data sets and the mean computing times. Again, biglasso
outperforms all other packages in terms of computing time in all the real data cases. In particular, It’s
significantly faster than picasso with the speedup ranging from 2 to 5.5 times (for P53 data and RCV1
data, respectively). On the other hand, compared to glmnet or ncvreg, biglasso doesn’t provide as
much improvement in speed as in the linear regression case. The main reason is that safe rules for
logistic regression do not work as well as safe rules for linear regression: they are more computationally

expensive and less powerful in discarding inactive features.

Gisette P53 NEWS20 RCV1
Package | n=5,000 n=16,592 n=2,500 n=>5,000
p=5,000 p=5408 p=096202 p=~47,236
picasso | 6.15 (0.03) 19.49 (0.06) 68.92 (8.17) 53.23 (0.13)
nevreg | 550 (0.03) 1022 (0.02) 38.92(0.56) 19.68 (0.07)
glmnet | 3.10 (0.02) 10.39 (0.01) 25.00 (0.16) 14.51 (0.04)
biglasso | 2.02 (0.01) 9.47 (0.02) 18.84(0.22) 9.72 (0.04)

Table 4: Mean (SE) computing time (in seconds) for solving the lasso-penalized logistic regression
along a sequence of 100 A values on real data sets.

Validation

To validate the numerical accuracy of our implementation, we contrast the model fitting results from
biglasso to those from glmnet based on the following relative difference criterion:

N(RB. A) — N AG. A
ko) — QBN — Qi)

Q% A)
where B8 and BC denote the biglasso and glmnet solutions, respectively. Four real data sets are
considered, including MNIST and GWAS for linear regression, and P53 and NEWS20 for logistic
regression. For the GWAS and P53 data sets, we obtain 100 RD values, one of each value of A along

the regularization path. For the MNIST and NEWS20 data sets, we obtained solutions for 20 different
response vectors, each with a path of 100 A values, resulting in 2,000 RD values.

, @

Table 5 presents the summary statistics of RD(A) for the 4 real data sets. For both linear and
logistic regression cases, all values of RD(A) values are extremely close to zero, demonstrating that
biglasso and glmnet converge to solutions with virtually identical values of the objective function.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

13

Statistic Linear regression | Logistic regression
MNIST GWAS P53 NEWS20

Minimum | -7.7e-3 -39e-4 | -6.4e-3 -1.6e-3
15t Quantile | -1.6e-3 -2.7e-5 | 1.7e-5 -2.2e-4
Median | -9.5e-4 1.6e-4 | 2.0e-4 -1.1e-4
Mean | -1.1e-3 8.3e-4 | 2.2e-4 -1.2e-4

3" Quantile | -1.3e-4 1.3e-3 | 7.7e-4 1.0e-10
Maximum 4.2e-3 4.2e-3 | 2.0e-4 2.2e-3

Table 5: Summary statistics of RD(A) based on real data sets.

Data analysis example

In this section, we illustrate the usage of biglasso with a real data set colon included in biglasso. The
colon data contains contains expression measurements of 2,000 genes for 62 samples from patients
who underwent a biopsy for colon cancer. There are 40 samples from positive biopsies (tumor samples)
and 22 from negative biopsies (normal samples). The goal is to identify genes that are predictive of
colon cancer.

biglasso package has two main model-fitting R functions as below. Detailed syntax of the two
functions can be found in the package reference manual.”

* biglasso: used for a single model fitting.

® cv.biglasso: used for performing cross-validation and selecting parameter A.

We first load the data: X is the 62-by-2000 raw data matrix, and y is the response vector with 1
indicating tumor sample and 0 indicating normal sample.

R> library("biglasso”)
R> data(colon)

R> X <- colon$X

R> y <- colon$y

Some information about X and y are as follows.

R> dim(X)
[1] 62 2000
R> X[1:5, 1:5]
Hsa.3004 Hsa.13491 Hsa.13491.1 Hsa.37254 Hsa.541

t 8589.42 5468.24 4263.41 4064.94 1997.89

n 9164.25 6719.53 4883.45 3718.16 2015.22

t 3825.71 6970.36 5369.97 4705.65 1166.55

n 6246.45 7823.53 5955.84 3975.56 2002.61

t 3230.33 3694.45 3400.74 3463.59 2181.42

R>y

[1]J]1010101010101010101T0101011T11T11111

[34111111011001111010011001111010

Set up the design matrix

It’s important to note that biglasso requires that the design matrix X must be a big.matrix object - an
external pointer to the data. This can be done in two ways:

o If the size of X is small, as in this case, a big.matrix object can be created via:
R> X.bm <- as.big.matrix(X)

X.bm is a pointer to the data matrix, as shown in the following output.

R> str(X.bm)
Formal class 'big.matrix' [package "bigmemory”] with 1 slot
..@ address:<externalptr>

5https: //cran.r-project.org/web/packages/biglasso/biglasso.pdf

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://cran.r-project.org/web/packages/biglasso/biglasso.pdf

CONTRIBUTED RESEARCH ARTICLE

14

R> dim(X.bm)

[1] 62 2000

R> X.bm[1:5, 1:5]

Hsa.3004 Hsa.13491 Hsa.13491.1 Hsa.37254 Hsa.541
8589.42 5468.24 4263.41 4064.94 1997.89
9164.25 6719.53 4883.45 3718.16 2015.22
3825.71 6970.36 5369.97 4705.65 1166.55
6246.45 7823.53 5955.84 3975.56 2002.61
3230.33 3694.45 3400.74 3463.59 2181.42

+ 35 &+ S +

¢ If the size of the data is large, the user must create a file-backed big.matrix object via the utility
function setupX in biglasso. Specifically, setupX reads the massive data stored on disk, and
creates memory-mapped files for that data set; this is demonstrated in the next section. A
detailed example can also be found in the package vignettes.®

Single fit and cross-validation

After the setup, we can now fit a lasso-penalized logistic regression model.
R> fit <- biglasso(X.bm, y, family = "binomial”)

The output object fit is a list of model fitting results, including the sparse matrix beta. Each
column of beta corresponds to the estimated coefficient vector at one of the 100 values of A.

In practice, cross-validation is typically conducted to select A and hence the model with the best
prediction accuracy. The following code snippet conducts a 10-fold (default) cross-validation using
parallel computing with 4 cores.

R> cvfit <- cv.biglasso(X.bm, y, family = "binomial”,

+ seed = 1234, nfolds = 10, ncores = 4)

R> par(mfrow = c(2, 2), mar = ¢(3.5, 3.5, 3, 1) ,mgp = c(2.5, 0.5, 9))
R> plot(cvfit, type = "all")

Figure 4 displays the cross-validation curves with standard error bars. The vertical, dashed, red
line indicates the A value corresponding to the minimum cross-validation error.

Similar to glmnet and other packages, biglasso provides coef, predict, and plot methods for
both biglasso and cv.biglasso objects. Furthermore, cv.biglasso objects contain the biglasso fit to
the full data set, so one can extract the fitted coefficients, make predictions using it, etc., without ever
calling biglasso directly. For example, the following code displays the full lasso solution path, with a
red dashed line indicating the selected A (Figure 5).

R> plot(cvfit$fit)
R> abline(v = log(cvfit$lambda.min), col = 2, 1ty = 2)

The coefficient estimates at the selected A can be extracted via: coef:
R> coefs <- as.matrix(coef(cvfit))
Here we output only nonzero coefficients:

R> coefs[coefs != 0,]

(Intercept) Hsa.8147 Hsa.36689 Hsa. 42949 Hsa.22762 Hsa.692.2
7.556427e-01 -6.722901e-05 -2.670110e-03 -3.722229e-04 1.698915e-05 -1.142052e-03
Hsa.31801 Hsa.3016 Hsa.5392 Hsa.1832 Hsa. 12241 Hsa.44244
4.491547e-04 2.265276e-04 4.518250e-03 -1.993107e-04 -8.824701e-04 -1.565108e-03
Hsa.2928 Hsa.41159 Hsa.33268 Hsa.6814 Hsa.1660

9.760147e-04 7.131923e-04 -2.622034e-03 4.426423e-03 5.156006e-03

The predict method, in addition to providing predictions for a feature matrix X, has several
options to extract different quantities from the fitted model, such as the number and identity of the
nonzero coefficients:

R> as.vector(predict(cvfit, X = X.bm, type
[1J1010101010101080
[43J 011117107101 11010

R> predict(cvfit, type =

0.0522

"class"))
1121111111111 1T1T1101120

—_
-
[N

®https://cran.r-project.org/web/packages/biglasso/vignettes/biglasso.pdf

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://cran.r-project.org/web/packages/biglasso/vignettes/biglasso.pdf

CONTRIBUTED RESEARCH ARTICLE

15

Variables selected Variables selected
01 4 7 9 11 14 20 20 24 26 01 4 7 9 11 14 20 20 24 26
= 0.4 f.-""'—'_"'\.
o
s 124 ...,.-" \"\,‘_.‘.
S ‘ 0.3 | il
S 1.0 .| I
[i / 0.2
| Y
%))
8 0.8 ‘"*\.____,-" 0.1
@)
: OO_ -'.)
T T T T T T T T T T T T
-15 -20 -25 -30 -35 -40 -15 -20 -25 -30 -35 -40
log(®) log(®)
Variables selected Variables selected
01 4 7 9 11 14 20 20 24 26 01 4 7 9 11 14 20 20 24 26
0.8 0.40~ ‘
i)
= T = Jlli
o 067 il el 2 0357 ..
2 i 2030 ..
IC o, o AP :
o 047 . B 0.251 il 3 Uil
| g S il MILLLLLLL
© o JIN it
5 0.7 o 0207 A
@ e 0.15- mnifim
0.0 = | H
T T T T T T T T T T T T
-15 -20 -25 -30 -35 -40 -15 -20 -25 -30 -35 -40
log(A) log(A)
Figure 4: The cross-validation curves with standard error bars.
16

R> predict(cvfit, type = "vars")
Hsa.8147 Hsa.36689 Hsa.42949 Hsa.22762 Hsa.692.2 Hsa.31801 Hsa.3016 Hsa.5392

249 377 617 639 765 1024 1325 1346
Hsa.1832 Hsa.12241 Hsa.44244 Hsa.2928 Hsa.41159 Hsa.33268 Hsa.6814 Hsa.1660
1423 1482 1504 1582 1641 1644 1772 1870

In addition, the summary method can be applied to a cv.biglasso object to extract useful cross-
validation results:

R> summary(cvfit)
lasso-penalized logistic regression with n=62, p=2000
At minimum cross-validation error (lambda=0.0522):
Nonzero coefficients: 16
Cross-validation error (deviance): 0.77
R-squared: 0.41
Signal-to-noise ratio: 0.70
Prediction error: 0.177

Application: Big Data case

Perhaps the most important feature of biglasso is its capability of out-of-core computing. To demon-
strate this, we use it to analyze a simulated GWAS data set that consists of 3,000 observations and
1,340,000 features. Each feature cell is randomly assigned a value of 0 or 1 or 2. 200 features have
nonzero coefficients, where 100 of which being 0.5 and the rest being -0.5. The size of the resulting raw
feature matrix is over 36 GB data, which is more than 2x larger than the installed 16 GB RAM.

In this Big Data case, the data is stored in an external file on the disk. To use biglasso, memory-
mapped files are first created via the following command.

R> library("biglasso”)
R> X <- setupX(filename = "X_3000_1340000_200_gwas.txt")

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

16

0.025
0.020
0.015

N

£0.010
0.005

0.000

-0.005 —

-1.5 -2.0 -2.5 -3.0 -3.5 -4.0

log(2)

Figure 5: The solution path of lasso-penalized logistic regression model for the colon data.

This command creates two files in the current working directory:

* a memory-mapped file cache of the data, "X_3000_1340000_200_gwas.bin";
¢ adescriptor file, "X_3000_1340000_200_gwas.desc", that contains the backingfile description.

Note that this setup process takes a while if the data file is large. However, this only needs to
be done once, during data processing. Once the cache and descriptor files are generated, all future
analyses using biglasso can use the X object. In particular, should one close R and open a new R
session at a later date, X can be seamlessly retrieved by attaching its descriptor file as if it were already
loaded into the main memory:

R> X <- attach.big.matrix("X_3000_1340000_200_gwas.desc")

The object X returned from setupX or attach.big.matrix is a big.matrix object that is ready to be
used for model fitting. Details about big.matrix and its related functions such as attach.big.matrix
can be found in the reference manual of bigmemory package (Kane et al., 2013).

Note that the object X that we have created is a big.matrix object and is therefore stored on disk,
not in RAM, but can be accessed as if it were a regular R object:

R> str(X)
Formal class 'big.matrix' [package "bigmemory”] with 1 slot
..@ address:<externalptr>
R> dim(X)
[1] 3000 1340000
R> X[1:10, 1:10]
(,11 0,21 [,31 [,41[,5]1¢C,61 [,71C,8] [,9] [,1e]

[1,1 1 1 4 1 1 2 2 2 1 0
[2,1 0 1 2 1 0 0 1 2 0 2
[3,1] 2 2 2 1 1 0 [1 0 0
[4,] 1 2 1 1 1 0 2 2 0 1
[5,1 0 0 0 0 2 2 0 1 0 2
[6,1 2 0 0 0 1 2 1 0 0 0
[7,1 1 0 1 2 1 1 2 0 2 2
[8,1 2 2 4 2 2 0 0 0 0 2

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

17

[9,1] 0 2 2 2 0 0 2 0 2 2
[10,] 1 0 2 1 Q 1 1 (] 1 0
R> table(y)

y
(/] 1
1487 1513

Here we fit both sparse linear and logistic regression models with the lasso penalty over the entire
path of 100 A values equally spaced on the scale of A/ Amax. The ratio of Apin / Amax is set to be 0.05 for
both models. Parallel computation with 4 cores is applied:

R> fit <- biglasso(X, y, ncores = 4)
R> fit <- biglasso(X, y, family = "binomial”, ncores = 4)

The above code, which solves the full lasso path for a 36 GB feature matrix, required 147 minutes
for the linear regression fit and 151 minutes for the logistic regression fit on an ordinary laptop with 16
GB RAM installed. Figure 6 depicts the lasso solution path for the sparse linear regression model. The
following code extracts the nonzero coefficient estimates and the number of selected variables of the
lasso model when A = 0.04:

R> coefs <- as.matrix(coef(fit, lambda = 0.04))
R> coefs[coefs != 0,]
(Intercept) \a! V4 V71 V76 V78
4.917257e-01 -1.396769e-03 -1.198865e-02 -5.289779e-04 -1.475436e-03 -5.829812e-05
V86 V97 V115 V127 V136 V152
-1.283901e-03 -3.437698e-03 1.672246e-04 1.012488e-03 5.913265e-03 9.485837e-03
V157 V161 V176 V185 V118862 V160312
1.992574e-04 1.654802e-03 1.731413e-03 2.411654e-04 4.871443e-03 -6.270115e-05
V273843 V406640 V437742 V559219 V607177 V688790
-2.395813e-03 -5.189343e-03 6.079211e-03 -1.438325e-03 2.635234e-05 -3.645285e-04
V814818 V849229 V916411 V981866 V1036672 V1036733
-3.611999e-04 9.293857e-03 2.637108e-03 -3.130641e-04 6.890073e-05 2.010702e-03
V1110042 V1170636 V1279721
-8.323210e-04 -1.539764e-03 -3.729763e-05
R> predict(fit, lambda = 0.04, type = "nvars”)
0.04
32

Conclusion

We developed a memory- and computation-efficient R package biglasso to extend lasso model fitting
to Big Data. The package provides functions for fitting regularized linear and logistic regression
models with both lasso and elastic net penalties. Equipped with the memory-mapping technique and
more efficient screening rules, biglasso is not only is 1.5x to 4x times faster than existing packages, but
consumes far less memory and, critically, enables users to fit lasso models involving data sets that are
too large to be loaded into memory:.

Bibliography

D. Angelosante and G. B. Giannakis. Rls-weighted lasso for adaptive estimation of sparse signals. In
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3245-3248, 2009. [p6]

D. P. Bovet and M. Cesati. Understanding the Linux kernel. O’Reilly, 2005. [p7]

P. Breheny. Marginal false discovery rates for penalized regression models. arXiv preprint
arXiv:1607.05636, 2016. [p10]

P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression, with
applications to biological feature selection. Annals of Applied Statistics, 5(1):232-253, 2011. [p6]

S. A. Danziger, R. Baronio, L. Ho, L. Hall, K. Salmon, G. W. Hatfield, P. Kaiser, and R. H. Lathrop.
Predicting positive p53 cancer rescue regions using most informative positive (mip) active learning.

PLoS computational biology, 5(9):€1000498, 2009. [p11]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

18

0.02 —

0.01 —

A 0.00
B

-0.01

—-0.02

T T T T T T T
-3.0 -3.5 -4.0 -4.5 -5.0 -5.5 -6.0

log(2)

Figure 6: The solution path of the sparse linear regression model for the 36 GB GWAS data.

D. Dheeru and E. Karra Taniskidou. UCI machine learning repository, 2017. URL http://archive.

ics.uci.edu/ml. [p10]

J. Fan, F. Han, and H. Liu. Challenges of big data analysis. National Science Review, 1(2):293-314, 2014.
[p6]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1, 2010. [p6]

J. Ge, X. Li, M. Wang, T. Zhang, H. Liu, and T. Zhao. picasso: Pathwise Calibrated Sparse Shooting
Algorithm, 2015. URL https://CRAN.R-project.org/package=picasso. R package version 0.5-4.
[p6l

I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the nips 2003 feature selection challenge.
In Advances in neural information processing systems, pages 545-552, 2005. [p11]

X. Huang and W. Pan. Linear regression and two-class classification with gene expression data.
Bioinformatics, 19(16):2072-2078, 2003. [p6]

M. J. Kane, J. Emerson, and S. Weston. Scalable strategies for computing with massive data. Journal of
Statistical Software, 55(14):1-19, 2013. [p6, 7, 16]

S. S. Keerthi and D. DeCoste. A modified finite newton method for fast solution of large scale linear
svms. Journal of Machine Learning Research, 6(Mar):341-361, 2005. [p11]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278-2324, 1998. [p10]

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Revl: A new benchmark collection for text categorization
research. Journal of machine learning research, 5(Apr):361-397, 2004. [p11]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://CRAN.R-project.org/package=picasso

CONTRIBUTED RESEARCH ARTICLE

19

Y. Li, A. Algarni, M. Albathan, Y. Shen, and M. A. Bijaksana. Relevance feature discovery for text
mining. IEEE Transactions on Knowledge and Data Engineering, 27(6):1656-1669, 2015. [p6]

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml. [p11]

Z. Lin, M. Kahng, K. M. Sabrin, D. H. P. Chau, H. Lee, and U. Kang. Mmap: Fast billion-scale graph
computation on a pc via memory mapping. In IEEE International Conference on Big Data, pages
159-164, 2014. [p7]

S. T. Rao, E. Prasad, and N. Venkateswarlu. A critical performance study of memory mapping on
multi-core processors: An experiment with k-means algorithm with large data mining data sets.
International Journal of Computers and Applications, 1(9):90-98, 2010. [p7]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B, 58(1):267-288, 1996. ISSN 00359246. [p6]

R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon,]J. Taylor, and R. J. Tibshirani. Strong rules for
discarding predictors in lasso-type problems. Journal of the Royal Statistical Society Series B, 74(2):
245-266, 2012. [p6, 7]

J. Wang, J. Zhou, J. Liu, P. Wonka, and J. Ye. A safe screening rule for sparse logistic regression. In
Advances in Neural Information Processing Systems, pages 1053-1061, 2014. [p§]

J. Wang, P. Wonka, and J. Ye. Lasso screening rules via dual polytope projection. Journal of Machine
Learning Research, 16:1063-1101, 2015. [p6, 7, 10]

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face recognition via sparse rep-
resentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):210-227, 2009.

[p6]

Y. Zeng and P. Breheny. biglasso: Extending Lasso Model Fitting to Big Data, 2016. URL https:
//CRAN.R-project.org/package=biglasso. R package version 1.3-1. [p6]

Y. Zeng, T. Yang, and P. Breheny. Hybrid safe-strong rules for efficient optimization in lasso-type
problems. Computational Statistics & Data Analysis, 153:107063, 2021. ISSN 0167-9473. [p7]

Yaohui Zeng

Department of Biostatistics

University of lowa

N301 CPHB 145 North Riverside Drive

Iowa City, IA 52242, United States of America
Email: yaohui.zeng@gmail.com

Patrick Breheny

Department of Biostatistics

University of lowa

N336 CPHB 145 North Riverside Drive

Iowa City, IA 52242, United States of America

E-mail: patrick-breheny@uiowa.edu

URL: http://myweb.uiowa.edu/pbreheny/index.html

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

http://archive.ics.uci.edu/ml
https://CRAN.R-project.org/package=biglasso
https://CRAN.R-project.org/package=biglasso
mailto:yaohui.zeng@gmail.com
mailto:patrick-breheny@uiowa.edu
http://myweb.uiowa.edu/pbreheny/index.html

CONTRIBUTED RESEARCH ARTICLE

20

Six Years of Shiny in Research -

Collaborative Development of
Web Tools in R

by Peter Kasprzak, Lachlan Mitchell, Olena Kravchuk and Andy Timmins

Abstract The use of Shiny in research publications is investigated over the six and
a half years since the appearance of this popular web application framework for R,
which has been utilised in many varied research areas. While it is demonstrated
that the complexity of Shiny applications is limited by the background architecture,
and real security concerns exist for novice app developers, the collaborative benefits
are worth attention from the wider research community. Shiny simplifies the
use of complex methodologies for people of different specialities, at the level of
proficiency appropriate for the end user. This enables a diverse community of users
to interact efficiently, and utilise cutting edge methodologies. The literature reviewed
demonstrates that complex methodologies can be put into practice without insisting
on investment in professional training, for a comprehensive understanding from all
participants. It appears that Shiny opens up concurrent benefits in communication
between those who analyse data and other disciplines, that would enrich much of
the peer-reviewed research.

Introduction

Data is the backbone of research. With the rise of automated data gathering tools,
data size and complexity of analysis have driven a growing gap between research
disciplines and the required data analysis. Another issue is the fact that different
approaches to the same data can compromise validity, as seen in an analysis on
effect sizes in observational studies, which found that varied methodological work-
flows could reverse conclusions regarding the studied intervention (Donoho, 2017).
Collaborative learning which employs common task frameworks can help interpret,
quantify, and possibly cap methodological variation across disciplines (Donoho,
2017). Software such as Matlab Moler and Mathworks (2012), Minitab Arend (2010),
Genstat Payne et al. (2007) and SPSS Landau and Everitt (2004) have attempted to
bridge this gap by creating more user friendly interfaces that either make coding
more intuitive and easier to learn, or use drop down menus and radio button
selection to bypass the command line. Current analytical software, such as those
mentioned above, each have their own limitations which include non publication
ready quality graphics, non-intuitive drop down menus, restrictive interfacing
with other software, price point (including the cost of licensing the proprietary
software) and the difficulties that inevitably occur when colleagues attempt to
run code originating from other software on their preferred platform. Despite
its own weaknesses, which include a very steep learning curve and non-intuitive
programming language, R (R Core Team, 2019) has grown to become the most
popular programming language for statistics and biological data analysis, spawning
over 14,000 free to use packages over a wide range of subject material (Li et al.,
2018).

While code of any language can be shared easily between users, general use
requires a level of familiarity with the specific program. Transforming a piece

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

21

of R code into a interactive app capable of use by a broad audience recently re-
quired either knowledge of other coding languages (Gunuganti, 2018), or consul-
tation/collaboration with a computer scientist/app developer and the added time
and cost justified. Specialist apps that benefit only a small number of people often
do not meet cost/benefit benchmarks, which means that many useful advancements
have stalled due to experience requirements with data analysis software, or an un-
derstanding of the underlying theory for day to day use, constituting a complexity
barrier (DePalma, 2013). Shiny can generalise R code for all levels of users, bringing
the latest advancements in methodology measurably closer to everyone. This does
create new issues relating to data security, as novice app developers will now require
a knowledge of web internet protocols for secure data transfers to be assured.

The increased use of technology, sensors and other data capture devices have
brought an interesting issue to light. Researchers and practitioners without a back-
ground in data analysis now have the ability to gather large amounts of data (LaZerte
etal., 2017). Limited options exist for those without data analysis training to correctly
analyse data gathered from the field and experiments, which has arguably led to
issues impacting experimental reproducibility. A Nature survey of 1,576 researchers
from the disciplines of chemistry, physics and engineering, earth and environment,
biology, medicine and other, found more than 50% surveyed believed that low sta-
tistical power or poor analysis was a strong contributor to irreproducibility (Baker,
2016). In the same survey more than 90% of respondents believed that a better un-
derstanding of statistics was required to drive reproducibility of research. Learning
analytical methodologies and programs is a non-trivial task, and subcontracted
analysis, even within house, generally comes with a wait for results. Purchasing
proprietary software can be inflexible and often expensive which takes resources
away from research, and open source software is dependent on a minimum level
of computer literacy, and the ability to test the software to ensure correct results is
essential (LaZerte et al., 2017).

Open source and free, Shiny has grown in popularity with the first Shiny
Developer Conference held in January 2016 and a growing use in peer reviewed
academic papers. While the number of papers has steadily increased each year,
Shiny remains an incompletely explored topic, with the potential for Shiny to make
a significant positive contribution to the general field of science not yet properly
examined. To the best of our knowledge this is the first Shiny review.

The rest of this review is organised as follows. Section 2 details the literature
search, the keywords and findings. Section 3 presents the technical aspects of Shiny,
including hosting costs and security, along with restrictions. Section 4 discusses
the use of Shiny in research with relevant examples from the literature, and finally
section 5 gives the conclusion along with the authors opinion.

Algorithms/methods for literature search

A thorough search for Shiny results in the academic literature was undertaken
to investigate the growth from 2012 - 2018 in research, and which publications
and subject areas were represented. The focus of this paper is the use of Shiny to
bridge specialist academic and theoretical innovations, and its role in disseminating
knowledge to government, industry and the general community, therefore, it is
acknowledged that this is a non-exhaustive list of Shiny case uses. We acknowledge
that the literature search is not fully comprehensive, as newspaper articles, blogs and
other non-academic areas were filtered, which makes this review biased towards

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Shiny

CONTRIBUTED RESEARCH ARTICLE

22

an academic standpoint. The search was conducted with four major data bases.
Web of Science and Scopus were used due to their reputation as multi-disciplinary
databases, with Google Scholar and the University of Adelaide (UofA) utilised
as their algorithms search the entire document and all fields for keywords. The
keywords used in all searches were of the form "Shiny Web Application" OR "Shiny
Web App", with an exact search not suitable in this case, and "R" not included
to avoid the inevitable non-related hits. The search was then filtered by year to
span 2012 - 2018 and the document type was limited to Dissertations, Articles,
Conference proceedings and Reviews (where allowed), to investigate the use of
Shiny in the research literature only. Books were excluded from the search due to
the small number of published materials. A separate search conducted for books
showed that as of 2016, only two books were written on the use of Shiny, with
both being structured as instructional manuals. Beeley (2013) takes the beginner
from their first application and walks them through the major concepts to more
complicated applications, while Moon (2016) uses Shiny to teach ggplot2 (Wickham,
2016) graphics. As of 2018 a Google search for "Shiny Web Application Books"
yielded seven results, including one second edition release.

The UofA search engine is powered by ExLibris Primo, which includes all
resources owned or subscribed to by the library and selected free and open access
resources. It includes 345 databases, and links to the major collections of articles and
eBooks totalling over 50 million items, which can expand out to 100s of millions.
The UofA search was conducted with the terms "Shiny web app OR Shiny web
application" and returned 5,251 results with 1,391 peer reviewed articles, 3,456
dissertations, 18 reviews and 119 conference proceedings, which are broken into
results by journal title, subject tag and languages published in, displayed in Figure 1.

The search in Scopus used TITLE-ABS-KEY(Shiny AND web AND app*) AND
PUBYEAR > 2012 AND PUBYEAR < 2019 as its search terms, with the same
document limitations. The decision was made to only check the title, abstract
and keywords as too many irrelevant results were being returned when including
other fields, with a final result of 155 items. These were restricted once again to
articles (114), conference papers (38), conference reviews (2), and reviews (1). These
are broken into number of records published by year, journal title and subject tag
displayed in Figure 2. There were 154 records published in English, with one record
published in Spanish.

The Web of Science search returned 144 results using the search criteria ALL =
(Shiny Web App*) and filtered to the same time frame. Choices of document criteria
included Articles and Proceedings papers which resulted in 110 Articles and 34
Proceedings papers, with dissertations not returned in this search. These are once
again broken into publications per year, journal title and subject tag displayed in
Figure 3.

Again the predominate language was English with 142 records, one Spanish,
and one Portuguese record found.

The Google Scholar search terms used first were [Shiny web app | application]
which returned 16,400 results. A range of additional terms were used to narrow
down results including, "security OR complexity OR architecture OR hosting", with
"Shiny" being a required keyword, which returned approximately 10,400 results.
Unfortunately by record 135 irrelevant results were found that did not contain the
required term "Shiny", which appeared to be an error in the algorithm. Given that
the search returned over 100% more results than the UofA search, it was decided
to not use these results to create this paper, as the UofA search utilised the Google
Scholar databases.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE

23

count

60
40
- -

Q
Qﬁ' N
& <z>\° & & @ & Q\o@ %o\

Journal

1000

500

6‘ & & \o® & \o@\ @ \\o‘\ é\q %\oo & fo‘@ ,\(\ Q K\@ &
& & & %é}ef\ P &‘b Q,\O %0\060 (\Q’Q@ & Q\o& & @e.b\ < %o\e S &
Q} OO&OO&QQ&Q, (</ Q/(\Q Q/+ (€

<
S & X

count

Subject

Language English French German Chinese Portuguese

Count 5232 5 8 5 4
Language Spanish Chamorro Slavic Italian Norwegian
Count 4 1 1 1 1

Figure 1: Summary of UofA search results partitioned into number of results by
journal for records > 3 with abbreviations given in Table 1, results by subject tag
with abbreviations given in Table 2, and published languages.

Shiny is a relatively novel tool with the total number of papers found quite
small in comparison to larger bodies of work. Assuming the UofA library search
completely covers the other 3 databases (which it is advertised to do), there is an
approximate total of 5,000 unique peer reviewed pieces of work utilising Shiny
since 2012, an average of over 700 papers per year. All searches showed that
Bioinformatics journals published the largest number of Shiny papers, however,
the vast majority of papers were published by a diverse range of titles, in a diverse
range of fields. This indicates that Shiny is a flexible tool and not area specific. Only
the Scopus search returned slightly different information with Computer Science,
Biochemistry, Mathematics, and Other subjects tags registering the largest number
of relevant hits. On closer inspection, while Bioinformatics did not register as
a subject heading, the journal that published the greatest number of papers was
Bioinformatics, followed by BMC Bioinformatics, which suggests that there is simply
a difference in subject labelling. Far more papers were found by keyword searches
in the body of the document, as evidenced by the total numbers of papers found
by the library search from the UofA. This suggests that Shiny has been utilised as
a general tool, and not as a new discovery in the later years. The vast majority of
all papers were written in English, with some European countries represented, but
very few Chinese papers.

The results of the search algorithms are reasonably reproducible, with some
fluctuation occurring depending on the sources of publications, and performance of
the search engine. In our experience the fluctuation is less than 10%. Google scholar

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

24

(]
50
a0
8 30
8 20
14 18
2013 2014 2015 2016 2017 2018
Year
3t -
;' -
S ¢ I S s s B ——
o % N > > % >
. \(‘\\ OQ) Y QQ %O Q7\O ‘6\0 OéQ/ ‘(\’b
2O N\ QQ\{b N S < N &
Q © g S W@ E o ¥
N L \% Q° N <
Ag &

Journal

count
N B O
ol eNe)

o Wm__ ___I-—_--___..__——_-_

%o Q \o\ & (\Q\é%o%o %o\ @\QQ %o & C\ @&o \«\0 @\%0\4@

SO) Q\\ & \6‘ & Ry
<b\°<\\® QQ,@QJ@@Q@Q\"’@QQ (\&\ (\@e,@@\;’\@@ o
S ‘;@fb\ﬁc}‘ N O & S< L & NCHERS Q&Q@*

<) @

Q&
<
N

Q’,\O
Subject

Figure 2: Summary of Scopus search results partitioned into number of published
results by year, journal title for records > 2 with abbreviations given in Table 1 and
results by subject tag with abbreviations given in Table 2

significantly alters the number of found papers depending on sorting. If sorting by
relevance is checked then 127,000 results are found. Sorting by date reduces this
number to what is stated above.

A subset of 600 papers was chosen for thorough reading to inform this report.

These were the top 600 results returned by the UofA records search when sorted via
relevance. The relevance ranking employed by ExLibris Primo is comprised of four
main criteria.

1. Degree of match: Fields such as title, author and subject field are given a
higher ranking, along with order of the query terms and completeness of
phrases.

2. Academic significance: Citations and journal impact factor.

3. Type of search: Primo infers if the search is broad-topic or specific-topic, with

broad topic searches amplifying overview material such as reference articles.

4. Publication date: Newer material is given preference.

The papers that discussed Shiny generally had "Shiny" in the title and/or the
subject fields, increasing their relevance score. Earlier papers were more likely to
discuss Shiny, with newer papers more likely to mention Shiny in the text only. The
relevance search yielded a high number of the older papers as high relevance, along
with a very broad range of use cases. The limit of 600 papers was an empirical cut off

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

25

Count
N
o

Q > > & © Q ®

N N N N N N N

P P P P P P P
Count per year

count
[6)]

0 ——I.-------——-----—-

\b\o\o @ O & & & &0 > @
v P o Q@ & § \Qo@ S

06
5\

) &P Q‘(\ Q‘(\A@ P O %ﬁ} 60‘ <
™ N N @)

Journal

\\ o R & & O R > &
%*Q;\@@% %*VQ \%<<><<§‘% "’%@%\6 G2 S °o° e°\<2«°

count
=N W
[oNeNo)

2 S Q 2 0
?9000 O\Q;Qp% & @Q (‘\\\\Q@‘\e %o\ &9 Q,‘Q ((,0 <do *2‘ @06\ @@b e\\Q\ OQ‘\& ({/(\ @@6\
vd{\.oo \6@ S &QQ% AN @ &
@'\0 N QO @) 00006‘ ‘2‘0
Subject

Figure 3: Summary of WOS search results partitioned into number of published
results by year, journal title for records > 2 with abbreviations given in Table 1 and
results by subject tag > 2 with abbreviations given in Table 2

point, as this was the stage that papers had ceased discussing Shiny, and were only
stating its use. It was decided that enough use cases had been examined to make
comments regarding Shiny’s relatively widespread use in the academic work. 445
original applications were introduced in these papers, which utilised 373 unique R
packages. 229 unique peer reviewed journals were represented with 55 published in

Bioinformatics, 31 published in PLoS ONE, and 21 published in BMC Bioinformatics.

The final subset of papers that most thoroughly discussed the implementation of
Shiny were chosen to create this report, and are given as references.

Technical aspects

Architectural overview

A Web application framework for R, Shiny was conceptualised by RStudio’s CTO
Joe Cheng and announced at the Joint Statistical Meeting conference in July of

2012 as a tool designed to help R programmers create interactive web applications,

reports and analysis without the need to know HTML, CSS, or JavaScript (Chang
et al., 2018).

The power of Shiny comes from the ability for an R user to quickly and simply
code a reactive framework. A reactive framework allows objects to be updated when
a source is changed, along with all connected objects. For example, in an imperative

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

26

programming paradigm such as the R language, setting the line
c=a+b

means that c is assigned the sum of previously defined terms a,b and will not
change when the values of g, b are changed without the variable c being re-evaluated.
Reactive programming allows the value of ¢ to be updated almost instantaneously,
including all other variables and outputs dependent on ¢, whenever a or b is changed.
R completes this task with information travelling from input to output in a pull
fashion. A pull fashion is when c learns of the new value of 2 or b when c is called.
Shiny creates a system of alerts which flag changed expressions and the server
re-evaluates all flags in an event known as a flush (Grolemund, 2015). Using two
object classes called reactive values, such as a = reactive(), and observers, such as b
= plot(), Shiny creates a reactive context between the two objects known as a call-back
which is a command to re-evaluate the observer. Multiple observers can be linked
to the same reactive value and the server will queue up all call-backs and run each
call-back in the event of a flush (Grolemund, 2015).

This reactive framework allows user inputs to be evaluated via a UI (user in-
terface) with a series of easily coded widgets such as text boxes, radio buttons and
drop down menus from pre-programmed R code. Shiny then seamlessly updates
outputs of tables, plots and summaries. A non R user can change the values of a and
b via the user interface and explore the pre-coded results dependent on c.

A Shiny application has two main parts. A user interface object and a server
function. The user interface contains code for the layout and appearance of the
app, with default choices restricted in appearance. Layouts can be customised and
changes to the appearance can be made if the programmer has some knowledge of
HTML or CSS. For standard applications simple commands suffice and a knowledge
of HTML or CSS language is not required for tweaks. The server function houses all
the code that drives functionality of the application and can utilise all the built in
programs available to R and RStudio users.

Hosting

For a small number of applications and limited run hours the cost of hosting a Shiny
application is free, but it can become expensive quickly. Hosting on shinyapps.io
requires no system administration knowledge and comes with layers of security
and is supported by Shiny’s IT team. According to the RStudio pricing website
(Core Team, 2012), the platform is free for 5 applications and 25 active hours which
increases to $39 AUD a month for unlimited applications and 500 active hours, to
the top tier of $299 AUD a month, which allows for unlimited applications and
10,000 active hours. Shiny also has the option of Shiny server, Shiny Server Pro
or RStudio Connect. These require a level of system administration knowledge,
and also requires the apps to be hosted on a physical or virtual machine. RStudio
Server Pro costs $9,995 AUD per year (Core Team, 2012). RStudio connect allows
installation of software on a server behind your existing firewall and costs between
$14,995 AUD per year ($62 AUD per user/month) to $75,995 AUD per year ($6.25
AUD per user/month) for a larger, specified number of named users (Core Team,
2012). Shiny server prices were not available. For those with an in-depth knowledge
of internet security, it is possible, and more economical, to host the application
independently by their own means.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

27

Security

As Shiny is primarily a web technology, a very strong focus on application security
must be adhered to, with novices in computer science more likely to make critical
mistakes (Charpentier, 2013). A well-known concept in cryptography and web
security is unknown unknowns (Charpentier, 2013). Put simply, this refers to the fact
that a developer cannot build defences for attack vectors they are unfamiliar with.
For this reason, it is generally wise to leave the specifics of data security to experts
in the field, with the end-developer instead relying on the vetted work that has been
done for them.

For users of Shiny who elect to use shinyapps.io by RStudio, this is essentially
what happens. Once uploaded, the application is secured behind best practices
(Core Team, 2012). Unfortunately, this service is prohibitively expensive when
compared to hosting the server on a cloud platform like Amazon Web Services (AWS)
(Amazon, 2019) or Microsoft Azure (Microsoft, 2019), which requires application
security to be taken into the app creator’s hands. Certificates need to be created and
kept up-to-date, servers need to be configured for HITPS amongst other security
protocols (Charpentier, 2013). Due to the local nature of R, this is likely to be a new
issue, requiring a new set of skills, for many data analysts operating on the platform.

Architectural issues

Curiously there are only a small number of papers that explicitly mentioned concerns
and limitations with respect to the use of Shiny to develop research focused apps.
A paper by Dwivedi and Kowalski (2018) was the first to include a limitations
section, emphasising the requirement for a fast internet connection when dealing
with large data sets. This could be mitigated with the use of cloud based resources
to store the data and host the app, with potentially faster network and processing
speeds available with respect to local connections. Guo (2018) found R package
updates a legitimate concern, as updates can occur without warning and crash an
application. A less serious issue, the lack of flexibility of the dashboard is born from
the simplification of creation, with Shiny’s dashboard not being as flexible as one
created in Java (Ge et al., 2018). There are however challenges with the use of Shiny,
with one of them being the background architecture.

While Shiny has many benefits, the architecture of Shiny will be a limiting
factor when building complex applications. Previously this concerned dismissed
with Joe Cheng stating more recently:

In the past, we’ve responded rather glibly to these requests: “Just
use functions!” (Cheng, 2019)

As of 2017 Shiny has made moves to address this issue with the creation of mod-
ulisation (Cheng, 2017), however, the more involved use cases would be handled
better by other computing languages, for the reasons detailed below. An analo-
gous way of conceptualising this would be in the difference between applets and
applications. Applets are generally small, discrete, and of low complexity, and are
developed to perform a small number of functions for a highly specific purpose.
Most Shiny products would fit this description quite well, while applications on
the other hand, are generally more complex (Fayram, 2011). They are built for a
number of different use cases, and tend to have relatively large codebases. Well
established and popular web application frameworks such as Angular and React

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

28

exist to fit these situations, containing much more general functionality than Shiny
with much less specific functionality (such as functions related to data visualization)
(Mitchell, 2018). None of this is to say that complex applications can not be created
with Shiny, just that it may not be the most mature solution for the task.

While Shiny will undoubtedly continue to evolve in much the same way as R
has, and many issues today will be gone tomorrow, a number of well-established
software development paradigms must be diverged from:

¢ Shiny actively encourages the use of single-file applications, generally refer-
ring to this singular file as app.R (Chang et al., 2018). Defining everything in a
singular file works well for prototypes, but quickly falls apart as an applica-
tion grows and increases in complexity. In general, code is compartmentalised
into files which contain the logic for a single component. By allowing a single
file to grow monolithic in size, code readability and re-usability is challenged,
consequently making it harder to add additional components in the future
(Fayram, 2011).

¢ Shiny insists on a reactive data-driven model over the more traditional and
common event-driven model. While not necessarily a flaw in and of itself,
many novice developers consider reactivity in programming to be a non-
trivial concept (Fayram, 2011). Considering that Shiny, by nature, is aimed
towards data analysts rather than computer scientists, it can increase the initial
difficulty hurdle that beginners have to overcome. To further this issue, a bug
has existed in RStudio since at least February 2018 that prevents automatic
reloading from working with sourced files. When using multiple files like
this, the server needs to be manually stopped and restarted between every
change, making for a tedious development cycle. Concerns on the subject
have not been addressed by either the RStudio or Shiny core developers
(Hansen, 2018).

Both of the above points begin to cause major issues when put together. Encour-
agement of singular source files results in code quickly becoming unruly, threatening
flexibility. This heightened complexity of source code will invariably be replicated
within the reactive dependency graph, Shiny’s internal mapping of reactive nodes
and their relationships. In the event that something is not working as expected,
RStudio provides little to no internal tools for debugging this graph. A new addition
to CRAN in the form of Reactlog (Schloerke and Cheng, 2019) is a first attempt to
address this issue, which usually forces the developer to painstakingly debug the
graph by hand. As the application becomes increasingly complex, this process gets
closer and closer to impossible. Many of these cases are not as yet documented due
to Shiny being a burgeoning technology, and to the best of our knowledge, this is
the most in-depth look at the challenges in the peer reviewed literature.

A package, ShinyTester (Kohli, 2017), was added to CRAN https://cran.r-
project.org/ early in 2017. While it provides a promising first approach to debug-
ging tools for Shiny (such as the inclusion of a dependency graph visualiser), it
unfortunately seems to have been abandoned. Tools like this would likely alleviate
the above outlined concerns.

Data size

Shiny is designed foremost as a server technology, with applications intended to
be used remotely with a stable internet connection (R Core Team, 2017). Shiny

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Reactlog
https://CRAN.R-project.org/package=ShinyTester
https://cran.r-project.org/
https://cran.r-project.org/

CONTRIBUTED RESEARCH ARTICLE

29

applications must be built with upload and download requirements in the fore.
While Shiny applications can be run locally, doing so requires a base level of knowl-
edge of R that may make it a sub-optimal approach, and limits accessibility. This
is comparable to how mobile applications are generally shipped as pre-compiled
binaries, rather than as raw source that the user would need to compile and install
manually. One of the largest issues with this inherent reliance on connectivity is
the need for data to be uploaded and downloaded. Since Shiny has no inbuilt data
streaming functionality, it is not possible to work with parts of data while waiting
for the rest to upload (R Core Team, 2017). An entire transfer must be completed
before the dataset is made available to the application. This forces the application to
require pre-partitioned uploads, which may not be possible for all types of datasets.

It is quite common to see a dataset approaching gigabytes in size, especially
prevalent in areas such as genomic sequencing, which is generally technically un-
realistic for datasets of this size to be worked with remotely, and would include
extra data costs. If a large amount of bandwidth was made available to a single user,
this could open up your service to potential denial-of-service attacks by malicious
entities (Cloudflare, 2019). Furthermore, it may be legally unrealistic in terms of data
ownership. Users are often uncomfortable providing sensitive data to unknown
receivers, as there is no way for a Shiny app to prove that its not storing uploaded
information permanently for the developer’s own academic or financial gain (Kacha
and Zitouni, 2018).

Literature analysis

Complexity barrier

The pattern of peer reviewed work, as shown in Figure 1, Figure 2, and Figure 3
shows that Bioinformatics is a popular and growing area for Shiny apps. Areas
that traditionally have a lower focus on data analysis skills for researchers, such
as Biological Sciences, Education and Index Medicus, appear to have higher usage
levels. In the current literature Shiny is primarily used as a delivery/visualisation
tool, and is not the focus with many papers referencing the use of Shiny but not
discussing the merits. This trend becomes obvious in more recent papers, with much
of the best discussion occurring in earlier papers.

To investigate the uptake of Shiny we must first understand some of the fac-
tors that determine the uptake of innovation. These are stated by Rogers (2001)
as: (a) relative advantage, (b) compatibility, (c) complexity, (d) trialability and (e)
observability. Rogers (2001) defined complexity as

...the degree to which an innovation is perceived as difficult to understand and
use.

Analysis methods are a non-trivial skill and the complexity of new methodolo-
gies in data analysis are a major hurdle for their uptake in fields such as biology and
agriculture (DePalma et al., 2017). To drive innovation and uptake, tools must be
accessible and usable by all interested parties (Jahanshiri and Shariff, 2014; Klein
etal., 2017). Moraga (2017) noted in the area of public health, that while there had
been progress in methodology and analysis

...these methods are still inaccessible for many researchers lacking the adequate
programming skills to effectively use the required software.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

30

The first peer reviewed Shiny publications appeared in 2013, with the first two
dissertations contributing the most to this discussion, as they give a glimpse to
the vast potential for Shiny. The first dissertation using Shiny was published by
DePalma (2013) which allowed non-computer literate clinicians the ability to harness
powerful statistical methodologies in a robust framework, to conduct antimicrobial
susceptibility tests which determine an unknown pathogens susceptibility to various
antibiotics. DelPalma (2013) noted that previously new methods have not been
adopted due to

...various computational difficulties and an absence of easy to use software for
clinicians.

Complex methodologies were able to be immediately used by end users without
an assumption of computational skills, to inform important medical checks. This
direct transfer of method is a concrete example of how Shiny is able to make complex
research available to all interested parties, regardless of knowledge level. Specialised
applications such as this would be difficult and costly to create without Shiny, and
without general use software the advanced methodology would stall in uptake due
to complexity barriers. This was later followed up with dBETS (diffusion Breakpoint
Estimation Testing Software) by DelPalma et al. (2017) who once again acknowledged

...the computational complexities associated with these new approaches has
been a significant barrier for clinicians.

Shiny is a potential solution to the barrier of complexity for the uptake of new
methodologies.

Cross collaboration and dialogue

Cross collaboration between researchers and the easy dissemination of results is key
to external validity (Munafo et al., 2017). Shiny promotes collaboration by allowing
people with varying skill levels access to more complex methodologies. This has
a flow on benefit to promote the collaboration of practitioners with researchers,
or field researches with theorists, in order to create specialised, fit for purpose
applications. This is illustrated in a paper by Wages and Petroni (2018) which
designs and conducts Phase 1 dose finding trials using the continual reassessment
method, and was noted to

...facilitate more efficient collaborations within study teams.
Klein et al. (2017) underscores the requirement that
...facilitating the deployment of web applications for data analysis is important
to promote collaboration within the scientific community and between scientists
and stakeholders.
Further examples of Shiny being used to open discussion by using apps to bring

relevant parties with differing skills sets into collaboration include Diaz-Gay et al.
(2018) who stated

...analysis of somatic mutational signatures remains currently inaccessible for
a substantial proportion of the scientific community.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

31

As well as Whateley et al. (2015) who noted the knowledge gap between relevant
parties and

...demonstrates the use of the Shiny web framework to bridge that gap, al-
lowing for collaborative development of web tools that can be coded in the
widely-used and free R statistical computing language.

The ability to bridge the gap between researchers and the tools required for their
data analysis was mentioned by Chen et al. (2018) in the context of environmental
DNA. eDNA is becoming an essential tool in ecology and conservation biology and
is utilised by a range of people with varying skill levels with Kandlikar et al. (2018)
stating

Results from eDNA analyses can engage and educate natural resource man-
agers, students, community scientists and naturalists, but without significant
training in bioinformatics, it can be difficult for this diverse audience to interact
with eDNA results.

Shiny allows discipline specialists outside of computer science to code their own
apps, bridging the skill gap for other researchers (Niu, 2017). This was demonstrated
by an app called Armadillo Mapper (Feng et al., 2017), which was designed specifically
to decrease the time between synthesising distributional knowledge on a computer
and carrying out conservation efforts in the field. This encourages those without the
resources to conduct their own analysis, to closely collaborate with analysts to create
specialist applications. Rather than sending final data to an analyst for analysis,
discussion and collaboration is encouraged at the beginning of an experiment. This
enables low quality data due to issues such as pseudo-replication, low power and
confounding variables to be avoided at the design stage rather than the analysis
stage.

Flexibility to link other software

Shiny has the flexibility to bridge the gap between specialised data gathering tools
and available software. A Shiny app accompanying the R package rHyperSpec
(Laney, 2013) was created to take complex data generated by hyperspectral cameras
and link the data to available software packages in response to the problem of

...few free, open-source software packages that enable researchers to easily
process and analyse such data in a manner that maximizes inter-comparison
between studies.

This showcases the flexibility of Shiny applications being able to upload infor-
mation in various formats, make appropriate changes, and output the data in a form
usable by another, completely independent piece of equipment/software. Previ-
ously there were precious few options to link independent software/equipment,
especially without breaching warranty restrictions. Shiny shows tremendous flexi-
bility in working with existing infrastructure to help decrease costs, especially when
technologies are in their infancy.

Shiny gains flexibility and customisability directly from R. One of Shiny’s most
useful abilities is to wrap existing, or new, R packages for general consumption.
Beck (2014) created an app called Seed which bundled several R packages together
and used Shiny to host them on the web allowing

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=rHyperSpec

CONTRIBUTED RESEARCH ARTICLE

32

...user’s access to powerful R based functions and libraries through a simple
user interface.

In the Precision Agriculture (PA) space, farmers have access to a multitude of
proprietary sensors, few of which can be linked directly to analysis tools (Jayaraman
et al.,, 2016). Shiny’s highly customisable framework facilitates the linking of several
pieces of independent software, and can avoid manual data wrangling and transfer.
As an example, Jahanshiri and Shariff (2014) took data from existing PA sensors and
utilised R functions for its analysis and visualisation of results. Shiny has proved
more than useful in the results visualising area, with packages such as ShinyStan
(Gabry et al., 2018) created in order to visualise modelling parameters and results
from MCMC simulations.

Generalising complex methodologies

R packages can be thought of as a level of abstraction down from the mathematical
theory, as the packages can be used by those without a need to have full understand-
ing of the methodology. Shiny can be thought of as another level of abstraction
down again, as R packages can be utilised, without needing an understanding of R
itself. This ability to generalise analysis methodologies makes Shiny available to
any interested party, and is the mechanism that drives flexibility, dialogue and cross
collaboration.

There is an overarching requirement when making tools available to a broader
audience to ensure correct methodology. The first example of using Shiny to guide
and educate the user came from Assaad et al. (2014) who created two Shiny apps
intended to allow Microsoft Word users access to One Way Anova analysis and
post hoc tests. The app gave instructions to guide users through the process, which
greatly simplified the common statistical test, whilst promoting proper statistical
methodology. A real world example of protecting the end user comes from Hsu et al.
(2018), who created an app for proper randomisation when allocating participants
to a three-armed, double-blinded, randomized controlled trial (RCT) for depression.
One critical characteristic of the app was to ensure mistakes were not made when
properly balancing strata. A fail safe against experimental error was employed by
not allowing participants to have their experimental ID overwritten, which means
that any accidental changes after treatment has begun would not impact on the
treatment received.

Generalised applications must be flexible to differing individual parameters.
Shiny makes it a trivial task to allow parameters of a methodology to be changed
depending on individual circumstances. Shiny wrapped simulations were used to
explore humanitarian response and financial institution resiliency for earthquake
risk in Indonesia, with Hartell (2014) allowing the simulation to be tweaked by
individuals so that adjustments to calibration parameters could be made based
on specific interests or circumstances. Other apps that allowed the user to specify
parameters were created by Zhou et al. (2014) for detecting differential expression
in RNA sequencing and Yin (2014) who utilised Bayesian statistical modelling to
investigate the networks of epidemics transmission.

Shiny makes complex methodologies accessible to those who would previously
not be part of the conversation, most likely due to a lack of theoretical study, or lack
of familiarity with coding or analysis programs. Shiny was explicitly noted to help
increase engagement by LaZerte et al. (2017), who created FeedR in order to record
and visualise RFID data from ecological studies. The huge amount of data from

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ShinyStan

CONTRIBUTED RESEARCH ARTICLE

33

RFID quickly becomes overwhelming and requires specialist methods to cope. The
feedR Shiny app was created to wrap the paired R package in order that

...this framework will become a meeting point for science, education and com-
munity awareness...we aim to inspire citizen engagement while simultaneously
enabling robust scientific analysis (LaZerte et al., 2017).

Responsible and open research

Reproducibility of research is a critical cornerstone of responsible research practices.
Studies, such as Munafo et al. (2017), have indicated that reproducibility is not
at high enough levels, with results of a survey conducted by Baker (2016) and
published in Nature found

...more than 70% of researchers have tried and failed to reproduce another
scientist’s experiments and more than half have failed to reproduce their own
experiments.

Eight practices are argued for by Munafo et al. (2017), which includes promoting
transparency and open science to increase reproducibility. Open source software
such as Shiny can aid these objectives by creating a vessel to preserve code, and
allow a greater number of interested parties to critically evaluate methodologies
and results.

One benefit of Shiny wrapped code is that methodology comparisons become
much easier to conduct. Methodologies wrapped in Shiny applications can be
compared on a known data set under various conditions by the end user. This is a
powerful tool in the advancement of reproducible research. Shiny was explicitly
used in a dissertation by Parvandeh (2018) as a vessel to show the strategy and to
create reproducibility of results enhancing responsible and reproducible research
goals.

A Shiny app, or at least the code behind it is enduring. A paper from Sieriebri-
ennikov et al. (2014) included a Shiny application named Nematode Indicator Joint
Analysis (NINJA) 2.0, to automate manual calculations previously carried out using
spreadsheet software, which is time consuming and prone to errors. The aim for
NINJA to remain freely accessible was validated when it was later used by Burkhardt
etal. (2019) to aid nematode calculations in semi-arid wheat systems, 5 years after
its release. This suggests that maintaining a Shiny application is not overly difficult.
The benefit of Shiny’s easy maintenance and updating was mentioned for the first
time in a dissertation by Niu (2017), which highlighted the fact that only the source
code requires changing without having to download patches or modify individual
applications.

Shiny also appeared in conjunction with machine learning to explore early phase
drug discovery processes (Korkmaz et al., 2015), with Wojciechowski et al. (2015)
noticing the power of Shiny to disseminate the results of research, stating

Interactive applications, developed using Shiny for the R programming lan-
guage, have the potential to revolutionize the sharing and communication of
pharmacometric model simulations.

Free and open source software is ideally suited to disseminating the products

of research (LaZerte et al., 2017), which drives collaboration and was noted to

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

34

encourage local and direct monitoring of environmental data in Kenya (Mose et al,,
2017). LaZerte et al. (2017) also found that Shiny’s open source nature has another
important benefit which

...reduces financial barriers to its use and the open-source aspect permits and
encourages collaboration which can result in better, more powerful software.

Cross collaboration and use of open source Shiny will hopefully also help drive
data sharing. Yi et al. (2017) noted the utility and importance of data sharing
promoted by Shiny applications, which is also one of the key recommendations by
Munafo et al. (2017) in order to drive transparency and openness, and is currently a
policy by Science and Springer Nature journals.

An educational tool

The strengths shown by Shiny seems to fit very well in the educational sector and it
was no surprise that Shiny has been used as a teaching aid in order to get complex
ideas across to students (Williams and Williams, 2018). Educational tools such as
those by Arnholt (2018) help teach the concept of power in hypothesis tests, with
Williams and Williams (2018) creating a similar application for confidence intervals,
and an app by Courtney and Chang (2018) which normalises large datasets and
allows students to explore the results of differing transformations. There are other
benefits to using Shiny in the education sector. Kandlikar et al. (2018) created the
Shiny app ranacapa and found that

A key benefit of using ranacapa was that despite having no prior bioinformatics
experience, students could begin exploring the biodiversity in their samples in
a matter of minutes by using the online instance of the Shiny app.

This had the flow on effect of allowing teachers to focus more on the theory
instead of the inevitable problems when teaching new, more complex software and
provided a useful aid to self-learning (Kandlikar et al., 2018).

Conclusion

This review examined Shiny in peer reviewed publications from 2012 to 2018 and
mapped the growth through various research fields. A subset of 600 papers were
used to inform the bulk of the paper, with the authors personal experiences of
Shiny included. While Shiny is not a silver bullet solution to issues in the research
field, it confers the ability for specialised applications to be created cheaply and
easily, such that any level of end user maybe included, no matter the complexity
level of the methodology. This primary benefit creates a direct pathway for new
findings to be rapidly incorporated into established work flows. The flexibility of
Shiny means that apps can be tailored to exact specifications in all regards, with
changes and maintenance of the app made relatively easy as an ongoing product of
consultation further promoting collaboration. If an app is considered worthwhile
adopting to an existing work flow, widespread adoption across an entire workplace
is as simple as sharing the web address. This will have the inevitable knock on
effects of allowing fewer people to do more, which will necessarily mean existing
jobs have the potential of becoming obsolete. The argument that other jobs will be

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

35

created is true, but not necessarily within the same sector, or for the people whose
job has become obsolete. As we progress further into this technological world, this
argument will require mature debate and nuance to be resolved.

In the current literature, Shiny has been used primarily as a visualisation and
dissemination tool, with many papers not exploring the concurrent benefits and
challenges mentioned in this review. One benefit identified in the literature is the
opportunity to increase high value dialogue between people with different skill sets.
For example, field researchers, primary producers or marketers are able to sit down
with theoretical researchers/consultants to create highly customised applications
for up-coming experiments or daily work. Code published as a Shiny application
has the useful attribute of making methodology comparisons easy, which promotes
reproducible research and best practice standards.

With the ability to accelerate access to data analysis techniques comes the
paramount issue of data security for those not familiar with web protocols. It
is essential for those who host web based applications to become knowledgeable in
this area. Web security protocols are likely to be a new skill set for many R program-
mers, and a non-trivial task potentially constituting a bottle neck for widespread
Shiny uptake.

While the use of Shiny apps require minimal experience with computers, the
creation of a Shiny application is a different story. The lack of debugging tools, the
encouragement of single file applications, and the current implementation of the
reactive data-driven model will limit the complexity of future applications.

Other open source and proprietary options are currently available, however,
Shiny’s flexibility, customisability, and low cost is highly desirable. Open source
software comes with a minimum knowledge requirement barrier to entry, and
proprietary software can be expensive and inflexible to changing situations and cir-
cumstances. Maintenance is required with Shiny, although it is limited to updating
code when R packages or dependencies change, and can be done via the source code
for all users.

Shiny is one of the better tools available if one is an existing R programmer given
its inherited scope from R. It helps promotes open and reproducible research, and
offers a real pathway to making complicated methodologies usable to those outside
of research. The ability to provide an avenue to increase high value collaboration
and dialogue between interested parties with differing skills sets make Shiny a tool
worth exploring.

Acknowledgements

We would like to gratefully acknowledge the scholarship for the M.Phil program of
the first author from the Grains Research and Development Corporation (GRDC)
Australia.

Bibliography

Amazon. Amazon EC2 Pricing, 2019. URL https://aws.amazon.com/ec2/pricing/.
[p27]

D. Arend. Minitab 17 Statistical Software, 2010. [p20]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://aws.amazon.com/ec2/pricing/

CONTRIBUTED RESEARCH ARTICLE 36

A.T. Arnholt. Using a Shiny app to teach the concept of power. Teaching Statistics,
2018. URL https://doi.org/10.1111/test.12186. [p34]

H. I. Assaad, L. Zhou, R. J. Carroll, and G. Wu. Rapid publication-ready MS-
Word tables for one-way ANOVA. SpringerPlus, 3(1):474, 2014. URL https:
//doi.org/10.1186/2193-1801-3-474. [p32]

M. Baker. 1,500 scientists lift the lid on reproducibility. Nature News, 533(7604):452,
2016. URL https://doi.org/10.1038/533452a. [p21, 33]

D. Beck. Investigating the Use of Classification Models to Study Microbial Community
Associations with Bacterial Vaginosis. PhD thesis, University of Idaho, 2014. [p31]

C. Beeley. Web Application Development with R Using Shiny. Olton: Packt Publishing
Ltd, first edition, 2013. [p22]

A. Burkhardt, S. S. Briar, J. M. Martin, P. M. Carr,]J. Lachowiec, C. Zabinski, D. W.
Roberts, P. Miller, and J. Sherman. Perennial crop legacy effects on nematode
community structure in semi-arid wheat systems. Applied Soil Ecology, 2019. URL
https://doi.org/10.1016/j.apso0il.2018.12.020. [p33]

W. Chang, J. Cheng, J. J. Allaire, Y. Xie, and J. McPherson. Shiny: Web Application
Framework for R, 2018. R package version 1.2.0. [p25, 28]

J. Charpentier. Web application Security. Technical Report Network Project, 7.5 hp,
Halmstad University, 2013. [p27]

Z.Chen, Y. Zheng, Z. Wang, M. Kutner, W.]. Curran, and J. Kowalski. Interactive
calculator for operating characteristics of phase I cancer clinical trials using stan-
dard 3+3 designs. Contemporary Clinical Trials Communications, 12:145-153, 2018.
URL https://doi.org/10.1016/j.conctc.2018.10.006. [p31]

J. Cheng. Shiny - Modularizing Shiny app code, 2017. URL https://shiny.rstudio.
com/articles/modules.html. [p27]

J. Cheng. Shiny - Modularizing Shiny app code, 2019. URL http://shiny.rstudio-
staging.com/articles/modules.html. [p27]

Cloudflare. What Is a Distributed Denial-of-Service (DDoS) Attack?,
2019. URL https://www.cloudflare.com/en-au/learning/ddos/what-is-a-
ddos-attack/. [p29]

R. Core Team. RStudio Pricing, 2012. URL https://www.rstudio.com/pricing/.
[p26, 27]

M. G. R. Courtney and K. C. Chang. Dealing with non-normality: An introduction
and step-by-step guide using R. Teaching Statistics, 40(2):51-59, 2018. URL https:
//doi.org/10.1111/test.12154. [p34]

G. DePalma. Disk Diffusion Breakpoint Determination Using a Bayesian Nonparametric
Variation of the Errors-in-Variables Model. PhD thesis, Purdue University, 2013. [p21,
30]

G. DePalma, J. Turnidge, and B. A. Craig. Determination of disk diffusion suscepti-
bility testing interpretive criteria using model-based analysis: Development and
implementation. Diagnostic Microbiology and Infectious Disease, 87(2):143-149, 2017.
URL https://doi.org/10.1016/j.diagmicrobio.2016.03.004. [p29, 30]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1111/test.12186
https://doi.org/10.1186/2193-1801-3-474
https://doi.org/10.1186/2193-1801-3-474
https://doi.org/10.1038/533452a
https://doi.org/10.1016/j.apsoil.2018.12.020
https://doi.org/10.1016/j.conctc.2018.10.006
https://shiny.rstudio.com/articles/modules.html
https://shiny.rstudio.com/articles/modules.html
http://shiny.rstudio-staging.com/articles/modules.html
http://shiny.rstudio-staging.com/articles/modules.html
https://www.cloudflare.com/en-au/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/en-au/learning/ddos/what-is-a-ddos-attack/
https://www.rstudio.com/pricing/
https://doi.org/10.1111/test.12154
https://doi.org/10.1111/test.12154
https://doi.org/10.1016/j.diagmicrobio.2016.03.004

CONTRIBUTED RESEARCH ARTICLE

37

M. Diaz-Gay, M. Vila-Casadests, S. Franch-Exp6sito, E. Herndndez-Ill4n,]. J. Lozano,
and S. Castellvi-Bel. Mutational Signatures in Cancer (MuSiCa): A web applica-
tion to implement mutational signatures analysis in cancer samples. BMC Bioin-
formatics, 19(1):224, 2018. URL https://doi.org/10.1186/512859-018-2234-y.

[p30]

D. Donoho. 50 Years of Data Science. Journal of Computational and Graphical Statistics,
26(4):745-766, 2017. URL https://doi.org/10.1080/10618600.2017.1384734.

[p20]

B. Dwivedi and J. Kowalski. shinyGISPA: A web application for characterizing
phenotype by gene sets using multiple omics data combinations. PLoS ONE, 13
(2),2018. URL https://doi.org/10.1371/journal.pone.0192563. [p27]

D. Fayram. Functional Programming Is Hard, That's Why It's Good,
2011. URL https://www.pixelstech.net/article/1318920938-Functional-
Programming-Is-Hard-That-s-Why-It-s-Good. [p27, 28]

X. Feng, M. C. Castro, E. Linde, and M. Papes. Armadillo Mapper: A Case Study
of an Online Application to Update Estimates of Species” Potential Distribu-
tions. Tropical Conservation Science, 10, 2017. URL https://doi.org/10.1177/
1940082917724133. [p31]

J. Gabry, S. D. Team, M. Andreae, M. Betancourt, B. Carpenter, Y. Gao, A. Gelman,
B. Goodrich, D. Lee, D. Song, and R. Trangucci. Shinystan: Interactive Visual and
Numerical Diagnostics and Posterior Analysis for Bayesian Models, 2018. [p32]

S. X. Ge, E. W. Son, and R. Yao. iDEP: An integrated web application for differential
expression and pathway analysis of RNA-Seq data. BMC Bioinformatics, 19, 2018.
URL https://doi.org/10.1186/s12859-018-2486-6. [p27]

G. Grolemund. Shiny - How to understand reactivity in R, 2015. URL https:
//shiny.rstudio.com/articles/understanding-reactivity.html. [p26]

A. Gunuganti. Application Development Framework for R/Shiny. In PharmaSUG
2018 Conference Proceedings, volume AD-24, page 9. PharmaSUG, 2018. [p21]

J. Guo. Developing a Visualization Tool for Unsupervised Machine Learning Techniques on
*Omics Data. PhD thesis, University of Washington, 2018. [p27]

K. Hansen. Rstudio - Reload Shiny App when using source’ed modules without
restart, 2018. URL https://stackoverflow.com/questions/50169896/reload-
shiny-app-when-using-sourceed-modules-without-restart. [p28]

J. Hartell. Earthquake Risk in Indonesia: Parametric Contingent Claims for Humanitarian
Response and Financial Institution Resiliency. PhD thesis, University of Kentucky;,
2014. [p32]

K.J. Hsu, K. Caffey, D. Pisner, J. Shumake, S. Risom, K. L. Ray, J. A. J. Smits, D. M.
Schnyer, and C. G. Beevers. Attentional bias modification treatment for depression:
Study protocol for a randomized controlled trial. Contemporary Clinical Trials, 75:
59-66, 2018. URL https://doi.org/10.1016/j.cct.2018.10.014. [p32]

E. Jahanshiri and A. R. M. Shariff. Developing web-based data analysis tools for
precision farming using R and Shiny. IOP Conference Series: Earth and Environmen-
tal Science, 20(1), 2014. URL https://doi.org/10.1088/1755-1315/20/1/012014.
[p29, 32]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1186/s12859-018-2234-y
https://doi.org/10.1080/10618600.2017.1384734
https://doi.org/10.1371/journal.pone.0192563
https://www.pixelstech.net/article/1318920938-Functional-Programming-Is-Hard-That-s-Why-It-s-Good
https://www.pixelstech.net/article/1318920938-Functional-Programming-Is-Hard-That-s-Why-It-s-Good
https://doi.org/10.1177/1940082917724133
https://doi.org/10.1177/1940082917724133
https://doi.org/10.1186/s12859-018-2486-6
https://shiny.rstudio.com/articles/understanding-reactivity.html
https://shiny.rstudio.com/articles/understanding-reactivity.html
https://stackoverflow.com/questions/50169896/reload-shiny-app-when-using-sourceed-modules-without-restart
https://stackoverflow.com/questions/50169896/reload-shiny-app-when-using-sourceed-modules-without-restart
https://doi.org/10.1016/j.cct.2018.10.014
https://doi.org/10.1088/1755-1315/20/1/012014

CONTRIBUTED RESEARCH ARTICLE

38

P. P. Jayaraman, A. Yavari, D. Georgakopoulos, A. Morshed, and A. Zaslavsky.
Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt.
Sensors, 16(11):1884, 2016. URL https://doi.org/10.3390/s16111884. [p32]

L. Kacha and A. Zitouni. An Overview on Data Security in Cloud Computing. pages
250-261,2018. URL https://doi.org/10.1007/978-3-319-67618-0_23. [p29]

G. S. Kandlikar, Z. J. Gold, M. C. Cowen, R. S. Meyer, A. C. Freise, N.]J. Kraft,
J. Moberg-Parker, J. Sprague, D. J. Kushner, and E. E. Curd. Ranacapa: An R
package and Shiny web app to explore environmental DNA data with exploratory
statistics and interactive visualizations. F1000Research, 7, 2018. URL https:
//doi.org/10.12688/f1000research.16680.1. [p31, 34]

T. Klein, A. Samourkasidis, I. N. Athanasiadis, G. Bellocchi, and P. Calanca. we-
bXTREME: R-based web tool for calculating agroclimatic indices of extreme
events. Computers and Electronics in Agriculture, 136:111-116, 2017. URL https:
//doi .org/10.1016/3. compag.2017.03.002. [p29, 30]

A. Kohli. Shinytester: Functions to minimize bonehead moves while working
with “shiny’, 2017. URL https://CRAN.R-project.org/package=ShinyTester. R
package version 0.1.0. [p28]

S. Korkmaz, G. Zararsiz, and D. Goksuluk. MLViS: A Web Tool
for Machine Learning-Based Virtual Screening in Early-Phase of Drug
Discovery and Development. PLoS Omne; San Francisco, 10(4), 2015.
URL https://doi.org/http://dx.doi.org.proxy.library.adelaide.edu.au/
10.1371/journal.pone.0124600. [p33]

S. Landau and B. Everitt. A Handbook of Statistical Analyses Using SPSS. Chapman &
Hall/CRC, 2004. [p20]

C. M. Laney. Toward New Data and Information Management Solutions for Data-Intensive
Ecological Research. PhD thesis, The University of Texas at El Paso, 2013. [p31]

S. E. LaZerte, M. W. Reudink, K. A. Otter,]. Kusack, J. M. Bailey, A. Woolverton,
M. Paetkau, A. de Jong, and D. J. Hill. Feedr and animalnexus.ca: A paired
R package and user-friendly Web application for transforming and visualizing
animal movement data from static stations. Ecology and Evolution, 7(19):7884-7896,
2017. URL https://doi.org/10.1002/ece3.3240. [p21, 32, 33, 34]

J. Li, B. Cui, Y. Dai, L. Bai, and J. Huang. Biolnstaller: A comprehensive R package to
construct interactive and reproducible biological data analysis applications based
on the R platform. Peer], 6, 2018. URL https://doi.org/10.7717/peerj.5853.

[p20]

Microsoft. Pricing — Linux Virtual Machines | Microsoft Azure, 2019. URL https:
//azure.microsoft.com/en-au/pricing/details/virtual-machines/linux/.

[p27]

E. Mitchell. Shiny applications without Shiny, 2018. URL http://washstat.org/
presentations/20181024/Mitchell.pdf. [p28]

C. Moler and Mathworks. MATLAB 8.0 and Statistics Toolbox 8.1, 2012. [p20]

K.-M. Moon. Learn ggplot2 Using Shiny App. Number 2197-5736 in Use R! Springer,
2016. [p22]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.3390/s16111884
https://doi.org/10.1007/978-3-319-67618-0_23
https://doi.org/10.12688/f1000research.16680.1
https://doi.org/10.12688/f1000research.16680.1
https://doi.org/10.1016/j.compag.2017.03.002
https://doi.org/10.1016/j.compag.2017.03.002
https://CRAN.R-project.org/package=ShinyTester
https://doi.org/http://dx.doi.org.proxy.library.adelaide.edu.au/10.1371/journal.pone.0124600
https://doi.org/http://dx.doi.org.proxy.library.adelaide.edu.au/10.1371/journal.pone.0124600
https://doi.org/10.1002/ece3.3240
https://doi.org/10.7717/peerj.5853
https://azure.microsoft.com/en-au/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-au/pricing/details/virtual-machines/linux/
http://washstat.org/presentations/20181024/Mitchell.pdf
http://washstat.org/presentations/20181024/Mitchell.pdf

CONTRIBUTED RESEARCH ARTICLE

39

P. Moraga. SpatialEpiApp: A Shiny web application for the analysis of spatial and
spatio-temporal disease data. Spatial and Spatio-temporal Epidemiology, 23:47-57,
2017. URL https://doi.org/10.1016/j.sste.2017.08.001. [p29]

V. N. Mose, D. Western, and P. Tyrrell. Application of open source tools for biodi-
versity conservation and natural resource management in East Africa. Ecological
Informatics, 2017. URL https://doi.org/10.1016/j.ecoinf.2017.09.006. [p34]

M. R. Munafo, B. A. Nosek, D. V. M. Bishop, K. S. Button, C. D. Chambers, N. Percie
du Sert, U. Simonsohn, E.-]. Wagenmakers, J. J. Ware, and J. P. A. Ioannidis. A
manifesto for reproducible science. Nature Human Behaviour, 1(1), 2017. URL
https://doi.org/10.1038/s41562-016-0021. [p30, 33, 34]

B. Niu. Mass Spectrometry-Based Structural Proteomics: Methodology and Application of
Fast Photochemical Oxidation of Proteins (FPOP). PhD thesis, Washington University
in St. Louis, 2017. [p31, 33]

S. Parvandeh. Epistasis Network and Machine Learning Methods for the Analysis of
Biological Large Data. PhD thesis, The University of Tulsa, 2018. [p33]

R. Payne, D. Murray, S. Harding, D. Baird, and D. Soutar. GenStat, 2007. [p20]

R Core Team. Shiny Welcome to Shiny, 2017. URL https://shiny.rstudio.com/
tutorial/written-tutorial/lesson1/. [p28, 29]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2019. [p20]

M. Rogers. Evolution: Diffusion of Innovations. In N. J. Smelser and P. B. Baltes,
editors, International Encyclopedia of the Social & Behavioral Sciences, pages 4982—
4986. Pergamon, 2001. URL https://doi.org/10.1016/B0-08-043076-7/03094-

1. [p29]
B. Schloerke and J. Cheng. Reactlog: Reactivity Visualizer for ‘shiny’, 2019. [p28]

B. Sieriebriennikov, H. Ferris, and R. G. M. de Goede. NINJA: An automated
calculation system for nematode-based biological monitoring. European Journal of
Soil Biology, 61:90-93, 2014. URL https://doi.org/10.1016/j.ejsobi.2014.02.
004. [p33]

N. A. Wages and G. R. Petroni. A web tool for designing and conducting phase
I trials using the continual reassessment method. BMC Cancer, 18, 2018. URL
https://doi.org/10.1186/s12885-018-4038-x. [p30]

S. Whateley, J. D. Walker, and C. Brown. A web-based screening model for climate
risk to water supply systems in the northeastern United States. Environmental
Modelling & Software, 73:64-75,2015. URL https://doi.org/10.1016/].envsoft.
2015.08.001. [p31]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,
2016. ISBN 978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p22]

I.J. Williams and K. K. Williams. Using an R shiny to enhance the learning experience
of confidence intervals. Teaching Statistics, 40(1):24-28, 2018. URL https://doi.
org/10.1111/test.12145. [p34]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1016/j.sste.2017.08.001
https://doi.org/10.1016/j.ecoinf.2017.09.006
https://doi.org/10.1038/s41562-016-0021
https://shiny.rstudio.com/tutorial/written-tutorial/lesson1/
https://shiny.rstudio.com/tutorial/written-tutorial/lesson1/
https://doi.org/10.1016/B0-08-043076-7/03094-1
https://doi.org/10.1016/B0-08-043076-7/03094-1
https://doi.org/10.1016/j.ejsobi.2014.02.004
https://doi.org/10.1016/j.ejsobi.2014.02.004
https://doi.org/10.1186/s12885-018-4038-x
https://doi.org/10.1016/j.envsoft.2015.08.001
https://doi.org/10.1016/j.envsoft.2015.08.001
https://ggplot2.tidyverse.org
https://doi.org/10.1111/test.12145
https://doi.org/10.1111/test.12145

CONTRIBUTED RESEARCH ARTICLE

40

J. Wojciechowski, A. M. Hopkins, and R. N. Upton. Interactive Pharmacometric
Applications Using R and the Shiny Package. CPT: Pharmacometrics & Systems
Pharmacology, 4(3):146-159, 2015. URL https://doi.org/10.1002/psp4.21. [p33]

L. Yi, H. Pimentel, and L. Pachter. Zika infection of neural progenitor cells perturbs
transcription in neurodevelopmental pathways. PLoS One; San Francisco, 12

(4),2017. URL https://doi.org/http://dx.doi.org.proxy.library.adelaide.

edu.au/10.1371/journal.pone.@175744. [p34]

J. Yin. Bayesian Statistical Modeling in Epidemics and the Contact Networks That Transmit
Them. PhD thesis, The University of lowa, 2014. [p32]

X. Zhou, H. Lindsay, and M. D. Robinson. Robustly detecting differential expression
in RNA sequencing data using observation weights. Nucleic Acids Research, 42(11),
2014. URL https://doi.org/10.1093/nar/gku310. [p32]

Peter Kasprzak

University of Adelaide

School of Agriculture Food and Wine, PMB 1, Glen Osmond, SA 5064
Australia

peter.kasprzak@adelaide.edu.au

Lachlan Mitchell

University of Adelaide

School of Agriculture Food and Wine, PMB 1, Glen Osmond, SA 5064
Australia

lachlan.mitchell@icloud.com

Olena Kravchuk

University of Adelaide

School of Agriculture Food and Wine, PMB 1, Glen Osmond, SA 5064
Australia

olena.kravchuk@adelaide.edu.au

Andy Timmins

University of Adelaide

School of Agriculture Food and Wine, PMB 1, Glen Osmond, SA 5064
Australia

andy.timmins@adelaide.edu.au

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://doi.org/10.1002/psp4.21
https://doi.org/http://dx.doi.org.proxy.library.adelaide.edu.au/10.1371/journal.pone.0175744
https://doi.org/http://dx.doi.org.proxy.library.adelaide.edu.au/10.1371/journal.pone.0175744
https://doi.org/10.1093/nar/gku310
mailto:peter.kasprzak@adelaide.edu.au
mailto:lachlan.mitchell@icloud.com
mailto:olena.kravchuk@adelaide.edu.au
mailto:andy.timmins@adelaide.edu.au

CONTRIBUTED RESEARCH ARTICLE

41

Appendix

Table 1: Table of journal abbreviations

Journal

Abbreviation

2nd Symposium On Lapan Ipb Satellite Lisat For Food

Security And Environmental Monitoring
Bioinformatics

Bioinformatics (Oxford England)

Bmc Bioinformatics

Bmc Cancer

Environmental Earth Sciences
Environmental Modelling And Software
F1000research

Frontiers In Psychology

Gigascience

Iop Conference Series Earth And Environmental Sci-

ence
Journal Of Pharmacokinetics And Pharmacodynamics
Journal Of Physics Conference Series

Lecture Notes In Artificial Intelligence

Natural Hazards

Nature Communications

Nucleic Acids Research

Peer;j

PloS ONE

Procedia Environmental Sciences

R Journal

Scientific Reports

Source Code For Biology And Medicine

Springerplus

Statistics In Medicine

Studies In Health Technology And Informatics
Wellcome Open Research

Workshop And International Seminar On Science Of

Complex Natural Systems

Food Sec Envir

Bioinfo

Bioinfo (OE)
BMC Bioinfo
BMC Cancer
Envir Earth Sci
Envir Mod Soft
F1000

Front Psych
iga

Earth Envir Sci

Pharma

Physics

Al

Nat Haz

Nat Com

Nuc Acids Res
Peerj

PloS ONE

Envir Sci

R Journal

Sci Rep

Bio Med
Springerplus

P Stgat 11\9/[ed
Health Tech Info
Well Open Res
Complex Nat Sys

The R Journal Vol. 12/2, December 2020

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Table 2: Table of abbreviations for subject tag

Subject | Abbreviation
Agricultural Biological Sciences Ag Biol Sci
Agriculture Multidisciplinary Ag Multi
Arts Humanities Art Hum
Automation Control Systems Auto Cont Sys
Biochemical Research Methods Biochem Res Meth
Biochemistry Genetics Molecular Biology Biochem Gen Molec Biol
Biochemistry Molecular Biology Biochem Molec Biol
Biotechnology Applied Microbiology Biotech App Micro
Business Management Accounting Bus Man Acc
Chemical Engineering Chem Eng
Chemistry Chemistry
Communication and the Arts Comm & Arts
Computational Biology Comp Biology
Computer Science Comp Sci
Computer Science Artificial Intelligence Comp Sci Al
Computer Science Information Systems Comp Sci Info Sys
Computer Science Interdisciplinary Applications Comp Sci Inter Ap

Computer Science Theory Methods Comp Sci Theor Met

Decision Sciences Dec Sci
Earth Planetary Sciences Earth Plan Sci
Education Scientific Disciplines Ed Sci Disc
Energy Energy
Engineering Engineering
Engineering Electrical Electronic Eng Elec Elct
Engineering Environmental Eng Env
Environmental Science Envir Sci
Environmental Sciences Env Sci
Evolutionary Biology Evol Biol
Genetics Heredity Genet Hered
Health Care Sciences Services Health Care Sci Ser
Health Professions Health Prof
Immunology Microbiology Immun Micro
Materials Science Mat Sci
Mathematical Computational Biology Math Comp Biol
Mathematics Mathematics
Medical Informatics Med Info
Medicine Medicine
Medicine Research Experimental Med Res Exp
Multidisciplinary Multidisciplinary
Multidisciplinary Sciences Multi Disc Sci
Neuroscience Neuro
Oncology Oncology
Pharmacology Pharmacy Pharm Pharmacy
Pharmacology Toxicology Pharmaceutics Pharm Tox
Physics Astronomy Phys Astro
Psychology Psychology
Public Environmental Occupational Health Pub Envir Occ
Remote Sensing Rem Sens
Social Sciences Soc Sci
Statistics Probability Stat Prob
Veterinary Vet

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

43

A Fast and Scalable Implementation
Method for Competing Risks Data with
the R Package fastcmprsk

by Eric S. Kawaguchi, Jenny I. Shen, Gang Li, and Marc A. Suchard

Abstract Advancements in medical informatics tools and high-throughput biological experimentation
make large-scale biomedical data routinely accessible to researchers. Competing risks data are typical
in biomedical studies where individuals are at risk to more than one cause (type of event) which can
preclude the others from happening. The Fine and Gray (1999) proportional subdistribution hazards
model is a popular and well-appreciated model for competing risks data and is currently implemented
in a number of statistical software packages. However, current implementations are not computation-
ally scalable for large-scale competing risks data. We have developed an R package, fastcmprsk, that
uses a novel forward-backward scan algorithm to significantly reduce the computational complexity
for parameter estimation by exploiting the structure of the subject-specific risk sets. Numerical studies
compare the speed and scalability of our implementation to current methods for unpenalized and
penalized Fine-Gray regression and show impressive gains in computational efficiency.

Introduction

Competing risks time-to-event data arise frequently in biomedical research when subjects are at risk for
more than one type of possibly correlated events or causes and the occurrence of one event precludes
the others from happening. For example, one may wish to study time until first kidney transplant
for kidney dialysis patients with end-stage renal disease. Terminating events such as death, renal
function recovery, or discontinuation of dialysis are considered competing risks as their occurrence
will prevent subjects from receiving a transplant. When modeling competing risks data the cumulative
incidence function (CIF), the probability of observing a certain cause while taking the competing risks
into account, is oftentimes a quantity of interest.

The most commonly-used model to draw inference about the covariate effect on the CIF and
to predict the CIF dependent on a set of covariates is the Fine-Gray proportional subdistribution
hazards model (Fine and Gray, 1999). Various statistical packages for estimating the parameters of the
Fine-Gray model are popular within the R programming language (lhaka and Gentleman, 1996). One
package, among others, is the cmprsk package. The riskRegression package, initially implemented
for predicting absolute risks (Gerds et al., 2012), uses a wrapper that calls the cmprsk package to
perform Fine-Gray regression. Scheike and Zhang (2011) provide timereg that allows for general
modeling of the cumulative incidence function and includes the Fine-Gray model as a special case.
The survival package also performs Fine-Gray regression but does so using a weighted Cox (Cox,
1972) model. Over the past decade, there have been several extensions to the Fine-Gray method that
also result in useful packages. The crrSC package allows for the modeling of both stratified (Zhou
etal., 2011) and clustered (Zhou et al., 2012) competing risks data. Kuk and Varadhan (2013) propose a
stepwise Fine-Gray selection procedure and develop the crrstep package for implementation. Fu et al.
(2017) then introduce penalized Fine-Gray regression with the corresponding crrp package.

A contributing factor to the computational complexity for general Fine-Gray regression implemen-
tation is parameter estimation. Generally, one needs to compute the log-pseudo likelihood and its first
and second derivatives with respect to its regression parameters for optimization. Calculating these
quantities is typically of order O(n?), where # is the number of observations in the dataset, due to the
repeated calculation of the subject-specific risk sets. With current technological advancements making
large-scale data from electronic health record (EHR) data systems routinely accessible to researchers,
these implementations quickly become inoperable or grind-to-a-halt in this domain. For example,
Kawaguchi et al. (2020) reported a runtime of about 24 hours to fit a LASSO regularized Fine-Gray
regression on a subset of the United States Renal Data Systems (USRDS) with n = 125,000 subjects
using an existing R package crrp. To this end, we note that for time-to-event data with no competing
risks, Simon et al. (2011), Breheny and Huang (2011), and Mittal et al. (2014), among many others, have
made significant progress in reducing the computational complexity for the Cox (1972) proportional
hazards model from O(n?) to O(n) by taking advantage of the cumulative structure of the risk set.
However, the counterfactual construction of the risk set for the Fine-Gray model does not retain the
same structure and presents a barrier to reducing the complexity of the risk set calculation. To the best
of our knowledge, no further advancements in reducing the computational complexity required for
calculating the subject-specific risk sets exists.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=fastcmprsk
https://CRAN.R-project.org/package=cmprsk
https://CRAN.R-project.org/package=riskRegression
https://CRAN.R-project.org/package=timereg
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=crrSC
https://CRAN.R-project.org/package=crrstep
https://CRAN.R-project.org/package=crrp

CONTRIBUTED RESEARCH ARTICLE

44

The contribution of this work is the development of an R package fastemprsk which implements
a novel forward-backward scan algorithm (Kawaguchi et al., 2020) for the Fine-Gray model. By taking
advantage of the ordering of the data and the structure of the risk set, we can calculate the log-pseudo
likelihood and its derivatives, which are necessary for parameters estimation, in O(n) calculations
rather than O(n?). As a consequence, our approach is scalable to large competing risks datasets and
outperforms competing algorithms for both penalized and unpenalized parameter estimation.

The paper is organized as follows. In the next section, we briefly review the basic definition of the
Fine-Gray proportional subdistribution hazards model, the CIF, and penalized Fine-Gray regression.
We highlight the computational challenge of lineaizing estimation for the Fine-Gray model and intro-
duce the forward-backward scan algorithm of Kawaguchi et al. (2020) in Section 2.3. Then in Section
2.4, we describe the main functionalities of the fastcmprsk package that we developed for R which
utilizes the aforementioned algorithm for unpenalized and penalized parameter estimation and CIF
estimation. We perform simulation studies in Section 2.5 to compare the performance of our proposed
method to some of their popular competitors. The fastemprsk package is readily available on the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=fastcmprsk.

Preliminaries

Data structure and model

We first establish some notation and the formal definition of the data generating process for competing
risks. For subjecti = 1,...,n, let T;, C;, and €; be the event time, possible right-censoring time,
and cause (event type), respectively. Without loss of generality assume there are two event types
€ € {1,2} where € = 1 is the event of interest (or primary event) and € = 2 is the competing risk.
With the presence of right-censoring we generally observe X; = T; AC;, §; = I(T; < C;), where
aAb = min(a,b) and I(-) is the indicator function. Letting z; be a p-dimensional vector of time-
independent subject-specific covariates, competing risks data consist of the following independent
and identically distributed quadruplets {(X;, J;, d;€;, z;) }_ ;. Assume that there also exists a T such
that 1) for some arbitrary time ¢, t € [0,7];2) Pr(T; > 7) > Oand Pr(C; >) > Oforalli=1,...,n,
and that for simplicity, no ties are observed.

The CIF for the primary event conditional on the covariates z = (zy, ..., zp) is Fi (t;z) = Pr(T <
t,e = 1|z). To model the covariate effects on Fj(t;z), Fine and Gray (1999) introduced the now
well-appreciated proportional subdistribution hazards (PSH) model:

hy(t|z) = hip(t) exp(Z'B), 1)

where

<T< = > <
1 (tz) = Tim Pr{it<T<t+Ate=1T>tU(T<tNe#1)z}
At—0 At

d
= —alog{l —F(tz)}

is a subdistribution hazard (Gray, 1988), h1y(t) is a completely unspecified baseline subdistribution
hazard, and B is a p x 1 vector of regression coefficients. As Fine and Gray (1999) mentioned, the risk
set associated with hy (t; z) is somewhat unnatural as it includes subjects who are still at risk (T >)
and those who have already observed the competing risk prior to time ¢t (T < t N e # 1). However,
this construction is useful for direct modeling of the CIF.

Parameter estimation for unpenalized Fine-Gray regression

Parameter estimation and large-sample inference of the PSH model follows from the log-pseudo
likelihood:

9= £ [s m {Camicr e (4] oo, o

where N;(t) = I(X; < t,e; = 1), Y;(t) = 1 — N;(t—), and @;(t) is a time-dependent weight based
on the inverse probability of censoring weighting (IPCW) technique (Robins and Rotnitzky, 1992).
To parallel Fine and Gray (1999), we define the IPCW for subject i at time t as @;(t) = I(C; >
T; A)G(t)/G(X; A t), where G(t) = Pr(C > t) is the survival function of the censoring variable C
and G(t) is the Kaplan-Meier estimate for G(t). We can further generalize the IPCW to allow for
dependence between C and z.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=fastcmprsk

CONTRIBUTED RESEARCH ARTICLE

45

Let ,Bmple = argming{—I(B)} be the maximum pseudo likelihood estimator of B. Fine and

Gray (1999) investigate the large-sample properties of ,Bmple and prove that, under certain regularity
conditions,

\/ﬁ(ﬁmple - :BO) - N(Or 0712071)' ©)

where By is the true value of B, () is the limit of the negative of the partial derivative matrix of the
score function evaluated at By, and X is the variance-covariance matrix of the limiting distribution of
the score function. We refer readers to Fine and Gray (1999) for more details on () and X. This variance
estimation procedure is implemented in the cmprsk package.

Estimating the cumulative incidence function

An alternative interpretation of the coefficients from the Fine-Gray model is to model their effect
on the CIF. Using a Breslow-type estimator (Breslow, 1974), we can obtain a consistent estimate for

HlO(t) = fot hlo(S)dS through

1> 1
Hyo(t) = — / ——W; dN; ,
10(t) n; 0 S(O)(ﬁ,u)wl(u) i(u)
where 5O (,u) = n=1 1 @;(u)Y;(u) exp(z!B). The predicted CIF, conditional on z = z, is then

Ei(t;z9) =1 —exp {/Ot exp(zé[g)dﬁlo(u)} .

We refer the readers to Appendix B of Fine and Gray (1999) for the large-sample properties of F; (£;zp).
The quantities needed to estimate fot dH(u) are already precomputed when estimating . Fine and

Gray (1999) proposed a resampling approach to calculate confidence intervals and confidence bands
for ﬁl (t; Zo).

Penalized Fine-Gray regression for variable selection

Oftentimes reserachers are interested in identifying which covariates have an effect on the CIF. Pe-
nalization methods (Tibshirani, 1996; Fan and Li, 2001; Zou, 2006; Zhang et al., 2010) offer a popular
way to perform variable selection and parameter estimation simultaneously through minimizing the
objective function

4
Q(B) = —1(B) +) pallBjl). 4)
j=1

where [(B) is defined in (2), p (|B;|) is a penalty function where the sparsity of the model is controlled
by the non-negative tuning parameter A. Fu et al. (2017) recently extend several popular variable
selection procedures - LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), adaptive LASSO (Zou,
2006), and MCP (Zhang, 2010) - to the Fine-Gray model, explore its asymptotic properties under
fixed model dimension, and develop the R package crrp (Fu, 2016) for implementation. Parameter
estimation in the crrp package employs a cyclic coordinate algorithm.

The sparsity of the model depends heavily on the choice of the tuning parameters. Practically,
finding a suitable (or optimal) tuning parameter involves applying a penalization method over a
sequence of possible candidate values of A and finding the A that minimizes some metric such as the
Bayesian information criterion (Schwarz, 1978) or generalized cross validation measure (Craven and
Wahba, 1978). A more thorough discussion on tuning parameter selection can partially be found in
Wang et al. (2007); Zhang et al. (2010); Wang and Zhu (2011); Fan and Tang (2013); Fu et al. (2017); Ni
and Cai (2018).

Parameter estimation in linear time

Whether interest is in fitting an unpenalized model or a series of penalized models used for variable
selection, one will need to minimize the negated log-pseudo (or penalized log-pseudo likelihood.
While current implementations can readily fit small to moderately-sized datasets, where the sample
size can be in the hundreds to thousands, we notice that these packages grind to a halt for large-scale
data such as, electronic health records (EHR) data or cancer registry data, where the number of

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

46

observations easily exceed tens of thousands, as illustrated later in Section 2.5.1 (Table 2) on some
simulated large competing risks data.

The primary computational bottleneck for estimating the parameters of the Fine-Gray model
is due to the calculation of the log-pseudo likelihood and its derivatives, which are required for
commonly-used optimization routines. For example, the cyclic coordinate descent algorithm requires
the score function

Yker, Zkj @ik exp (k)

n n
I(B) =Y I(5ie; = 1)z;; (5;iei =1) ! , (5)
iA) I-};l QX i ,; : Lker; ik exp(1k)
and the Hessian diagonals
i 15 = 1) Cker, 250k P(l) [Trer, 2 exp(n) | ° ©)
0 Yker, @ik exp(7k) Lker; Vi exp(1k)

where
Wy = (X)) = 6(X))/G(X; A Xy), kER;

Ri={y: (X, > X;)U(Xy < X;jNey =2)} and 1 = z B for optimization. While the algorithm
itself is quite efficient, especially for estimating sparse coefficients, direct evaluation of (5) and (6)
will require O(n?) operations since for each i such that ;e; = 1 we must identify all y € {1,...,n}
such that either X; > X; or (Xy < XiNey = 2). As a consequence, parameter estimation will be
computationally taxing for large-scale data since runtime will scale quadratically with n. We verify
this in Section 2.5 for the emprsk and crrp packages. To the best of our knowledge, prior to Kawaguchi
et al. (2020), previous work on reducing the computational of parameter estimation from O(n?) to a
lower order has not been developed.

Before moving forward we will first consider the Cox proportional hazards model for right-
censored data, which can be viewed as a special case of the Fine-Gray model when competing risks
are not present (i.e. R; = {y : Xy > X;}, @y = 1forallk € R;, and €; = 1 whenever ; = 1). Again,
direct calculation of quantities such as the log-partial likelihood and score function will still require
O(nz) computations; however, one can show that when event times are arranged in decreasing order,
the risk set is monotonically increasing as a series of cumulative sums. Once we arrange the event
times in decreasing order, these quantities can be calculated in O(n) calculations. The simplicity of the
data manipulation and implementation makes this approach widely adopted in several R packages
for right-censored data including the survival, glmnet, ncvreg, and Cyclops packages.

Unfortunately, the risk set associated with the Fine-Gray model does not retain the same cumulative
structure. Kawaguchi et al. (2020) propose a novel forward-backward scan algorithm that reduces the
computational complexity associated with parameter estimation from O(pn?) to O(pn), allowing for
the analysis of large-scale competing risks data in linear time. Briefly, the risk set R; partitions into two
disjoint subsets: R;(1) = {y : X;, > X;} and R;(2) = {y : (X, < X;Ney = 2)}, were R;(1) is the set of
observations that have an observed event time after X; and R;(2) is the set of observations that have
observed the competing event before time X;. Since R;(1) and R;(2) are disjoint, the summation over
k € R; can be written as two separate summations, one over R;(1) and one over R;(2). The authors
continue to show that the summation over R;(1) is a series of cumulative sums as the event times
decrease while the summation over R;(2) is a series of cumulative sums as the event times increase.
Therefore, by cleverly separating the calculation of both summations, (5), (6), and consequently (2)
are available in O(n) calculations. We will show the computational advantage of this approach for
parameter estimation over competing R packages in Section 2.5.

The fastcmprsk package

We utilize this forward-backward scan algorithm of Kawaguchi et al. (2020) for both penalized and un-
penalized parameter estimation for the Fine-Gray model in linear time. Furthermore, we also develop
scalable methods to estimate the predicted CIF and its corresponding confidence interval/band. For
convenience to researchers and readers, a function to simulate two-cause competing risks data is also
included. Table ?? provides a summary of the currently available functions provided in fastcmprsk.
We briefly detail the use of some of the key functions below.

Simulating competing risks data

Researchers can simulate two-cause competing risks data using the simulateTwoCauseFineGrayModel
function in fastemprsk. The data generation scheme follows a similar design to that of Fine and

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=Cyclops

CONTRIBUTED RESEARCH ARTICLE

Function name Basic description

Modeling functions

fastCrr Fits unpenalized Fine-Gray regression and
returns an object of class "fcrr"”

fastCrrp Fits penalized Fine-Gray regression and
returns an object of class "fcrrp”

Utilities

Crisk Creates an object of class "Crisk” to be used as the
response variable for fastCrr and fastCrrp

varianceControl Options for bootstrap variance for fastCrr.

simulateTwoCauseFineGrayModel Simulates two-cause competing risks data

53 methods for "fcrr”

AIC Generic function for calculating AIC

coef Extracts model coefficients

confint Computes confidence intervals for parameters in the model

logLik Extracts the model log-pseudo likelihood

predict Predict the cumulative incidence function given newdata
using model coefficients.

summary Print ANOVA table

vcov Returns bootstrapped variance-covariance matrix

if variance = TRUE.

S3 methods for “fcrrp”

AIC Generic function for calculating AIC
coef Extracts model coefficients for each tuning parameter A.
loglLik Extracts the model log-pseudo likelihood for each tuning

parameter A.
plot Plot coefficient path as a function of A

Table 1: Currently available functions in fastemprsk (v.1.1.0).

Gray (1999) and Fu et al. (2017). Given a design matrix Z = (z},...,z},), f1, and By, let the cu-
mulative incidence function for cause 1 (the event of interest) be defined as Fy(t;z;) = Pr(T; <
tei = 1)z;) = 1—[1 — {1 — exp(—t)}]*P(ZP1), which is a unit exponential mixture with mass
1 — 7t at o0 when z; = 0 and where 7 controls the cause 1 event rate. The cumulative incidence
function for cause 2 is obtained by setting Pr(e; = 2|z;) = 1 —Pr(e; = 1|z;) and then using
an exponential distribution with rate exp(z/g,) for the conditional cumulative incidence function
Pr(T; < tle; = 2,z;). Censoring times are independently generated from a uniform distribution
U (t4min, Umax) Where tmin and max control the censoring percentage. Appendix .1 provides more details
on the data generation process. Below is a toy example of simulating competing risks data where
n = 500, B; = (0.40,—0.40,0, —0.50,0,0.60,0.75,0,0, —0.80), Bz = —PB1, min = 0, tmax = 1, 7 = 0.5,
and where Z is simulated from a multivariate standard normal distribution with unit variance. This
simulated dataset will be used to illustrate the use of the different modeling functions within fastcm-
prsk. The purpose of the simulated dataset is to demonstrate the use of the fastemprsk package and
its comparative estimation performance to currently-used packages for unpenalized and penalized
Fine-Gray regression. Runtime comparisons between the different packages are reported in Section
2.5.

R> #### Need the following packages to run the examples in the paper
R> install.packages("cmprsk")

R> install.packages("crrp")

R> install.packages("doParallel”)

R> install.packages("fastcmprsk")

R> #i##

R> library(fastcmprsk)
R> set.seed(2019)

R> N <- 500 # Set number of observations

R> # Create coefficient vector for event of interest and competing event

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

48

R> betal <- c(0.40, -0.40, 0, -0.50, 0, 0.60, .75, 0, 0, -0.80)
R> beta2 <- -betal

R> # Simulate design matrix
R> Z <- matrix(rnorm(nobs * length(betal)), nrow = N)

R> # Generate data
R> dat <- simulateTwoCauseFineGrayModel(N, betal, beta2,
+ Z, u.min =@, u.max =1, p = 0.5)

R> # Event counts (@ = censored; 1 = event of interest; 2 = competing event)
R> table(dat$fstatus)

o 1 2
241 118 141

R> # First 6 observed survival times
R> head(dat$ftime)

[1] 0.098345608 ©.008722629 0.208321175 0.017656904 0.495185038 0.222799124

fastCrr: Unpenalized parameter estimation and inference

We first illustrate the coefficient estimation from (1) using the Fine-Gray log-pseudo likelihood. The
fastCrr function returns an object of class "fcrr" that estimates these parameters using our forward-
backward scan algorithm and is syntactically similar to the coxph function in survival. The formula
argument requires an outcome of class "Crisk". The Crisk function produces this object by calling
the Surv function in survival, modifying it to allow for more than one event, and requires four
arguments: a vector of observed event times (ftime), a vector of corresponding event/censoring
indicators (fstatus), the value of fstatus that denotes a right-censored observation (cencode) and the
value of fstatus that denotes the event of interest (failcode). By default, Crisk assumes that cencode
= @ and failcode = 1. The variance passed into fastCrr is a logical argument that specifies whether
or not the variance should be calculated with parameter estimation.

cmprsk package

R> library(cmprsk)

R> fit1 <- crr(dat$ftime, dat$fstatus, Z, failcode = 1, cencode = 0,
+ variance = FALSE)

fastcmprsk package
R> fit2 <- fastCrr(Crisk(dat$ftime, dat$fstatus, cencode = @, failcode = 1) ~ Z,
+ variance = FALSE)

R> max(abs(fit1$coef - fit2$coef)) # Compare the coefficient estimates for both methods

[1] 8.534242e-08

As expected, the fastCrr function calculates nearly identical parameter estimates to the crr function.
The slight difference in numerical accuracy can be explained by the different methods of optimization
and convergence thresholds used for parameter estimation. Convergence within the cyclic coordinate
descent algorithm used in fastCrr is determined by the relative change of the coefficient estimates.
We allow users to modify the maximum relative change and maximum number of iterations used for
optimization within fastCrr through the eps and iter arguments, respectively. By default, we set eps
= 1E-6 and iter = 1000 in both our unpenalized and penalized optimization methods.

We now show how to obtain the variance-covariance matrix for the parameter estimates. The
variance-covariance matrix for f via (3) can not be directly estimated using the fastCrr function. First,
the asymptotic expression requires estimating both (2 and X, which can not be trivially calculated
in O(pn) operations. Second, for large-scale data where both n and p can be large, matrix calcula-
tions, storage, and inversion can be computationally prohibitive. Instead, we propose to estimate
the variance-covariance matrix using the bootstrap (Efron, 1979). Let (1), ... B(B) be bootstrapped
parameter estimates obtained by resampling subjects with replacement from the original data B times.
Unless otherwise noted, the size of each resample is the same as the original data. For j = 1,...,p and

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

k=1,...,p, we can estimate the covariance between j3 j and By by
CovlB) — — Y (30 _ 530 _ 5
Cov(Bj, Br) = -1 Z(ﬁj —Bj) By — Bk,)

where §; = I N B}b)_ Therefore, with 6]2 = Coo(ﬁj, ﬁj), a (1 —a) x 100% confidence interval for B;
is given by

N

Bj £z1-a/20, (8)

where z,_, /, is the (1 — &) x 100th percentile of the standard normal distribution. Since parameter
estimation for the Fine-Gray model is done in linear time using our forward-backward scan algorithm,
the collection of parameter estimates obtained by bootstrapping can also be obtained linearly. The
varianceControl function controls the parameters used for bootstrapping, that one then passes into
the var. control argument in fastCrr. These arguments include B, the number of bootstrap samples
to be used, and seed, a non-negative numeric integer to set the seed for resampling.

R> # Estimate variance via 100 bootstrap samples using seed 2019.

R> vc <- varianceControl(B = 100, seed = 2019)

R> fit3 <- fastcmprsk::fastCrr(Crisk(dat$ftime, dat$fstatus) ~ Z, variance = TRUE,
+ var.control = vc,

+ returnDataFrame = TRUE)

returnDataFrame = TRUE is necessary for CIF estimation (next section)

R> round(sqrt(diag(fit3$var)), 3) # Standard error estimates rounded to 3rd decimal place

[1] 0.108 ©.123 ©.085 0.104 0.106 0.126 0.097 0.097 0.104 0.129

The accuracy of the bootstrap variance-covariance matrix compared to the asymptotic expression
depends on several factors including the sample size and number of bootstrap samples B. Our
empirical evidence in Section 2.5.1 show that B = 100 bootstrap samples provided a sufficient estimate
of the variance-covariance matrix for large enough 7 in our scenarios. In practice, we urge users to
increase the number of bootstrap samples until the variance is stable if they can computationally afford
to. Although this may hinder the computational performance of fastCrr for small sample sizes, we
find this to be a more efficient approach for large-scale competing risks data.

We adopt several S3 methods that work seamlessly with the "fcrr" object that is outputted from
fastCrr. The coef method returns the estimated regression coefficient estimates :

R> coef(fit3) # Coefficient estimates

[1] ©.192275755 -0.386400287 0.018161906 -0.397687129 ©@.105709092 ©.574938015
[7] 0.778842652 -0.006105756 -0.065707434 -0.996867883

The model pseudo log-likelihood can also be extracted via the loglLik function:

R> loglLik(fit3) # Model log-pseudo likelihood
[1] -590.3842

Related quantities to the log-pseudo likelihood are information criteria, measures of the quality
of a statistical model that are used to compare alternative models on the same data. These criterion
are computed using the following formula: —2I(B) + k x |B|o, where k is a penalty factor for model
complexity and |Bo corresponds to the number of parameters in the model. Information criteria can
be computed for a fcrr object using AIC and users specify the penalty factor using the k argument. By
default k = 2 and corresponds to the Akaike information criteria (Akaike, 1974).

R> AIC(fit3, k = 2) # Akaike's Information Criterion
[1] 1200.768

R> # Alternative expression of the AIC
R> -2 % loglLik(fit3) + 2 * length(coef(fit3))
[1] 1200.768

If the variance is set to TRUE for the fastCrr model fit, we can extract the bootstrap variance-
covariance matrix using vcov. Additionally, conf. int will display confidence intervals, on the scale of
B, and the level argument can be used to specify the confidence level. By default level = @.95 and
corresponds to 95% confidence limits.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

50

R> vcov(fit3)[1:3, 1:3] # Variance-covariance matrix for the first three estimates

[,1] [,2] [,3]
[1,] 0.0116785745 ©.0031154634 0.0007890851
[2,] 0.0031154634 0.0150597898 0.0004681825
[3,] 0.0007890851 0.0004681825 0.0072888011

R> confint(fit3, level = ©.95) # 95 % Confidence intervals

2.5% 97.5%
x1 -0.01953256 0.4040841
X2 -0.62692381 -0.1458768
x3 -0.14916899 0.1854928
x4 -0.60197206 -0.1934022
x5 -0.10199838 0.3134166
X6 0.32827237 0.8216037
X7 ©0.58798896 0.9696963
x8 -0.19610773 0.1838962
X9 -0.26995659 0.1385417
x10 -1.24897861 -0.7447572

Lastly, summary will return an ANOVA table for the fitted model. The table presents the log-
subdistribution hazard ratio (coef), the subdistribution hazard ratio (exp(coef)), the standard error
of the log-subdistribution hazards ratio (se(coef)) if variance = TRUE in fastCrr, the corresponding
z-score (z value), and two-sided p-value (Pr(|z|)). When setting conf.int = TRUE, the summary
function will also print out the 95% confidence intervals (if variance = TRUE when running fastCrr).
Additionally the pseudo log-likelihood for the estimated model and the null pseudo log-likelihood
(when g = 0) are also reported below the ANOVA table.

R> # ANOVA table for fastCrr
R> summary(fit3, conf.int = TRUE) # conf.int = TRUE allows for 95% CIs to be presented

Fine-Gray Regression via fastcmprsk package.

fastCrr converged in 24 iterations.

Call:

fastcmprsk::fastCrr(Crisk(dat$ftime, dat$fstatus) ~ Z, variance = TRUE,

var.control = vc, returnDataFrame = TRUE)

coef exp(coef) se(coef) z value Pr(>|z|)

x1 0.19228 1.212 0.1081 1.779 7.5e-02
x2 -0.38640 0.679 0.1227 -3.149 1.6e-03
x3 0.01816 1.018 ©0.0854 0.213 8.3e-01
x4 -0.39769 0.672 0.1042 -3.816 1.4e-04
x5 0.10571 1.111 0.1060 ©.997 3.2e-01
x6 0.57494 1.777 ©0.1259 4.568 4.9e-06
x7 0.77884 2.179 0.0974 7.998 1.3e-15
x8 -0.00611 0.994 0.0969 -0.063 9.5e-01
x9 -0.06571 0.936 0.1042 -0.631 5.3e-01
x10 -0.99687 0.369 0.1286 -7.750 9.7e-15

exp(coef) exp(-coef) 2.5% 97.5%

x1 1.212 0.825 0.981 1.498
X2 0.679 1.472 0.534 0.864
x3 1.018 0.982 0.861 1.204
x4 0.672 1.488 0.548 0.824
x5 1.111 0.900 0.903 1.368
x6 1.777 0.563 1.389 2.274
x7 2.179 0.459 1.800 2.637
x8 0.994 1.006 0.822 1.202
x9 0.936 1.068 0.763 1.149
x10 0.369 2.710 0.287 0.475

Pseudo Log-likelihood = -590

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

51

Null Pseudo Log-likelihood = -675
Pseudo likelihood ratio test = 170 on 10 df.

Since standard error estimation is performed via bootstrap and resampling, it is easy to use multiple
cores to speed up computation. Parallelization is seamlessly implemented using the doParallel
package (Calaway et al., 2019). Enabling usage of multiple cores is done through the useMultipleCores
argument within the varianceControl function. To avoid interference with other processes, we allow
users to set up the cluster on their own. We provide an example below.

R> library(doParallel)

R> n.cores <- 2 # No. of cores
R> myClust <- makeCluster(n.cores)

R> # Set useMultipleCores = TRUE to enable parallelization
R> vc = varianceControl(B = 1000, useMultipleCores = TRUE)

R> registerDoParallel (myClust)

R> fit3 <- fastCrr(Crisk(dat$ftime, dat$fstatus) ~ Z, variance = TRUE,
+ var.control = vc)

R> stopCluster(myClust)

Cumulative incidence function and interval/band estimation

The CIF is also available in linear time in the fastemprsk package. Fine and Gray (1999) propose a
Monte Carlo simulation method for interval and band estimation. We implement a slightly different ap-

proach using bootstrapping for interval and band estimation in our package. Let 151(1) (t;2zg), ..., Fl(B) (t;20)
be the bootstrapped predicted CIF obtained by resampling subjects with replacement from the original
data B times and let m(-) be a known, monotone, and continuous transformation. In our current im-
plementation we let m(x) = log{— log(x)}; however, we plan on incorporating other transformations
in our future implementation. We first estimate the variance function 02 (t;zg) of the transformed CIF
through

O (t20) = 5 1 [m{E (620)} — m{Fr(20)}] ©)

where m{F| (t20)} = % y2 m{Fl(b) (t;z9) }. Using the functional delta method, we can now construct
(1 — &) x 100% confidence intervals for F (t;zg) by

m_l [m{ﬁl(t;zo)} + Zl—a/zﬁ(t;ZO)} . (10)

Next we propose a symmetric global confidence band for the estimated CIF F(t;zg), t € [tr, ty]
via bootstrap. We first determine a critical region C;_,(z¢) such that

Pri sup [m{Fy(t;20)} — m{Fi(t;20)}| <Cpu(z) b =1—a (11)

te[tL tu] Var[m{F;(t;z0)}]

While Equation (9) estimates Var[m{F; (; zy) }] we still need to find C;_,(zo) by the bootstrap (1 — a)*"
percentile of the distribution of the supremum in the equation above. The algorithm is as follows:

1. Resample subjects with replacement from the original data B times and estimate Fl(b) (t;2g) for
b=1,...,Band 62(t;zg) using (9).
2. For the bt" bootstrap sample, b € {1,..., B}, calculate

i (t520)) — m{Fi(t20)}]

cl) = ¢ -~
fE[tL,fu] U(t’ ZO)

3. Estimate C;_,(z) from the sample (1 — &)™ percentile of the B values of C(*), denoted by
Ciu (ZO)'
Finally, the (1 —) x 100% confidence band for F; (t;2g), t € [tr, f17] is given by

m~ ! [m{Fy(t20) } £ Cro(20)0(t20)] - (12)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=doParallel

CONTRIBUTED RESEARCH ARTICLE

Estimated CIF
0.3
|

0.2
|

0.1

Time

Figure 1: Estimated CIF (solid line) and corresponding 95% confidence intervals (dotted lines) between
tr = 0.2 and t;; = 0.9 given a covariate vector z@ using the coefficient and baseline estimates from our
toy example.

Similar to estimating the variance-covariance matrix for the coefficient estimates ﬁ, specifying
the number of bootstrap samples, seed for reputability, and multicore functionality for estimating
the variance of the CIF can be done through the varianceControl function. One can perform CIF
estimation and interval /band estimation using the predict function by specifying a vector zg in
the newdata argument and the fitted model from fastCrr. To calculate the CIF, both the Breslow
estimator of the cumulative subdistribution hazard and the (ordered) model data frame need to be
returned values within the fitted object. This can be achieved by setting both the getBreslowJumps and
returnDataFrame arguments within fastCrr to TRUE. Additionally, for confidence band estimation
one must specify a time interval [t7, f;;]. The user can specify the interval range using the tL and
tU arguments in predict. Figure 1 illustrates the estimated CIF and corresponding 95% confidence
interval, obtained using 100 bootstrap samples, over the range [0.2,0.9] given covariate entries z0
simulated from a standard random normal distribution.

R> set.seed(2019)
R> # Make sure getBreslowJumps and returnDataFrame are set to TRUE
R> fit4 <- fastCrr(Crisk(dat$ftime, dat$fstatus, cencode = @, failcode = 1) ~ Z,

+ variance = FALSE,
getBreslowJumps = TRUE, # Default = TRUE
+ returnDataFrame = TRUE) # Default is FALSE for storage purposes

R> z@ <- rnorm(10) # New covariate entries to predict

R> cif.point <- predict(fit4, newdata = z@, getBootstrapVariance = TRUE,

+ type = "interval”, tL = 0.2, tU = 0.9,

+ var.control = varianceControl(B = 100, seed = 2019))

R> plot(cif.point) # Figure 1 (Plot of CIF and 95% C.I.)

fastCrrp: Penalized Fine-Gray regression in linear time

We extend our forward-backward scan approach for for penalized Fine-Gray regression as described
in Section 2.2.4. The fastCrrp function performs LASSO, SCAD, MCP, and ridge (Hoerl and Kennard,
1970) penalization. Users specify the penalization technique through the penalty argument. The
advantage of implementing this algorithm for penalized Fine-Gray regression is two fold. Since the

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

53

Solution path for LASSO-penalized regression

Bi

-0.5
|

-1.0

T T T T T
-3.0 -2.5 -2.0 -1.5 -1.0

logo(An)

Figure 2: Path plot for LASSO-penalized Fine-Gray regression using our toy example. The tuning
parameter A varies between the log-spaced interval [0.001, 0.1]. The y-axis corresponds to the estimated
value for B; and the x-axis corresponds to A (on the log,, scale).

cyclic coordinate descent algorithm used in the crrp function calculates the gradient and Hessian
diagonals in O(pn?) time, as opposed to O(pn) using our approach, we expect to see drastic differences
in runtime for large sample sizes. Second, as mentioned earlier, researchers generally tune the strength
of regularization through multiple model fits over a grid of candidate tuning parameter values. Thus
the difference in runtime between both methods grows larger as the number of candidate values
increases. Below we provide an example of performing LASSO-penalized Fine-Gray regression using

a prespecified grid of 25 candidate values for A that we input into the 1ambda argument of fastCrrp.

If left untouched (i.e. lambda = NULL), a log-spaced interval of A will be computed such that the
largest value of A will correspond to a null model. Figure 2 illustrates the solution path for the
LASSO-penalized regression, a utility not directly implemented within the crrp package. The syntax
for fastCrrp is nearly identical to the syntax for crrp.

R> library(crrp)
R> lam.path <- 10%seq(log10(@.1), logl10(0.001), length

25)

R> # crrp package

R> fit.crrp <- crrp(dat$ftime, dat$fstatus, Z, penalty = "LASSO",
+ lambda = lam.path, eps = 1E-6)

R> # fastcmprsk package

R> fit.fcrrp <- fastCrrp(Crisk(dat$ftime, dat$fstatus) ~ Z, penalty = "LASSO",
+ lambda = lam.path)

R> # Check to see the two methods produce the same estimates.
R> max(abs(fit.fcrrp$coef - fit.crrp$beta))
[1] 1.110223e-15

R> plot(fit.fcrrp) # Figure 2 (Solution path)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

54

Method

—&— crr(var)

—_ -
8
5 —=e@—— crr(novar)
[&]
[0
2]
-
Ed
B’ - - M- - fastCrr (var)
0-
- - ®@- - fastCrr (no var)

30 32 34 36
logio(Sample size)

Figure 3: Runtime comparison between fastCrr and crr with and without variance estimation. Axes
are on the log,, scale. Solid and dashed lines represent the crrp and fastcmprsk implementation,
respectively. Square, and circle symbols denote variance and without variance calculation, respectively.
Variance estimation for crr is performed using the asymptotic expression of the variance-covariance
estimator. Variance estimation for fastCrr is performed using 100 bootstrap samples. Reported
runtime are averaged over 100 Monte Carlo runs.

Simulation studies

This section provides a more comprehensive illustration of the computational performance of the
fastemprsk package over two popular competing packages cmprsk and crrp. We simulate datasets
under various sample sizes and fix the number of covariates p = 100. We generate the design matrix,
Z from a p-dimensional standard normal distribution with mean zero, unit variance, and pairwise
correlation corr(z;, z]-) = p‘iﬁ ‘, where p = 0.5 simulates moderate correlation. For Section 2.5.1, the
vector of regression parameters for cause 1, the cause of interest, is 1 = (B*, p*, ..., B*), where B* =
(0.40, —0.40,0, —0.50, 0,0.60,0.75,0,0, —0.80). For Section 2.5.2, B1 = (B*,0,_19). We let B = —B;.
We set 71 = 0.5, which corresponds to a cause 1 event rate of approximately 41%. The average censoring
percentage for our simulations varies between 30 — 35%. We use simulateTwoCauseFineGrayModel to
simulate these data and average runtime results over 100 Monte Carlo replicates. We report timing on
a system with an Intel Core i5 2.9 GHz processor and 16GB of memory.

Comparison to the crr package

In this section, we compare the runtime and estimation performance of the fastCrr function to crr.
We vary n from 1,000 to 500,000 and run fastCrr and crr both with and without variance estimation.

We take 100 bootstrap samples, without parallelization, to obtain the bootstrap standard errors with
fastCrr. As shown later in the section (Tables 3 and 4), 100 bootstrap samples suffices to produce a
good standard error estimate with close-to-nominal coverage for large enough sample sizes in our
scenarios. In practice, we recommend users to increase the number of bootstrap samples until the
variance estimate becomes stable, when computationally feasible.

Figure 3 depicts how fast the computational complexities of fastCrr (dashed lines) and crr
(solid lines) increase as 1 increases as measured by runtime (in seconds). It shows clearly that the
computational complexity of crr increases quadratically (solid line slopes ~ 2) while that of fastCrr
is linear (dashed line slopes ~ 1). This implies that the computational gains of fastCrr over crr are
expected to grow exponentially as the sample size increases.

We further demonstrates the computational advantages of fastCrr over crr for large sample size

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

55

“ow

Table 2: Runtime comparison of crr versus fasrCrr for large n scenarios. The dashes (“~") indicate
that runtime could not be completed within 72 hours. Variance estimation for fastCrr is calculated
using B = 100 bootstrap samples.

Sample size n
50,000 100,000 500,000

crr without variance 6 hours 24 hours -
crr with variance 54 hours - -
fastCrr without variance | 5 seconds 12 seconds 50 seconds
fastCrr with variance 7 minutes 14 minutes 69 minutes

Table 3: Standard error estimates for various different values of 1; (j = 1,2,3). Empirical: Standard
deviation of the 100 Monte Carlo estimates of f3; j» Bootstrap: The average of the 100 Monte Carlo
estimates of the bootstrap standard error for /31]- using B = 100 bootstrap samples; Asymptotic: The

average of 100 Monte Carlo estimates of the standard error estimate for 31]- using the asymptotic
variance-covariance matrix defined in (3).

Std. Err. Est. n =1000 2000 3000 4000

B11 =04 Empirical 0.06 0.05 0.04 0.03
Bootstrap 0.10 0.05 0.04 0.03
Asymptotic 0.07 0.04 0.03 0.03

B12 = —0.4 Empirical 0.10 0.05 0.04 0.03
Bootstrap 0.11 0.06 0.04 0.04
Asymptotic 0.08 0.05 0.04 0.03

Bz =0 Empirical 0.09 0.06 0.04 0.03
Bootstrap 0.11 0.06 0.04 0.04
Asymptotic 0.07 0.05 0.04 0.03

data in Table 2 by comparing their runtime on a single simulated data with n varying from 50, 000
to 500,000 using a system with an Intel Xeon 2.40GHz processor and 256GB of memory. It is seen
that fastCrr scales well to large sample size data, whereas crr eventually grinds to a halt as n grows
large. For example, for n = 500, 000, it only takes less than 1 minute for fastCrr to finish, while crr
did not finish in 3 days. Because the forward-backward scan allows us to efficiently compute variance
estimates through bootstrapping, we have also observed massive computational gains in variance
estimation with large sample size data (7 minutes for fastCrr versus 54 hours for crr). Furthermore,
since parallelization of the bootstrap procedure was not implemented in these timing reports, we
expect multicore usage to further decrease the runtime of the variance estimation for fastCrr

We also performed a simulation to compare the bootstrap procedure for variance estimation to the
estimate of the asymptotic variance provided in (3) used in crr. First, we compare the two standard
error estimates with the empirical standard error of ;. For the j coefficient, the empirical standard
error is calculated as the standard deviation of 3 j from the 100 Monte Carlo runs. For the standard
error provided by both the bootstrap and the asymptotic variance-covariance matrix, we take the
average standard error of f; j over the 100 Monte Carlo runs. Table 3 compares the standard errors for
By jforj=1,2,3. When n = 1000, the average standard error using the bootstrap is slightly larger than
the empirical standard error; whereas, the standard error from the asymptotic expression is slightly
smaller. These differences diminish and all three estimates are comparable when n > 2000. This
provides evidence that both the bootstrap and asymptotic expression are adequate estimators of the
variance-covariance expression for large datasets.

Additionally, we present in Table 4 the coverage probability (and standard errors) of the 95%
confidence intervals for 817 = 0.4 using the bootstrap (fastCrr) and asymptotic (crr) variance estimate.
The confidence intervals are wider for the bootstrap approach when compared to confidence intervals
produced using the asymptotic variance estimator, especially when n = 1000. However, both methods
are close to the nominal 95% level as n increases. We observe similar trends across the other coefficient
estimates.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

56

Table 4: Coverage probability (and standard errors) of 95% confidence intervals for 17 = 0.4. Con-
fidence intervals for crr are calculated using the asymptotic expression of the variance-covariance
estimator. Confidence intervals for fasrCrr are calculated using the bootstrap variance-covariance
estimator using 100 bootstrap samples.

‘ n = 1000 2000 3000 4000

crr 0.93 (0.03) 0.90 (0.03) 0.93 (0.03) 0.95 (0.02)
fastCrr | 1.00 (0.00) 0.98 (0.02) 0.95(0.02) 0.95 (0.02)

2- Method: Penalty

—&— crrp: MCP

—=e—— crrp: SCAD

~~

[

©

c:) —A— crrp: LASSO

]

n

—

=

8 ----@---- fastCrrp: MCP
----@---- fastCrrp: SCAD

----A---- fastCrrp: LASSO

>eom

30 32 34 36
logo(Sample size)

Figure 4: Runtime comparison between the crrp and fastemprsk implementations of LASSO, SCAD,
and MCP penalization. Solid and dashed lines represent the crrp and fastcmprsk implementation,
respectively. Square, circle, and triangle symbols denote the penalties MCP, SCAD, and LASSO,
respectively. Axes are on the log;, scale. Reported runtime are averaged over 100 Monte Carlo runs.

Comparison to the crrp package

As mentioned in Section 2.2.4, Fu et al. (2017) provide an R package crrp for performing penalized
Fine-Gray regression using the LASSO, SCAD, and MCP penalties. We compare the runtime between
fastCrrp with the implementation in the crrp package. To level comparisons, we modify the source
code in crrp so that the function only calculates the coefficient estimates and BIC score. We vary
n = 1000, 1500, ...,4000, fix p = 100, and employ a 25-value grid search for the tuning parameter.
Figure 4 illustrates the computational advantage the fastCrrp function has over crrp.

Similar to the unpenalized scenario, the computational performance of crrp (solid lines) increases
quadratically while fasrCrrp (dashed lines) increases linearly, resulting in a 200 to 300-fold speed up
in runtime when n = 4000. This, along with the previous section and a real data analysis conclusion
in the following section, strongly suggests that for large-scale competing risks datasets (e.g. EHR
databases), where the sample size can easily exceed tens to hundreds of thousands, analyses that may
take several hours or days to perform using currently-implemented methods are available within
seconds or minutes using the fastemprsk package.

Discussion

The fastemprsk package provides a set of scalable tools for the analysis of large-scale competing
risks data by developing an approach to linearize the computational complexity required to estimate
the parameters of the Fine-Gray proportional subdistribution hazards model. Multicore use is also

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

57

implemented to further speed up methods that require bootstrapping and resampling. Our simulation
results show that our implementation results in a up to 7200-fold decrease in runtime for large sample
size data. We also note that in a real-world application, Kawaguchi et al. (2020) record a drastic
decrease in runtime (=~ 24 hours vs. =~ 30 seconds) when comparing the proposed implementation
of LASSO, SCAD, and MCP to the methods available in crrp on a subset of the United States Renal
Data Systems (USRDS) where n = 125,000. The package implements both penalized and unpenalized
Fine-Gray regression and we can conveniently extend our forward-backward algorithm to other
applications such as stratified and clustered Fine-Gray regression.

Lastly, our current implementation assumes that covariates are densely observed across subjects.

This is problematic in the sparse high-dimensional massive sample size (sSHDMSS) domain (Mittal
et al., 2014) where the number of subjects and sparsely-represented covariates easily exceed tens of
thousands. These sort of data are typical in large comparative effectiveness and drug safety studies
using massive administrative claims and EHR databases and typically contain millions to hundreds
of millions of patient records with tens of thousands patient attributes, which such settings are
particularly useful for drug safety studies of a rare event such as unexpected adverse events (Schuemie
et al., 2018) to protect public health. We are currently extending our algorithm to this domain in a
sequel paper.

Acknowledgements

We thank the referees and the editor for their helpful comments that improved the presentation of the
article. Marc A. Suchard’s work is partially supported through the National Institutes of Health grant
U19 AI 135995. Jenny I. Shen’s work is partly supported through the National Institutes of Health
grant K23DK103972. The research of Gang Li was partly supported by National Institutes of Health
Grants P30 CA-16042, UL1TR000124-02, and P50 CA211015.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 58

Data generation scheme

We describe the data generation process for the simulateTwoCauseFineGrayModel function. Let n, p,
Zyxp, B1, B2, umin, umax and 77 be specified. We first generate independent Bernoulli random variables to

simulate the cause indicator € for each subject. That is, €; ~ 1+ Bern{(1 — 7r)*P#P1)} fori =1,...,n.
Then, conditional on the cause, event times are simulated from
1—[1— {1 —exp(—t)}]oPA)
1—(1— m)pEh)
Pr(T; < tle; = 2,z;) = 1 —exp{—texp(z.B2)},

Pr(T; < tle; =1,z;) =

and C; ~ U (tmin, max). Therefore, fori = 1,...,n, we can obtain the following quadruplet {(X;, é;, d;€;,z;) }
where X; = min(T;, C;), and 6; = I(X; < C;). Below is an excerpt of the code used in simulateTwoCauseFineGrayModel
to simulate the observed event times, cause and censoring indicators.

#START CODE

nobs, Z, p = pi, u.min, u.max, betal and beta2 are already defined.
Simulate cause indicators here using a Bernoulli random variable
c.ind <- 1 + rbinom(nobs, 1, prob = (1 - p)*exp(Z %*% betal))

ftime <- numeric(nobs)
etal <- Z[c.ind == 1,] %*% betal #linear predictor for cause on interest
eta2 <- Z[c.ind == 2, 1 %*% beta2 #linear predictor for competing risk

Conditional on cause indicators, we simulate the model.

ul <- runif(length(etal))

t1 <= -log(1 - (1 - (1 -ul * (1 - (1 - p)rexp(etal)))*(1 / exp(etal))) / p)
t2 <- rexp(length(eta2), rate = exp(eta2))

ci <- runif(nobs, min = u.min, max = u.max) # simulate censoring times

ftime[c.ind == 1] <- t1

ftime[c.ind == 2] <- t2

ftime <- pmin(ftime, ci) # X = min(T, C)

fstatus <- ifelse(ftime == ci, @, 1) # @ if censored, 1 if event
fstatus <- fstatus * c.ind # 1 if cause 1, 2 if cause 2

Bibliography
H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19(6):716-723, 1974. [p49]

P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression, with
applications to biological feature selection. The Annals of Applied Statistics, 5(1):232, 2011. [p43]

N. Breslow. Covariance analysis of censored survival data. Biometrics, 30(1):89-99, 1974. doi: 10.2307/
2529620. [p45]

R. Calaway, S. Weston, and D. Tenenbaum. doParallel: Foreach Parallel Adaptor for the ‘parallel” Package,
2019. URL https://CRAN.R-project.org/package=doParallel. R package version 1.0.14. [p51]

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 34(2):187-220, 1972. doi: 10.1007/978-1-4612-4380-9_37. [p43]

P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numerische Mathematik, 31(4):
377-403, Dec 1978. ISSN 0945-3245. doi: 10.1007 /BF01404567. [p45]

B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):1-26, 1979.
doi: 10.1214/a0s/1176344552. [p48]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=doParallel

CONTRIBUTED RESEARCH ARTICLE

59

J.Fanand R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal
of the American Statistical Association, 96(456):1348-1360, 2001. doi: 10.1198/016214501753382273.

[p45]

Y. Fan and C. Y. Tang. Tuning parameter selection in high dimensional penalized likelihood. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 75(3):531-552, 2013. doi: 10.1111/rssb.
12001. [p45]

J. P. Fine and R. J. Gray. A proportional hazards model for the subdistribution of a competing risk.
Journal of the American Statistical Association, 94(446):496-509, 1999. doi: 10.1080/01621459.1999.
10474144. [p43, 44, 45, 46, 51]

Z. Fu. crrp: Penalized Variable Selection in Competing Risks Regression, 2016. URL https://CRAN.R-
project.org/package=crrp. R package version 1.0. [p45]

Z.Fu, C. R. Parikh, and B. Zhou. Penalized variable selection in competing risks regression. Lifetime
Data Analysis, 23(3):353-376, 2017. doi: 10.1007/s10985-016-9362-3. [p43, 45, 47, 56]

T. A. Gerds, T. H. Scheike, and P. K. Andersen. Absolute risk regression for competing risks: in-
terpretation, link functions, and prediction. Statistics in Medicine, 31(29):3921-3930, 2012. doi:
10.1002/sim.5459. [p43]

R.]J. Gray. A class of k-sample tests for comparing the cumulative incidence of a competing risk. The
Annals of Statistics, 16(3):1141-1154, 1988. doi: 10.1214/a0s/1176350951. [p44]

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55-67, 1970. doi: 10.1080/00401706.1970.10488634. [p52]

R. Thaka and R. Gentleman. R: A language for data analysis and graphics. Journal of Computational and
Graphical Statistics, 5(3):299-314, 1996. URL https://doi.org/10.1080/10618600.1996.10474713.
[p43]

E.S. Kawaguchi, J. I. Shen, M. A. Suchard, and G. Li. Scalable algorithms for large competing risks
data. Journal of Computational and Graphical Statistics, accepted pending a minor revision, 2020. [p43, 44,
46, 57]

D. Kuk and R. Varadhan. Model selection in competing risks regression. Statistics in Medicine, 32(18):
3077-3088, 2013. doi: 10.1002/sim.5762. [p43]

S. Mittal, D. Madigan, R. S. Burd, and M. A. Suchard. High-dimensional, massive sample-size
cox proportional hazards regression for survival analysis. Biostatistics, 15(2):207-221, 2014. doi:
10.1093 /biostatistics /kxt043. [p43, 57]

A.Ni and J. Cai. Tuning parameter selection in cox proportional hazards model with a diverging
number of parameters. Scandinavian Journal of Statistics, 45(3):557-570, 2018. doi: 10.1111/sjos.12313.
[p45]

J. M. Robins and A. Rotnitzky. Recovery of information and adjustment for dependent censoring using
surrogate markers. In AIDS epidemiology, pages 297-331. Springer, 1992. doi: 10.1007 /978-1-4757-
1229-2_14. [p44]

T. H. Scheike and M.-J. Zhang. Analyzing competing risk data using the r timereg package. Journal of
Statistical Software, 38(2), 2011. doi: 10.18637 /jss.v038.i102. [p43]

M. J. Schuemie, P. B. Ryan, G. Hripcsak, D. Madigan, and M. A. Suchard. Improving reproducibility by
using high-throughput observational studies with empirical calibration. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2128):20170356, 2018. doi:
10.1098 /rsta.2017.0356. [p57]

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461-464, 1978. doi:
10.1214/a0s/1176344136. [p45]

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for cox’s proportional hazards
model via coordinate descent. Journal of Statistical Software, 39(5):1, 2011. [p43]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 58(1):267-288, 1996. doi: 10.1.1.35.7574. [p45]

H. Wang, R. Li, and C.-L. Tsai. Tuning parameter selectors for the smoothly clipped absolute deviation
method. Biometrika, 94(3):553-568, 2007. doi: 10.1093 /biomet/asm053. [p45]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=crrp
https://CRAN.R-project.org/package=crrp
https://doi.org/10.1080/10618600.1996.10474713

CONTRIBUTED RESEARCH ARTICLE

60

T. Wang and L. Zhu. Consistent tuning parameter selection in high dimensional sparse linear regression.
Journal of Multivariate Analysis, 102(7):1141-1151, 2011. doi: 10.1016/j.jmva.2011.03.007. [p45]

C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of
Statistics, 38(2):894-942, 2010. doi: 10.1214/09-a0s729. [p45]

Y. Zhang, R. Li, and C.-L. Tsai. Regularization parameter selections via generalized information
criterion. Journal of the American Statistical Association, 105(489):312-323, 2010. doi: 10.1198/jasa.2009.
tm08013. [p45]

B. Zhou, A. Latouche, V. Rocha, and J. Fine. Competing risks regression for stratified data. Biometrics,
67(2):661-670, 2011. doi: 10.1111/j.1541-0420.2010.01493.x. [p43]

B. Zhou,]. Fine, A. Latouche, and M. Labopin. Competing risks regression for clustered data.
Biostatistics, 13(3):371-383, 2012. doi: 10.1093 /biostatistics /kxr032. [p43]

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101
(476):1418-1429, 2006. doi: 10.1198/016214506000000735. [p45]

Eric S. Kawaguchi

University of Southern California

Department of Preventive Medicine

2001 N. Soto St. Los Angeles, CA 90032, USA
eric.kawaguchi@med.usc.edu

Jenny 1. Shen

The Lundquist Institute at Harbor-UCLA Medical Center
Division of Nephrology and Hypertension

1124 W. Carson St.

Torrance, CA 90502, USA

jshen@lundquist.org

Gang Li

University of California, Los Angeles

Departments of Biostatistics and Computational Medicine
Los Angeles, CA 90095, USA

vli@ucla.edu

Marc A. Suchard

University of California, Los Angeles

Departments of Biostatistics, Computational Medicine, and Human Genetics
Los Angeles, CA 90095, USA

msuchard@ucla.edu

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:eric.kawaguchi@med.usc.edu
mailto:jshen@lundquist.org
mailto:vli@ucla.edu
mailto:msuchard@ucla.edu

CONTRIBUTED RESEARCH ARTICLE

61

ordinalClust: An R Package to Analyze
Ordinal Data

by Margot Selosse, Julien Jacques and Christophe Biernacki

Abstract Ordinal data are used in many domains, especially when measurements are collected
from people through observations, tests, or questionnaires. ordinalClust is an innovative R package
dedicated to ordinal data that provides tools for modeling, clustering, co-clustering and classifying
such data. Ordinal data are modeled using the BOS distribution, which is a model with two meaningful
parameters referred to as "position" and "precision”. The former indicates the mode of the distribution
and the latter describes how scattered the data are around the mode: the user is able to easily interpret
the distribution of their data when given these two parameters. The package is based on the co-
clustering framework (when rows and columns are simultaneously clustered). The co-clustering
approach uses the Latent Block Model (LBM) and the SEM-Gibbs algorithm for parameter inference.
On the other hand, the clustering and the classification methods follow on from simplified versions
of the SEM-Gibbs algorithm. For the classification process, two approaches are proposed. In the
first one, the BOS parameters are estimated from the training dataset in the conventional way. In the
second approach, parsimony is introduced by estimating the parameters and column-clusters from the
training dataset. We empirically show that this approach can yield better results. For the clustering
and co-clustering processes, the ICL-BIC criterion is used for model selection purposes. An overview
of these methods is given, and the way to use them with the ordinalClust package is described using
real datasets. The latest stable package version is available on the Comprehensive R Archive Network
(CRAN).

Introduction

Ordinal data is a specific kind of categorical data occurring when the levels are ordered (Agresti,
2012). Some common contexts for the collection of ordinal data include satisfaction surveys, aptitude
and personality tests and psychological questionnaires. In the present work, an ordinal variable is
represented by x and it is considered to have m levels that are written (1, ..., m).

Thus far, ordinal data have received more attention from a supervised point of view. For example:
a marketing firm investigating which factors influence the size of a soda (small, medium, large or extra
large) that people order at a fast-food chain. These factors may include which type of sandwich is
ordered (burger or chicken), whether or not fries are also ordered, and the consumer’s age. In this case,
an observation consists in factors of different types and the variable to predict is an ordinal variable.
Several software can analyze ordinal data in a regression framework. The cumulative link model
(CLM) assumes that:

logit (p (x < u)) = log% = Bo(n) + B't,

where x is the ordinal variable, y is one of its levels, t are the covariates, and By (1) < Bo(2) <
... < Bo(m) . In the absence of covariates, it is equivalent to a multinomial model. CLMs are a
powerful model class for ordinal data since observations are handled as categorical, their ordered
nature is exploited and the regression framework enables interpretable analyses. In R, several packages
implement this kind of models. The package MASS (Venables and Ripley, 2002) implements the
CLM with standard link functions, while VGAM (Yee, 2010), rms (Jr, 2019), brms (Btirkner, 2017) and
ordinal (Christensen, 2015) bring additional functions and features. Other contributions implement
algorithms for ordinal data classification. For instance, the ordinalForest package (Hornung, 2019a,b)
uses ordinal forests and monmlp (Cannon, 2017) uses neural networks, both to predict ordinal response
variables. Finally, the ocapis package (Heredia-Gémez et al., 2019) implements several methods (such
as CMLs, Support Machine, Weighted k-Nearest-Neighbor) to classify and preprocess ordinal data.

However, the focus of these techniques differs from ours in two ways. Firstly, they work in a
supervised framework (classification). Secondly, they work with datasets for which the variables to
predict are ordinal responses: the other variables are of various types. Our goal is to provide a tool for
unsupervised and supervised tasks, and for datasets comprised only of ordinal variables only (in the
classification context, the response is categorical). From an unsupervised point a view, the Latent Gold
Software J. Vermunt (2005) is — to our knowledge — the only software that uses the CMLs to cluster the
data. Nevertheless, the implementation of this method is known to be computationally expensive. In
addition, it is not provided through a user-friendly R package.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ordinalClust
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=VGAM
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=brms
https://CRAN.R-project.org/package=ordinal
https://CRAN.R-project.org/package=ordinalForest
https://CRAN.R-project.org/package=monmlp
https://CRAN.R-project.org/package=ocapis

CONTRIBUTED RESEARCH ARTICLE

62

Other contributions have defined clustering algorithms with ordinal variables. In McParland
and Gormley (2013), the authors propose a model-based technique by considering the probability
distribution of ordinal data as a discretization of an underlying continuous variable. This approach is
implemented in the clustMD package (McParland and Gormley, 2017), which is generally more for
heterogeneous data. In Ranalli and Rocci (2016), the categorical variables are seen as a discretization of
an underlying finite mixture of Gaussians. In other works, the authors use the multinomial distribution
to model the data. For instance in the case of Giordan and Diana (2011), the multinomial distribu-
tion and a cluster tree are used, whereas Jollois and Nadif (2009) apply a constrained multinomial
distribution. However, these contributions do not provide a way to co-cluster and classify ordinal
data. Furthermore, they are not always available as an R package (except in the case of McParland
and Gormley (2013)). More recently, Corneli et al. (2020) proposed a method to co-cluster ordinal data
modeled via latent Gaussian random variables. Their package ordinalLBM (Corneli et al., 2019) is
available on CRAN.

Finally, the CUB (Combination of a discrete Uniform and a shifted Binomial random variable)
model (D’Elia and Piccolo, 2005) is widely used to analyze ordinal datasets. For instance, Corduas
(2008) proposes a clustering algorithm based on a mixture of CUB models. In the CUB model, an
answer is interpreted as the result of a cognitive process where the decision is intrinsically continuous
but is expressed on a discrete scale of m levels. This approach interprets the choice of the respondent
as a weighted combination of two components. The first component reflects a personal feeling and
is expressed by a shifted binomial random variable. The second component reflects an intrinsic
uncertainty and is expressed by a uniform random variable. Many extensions for the CUB model
have been defined and the CUB package (Maria lannario, 2018) implements the associated statistical
methods.

More recently, Biernacki and Jacques (2016) proposed the so-called Binary Ordinal Search model,
referred to as the "BOS" model. It is a probability distribution specific to ordinal data that is parame-
terized with meaningful parameters (y, 77), linked to a position and precision role, respectively. This
work also describes how the BOS distribution can be used to perform clustering on multivariate
ordinal data. Jacques and Biernacki (2018) then employed this distribution coupled to the Latent
Block Model (Govaert and Nadif, 2003) in order to carry out a co-clustering on ordinal data. The
co-clustering task consists of simultaneously clustering the rows and the columns of the data matrix. It
is a useful way of clustering the data while introducing parsimony, and providing more interpretable
partitions. The authors in Jacques and Biernacki (2018) showed that their algorithm can easily deal
with missing values. However, this model could not take ordinal data with different numbers of levels
into account. Selosse et al. (2019) used an extension of the Latent Block Model to overcome this issue.
These works have proved their proficiency and also provide efficient techniques to perform clustering
and co-clustering of ordinal data. The purpose of the ordinalClust package is to offer a complete tool
for analyzing ordinal data by implementing these methods. Furthermore, it presents a novel approach
for classifying ordinal datasets with categorical responses. The present document gives an overview of
the underlying methods and illustrates usage of ordinalClust through concrete examples. The paper
is organized as follows. In the section "Statistical methods", the notation and models are described.
The section "Application to the patients quality of life analysis in oncology" presents the functions
of ordinalClust and details a use case for psychological survey datasets. The section "Conclusion"
discusses the limits of ordinalClust and future work for the package.

Statistical methods

Data Notation

A dataset of ordinal data will be written as x = (x,-j> ,withl <i< Nand1 <j<],Nand]
L]

denoting the number of individuals and the number of variables, respectively. Furthermore, a dataset

can contain missing data. While dealing with this aspect, the dataset will be expressed by x = (¥, %),

with ¥ being the observed data and £ being the missing data. Consequently an element of x will be

annotated as follows: ¥;;, whether x;; is observed, %;; otherwise.

The BOS model

The BOS model (Biernacki and Jacques, 2016) is a probability distribution for ordinal data parame-
terized by a position parameter y € {1,...,m} and a precision parameter 7 € [0,1]. It was built on
the assumption that an ordinal variable is the result of a stochastic binary search algorithm within
the ordered table (1, ..., m). This distribution rises from a uniform distribution when 7= = 0 to a more
peaked distribution around the mode y# when 7t grows, and reaches a Dirac distribution at the mode

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=clustMD
https://CRAN.R-project.org/package=ordinalLBM
https://CRAN.R-project.org/package=CUB

CONTRIBUTED RESEARCH ARTICLE

63

when 7t = 1. Figure 1 illustrates the shape of the BOS distribution with different values of s and 7. In
Biernacki and Jacques (2016) it is shown that the BOS distribution is a polynomial function of 7w with
degree m — 1 whose coefficients depend on the position parameter y. For a univariate ordinal variable,
the path in a stochastic binary search can be seen as a latent variable. Therefore, an efficient way to
perform the maximum likelihood estimation is through the EM algorithm (Dempster et al., 1977).

p=1, =0 p=1, n=0.1 u=1, n=0.2 p=1, ©=0.5
0.5 : : 0.5 : : 0.5 : ! nﬁ : :
: : | e : N\ :
o 9 o 9 o -a—geﬂ 0-9—0—0 o o0 o
0 0 0 0
1 2 3 4 5 1 2 3 4 5§ 1 2 3 4 5 1 2 3 4 5
p=2, n=0 p=2, n=0.1 u=2, n=0.2 p=2, ©=0.5
1 1;- 1 1 e
05 i OB 05| oo
. . -8
006060 0 %000 ¢ OV o
0 - - 0 - 0
1 2 3 4 5 1 2 3 4 5§ 1 2 3 4 5
p=3, n=0 p=3, w=0.1 pu=3, n=0.2
1 , o 1 . . 1 sreees
: : o . o
000 060 o0 00 ¢ O @ O 9
0 0 0

Figure 1: BOS distribution p (x; p, 7r): shapes for m = 5 and for different values of y and 7.

The co-clustering model

Notation With this being in a co-clustering context, it is assumed that there are G row-clusters and
H column-clusters inherent to the x matrix. It is therefore useful to introduce g (or /1) which represents
the g”’ (or ht") row-cluster (or column-cluster), with 1 < g < G (or1l <h < H). In addition, the sums
and the products related to rows, columns, row-clusters and column-clusters will be subscripted using
the letters i, j, ¢ and h respectively. Therefore, the sums and products will be writtenas }_, Y, Y} and },

i j 8 h
and [[, T, ITand [].
i jog h

Latent Block Model Let us consider the data matrix x = (xij> . It is assumed that there are

ij

G row-clusters and H column-clusters that correspond to a partition v = (%‘g) . and a partition
ig

w = (wjh>j,h respectively, with1 < ¢ < Gand 1 < < H. We have noted that Vig = 1if i belongs to

cluster ¢, whereas v;, = 0 otherwise, and wj, = 1 when j belongs to cluster h, but wj, = 0 otherwise.

Each element x;; is considered to be generated under a parameterized probability density function

p (xi]-; zxgh>. Here, g denotes the cluster of row 7, and / denotes the cluster of column j, while Agp

represents the parameters of a probability density function of block (g, 1), a block being the crossing
of both a row-cluster and a column-cluster. Figure 2 is an example of co-clustering performed on an
ordinal data matrix.

The univariate random variables x;; are assumed to be conditionally independent given the row
and column partitions v and w. Therefore, the conditional probability density function of x given v
and w can be written as:

U,'gw,‘h
p(xlo,w;a) = TI P(xij;zxgh> ,
ijgh

where & = (“gh) X is the distribution’s parameters of block (g, 7). Any univariate distribution can
[

be used with respect to the kind of data (e.g: Gaussian, Bernoulli, Poisson...). In the ordinalClust

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

64

original co-clustering

AWl =
AW N =

Figure 2: Left: original dataset made of ordinal data with m = 5. Right: a co-clustering is performed
with G = H = 2, the rows and columns are sorted by row-clusters and column clusters, which
emphasizes a structure in the dataset.

package, the BOS distribution is employed, thus Qo = (ygh, ”gh)- For convenience, the label of
row i is also denoted by v; = (vj1,...,vig) € {0, l}G. Similarly, the label of column j is denoted by
w; = (wjl, .y wiH) e {o, 1}H . These latent variables v and w are assumed to be independent so
p(v,w;y,p) = p(v;y)p(w;p) with:

Win

p(v;y) = [I1g* and p(w;p) = Iy,
l,g]/

with the knowledge that v, = p (vig = 1) with g € {1,..,G} and p;, = p (w]-h = 1) with €
{1, ..., H}. This implies that, for all i, the distribution of v; is the multinomial distribution M (71, ..., vg)
and does not depend on i. In a similar way, for all j, the distribution of w; is the multinomial distribu-
tion M (p1, ..., prr) and does not depend on j. From these considerations, the parameters of the latent
block model are defined as 6 = (v, p, p, 7r), with v = (1, ..., 7g) and p = (p1, ..., o) as the mixing

proportions of the rows and columns; p = (jgp, N and 7T = (7y , are the distribution parameters
8 8

of the blocks. Therefore, if V and W are the sets of all possible labels v and w, the probability density
function p (x;) of x can be written as:

pwo) = ¥ TDeTlew" TTe (vipag) ™")

(vw)eEVXW g jh ij,8h

Model Inference In the co-clustering context, tha im of the inference is to maximize the observed
log-likelihood I (6;%) = Y logp (x;0). The EM-algorithm (Dempster et al.,, 1977) is a very well
x

known technique for maximizing parameters with latent variables. However, with respect to the
co-clustering case, it is not computationally tractable. Indeed, this method requires computation
of the expectation of the complete data log-likelihood. Nevertheless, this expression contains the

probability p (vig =1L wjy =1lx, 6) , which needs to take into account all the possible values for vy

and w; with i" # iand j/ # j. The E-step would require calculation of GN x H/ terms for each
value of the data matrix. Using the values from the section "Application to the patients quality of
life analysis in oncology", i.e.,, G = 3, H = 3, N = 117 and | = 28, it would result in computation
of 3117 % 328 ~ 1 x 102 terms. There are different alternatives to the EM algorithm, such as the
variational EM algorithm, the SEM-Gibbs algorithm or other algorithms linked to a Bayesian inference.
The SEM-Gibbs version is used because it is known to avoid spurious solutions (Keribin et al., 2010).
Furthermore, it easily handles missing values % in x, which is an important advantage, particularly
with real datasets. The SEM-algorithm is made of two iteratively repeated steps that are detailed in

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

65

Algorithm 1.

Data: x, G, H

Result: A sequence (v, w, 6, %) @ for g€{1,.. nbSEM}
Initialization of £, v, w and 6 by £0), ZJ(O), w(© and 6(0), respectively;
for g in 1:nbSEM do

1. SE-step.
1.1 Sample the row partitions forall1 <i < N,1 < ¢ < G:

(ﬂ 1)

p (vig = 1]xl11, -1, gla-1)) HF’ <xl]/VgZ, 1) ”;71 1))

1.2 Sample the column partitions forall1 <j <], 1 <h < H:
(q)
1 (4-1) -1 _(4-1)\%s
P(Wip = 1|x ZJ G(q)> Py, Hp (xl]’ygh ngh)
1.3 Generate the missing data:
(9)

@
p (ffﬁ)|9?,v('7),w<'7);6<‘7*1>> =TTr (321.].; ygh(q*”, ngh(q 1))” Jwg,
gh

2. M-step.
2.1 Update the mixing proportions:

p(]Zw]h and 'yh szlg

2.2 Update the parameters ula 1) and (4 (see Biernacki and Jacques (2016)).

end
Algorithm 1: SEM-Gibbs for co-clustering on ordinal data.

Initializations The ordinalClust package provides three modes for value initialization. It is set
through the argument init, which can take values 'random’, 'kmeans' or 'randomBurnin'. The first
value randomly initializes (*) and w(?) with the multinomial distribution M (1/G,...,1/G) and
M (1/H,...,1/H), respectively. The second argument (by default) value consists of performing a
Kmeans algorithm (Hartigan and Wong, 1979) on the rows and on the columns.

The third one, 'randomBurnin' is a bit more complex and requires additional arguments for the
algorithm. It aims at avoiding a degeneracy of the algorithm that leads to empty clusters, knowing
that the degeneracy event arises more often at the early stage of the algorithm (thus during the burn-in
period. This starts with a first random initialization. However, for the first nbSEMburn iterations
(nbSEMburn < nbSEM), whenever a row-cluster gets empty, a percentage percentRandomB of the row
partitions are resampled from the multinomial distribution M (1/G,...,1/G). Similarly when a
column-cluster gets empty, a percentage of the column partitions are resampled from the multinomial
distribution M (1/H,...,1/H).

Estimation of model parameters and partitions The first iterations of the SEM-Gibbs are called the
burn-in period, which means that the parameters are not yet stable. Consequently, only the iterations
that occur after this burn-in period are taken into account and are referred to as the "sampling
distribution" hereafter. While the final estimation of the position parameters ji are the mode of the
sampling distributions, the final estimations of the continuous parameters (7, 4, p) are the mean of
the sample distribution. This leads to a final estimation of 6 that is called 6. Then, a sample of (%, v, w)
is generated through several SE-steps (step 1. from Algorithm 1) with @ fixed to . The final partitions
(9, W) and the missing observations # are estimated by the mode of their sample distribution.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

66

Model Selection To determine how many row-clusters and how many column-clusters are necessary,
an adaptation of the ICL criterion (Biernacki et al., 2000), called ICL-BIC, is proposed in Jacques and
Biernacki (2018). In practice, the algorithm must be executed with all the (G, H) to test, and the highest
ICL-BIC is retained.

The clustering model

The clustering model described in this section is a particular case of the co-clustering model, in which
each feature is in its own cluster (H =]). Consequently, w is no longer a latent variable since each

feature represents a cluster of size 1. Let us define a multivariate ordinal variable x; = <xij> ~with
]

1 < j < J. Conditionally to cluster g, the distribution of x; is assumed to be:
p (wilog = Lg, me) = IIp (i gy 7gs)
)

where po = (yg]-). and 7ty = (ﬂg]') ~with 1 < j < J. This conditional independence hypothesis
]]
assumes that conditional to belonging to row-cluster g, the | ordinal responses of an individual

are independently drawn from | univariate BOS models of parameters (yg]-, ngj> L) Further-
je{1,...,
more, as in the co-clustering case, the distribution of v; is assumed to be a multinomial distribution

M (71, ., 7g) and not dependent on i. In this configuration, the parameters of the clustering model

are defined as 6 = (v, &), with Rgj = (ygj, ngj) being the position and precision BOS parameters of

the row-cluster ¢ and ordinal variable j. Consequently, with a matrix x = (xi]-) _. of ordinal data, the
L]
probability density function p (x; 0) of x is written as:

p0) = ¥ TTneTTp (vingi) @

veV g ij,8

To infer the parameters of this model, the SEM-Gibbs Algorithm 1 is used with the part in 1.2 removed
from the SE-step. The part in 1.3 relating to missing value imputation also remains. It is noted here
that clustering can also be achieved by using the co-clustering model in section "The co-clustering
model", and by considering the resulting v partition as the outcome. As a matter of fact, in this case,
the co-clustering is a parsimonious version of the clustering procedure.

The classification model

By considering a classification task with a categorical variable to predict from ordinal data, the
configuration encountered is a particular case where v is known for all i € {1,..., N} and for all
g € {1,...,G}. In ordinalClust, two classification models are provided.

Multivariate BOS model This first model is similar to the clustering model: each variable represents
a column-cluster of size 1, thus w is not a latent variable. This model assumes that, conditional on
the class of the observations, the] variables are independent. Since the row classes are observed,
the algorithm only needs to estimate the parameter 6 that maximizes the log-likelihood I (6; ¥). The
probability density function p (x, v; 0) is therefore expressed as below:

v; Yig
p(x00) =[] TIr (xij} “gj) : ®3)
g ijg
The inference of this model’s parameters only requires the M-step of Algorithm 1. However, if there
are missing data, the SE-step made of the part in 1.3 only is also required.

Parsimonious BOS model This model is a parsimonious version of the first model. Parsimony
is introduced by grouping the features into H clusters (as in the co-clustering model). The main
hypothesis is that given the row-cluster partitions and the column-cluster partitions, the realization of
x;; is independent from the other ones. In practice the number H of column-clusters is chosen with a
training dataset and a validation dataset. Consequently, the probability density function p (x, v; 0) is

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

67

x = xl xP ,with x@ = (x?))
1/i=1,..,N; j=1,..,J4

Figure 3: Data set matrix x when the ordinal data has D numbers of levels.

annotated:

p(x,0,0) =) H’Y;lgnpzuﬂl IIr (xij;“gh>vigwjh . 4
i

weW i,g ij,gh

To infer this model’s parameters, Algorithm 1 is used with an SE-step only containing the partin 1.2,
and the entire M-step. Again, if there are missing data, the SE-step made of the part in 1.3 is also
required.

Handling ordinal data with several numbers of levels

The Latent Block Model as described before cannot take variables with different numbers of levels m
into account. Indeed, the distributions of variables with different numbers of levels are not defined on
the same support. This implies that it is impossible to gather two variables with different m within a
same block.

In Selosse et al. (2019), a constrained Latent Block Model is provided. Although it does not allow
ordinal features with different numbers of levels to be gathered in a same column-cluster, it is able
to take into account the fact that there are several numbers of levels and to perform a co-clustering
on more diverse datasets. The matrix x is considered to contain D different numbers of levels. Its
representation is seen as D matrices placed side by side, such that the dth table is a N x J; matrix
written as x? and composed of ordinal data with numbers of levels 11, (see Figure 3).

The model relies on the following hypothesis:

p (x,..xPv, w?, ...,wD) =p(x!o,w!) x ... x p (xP|v, wD),
with w? the column partition of x?. This means that there is independence between the D blocks,
knowing their row and column partitions: the realization of the univariate random variable xg- will

not depend on the column partitions of the other blocks than d.

In this case, the SEM-Gibbs algorithm is slightly changed: in the SE-step, a sampling step is
appended for every additional x?. For further details on this adapted SEM-Gibbs algorithm, see
Selosse et al. (2019).

Application to the patients quality of life analysis in oncology

This section explains how to use the implementation of the methods described before through the
ordinalClust package. Users should be aware that the code provided was run with R 3.5.3, and that the
results could be different with another version. If users wish to use a version of R > 3.6.0 and reproduce
the same results as in the paper, they should run the command RNGkind(sample.kind="'Rounding"')
before running the code.

Data sets

The datasets included were part of the QoLR package (Anota et al., 2017). They contain responses to
the well known "EORTC QLQ-C30" (European Organization for Research and Treatment of Cancer
(EORTC) Quality of Life Questionnaire (QLQ-C30)), provided to patients affected by breast cancer.
Furthermore, for all questions, the most positive answer is given by a level "1". For example, for
question: “"During the past week, did you feel irritable?” with possible responses: "Not at all.” "A little.”
"Quite a bit.” "Very much.”, the following level numbers are assigned to the replies: 1 “Not at all.”, 2 "A
little.”, 3 "Quite a bit.”, 4 "Very much.”, because it is perceived as more negative to have felt irritable.
Two datasets are available:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

* dataqol is a dataframe with 117 lines such that each line represents a patient and the columns
contain information about the patient:

— Id: patientId,
- g1-928: responses to 28 questions with the number of levels equals to 4,

- 029-930: responses to 2 questions with the number of levels equals to 7.

e dataqol.classif is a dataframe with 40 lines such that a line represents a patient, and the
columns contain information about the patient:

— Id: patientId,
q1-q28: responses to 28 questions with the number of levels equals to 4,

g29-q30: responses to 2 questions with the number of levels equals to 7,

death: if the patient passed away (2) or not (1).

The datasets contain missing values, coded as NA: in datagol, 1.1% are missing values and 3.6% in
datagol.classif. To load the package and its datasets, the following commands must be executed:

library(ordinalClust)
data("datagol”)
data("dataqgol.classif")

Then, a seed is set so that users can obtain results identical to this document:
set.seed(1)

Users must define how many SEM-Gibbs iterations (nbSEM) and how many burn-in iterations (nbSEMburn)
are needed for Algorithm 1. The section "Setting the SEMburn and nbSEMburn arguments" provides
an empirical way of checking correctness of these values. Moreover, the nbindmini argument must
be defined: it indicates the minimum number of elements that must be present in a block. Finally,

the init argument indicates how to initialize the algorithm. It can be set to "kmeans”, "random” or
"randomBurnin”.

nbSEM <- 150

nbSEMburn <- 100

nbindmini <- 1

init <- "randomBurnin”
percentRandomB <- c(50, 50)

Here, percentRandom is a vector because it defines two percentages: the percentage of rows that
will be resampled if a row-cluster is emptied, and the percentage of columns that will be resampled if
a column-cluster is emptied.

Performing classification

In this section, the dataqol.classif dataset is used. The aim is to predict the death variable from the
ordinal data that corresponds to the patients answers. The following commands show how to setup
the classification configuration. First, the x ordinal data matrix (the responses to the questionnaires) is
defined, as well as the v vector, which is the variable death to predict.

X <- as.matrix(dataqol.classif[,2:29])
v <- datagol.classif$death

ordinalClust provides two classification models. The first model (chosen by the option kc=0) is a
multivariate BOS model with the assumption that, conditional on the class of the observations, the
features are independent as in Equation 3. The second model introduces parsimony by grouping the
features into clusters and assuming that the features of a cluster have a common distribution, as in
Equation 4. This latter is a novel approach for classification. The number H of clusters of features is
defined with the argument kc = H. H is selected using a training dataset and a validation dataset:

sampling datasets for training and to predict
nb.sample <- ceiling(nrow(x)*7/10)
sample.train <- sample(1:nrow(x), nb.sample, replace=FALSE)

x.train <- x[sample.train,]
x.validation <- x[-sample.train,]

v.train <- v[sample.train]
v.validation <- v[-sample.train]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

69

We also indicate how many classes there are, and how many levels the ordinal data have:

classes
kr <= 2
levels
m<- 4

The training can be performed using the function bosclassif. In the code below, several kc parameters
are tested. When kc = 9, the multivariate model is used: all variables are considered to be independent.
When ke >0, the parsimonious model is used: the variables are grouped into kc groups. To classify
new observations, the predict function is used: it takes as arguments the result from bosclassif and
the observations to classify. In the following example, we store in the preds matrix the predictions
resulting from the classifications performed with different kc.

kcol <- c(o, 1, 2, 3, 4)
preds <- matrix(@, nrow = length(kcol), ncol = nrow(x.validation))

for(kc in 1:1length(kcol)){
classif <- bosclassif(x = x.train, y = v.train, kr = kr, kc = kcoll[kc],
m = m, nbSEM = nbSEM, nbSEMburn = nbSEMburn,
nbindmini = nbindmini, init = init,
percentRandomB = percentRandomB)
new.prediction <- predict(classif, x.validation)
if(!is.character(new.prediction)){
preds[kc,] <- new.prediction@zr_topredict
}
}

Then the preds matrix can be formatted to a dataframe:

preds <- as.data.frame(preds)
row.names <- paste@("kc = ", kcol)
rownames (preds) <- row.names

preds
v.validation

> preds

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
ke=0 2 1 2 2 2 2 1 1 1 2 1 2
ke=1 2 1 2 1 2 2 1 2 1 1 2 2
ke=2 2 1 2 2 2 2 1 2 1 2 2 2
ke=3 2 1 2 1 2 2 1 2 1 2 1 2
ke=4 1 1 2 1 1 1 1 2 1 2 1 2

> v.validation
[11211111121112

Table 1 shows the sensitivity and specificity for each different kc. The code to get these values is
available in the Appendix "Specificity and sensitivity". First of all, the results are globally satisfying
since the sensitivities and specificities are quite high. We observe that the parsimonious models (wWhen
kc = 1,2,3,4) have better results than the multivariate model (kc = 0). The two parsimonious models
kc = 1and kc = 3 obtain the best results. This illustrates the interest of introducing parsimonious
models in a supervised context. However, users should be aware that the dataset is small, and the
number of observations used here is too low to draw definitive conclusions.

Performing clustering

Clustering setting. This section uses the dataqol dataset, plotted in Figure 4.

The purpose of clustering is to emphasize information regarding the rows of a data matrix. First,
the x ordinal matrix is loaded, which corresponds to the patients’” responses:

set.seed(1)
x <- as.matrix(dataqol[,2:29])

The clustering is obtained using the bosclust function:

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

70

Table 1: Sensitivity and specificity for different kc.

sensitivity specificity

ke=0 0.67 0.44
ke=1 1.00 0.56
ke=2 1.00 0.33
ke=3 1.00 0.56
ke=4 0.78 0.67
original

Figure 4: Plot of the dataqol dataset. The rows represent the patients, the columns represent the
questions they answered to. A cell is the response of a patient to a question. The more black the cell is,
the more negative the answer.

clust <- bosclust(x = x, kr = 3, m = 4,
nbSEM = nbSEM, nbSEMburn = nbSEMburn,
nbindmini = nbindmini, init = init)

The outcome can be plotted using the plot function:
plot(clust)

Figure 5 represents the clustering result. We count the clusters from the bottom to the top. Among
the 3 row-clusters, the first one (at the bottom) stands out as the lightest. This means that the patients
from this cluster globally chose levels close to 1, which is the most positive answer. In contrast, the
third row-cluster (at the top) is darker, which implies the patients from this group answered in a more
negative way.

Clusters interpretation. The parameters are obtained with the command clust@params:

> clust@params
111
[[111$mus

[(,11 C,21 C,31 C,4]1 [C,51 C,61 [,71 [,81 C,9]1 C,10]1 [,11]1 [,12]1 [,13] [,14]
[1,1] 1 1 1 1 1 1 1 1 1 2 1 2 1 1
[2,] 2 2 1 1 1 2 1 1 2 2 1 3 2 1
[3,] 3 4 3 3 1 4 3 2 3 4 2 4 3 4

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

71

clustering

—=
— E nn —
e — B = e
— :-___:__—_-_

Figure 5: Clustering obtained when following the example provided.

[,151 [,16]1 [,171 [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
[1,] 1 1 1 2 1 1 1 2 1 1 1 1

2,1 1 1 1 2 2 1 2 2 1 2 1 1
[3,1] 1 1 1 4 3 3 3 3 2 2 2 3
[,271 [,28]
[1,] 1 1
2,1 1 1
[3,1] 4 1
[[11]1%$pis
[,1] [,2] [,3] [,4]1 [,5] [,6] [,7] [,8]

[1,] 0.8079608 0.6673682 0.961979 0.7770536 1 ©.9619790 1.0000000 0.8852379
[2,] 0.3946294 0.3736864 0.722322 0.4690402 1 0.3567357 0.5546162 0.6402318
[3,] 0.4319502 0.5928978 0.347433 0.4930463 1 0.2718517 0.5888644 0.3310052
[,9] [,10] [,11] [,12] [,13] [,14] [,15]
[1,] 0.9246885 0.5903583 0.6951631 0.5438752 0.9226941 0.4932884 0.8825371
[2,] 0.4767814 0.6937982 0.1481492 0.1859040 0.1176366 0.6624020 0.7916167
[3,] 0.3220447 0.7079570 0.4084469 0.5779180 0.5745136 0.1691940 0.3161048
[,16] [,171 [,18] [,19] [,20] [,21] [,22]
[1,] 0.8036703 0.7364791 0.6643935 1.0000000 0.9619790 0.6951631 ©.5681893
[2,] 0.3054584 0.8394348 0.5440131 0.3395749 0.4757433 0.4142450 ©0.3805989
[3,] 0.1255990 0.4281432 0.5470879 0.4280508 0.2300193 0.5776385 0.2632960
[,23] [,24] [,25] [,26] [,27] [,28]
[1,] 0.4905033 0.5510665 0.8167944 0.7477762 0.8521366 0.9226941
[2,] 0.3870155 0.4064222 0.6484691 0.4666815 0.3530825 0.6599010
[3,] 0.4183768 0.4709545 0.1959082 0.5465595 0.6419857 0.4174326

clust@paranms is a list: when the data have D numbers of levels as in Figure 3, the list is D—long. Here
the data has only one number of levels, so clust@params has one element. Each element of the list has

two attributes, pis and mus. They indicate the 77 and p values for each row-cluster and each column.

Here, we see that, as observed with Figure 5, the first row-cluster has globally lower parameters y,
which means that people from this cluster globally answered in a more positive way to the questions.
We also note that the 77 parameters for the fifth variable (the fifth question) are all equal to 1. This
means that the dispersion around the position y is null. When observing the u parameters for the fifth
variables, they are also all equal to 1. This means that everybody answered in a positive way to this
question. The fifth question of the EORTC QLQ-C30 questionnaire is "Do you need help with eating,
dressing, washing yourself or using the toilet?". Therefore, we know that none of the participants had
problems getting ready and eating the week before they answered the questionnaire.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

72

Choosing G. In the example above, the choice for G was made by performing several clustering
with G = (2,3,4). Using the command clust@icl, we can find out which result has the highest ICL
value. The G with the highest ICL-BIC was retained, that is to say G = 3. The code to perform these
clusterings is available in the Appendix "ICL search for clustering".

Performing co-clustering

Co-clustering setting. Once again, this section uses the dataqol dataset. The co-clustering is per-
formed using the boscoclust function:

set.seed(1)

coclust <- boscoclust(x = x, kr = 3, kc = 3, m = 4,
nbSEM = nbSEM, nbSEMburn = nbSEMburn,
nbindmini = nbindmini, init = init)

As in the clustering context, the result can be plotted with the command below, as in Figure 6.

plot(coclust)

co-clustering

Figure 6: Co-clustering obtained when following the example provided.

In this case, the algorithm highlights a structure amid the rows, as for the clustering Figure 5. In
addition, it also reveals a structure inherent to the columns: for example, the third column-cluster is
lighter than the others, consequently, these questions were globally responded to in a more positive
way.

Co-clusters interpretation. Once again, the parameters of the co-clustering are available through
the command coclust@params:

> coclust@params
[[11]
[[111$mus

[,11 [,2] [,3]
[1,] 1 1 1
[2,] 1 2 1
[3,] 3 3 1

[011]¢pis

[,1] [,2] [,3]
[1,] 0.8496224 0.6266097 0.9426305
[2,] 0.4876194 0.5340329 0.7722278
[3,]1 0.2638594 0.3044552 0.3623779

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 73

In order to find out which questions belong to the third column-cluster (the one whose correspond-
ing blocks are lighter), we need the command coclust@zc, which indicates the column-cluster of each
column. coclust@zc is also a list of length D (when we have different numbers of levels). Here, D = 1
so we need coclust@zc[[1]]:

which(coclust@zc[[1]] == 3)
[1] 3 5 81517 25 28

We know that questions 3, 5, 8, 15, 17, 25 and 28 are globally the ones that were answered the more
positively. Here is the list of these questions in the EORTC QLQ C30:

* 3. Do you have any trouble taking a short walk outside of the house?

* 5. Do you need help with eating, dressing, washing yourself or using the toilet?

* 8. During the past week, were you short of breath?

e 15. During the past week, have you vomited??

¢ 17. During the past week, have you had diarrhea?

¢ 25. During the past week, have you had difficulty remembering things?

28. During the past week, has your physical condition or medical treatment caused you financial
difficulties?

Choosing G and H. In the examples above, the choice for G and H were made by performing several
co-clusterings with G = (2,3,4) and H = (2,3,4). In both cases, the couple (G, H) with the highest
ICL-BIC value was retained, i.e., for (G, H) = (3,3). The code to search the highest ICL value is given

in the Appendix "ICL search for co-clustering”!.

Missing values.

In this section we use the datagol dataset. It has 1.1% missing values (40 elements are missing in the
matrix). The SEM-algorithm can handle these values since at each Expectation step (see Algorithm 1,
which computes the expectation of the missing values. The following code obtains the index of the
missing values and prints their values imputed by the clustering (or co-clustering) algorithm in the
Section "Performing co-clustering" (or the Section "Performing clustering").

missing <- which(is.na(x))
missing

values.imputed.clust <- clust@xhat[[1]][missing]
values.imputed.clust

values.imputed.coclust <- coclust@xhat[[1]][missing]
values.imputed.coclust

> missing
[1] 148 177 278 352 380 440 450 559 996 1058 1496 1513 1611 1883 1981
[16] 2046 2047 2050 2085 2285 2402 2450 2514 2517 2518 2663 2754 2785 2900 2902
[31] 2982 2986 3060 3152 3366 3367 3368 3520 3572 3602
> values.imputed.clust
[1144411144144441411144444444444417114111
> values. imputed.coclust
[112222222222222222222222222222222222222

We see that the co-clustering and the clustering algorithm had different values imputed for the
missing data.

Comparison of clustering and co-clustering.

Co-clustering as parsimonious clustering. Co-clustering can be seen as a parsimonious way of
performing clustering, which is why these two techniques are compared here. For example, the
interpretation of row-clusters is more precise with the co-clustering. Indeed, in Figure 5, the row-
clusters can be seen as a group of people who globally replied positively, a group of people who

1In case of several numbers of levels, testing all the possible values for (G, H, ..., Hp) can be tedious. In such
cases, users are invited to implement a specific heuristic strategy as in Selosse et al. (2019).

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

74

replied negatively, and a third group that replied in between. On the other hand, in Figure 6, an
inherent structure of the data is better highlighted and adds more information: for each row-cluster, it
is also easy to detect the questions that were replied to negatively. Co-clustering can therefore be seen
as a more efficient way of performing clustering. Furthermore the interpretation of the parameters
was easier with the co-clustering result because it only had 18 parameters: kr x kc for 7t and kr x kc
for p. The clustering result had 168 parameters (kr x | for 7t and kr x | for u), which is a lot to process
for the user.

ARI values on row partitions The Adjusted Rand Index (Rand, 1971) was computed on row parti-
tions of co-clustering and clustering results, using the package mclust Scrucca et al. (2016).

mclust::adjustedRandIndex(coclust@zr, clust@zr)

The value obtained is 0. 41, meaning that co-clustering creates a row partition related to that created
by the clustering, without being identical.

Setting the SEMburn and nbSEMburn arguments

The SEM-algorithm can be slow at reaching its stationary state, depending on the dataset. After having
chosen arbitrary nbSEM and nbSEMburn arguments (in practice at least higher than 50), the stability of
the algorithm has to be verified. For this reason, all the functions of the ordinalClust package also
return parameters estimations at each iteration of the SEM-algorithm. Indeed, the pichain, rhochain
and paramschain slots represent the v, p and « values, respectively, for each iteration. As a result, the
evolution of the parameters can be analyzed and users can be confident that the returned parameters
are well estimated. In the co-clustering case, for example, the evolution of the parameters can be
visualized through a plot:

par(mfrow=c(3,3))
for(kr in 1:3){
for(kc in 1:3){
toplot <- rep(@, nbSEM)
for(i in 1:nbSEM){
toadd <- coclust@paramschain[[1]1]1$pisl[kr,kc,i]
toplot <- c(toplot, toadd)
}
plot.default(toplot, type = "1",ylim = c(90,1),
col = "hotpink3”, main = "pi”,
ylab = paste@("pi_", kr, kc, "values"),
xlab = "SEM-Gibbs iterations”)

In Figure 7, we observe that the parameters reach their stationary state before the 100" iteration.
In this case, a burn-in period of 100 iterations (corresponding to nbSEMburn=100) is therefore enough.
The total number of iterations corresponds to the argument nbSEM=150, so 50 iterations are used to
approximate the parameters.

Handling data with different numbers of levels

If users wish to execute one of the functions described previously on variables with different 1, then
they should use the same function with some changes to the arguments definitions. Let us assume that
the data is made of D different numbers of levels. First of all, the columns of matrix matrix x must be
grouped by same number of levels m[d]. The additional changes for the arguments to pass are listed
below:

e mmust be a vector of length D. The d* element indicates the number of levels for the d* group
of variables.

* kc must be a vector of length D. The d™ element indicates the number of column-clusters for
the d* group of variables.

e idx_list is a new vector argument of length D. The d'" item of the vector indicates the index of
the first column that have the number of levels m[d].

An example on the datagol dataset is available in the Appendix "Handling different numbers of
levels".

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mclust

CONTRIBUTED RESEARCH ARTICLE 75

pi pi pi
= | = | = |
, [
s = 4 =
s < =
g S g S ¢ 3
2 3 2
]]]
=] &
a =] a =] & = J
= o <
o o ~ |
= = =
=] = | =
= = =
T T T T T T T T T T T T
a 50 100 150 o 50 100 150 0 50 100 150
SEM-Gibbs iterations SEM-Glbbs Iterations SEM-Gibbs lterations
pi pi pi
= | =] =
= = = |
= = = -
/
|
© w @
5 =] g =7 g =7
E] 2 2
5 I\ 3 [T e w
£ — & | &
~ & | &
a = a = J/ B % 4
= = 7 <
o o ~
= o <
= = | =
=4 T T T ° 4 T T T ° kL T T T
a 50 100 150 o 50 100 150 0 &0 100 150
SEM-Gibbs iterations SEM-Glbbs iterations SEM-Gibbs iterations
pi pi pi
= = =
= L= = |
= = <
@ @ @
g = 3 = g = 7
E] 2 =
]]]
z] &
= = =
a2 a = & %4k
= = = (W B
Nscmsmossisssssossssamssossimssosossinss W T
o o o
= S <
= a | =
= =] o
T T T T T T T T T T T T
1] 50 100 150 o 50 100 150 0 &0 100 160
SEM-Gibbs iterations SEM-Glbbs iterations SEM-Gibbs iterations

Figure 7: Evolution of 7t parameters through SEM-Gibbs iterations, in the clustering example. We
observe that the parameters have reached a stationary state with time.

Conclusion

The ordinalClust package presented in this paper implements several methods for analyzing ordinal
data. First, it implements a clustering and co-clustering framework based on the Latent Block Model,
coupled with a SEM-Gibbs algorithm and the BOS distribution. Moreover, it defines a novel approach
to classify ordinal data. For the classification method, two models are proposed, so that users can
introduce parsimony in their analyses. Similarly, it has been shown that the co-clustering method
provides a parsimonious way of performing clustering. The framework is able to handle missing values
which is notably relevant in the case of real datasets. Finally, these techniques are also implemented
in the case of dataset with ordinal data with several numbers of levels. The package ordinalClust is
available on the Comprehensive R Archive Network (CRAN), and is still under active development. A
future work will implement the method defined in Gelman and Rubin (1992), to automatically define
the number of iterations of the SEM-Gibbs algorithm.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

76

Bibliography

A. Agresti. Analysis of ordinal categorical data. Wiley Series in Probability and Statistics, pages 397—405.
John Wiley & Sons, Inc., 2012. [p61]

A. Anota, M. Savina, C. Bascoul-Mollevi, and F. Bonnetain. Qolr: An r package for the longitudinal
analysis of health-related quality of life in oncology. Journal of Statistical Software, Articles, 77(12):
1-30, 2017. [p67]

C. Biernacki and J. Jacques. Model-Based Clustering of Multivariate Ordinal Data Relying on a
Stochastic Binary Search Algorithm. Statistics and Computing, 26(5):929-943, 2016. [p62, 63, 65]

C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering with the integrated
completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell., 22(7):719-725, 2000. [p66]

P-C. Biirkner. brms: An r package for bayesian multilevel models using stan. Journal of Statistical
Software, Articles, 80(1):1-28, 2017. ISSN 1548-7660. [p61]

A.]J. Cannon. monmlp: Multi-Layer Perceptron Neural Network with Optional Monotonicity Constraints,
2017. R package version 1.1.5. [p61]

R. H. B. Christensen. ordinal—regression models for ordinal data, 2015. R package version 2015.6-28.
[p61]

M. Corduas. A statistical procedure for clustering ordinal data. Quaderni di statistica, 10:177-189, 2008.
[p62]

M. Corneli, C. Bouveyron, and P. Latouche. ordinalLBM: Co-Clustering of Ordinal Data via Latent
Continuous Random Variables, 2019. [p62]

M. Corneli, C. Bouveyron, and P. Latouche. Co-clustering of ordinal data via latent continuous random
variables and not missing at random entries. Journal of Computational and Graphical Statistics, 0(ja):
1-39, 2020. [p62]

A.D’Elia and D. Piccolo. A mixture model for preferences data analysis. Computational Statistics &
Data Analysis, 49(3):917-934, June 2005. [p62]

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of he Royal Statistical Society, series B, 39(1):1-38, 1977. [p63, 64]

A. Gelman and D. Rubin. Inference from iterative simulation using multiple sequences. Statistical
Science, 7(4):457-472, 1992. ISSN 08834237. [p75]

M. Giordan and G. Diana. A clustering method for categorical ordinal data. Communications in Statistics
- Theory and Methods, 40(7):1315-1334, 2011. [p62]

G. Govaert and M. Nadif. Clustering with block mixture models. Pattern Recognition, 36:463-473, 2003.
[p62]

J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. JSTOR: Applied Statistics, 28(1):
100-108, 1979. [p65]

M. C. Heredia-Gémez, S. Garcfa, P. A. Gutiérrez, and F. Herrera. Ocapis: R package for ordinal
classification and preprocessing in scala. Progress in Artificial Intelligence, 2019. ISSN 2192-6360.
[po1]

R. Hornung. ordinalForest: Ordinal Forests: Prediction and Variable Ranking with Ordinal Target Variables,
2019a. R package version 2.3-1. [p61]

R. Hornung. Ordinal forests. Journal of Classification, pages 1-14, 2019b. [p61]

J. M. J. Vermunt. Technical Guide for Latent GOLD 4.0: Basic and Advanced. Statistical Innovations Inc.
Belmont, Massachussetts, 2005. [p61]

J. Jacques and C. Biernacki. Model-based co-clustering for ordinal data. Computational Statistics & Data
Analysis, 123:101 - 115, 2018. ISSN 0167-9473. [p62, 66]

F.-X. Jollois and M. Nadif. Classification de données ordinales : modeles et algorithmes. In 41emes
Journées de Statistique, SFAS, Bordeaux, Bordeaux, France, 2009. [p62]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

77

F. E. H. Jr. rms: Regression Modeling Strategies, 2019. R package version 5.1-3.1. [p61]

C. Keribin, G. Govaert, and G. Celeux. Estimation d'un modele a blocs latents par l’algorithme SEM.
In 42émes Journées de Statistique, Marseille, France, 2010. [p64]

R. S. Maria Iannario, Domenico Piccolo. CUB: A Class of Mixture Models for Ordinal Data, 2018. R
package version 1.1.3. [p62]

D. McParland and I. C. Gormley. Clustering ordinal data via latent variable models. In B. Lausen,
D. Van den Poel, and A. Ultsch, editors, Algorithms from and for Nature and Life: Classification and Data
Analysis, pages 127-135. Springer International Publishing, Switzerland, 2013. [p62]

D. McParland and I. C. Gormley. clustMD: Model Based Clustering for Mixed Data, 2017. R package
version 1.2.1. [p62]

M. Ranalli and R. Rocci. Mixture models for ordinal data: A pairwise likelihood approach. Statistics
and Computing, 26(1-2):529-547, Jan. 2016. ISSN 0960-3174. [p62]

W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical Association, 66(336):846-850, 1971. [p74]

L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery. mclust 5: clustering, classification and density
estimation using Gaussian finite mixture models. The R Journal, 8(1):205-233, 2016. [p74]

M. Selosse, J. Jacques, C. Biernacki, and F. Cousson-Gélie. Analysing a quality-of-life survey by using
a coclustering model for ordinal data and some dynamic implications. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 68(5):1327-1349, 2019. [p62, 67, 73]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth edition,
2002. ISBN 0-387-95457-0. [p61]

T. W. Yee. The vgam package for categorical data analysis. | Stat Softw, 2010. [p61]

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

Appendix

Specificity and sensitivity

The following code computes the specificities, and sensitivities obtained with the different kc in the
section "Performing classification:

library(caret)

actual <- v.validation - 1

specificities <- rep(@,length(kcol))
sensitivities <- rep(@,length(kcol))

for(i in 1:length(kcol)){
prediction <- unlist(as.vector(preds[i,])) - 1
u <- union(prediction, actual)
conf_matrix <- table(factor(prediction, u),factor(actual, u))
sensitivities[i] <- recall(conf_matrix)
specificities[i] <- specificity(conf_matrix)

3

sensitivities
specificities

> sensitivities
[1] 0.6666667 1.0000000 1.0000000 1.0000000 0.7777778
> specificities
[1] ©.4444444 0.5555556 ©.3333333 0.5555556 0.6666667

ICL search for clustering
set.seed(1)

library(ordinalClust)
data("dataqgol"”)
M <- as.matrix(dataqol[,2:29])

nbSEM <- 150

nbSEMburn <- 100
nbindmini <- 2

init <- "randomBurnin”
percentRandomB <- c(50)
icl <- rep(9,3)

for(kr in 2:4){
object <- bosclust(x = M, kr = kr, m = 4, nbSEM = nbSEM,
nbSEMburn = nbSEMburn, nbindmini = nbindmini,
percentRandomB = percentRandomB, init = init)

if(length(object@icl)) icl[kr-1] <- object@icl
}

icl

> icl
[1] -3713.311 -3192.351 @

We see that the clustering algorithm could not find a solution without an empty cluster for kr = 4.
The highest icl is for kr = 3.
ICL search for co-clustering

set.seed(1)
library(ordinalClust)

CONTRIBUTED RESEARCH ARTICLE 79

data("datagol”)
M <- as.matrix(dataqol[,2:29])

nbSEM <- 150

nbSEMburn <- 100

nbindmini <- 2

init <- "randomBurnin”
percentRandomB <- c(50, 50)

icl <- matrix(@, nrow = 3, ncol = 3)

for(kr in 2:4){
for(kc in 2:4){
object <- boscoclust(x = M,kr = kr, kc = kc, m = 4, nbSEM = nbSEM,
nbSEMburn = nbSEMburn, nbindmini = nbindmini,
percentRandomB = percentRandomB, init = init)
if(length(object@zr)){
icl[kr-1, kc-1] <- object@icl

}

3
}
icl
> icl

[,1] [,2] [,3]

[1,] -3529.423 0.000 -3503.235
[2,] 0.000 -3373.573 0.000
[3,1] 0.000 -3361.628 -3299.497

We note that the co-clustering algorithm could not find a solution without an empty cluster for
(kr,ke) = (2,3),(3,2),(3,4), (4,2). The highest ICL-BIC is obtained when (kr,kc) = (3,3).

Handling different numbers of levels

The following code shows how to handle different numbers of levels in a co-clustering context. It may
take several minutes due to the high number of levels of the two last columns.

set.seed(1)
library(ordinalClust)

loading the real dataset
data("dataqgol"”)

loading the ordinal data
X <- as.matrix(dataqol[,2:311)

defining different number of categories:
m <- c(4,7)

defining number of row and column clusters
krow <- 3
kcol <- c(3,1)

configuration for the inference
nbSEM <- 20

nbSEMburn <- 15

nbindmini <- 2

init <- 'random'

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

80

d.list <- c(1,29)

Co-clustering execution

object <- boscoclust(x = x,kr = krow, kc = kcol, m = m,
idx_list = d.list, nbSEM = nbSEM,
nbSEMburn = nbSEMburn, nbindmini = nbindmini,
init = init)

The R Journal Vol. 12/2, December 2020

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Margot Selosse

Université de Lyon, Lyon 2, ERIC EA 3083.
5 Avenue Pierre Mendés France, 69500 Bron
France

margot.selosse@gmail.com

Julien Jacques

Université de Lyon, Lyon 2, ERIC EA 3083.
5 Avenue Pierre Mendés France, 69500 Bron
France

julien.jacques@univ-lyon2.fr

Christophe Biernacki

Inria, Université de Lille, CNRS Université Lille - UFR de Mathématiques - Cité Scientifique - 59655 Villeneuve
d’Ascq Cedex

France

christophe.biernacki@inria.fr

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

mailto:margot.selosse@gmail.com
mailto:julien.jacques@univ-lyon2.fr
mailto:christophe.biernacki@inria.fr

CONTRIBUTED RESEARCH ARTICLE

82

KSPM: A Package For Kernel
Semi-Parametric Models

by Catherine Schramm, Sébastien Jacquemont, Karim Oualkacha, Aurélie Labbe and Celia M.T.
Greenwood

Abstract Kernel semi-parametric models and their equivalence with linear mixed models provide
analysts with the flexibility of machine learning methods and a foundation for inference and tests of
hypothesis. These models are not impacted by the number of predictor variables, since the kernel
trick transforms them to a kernel matrix whose size only depends on the number of subjects. Hence,
methods based on this model are appealing and numerous, however only a few R programs are
available and none includes a complete set of features. Here, we present the KSPM package to fit
the kernel semi-parametric model and its extensions in a unified framework. KSPM allows multiple
kernels and unlimited interactions in the same model. It also includes predictions, statistical tests,
variable selection procedure and graphical tools for diagnostics and interpretation of variable effects.
Currently KSPM is implemented for continuous dependent variables but could be extended to binary
or survival outcomes.

Introduction

In the last decades, the popularity and accessibility of machine learning has increased as a result
of both the availability of big data and technical progress in computer science. The flexibility of
machine learning methods enables avoidance of assumptions about functional relationships, such as
strong linear or additive hypotheses, that are often involved in classical statistical models. However,
this flexibility and adaptability also limits the capacity to interpret results or make inference. When
understanding and inference are required, simpler statistical models are often preferred, as they are
easy to understand and implement. Methods from the machine learning field might better model
complex relationships, and yet would be more attractive if the results could be made interpretable.
With this goal in mind, Liu et al. (2007) clearly demonstrated the under-appreciated equivalence
between a machine learning tool and a classical statistic model through the link between kernel
semi-parametric models — developed first in the machine learning field — and more classical linear
mixed models. This equivalence allows analysts to take advantage of knowledge advances in both
the machine learning domain and the traditional statistical inference domain, including hypotheses
testing, when using kernel semi-parametric models (Table 1).

Features of kernel models

from traditional statistical models from machine learning models
¢ Inference, confidence/prediction inter- e No need to explicitly define
vals outcome-predictors relationship
¢ Tests, p values ¢ May deal with a large amount of

. .) . data (big data and fat data)
¢ Information criteria (variable selection)

e Potential for reinforcement learn-

¢ Interpretation via estimation of func- ing

tional form of variable effects on out-
come

Table 1: Features of kernel models combine features from traditional statistical models and features
from machine learning models.

The kernel semi-parametric model assumes that the outcome is related to the set of variables
through an unknown smooth function, which is simply approximated by computing the similarity
matrix between subjects according to the set of variables and a chosen kernel function (i.e., the kernel
trick). Matrix size depends only on the number of subjects, making kernel models particularly suited
to datasets where the number of features is very large (p >> n). The equivalence between kernel

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

83

CONTRIBUTED RESEARCH ARTICLE

semi-parametric models and linear mixed models motivates a score test, which is simple to implement,

for the simultaneous effect of all variables on the outcome.
Methods based on the kernel semi-parametric model and its extensions are appealing and nu-

merous, but only a few programs are available, and none includes a complete set of the features that
correspond to recent developments. Table 2 gives some examples of existing R packages according to

their features of interest.
P— —~— *
g 2 S 5 2 8
~ S ~ o
- ~ o I .S 2 <
<] <] g 57 4 e K] v
z 2) > s £ 5 "
5 o ~ -~ S [g 2
2 o ~1 3 S g, £ 2
£ 5 P 5 T g & £
< D @ & & 5 Q <
coxme v v
SKAT v v
SPA3G v
KRLS v v
1071 v
KSPM v v v v v v v v

Table 2: Features incorporated in KSPM (Schramm, 2020), as well as in several other R packages for
kernel nonparametric or semiparametric models: coxme (Therneau, 2018), SKAT (Lee et al., 2017),
KRLS (Hainmueller and Hazlett, 2017), €1071 (Meyer et al., 2018) and SPA3G (Li and Cui, 2012a).
Adjustment refers to models including a kernel for adjusting the model on correlation structure
similarly to a random factor. User’s own kernel refers to a kernel function explicitly defined by the
user of the package, in contrast to traditional kernel functions that are already implemented in the
package. Single kernel test refers to the test of the joint effect of a set of variables on the outcome.
Test of interaction refers to the interaction between two sets of variables and its effect on the outcome.
Predictions refers to the possibility of displaying predictions with confidence and prediction intervals.
Interpretation plot refers to graphical tools for interpretation of individual effects of each variable in
the kernel on the outcome. Diagnostic plots refers to graphical tools based on residuals and leverage
measures to check the validity conditions of a model and identify outlier samples. Variable selection

refers to the implementation of a variable selection procedure.

Several packages in Table 2 were developed in the genetics field where interest often lies in testing
the contribution of a group of variables (variants) simultaneously, notably through the sequence
kernel association test (SKAT) for single nucleotide polymorphisms (Wu et al., 2011; Chen et al., 2016).
Extensions from single to multiple kernel model were motivated by (i) interaction tests (Li and Cui,

2012b; Wang et al., 2017; Ge et al., 2015; Marceau et al., 2015) and (ii) estimating the conditional effect
of one set of variables after adjusting for another set of variables, or after adjusting for population
structure (Oualkacha et al., 2013). The latter goal may be achieved easily using the Imekin() function
from the coxme package under mixed model theory where kinship matrix corresponds to the kernel
matrix measuring similarity between subjects, and defines the covariance matrix of the random effect

term.
predictions and they focus on a single kernel function. Traditionally, model interpretation has remained

an outstanding challenge of the machine learning field. However it has been recently demonstrated
that the kernel semi-parametric models can be used to interpret effects of variables on the outcome
through a graphical tool based on derivatives (Hainmueller and Hazlett, 2013) and this is implemented
in the KRLS package. When the kernel function and the corresponding approximated smooth function
are differentiable with respect to the variable of interest, pointwise derivatives capture the effect of

In the machine learning field, packages like e1071 have been developed to perform accurate

this variable on the outcome.
Since researchers may be interested in all of these features, we have consolidated them in the
R package KSPM. The package and a vignette including detailed examples are available from the
comprehensive R archive network (CRAN) at https:/ /CRAN.R-project.org/package=KSPM. Our
package, currently designed for continuous outcomes and normal errors, fits kernel semi-parametric
models and their extensions in a unified framework incorporating all the previously described model
fitting features and tests. It allows multiple kernels and unlimited interactions in the same model.
Although most popular kernel functions are available in the package, the user also has the option of

ISSN 2073-4859

The R Journal Vol. 12/2, December 2020

https://CRAN.R-project.org/package=KSPM
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=SKAT
https://CRAN.R-project.org/package=KRLS
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=SPA3G

CONTRIBUTED RESEARCH ARTICLE

84

designing and using his/her own kernel functions. Furthermore, whenever interest lies in prediction
or making inference from the model, diagnostic assessments of the model may be performed through
graphical tools to detect data points with large residuals or high leverage that may greatly influence
the results. Finally, we have also included a variable selection procedure based on Akaike’s and
Bayesian information criteria (AIC and BIC). These last two options are not included in other software
packages.

The KSPM package is a new tool for semi-parametric regression. It is not competing with other R
packages for semi- or non-parametric regression models since either our methods or our objectives are
different. Indeed, the estimation method involved in KSPM is based on regularized least squares in
the kernel Hilbert space and should not be confused with local kernel smoothing based on Nadaraya-
Watson estimator (np package, Racine and Hayfield (2020)). Similarly, KSPM is also different from
other smoothing methods connecting regression segments through knots among which we may cite
splines (mgcv package, Wood (2020)).

However, since the kernel semi-parametric model is equivalent to a linear mixed effect model,
our package could be compared to Ime4 (Bates et al., 2019) or nlme (Pinheiro et al., 2019) packages
for linear mixed effect models. Although it is possible to obtain similar inference from any variables
involved in a linear part of each model, and to obtain similar predictions from both overall models, loss
function maximization are different. Moreover, KSPM has the advantage of being easier-to-use as the
user does not need to compute kernel matrix nor matrix of interactions and provides interpretations
for variable effects that cannot be obtained with traditional packages.

Kernel semi-parametric models

Single kernel semi-parametric model

LetY = (Yq,.., Yn)T be a n x 1 vector of continuous outcomes where Y; is the value for subject i
(i=1,..,n),and X and Z are n x p and n x q matrices of predictors, such that Y depends on X and
Z = (z1,..,2.q) as follows:

Y=XB+h(Z)+e (1)

where B is a p x 1 vector of regression coefficients for the linear parametric part, /(.) is an unknown
smooth function and e is an n x 1 vector of independent and homoscedastic errors such as ¢; ~
N (0,02). Throughout this article, X8 will be referred to as the linear part of the model and we assume
that X contains an intercept. h(Z) will be referred to as the kernel part. The function /(.) need not be
explicitly specified but it is assumed to lie in Hy, the function space generated by a kernel function
k(.,.) which is, by definition, symmetric and positive definite. We note that K, the n x n Gram matrix
of k(.,.) such that K;; = k(z; , zj.), represents the similarity between subjects i and j according to Z. Of
note, in the estimation process, /(.) will be expressed as a linear combination of k(., .) (see Equation (7)).
See "Fitting the kernel semi-parametric model with kspm" for straightforward coding.

The multiple kernel semi-parametric model

Now suppose there are L matrices Zy, ..., Z} of dimension n X gy, ..., n X g respectively. Keeping a
similar notation, Y can be assumed to depend on X and Z, ..., Z as follows:

L
Y=XB+ Y h(Z)+e 2
(=1

where V¢ € {1, .., L}, hy is an unknown smooth function from #,, the function space generated
by a kernel function k/(.,.) whose Gram matrix is noted K;. We assume V¢ # m, hy(Zy) # hm(Zy)
either because Zy # Zy, or k¢(.,.) # km/(.,.) or both. Note that when L = 1, the model corresponds to
Equation (1).

Suppose there is an interaction between two sets of variables represented by Z; and Z,, n x g1 and
n X g matrices, and Y depends on X, Z; and Z; as follows:

Y =XB+h(Z1) +ha(Zy) + hia(Z1,Zy) +e 3)

where hy(.), ho(.) and hy5(.,.) are unknown smooth functions from Hy, , Hy, and Hy,, respectively.
The h15(.,.) function represents the interaction term if its associated kernel function k15(.,.) is defined
as the product of kernel functions k1 (.,.) and ky(.,.) as follows:

k1o ((Zl,Zz)i/ (erZZ)j) = k1(2z1i., Z15.) ¥ ka(22i, 22j.) 4)

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=np
https://CRAN.R-project.org/package=mgcv
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=nlme

CONTRIBUTED RESEARCH ARTICLE

85

such that K1, = Kj ® Ky where © is the Hadamard product (Ge et al., 2015). Model (3) is a particular
case of the multiple kernel semi-parametric model (2) with L = 3, Z3 = (Z1,Z23), q3 = q1 + g2 and k3
= hyp. Of notes, in KSPM, different kernel choices can be made for k1(.,.) and k;(.,.). Obviously, this
2-way interaction model could be generalized to higher order interaction terms in a similar manner.

Link with linear mixed models

As shown by Liu et al. (2007), model (2) is equivalent, without additional conditions, to the following
linear mixed model:

L
Y=XB+ Y hy+e 5)
(=1
where V¢ € {1,...,.L}, hy ~ N (0, 7yK;) with K, is a matrix of similarity between subjects as defined
in model (2). Throughout the paper, we denote the variance parameters as 6 = (1, ..., TL,(T2) and

L
Y9 = Y. 1K, + 0?1, the variance-covariance matrix of Y, where I is the n x n identity matrix.
(=1

Estimation of parameters

The parameter estimates can be obtained either by maximizing the penalized log-likelihood associated
with the kernel semi-parametric model (2), or the log-likelihood derived from the corresponding linear
mixed model (5) (Liu et al., 2007). Even though the latter option may be computationally less time-
consuming, we implemented the KSPM package using a penalized log-likelihood associated with the
kernel semi-parametric model, because this method leads to an estimation of & useful for prediction,
and also leads to suitable approaches for interpretation through kernel derivatives. Estimation of
parameters is obtained by maximizing the penalized log-likelihood function:

n L 2 L
=51 (Y,- -xp- Y% hmi)) g LB, ©

where Aq, ..., Ap are tuning parameters associated with each smooth function #4(.), ..., hp(.) and
Il - H%_[A defines the inner product on Hy, space. According to the Representer theorem (Kimeldorf
<t

and Wahba, 1971), the functions hy, ..., hy satisfying Equation (6) can be expressed as:
n
Vee{1,.,L}, he() =) aik(,Zsy) @)
i=1

where V¢ € {1,...,.L}, ay = (&1, ..., a¢,) | is a n x 1 vector of unknown parameters. Estimating the
kernel semi-parametric model parameters consists in estimating a1, ...,y and . Then, estimators of
hi(.), ..., hp(.) are deduced from &;, ..., &;.

In KSPM, we estimate penalization parameters by minimizing the mean sum of squares of the
leave-one-out errors (LOOE). An advantage of LOOE compared to other cross-validation methods is
that we do not need to recompute new model(s), because its value may be derived directly from the
primary model parameters:

Y -,

Vi€ {1 n}, LOOEi(Ay,.Ar) = 7"
— Iy

®)

where Hj; is the it" diagonal element of the Hat matrix H such as Y = HY.

Penalization parameters and tuning parameters, if applicable, are estimated simultaneously during
the optimization algorithm, by minimizing the LOOE. If only one parameter needs to be estimated,
the convexity of the function to be minimized makes the problem easier and the convergence faster. In
that case, KSPM uses the standard optimize() function from the basic R package, based on the golden
section search algorithm (Brent, 2013). When several hyperparameters need to be estimated, the
resulting function to be minimized may not be convex. Hence, more complex optimization algorithms
should be envisaged, and KSPM uses the DEoptim() function from the DEoptim package (Ardia et al.,
2020) based on the differential evolution algorithm (Mullen et al., 2009). Given the random nature of
the algorithm, it would be safe to apply the algorithm several times to ensure convergence toward the
global minimum.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=DEoptim

CONTRIBUTED RESEARCH ARTICLE

86

Tests of hypotheses in KSPM

For either a single kernel or a multiple kernel semi-parametric model, a standard test of interest is
Hy : hy(.) =0, i.e., there is no effect, singly or jointly, of a set of variables on the outcome. Following
Liu et al. (2007), this test is equivalent to Hy : 7y = 0, a test of the variance component in the linear
mixed model (5) using the REML-based score test. The corresponding test statistic Q, follows a mixture
of independent chi-square distributions with one degree of freedom (Zhang and Lin, 2003). The KSPM
package uses exact distribution of Q, in single kernel model but in multiple kernel model, we use
Davies’ method to approximate this distribution (Davies, 1980). Based on similar methodology, KSPM
also provides the global test for multiple kernel semi-parametric models Hy : h1(.) = ... = hp(.) =0
ie., HQ = =1, = 0.

Interpretation of variable effects

A kernel represents similarity between subjects through combining a set of variables in a possibly
complex way, that may include their possible interactions. Hence the general effect of a kernel on an
outcome is hard to see and difficult to interpret. Nevertheless, the marginal effect of each variable
in the kernel may be illustrated using a partial derivative function (Hainmueller and Hazlett, 2013).
Indeed, the derivative measures how the change in a variable of interest impacts the outcome in an
intuitively understandable way. When a variable’s effect is linear, the interpretation is straightforward
since the derivative corresponds to standard slope (B) coefficients. In kernel semi-parametric models,
we are simultaneously modeling a set of variables. Therefore, when exploring the effect of any one
variable of interest, the other variables in the kernel must be taken into account. Thus, plotting
pointwise derivatives of the prediction for each subject against the value of the variable of interest
may help in interpreting the effect of this variable on the outcome. Although a variable-level summary
statistic may be obtained by averaging the pointwise derivatives across subjects (Hainmueller and
Hazlett, 2013), we did not implement this option in KSPM because the average can mask relevant
variability. For example, when positive and negative derivatives occur for the same variable, the
average may be zero.

The choice of kernel functions

In any kernel semi-parametric model, the smooth unknown function k,(.) is approximated using basis
functions from Hy,. Since the inner product of the basis functions corresponds to the kernel function
ky(.,.), the choice of the kernel determines the function space used to approximate /;(.). The KSPM
package includes the most popular kernel functions, described below. The linear kernel function
k(Z;,Zj) = ZIT Z; assumes that variables have a linear effect on outcome. It generates a linear function

space so that the kernel semi-parametric model leads to a penalized multiple linear model using an L?
norm (equivalent to a ridge regression). The polynomial kernel function k(Z;, Z]-) = (p ZiT Zi+ 'y)d
assumes that d*"-order products of the variables have a linear effect on the outcome, and is equivalent
to a d"-order interaction model. The Gaussian kernel function k(Z;, Zj) = exp(— || Zi = Z 112
/p) generates the infinite function space of radial basis functions. The sigmoid kernel function
k(Z;,Z;) = tanh(p ZZ-TZj +) and the inverse quadratic kernel k(Z;, Z;) = (|| Z; — Z; |2 +7)"1/? are
also often cited in the literature. Finally, we propose also the equality kernel k(Z;, Z;) = 1 if Z; =
Z; and 0 otherwise. Of note, users can define their own kernel function in KSPM by providing the
corresponding kernel matrix. Some kernel functions, such as the linear or polynomial kernels, make
assumptions about the shape of the effect of the variables on the continuous outcome, whereas other
kernels like the gaussian may, in theory, handle all types of effects, regardless of their complexity.
Indeed, in contrast to the linear and polynomial kernels, the gaussian kernel function captures a kernel
space of infinite size leading to higher flexibility for approximation of k(.). If true effects are linear,
the linear kernel and gaussian kernel should converge toward similar results. However, in practice, if
sample size is low or noise is large, the gaussian kernel will tend to retain a sinusoidal shape to the fit
even when the truth is linear.

Kernel functions often involve tuning parameters; above, the parameters p and y were used to
indicate these kernel specific parameters. In practice, these tuning parameters are usually chosen by
the user. However, if user does not provide a value for these parameters, the KSPM package estimates
them at the same time as the penalization parameter(s), by minimizing the mean sum of squares of
LOOE. The choice of tuning parameters may strongly impact the results and modify the smoothness
of the fi(.) function leading to overfitting or underfitting. For example, with a p value that is too large,
the Gaussian kernel tends to lose its non-linear properties, whereas with p too small, it is very sensitive
to noise.

In general, the choice of tuning parameters may strongly impact the results With that in mind,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

87

sensitivity analyses may include a comparison of results obtained with different values for these
parameters. Also, comparing models based on information criteria such as AIC and BIC may help to
choose the kernel function and its tuning parameter(s).

Package presentation

The KSPM package provides an R interface to perform kernel semi-parametric models and is available
from the comprehensive R archive network (CRAN) at https:/ /CRAN.R-project.org/package=KSPM.
The package is called through the main function kspm() taking data and model hyperparameters as
inputs, fitting the model, and returning a model fit object of class "kspm".

Fitting the kernel semi parametric model with kspm

The main function of the package, kspm(), can fit the single or multiple kernel semi-parametric models
described in the earlier, as detailed below:

kspm(response, linear,kernel,data,...)

The argument response indicates a continuous outcome variable. It can be specified as a string
corresponding to the column name associated with the response in the dataset provided in the data
argument, as a vector of length 7, or as a 7 x 1 matrix containing the continuous values of the outcomes.
Of note, kspm does not deal with multivariate outcomes, and if an n x r (> 1) matrix is provided, only
the first column is used. Argument linear specifies the linear part of the model and could be either
a formula, a vector of length # if only one variable is included in the linear part, or an n x p design
matrix containing the p variables included in the linear part. By default, an intercept is added. To
remove the intercept term, the user should use the formula specification and add the term -1, as usual.
kernel specifies the kernel part of the model. Its argument should be a formula of Kernel object(s),
described below. For a multiple kernel semi-parametric model, Kernel objects are separated by the
usual signs "+", "*" and ": " to specify addition and interaction between kernels.

The Kernel object regroups all information about a kernel including the choice of kernel function
and its parameters. It is specified using the Kernel function as follows:

Kernel(x,kernel.function,scale,rho,gamma,d)

Argument x represents either the variables included in the kernel part of the model, or a kernel
Gram matrix. In the latter case, the user should specify kernel.function = "gram.matrix” and all
other arguments are not used. When x represents the variables included in the kernel part, it may be
specified as a formula, a vector, or a matrix, and kernel. function indicates which kernel function
should be used (e.g., "gaussian”, "polynomial”, ...). scale is a boolean indicating if variables should
be scaled before computing the gram matrix. The need for other arguments depends on the choice
of kernel function: rho and gamma are tuning parameters and d is the highest order in a polynomial
kernel function; these parameters correspond to the p, y and d introduced earlier. It is worth noting

that in a multiple kernel model, KSPM allows kernel objects to follow different formats.

Different options were considered for the interface with respect to specification of the linear and
kernel parts of the model. We decided to use an interface with separate formulae for the two parts.
This structure makes it straightforward to manage variables coming from different sources or data
structures within the package. For example, genetic data or high dimensional genomic data are often
provided in a matrix format, whereas other variables and phenotypes are saved in vectors or data
frames with meaningful variable names. This diversity of data source and format cannot be handled
by a unique formula. If data elements are assembled from different sources, they should include
the same individuals or observations (i = 1, .., n), with identical ordering; if not, kspm will return an
error. It is worth noting that the KSPM package does tolerate observations containing missing values,
although these observations will be removed prior to model fitting.

The function kspm returns an object of class "kspm” with summary () and plot() commands avail-
able, the first giving estimates and p-values and the second displaying diagnostic plots.

Methods applicable to objects of the class "kspm”

An object of class "kspm” results from a kernel semi-parametric model fit. It contains obviously
estimated coefficients, fitted values and residuals, but also information about kernels such as n x n
kernel matrices, hyperparameters, penalization parameters.

The "kspm"” object can be summarized or viewed using commands and methods very similar to
those implemented in "1m" or "glm".

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

88

> methods(class = "kspm")
[1] case.names coef confint cooks.distance deviance
[6] extractAIC fitted loglik nobs plot
[11] predict print residuals rstandard sigma
[16] summary variable.names

see '?methods' for accessing help and source code

Predictions

A predict() command has been implemented for the class "kspm”.
predict.kspm(object,newdata.linear,newdata.kernel,interval,level)

where object refers to a "kspm” object. If a new dataset is not specified, predict. kspm will return
the fitted values from the original data. If predict.kspm is applied to a new dataset, all variables
used in the original model should be provided in the newdata.linear and newdata.kernel arguments.
newdata.linear should be a data frame, a vector or design matrix of variables used in the linear
part. newdata.kernel is a list containing data frames, vectors and /or design matrices for each kernel.
Formats depend on the ones previously used in model specification as shown in Table 3. For simplicity,
users may follow the list returned by the info.kspm() function.

kernel specifications new data specification

formula of g variables a data.frame with columns names corresponding to variables in-
cluded in the formula. Number of rows is n*, number of columns

isg
vector a vector of length n*
design matrix n x g a matrix n* X gq
kernel matrix n X n a matrix n* x n where cell 7, j represents the similarity between

new subject i and j* subject included in the model.

Table 3: How new data should be specified in predict.kspm, depending on original model specifica-
tions for n* new subjects. The first column refers to how the kernel is specified in the current model.
The second column refers to how the new data should be specified in the predict.kspm function.

In predict.kspm, interval can be either "none”, "confidence”, or "prediction” according to
whether the user wants a confidence or prediction interval. The level of confidence/prediction interval
is specified using the level argument. By default, level = 0.95 is used.

Variable selection procedures for the single kernel semi-parametric model

A variable selection procedure algorithm has been implemented for the class "kspm". It is similar to
the step() command existing for other regression packages.

stepKSPM(object,linear.lower,linear.upper,kernel.lower,kernel.lower,k,direction)

As before, object refers to a "kspm” object. However, in contrast to the generality allowed for fitting
a single kernel semi-parametric model, here the Kernel object should not be specified with the Gram
matrix option. The arguments of 1inear.lower, linear.upper, kernel.lower and kernel. lower are
formulae corresponding to the desired boundaries for the smallest and largest numbers of variables to
be included. As is standard in many R packages, all variables in the 1inear.lower and kernel.lower
formulae cannot be removed from the model and variables that are not in the linear.upper and
kernel.upper formulae cannot be added to the model. The procedure to select variables is based
on AIC or BIC depending on the value of k. If k is set to 2, AIC is used, if k is set to In(n), BIC is
used instead. The direction argument may be "forward” for a forward selection, "backward" for
a backward selection and "both"” for a stepwise selection. Our package was implemented so that
variable selection for the linear part and the kernel part of the model may be done simultaneously.
However, it is also possible to perform the variable selection procedure on each part separately by
giving the appropriate formula to 1inear.lower, linear.upper, kernel.lower and kernel.lower.

Of note, as for the standard stepAIC() function, this procedure can only be used on complete
observations. Thus missing data should be removed by the user prior to calling stepKSPM() so that
the number of observations is identical at each step.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

89

Graphical tools

The plot() method has been implemented for "kspm” and "derivatives.kspm" objects. The former
gives usual diagnostic plots including residual distribution, leverage, Cook’s distance,... The latter
gives interpretation plot from pointwise derivatives.

Example 1: the Movie ratings data

This first example illustrates the functions provided in KSPM included the model fit, the diagnotic
plot, the interpetation plot based on pointwise derivatives, the test of interaction as well as the variable
selection procedure.

The conventional and social media movies (CSM) dataset is available on the UCI machine learning
repository (https://archive.ics.uci.edu/ml/index.php) as well as in KSPM and is fully described
in Ahmed et al. (2015). It contains data on 232 movies from 2014 and 2015; the movies are described
in term of conventional features (sequel, budget in USD, gross income in USD, number of screens in
USA) as well as social media features (aggregate actor followers on Twitter, number of views, likes,
dislikes, comments of movie trailer on Youtube, sentiment score) in the aim of predicting ratings. In
all subsequent analyses, we used only the 187 entries without missing data.

> data("csm")
> head(csm)

Year Ratings Gross Budget Screens Sequel Sentiment Views Likes
1 2014 6.3 9130 4.0e+06 45 1 @ 3280543 4632
2 2014 7.1 192000000 5.0e+07 3306 2 2 583289 3465
3 2014 6.2 30700000 2.8e+Q7 2872 1 0 304861 328
4 2014 6.3 106000000 1.1e+08 3470 2 @ 452917 2429
5 2014 4.7 17300000 3.5e+06 2310 2 @ 3145573 12163
7 2014 6.1 42600000 4.0e+07 3158 1 @ 3013011 9595
Dislikes Comments Aggregate.Followers
1 425 636 1120000
2 61 186 12350000
3 34 47 483000
4 132 590 568000
5 610 1082 1923800
7 419 1020 8153000

Predict ratings using conventional features

In our first model, we assume a gaussian kernel function to fit the joint effect of the conventional
features on ratings. Here we do not provide any value for the p parameter. It will be estimated at the
same time as the penalization parameter by minimizing the LOOE. We also do not provide a linear
argument, meaning that only an intercept will be included in the linear part of the model.

> csm.fit1 <- kspm(response = "Ratings”, kernel = ~Kernel(~Gross + Budget +
+ Screens + Sequel, kernel.function = "gaussian”), data = csm)
> summary(csm.fit1)

Call:

kspm(response = "Ratings”, kernel = ~Kernel(~Gross + Budget +
Screens + Sequel, kernel.function = "gaussian"),
data = csm)

Sample size:

n = 187
Residuals:
Min Q1 Median Q3 Max

-3.0066 -0.4815 0.0109 0.5534 2.1228
Coefficients (linear part):

Estimate Std. Error t value Pr(>|tl)
(Intercept) 6.297723 1.058707 5.948505 1.427565e-08

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

90

Score test for non-parametric kernel:
lambda tau p-value
Ker1 ©.04804093 16.13793 5.625602e-06

Residual standard error: .88 on 175.82 effective degrees of freedom
Multiple R-squared: 0.2643, Adjusted R-squared: 0.2217

The summary output gives information about the sample size used in the model, the residual
distribution, the coefficient for the linear part (similar to other regression R packages), and the
penalization parameter and score test associated with the kernel part. The kernel results indicate that
the conventional features are strongly associated with ratings. In such a complex model, the number
of free parameters — i.e., the standard definition of the degrees of freedom of a model - is undefined,
and we use instead the effective degrees of freedom of the model, which is not necessarily a whole
number. However, our definition for effective degrees of freedom is similar to the one used in linear
regression models and depends on the trace of the hat matrix. The p parameter may be extracted using
the following code:

> csm.fit1$kernel.info$Ker1$rho

pari
61.22

This value alone may not provide much information about linearity of the kernel function. How-
ever interpretation is feasible when comparing gaussian kernel functions with different p parameter
values, or when comparing the gaussian and linear kernel functions.

The plot () command may be applied to the model to display diagnostic plots. Figure 1 has been
generated using the following code:

> par(mfrow = c(2,2), mar = c(5, 5, 5, 2))

> plot(csm.fit1, which = c(1, 3, 5), cex.lab = 1.5, cex = 1.3, id.n =7)
> hist(csm$Ratings, cex.lab = 1.5, main = "Histogram of Ratings", xlab =
+ "Ratings")

Outlier points are annotated and we can see movie 134 (Jurassic World) has high leverage. Also
of note, the lower tail of the residuals distribution is not as expected for a Normal distribution. The
histogram of ratings shows that the deviation could be due to the left skewed distribution of the
response variable.

The derivative function may help to interpret the effect of each variable individually on the
outcome. Indeed, the sign of the derivatives captures variational changes of the effect of the variable
on the outcome. To illustrate this feature, Figure 2 displays the derivatives for Gross income, Budget
and Screens. It has been generated with the following code:

according to Number of Screens \n and Sequel”)
legend("topleft”, fill = palette()[1:7]1, legend = 1:7, title = "Sequel”,
horiz = TRUE)

> par(mfrow = c(1,2), mar = c(5,5,5,2))

> plot(derivatives(csm.fitl1), subset = "Gross", cex.lab = 1.5, cex = 1.3,
+ main = "Pointwise derivatives according to Gross Income")

> plot(derivatives(csm.fit1), subset = "Screens"”, col = csm$Sequel,

+ cex.lab = 1.5, cex = 1.3, pch = 16, main = "Pointwise derivatives

+

>

+

By default, the X-axis label gives the name of the variable and, in brackets, the kernel in which it is
included. When only one kernel is included in the kernel, it is named Ker1. Because genre and sequel
variables, even if they are numeric, refer to categorical variables, it is possible to easily highlight some
patterns of interaction between these variables and the others. Derivatives according to Gross income
are mostly positive meaning that higher Gross income is associated with higher ratings. However
the slope of this effect decreases as the gross income grows. It is difficult to interpret the derivatives
for Gross income higher than 2.5e+08 since this category includes only a few movies. Based on the
display in the right panel, whether a movie has sequels seems to interact with the effect of the number
of screens on the ratings. Indeed when the movie is the first or second release (Sequel = 1 or 2), the
derivatives are always negative meaning that as the number of screens on which the movie is released
increases, the ratings tend to decrease. However, this relationship seems to be stronger for the first
release than the second. No clear pattern can be observed for subsequent sequels. It is difficult to
know if this reveals an absence of effect or whether there are simply too few movies past sequel 2 in
these data.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

91

Residuals

Standardized residuals

1

-3 -2 -1 0

-2 -1 0

-3

Residuals vs Fitted

128

I I I
0.2 0.4

Leverage

Standardized residuals

Frequency

-2 -1

-3

50

10 20 30 40

0

Normal Q-Q Plot

Theoretical Quantiles

Histogram of Ratings

Ratings

Figure 1: Diagnostic plots of CSM data. Plots at the top left, top right and bottom left were obtained
with plot.kspm. They represent respectively residuals against fitted values, the normal Q-Q plot of
residuals and residuals against leverage with the Cook’s distance information. Plot at the bottom right
represents the distribution of ratings in the database.

The R Journal Vol. 12/2, December 2020

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

92

Pointwise derivatives according to Number of Screens
Pointwise derivatives according to Gross Income

and Sequel
—~ o | Sequel
~—~ — o
- = m 1 EH 2 @3 ®m4 305 @607
5 - g
.~ N
¥ o — © 7] .
-
[%2]
2 S 3- .
< | o
S o Qo o PR
o % A 24°
k] IS} [4
T o ° o oo R °
T o 7] £ °®
o !
g 3 7 o &H
o Lad °
£ £ ey
g S+ © g 7 ¢
= o) > b ® .‘
(0] = o
8 B 3w aldwtriong
~ | o o a % W R bbé' e V0
o‘ T T T T T T T T T T T T
0e+00 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 0 1000 2000 3000 4000
Gross (Kerl) Screens (Kerl)

Figure 2: Derivative plots on CSM data obtained with plot.derivatives. Each point corresponds to
an observation. Plot on the left represents the pointwise derivatives according to the Gross income
variable. Plot on the right represents the pointwise derivatives according to the Screens variable and
are colored according Sequel variable showing a probable interaction between Screens and Sequel.

To help in the choice of the kernel function, we may compare several models by using information
criteria. As an example, we fit a second model assuming a polynomial kernel function with fixed
tuning parameters (p = 1, ¥ = 1 and d = 2). This model can be compared to the previous one using
information criteria such as the AIC or BIC. By default the extractAIC() command gives the AIC.

> csm.fit2 <- kspm(response = "Ratings”, kernel = ~Kernel(~Gross + Budget +
+ Screens + Sequel, kernel.function = "polynomial”, rho = 1, gamma = 1,
+ d = 2), data = csm, level = 0)

> extractAIC(csm.fit1)

[1] 941.4521
> extractAIC(csm.fit2)
[1] 944.4618

Here, we concluded that gaussian kernel function fits our data better than the polynomial kernel
function, given the tuning parameters we considered.

Adding social media features to the model: a model with kernel interaction

Now, we assume a model with two kernel parts, one for conventional features and one for social
media features, as well as their interaction. We propose to use the gaussian kernel function for each
set of features, although different kernels could be used. The hyperparameters we chose are those
obtained for each kernel separately.

> csm.fit3 <- kspm(response = "Ratings”, linear = NULL, kernel = ~Kernel(~

+ Gross + Budget + Screens + Sequel, kernel.function = "gaussian”,

+ rho = 61.22) * Kernel(~ Sentiment + Views + Likes + Dislikes + Comments +
+ Aggregate.Followers, kernel.function = "gaussian”, rho = 1.562652),

+ data = csm)

While the model is running, R returns a summary of the kernel part(s) and interaction(s) included
in the model.

The model includes the following kernels:
Ker1

Ker?2

Ker1:Ker2

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 93

Details:

Ker1: ~Kernel(~Genre + Gross + Budget + Screens + Sequel,
kernel.function = "gaussian”, rho = 55.5897)

Ker2: ~Kernel(~Sentiment + Views + Likes + Dislikes + Comments +
Aggregate.Followers, kernel.function = "gaussian”, rho = 1.562652)

As defined by model (4), the summary () command will return the p value of tests Hy : h1(.) =0,
Hy : hp(.) = 0and Hy : h1p(.) = 0. By default all tests are performed. However, if our interest lies only
in the test of interaction, the kernel. test option may be used to choose the test of interest and reduce
the computation time. If interest lies in the global test Hy : 1 (.) = ha(.) = h12(.) = 0, the global . test
option should be set at TRUE.

> summary(csm.fit3, kernel.test = "Ker1:Ker2", global.test = TRUE)

Call:

kspm(response = "Ratings”, linear = NULL, kernel = ~Kernel(~Gross +
Budget + Screens + Sequel, kernel.function = "gaussian”,
rho = 61.22) * Kernel(~Sentiment + Views + Likes + Dislikes +
Comments + Aggregate.Followers, kernel.function = "gaussian”,
rho = 1.562652), data = csm)

Sample size:

n = 187
Residuals:
Min Q1 Median Q3 Max

-1.4185 -0.3396 0.0112 0.3291 1.3597

Coefficients (linear part):
Estimate Std. Error t value Pr(>|t])
(Intercept) 4.548524 1.256813 3.619095 0.0004324838

Score test for non-parametric kernel:
lambda tau p-value
Ker1:Ker2 187 ©.00208359 0.7376828

Global test: p-value = 6e-04

Residual standard error: .62 on 121.17 effective degrees of freedom
Multiple R-squared: 0.7452, Adjusted R-squared: 0.6089

Adding social media features to the model improved the predictions as indicated by the adjusted
R2. However the smooth function associated with the kernel interaction does not significantly differ
from the null, leading to the conclusion that there is no interaction effect between conventional and
social media features on the ratings.

Suppose now, we want to predict the ratings that will be attributed to the three artificial movies
described in tables 4 and 5 below, according to the model csm. fit3.

Gross Budget Screens Sequel

Moviel 5.0e+07 1.8e+08 3600 2
Movie 2 50000 5.2e+05 210 1
Movie 3 10000 1.3e+03 5050 1

Table 4: The conventional features of three artificial movies. Rows represent the new movies and
columns represent the features.

> newdata.Ker1l <- data.frame(Gross = c(5.0e+07, 50000, 10000),

+ Budget = c(1.8e+08, 5.2e+05, 1.3e+03), Screens = c(3600, 210, 5050),
+ Sequel = c(2, 1, 1))

> newdata.Ker2 <- data.frame(Sentiment = c(1, 2, 10), Views = c(293021,

+ 7206, 5692061), Likes = c(3698, 2047, 5025), Dislikes = c(768, 49,

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 94

Sentiment Views Likes Dislikes Comments Aggregate.Followers

Movie 1 1 293021 3698 768 336 4530000
Movie 2 2 7206 2047 49 70 350000
Movie 3 10 5692061 5025 305 150 960000

Table 5: The social media features of three artificial movies. Rows represent the new movies and
columns represent the features.

+ 305), Comments = c(336, 70, 150), Aggregate.Followers = c(4530000,
+ 350000, 960000))
> predict(csm.fit3, newdata.kernel = list(Ker1l = newdata.Kerl, Ker2 =
+ newdata.Ker2), interval = "prediction”)

fit lwr upr

1 4.682560 3.147755 6.217365
2 6.401853 5.100309 7.703396
3 6.128641 4.395417 7.861864

The output of the predict() function gives the predicted values (fit) and the lower (1wr) and
upper (upr) bounds of prediction intervals.

We may obtain the predictions for the original data directly from the model or from the predict()
function. With the latter, confidence intervals may be additionally obtained.

pred <- csm.fit3$fitted.value
pred <- predict(csm.fit3, interval = "confidence")
plot(csm$Ratings, pred$fit, xlim = c(2, 10), ylim = c(2, 10),
xlab = "Observed ratings”, ylab = "Predicted ratings"”, cex.lab = 1.3)
abline(a = @, b =1, col = "red", 1ty = 2)

vV + V V V

10

Predicted ratings

Observed ratings

Figure 3: Predicted versus observed ratings in CSM dataset. Red dotted line represents a perfect
concordance between predictions and observations.

Figure (3) shows that for smaller values, the model overestimates the outcome. This is again
probably due to the left skewness of the outcome distribution.

An example of the variable selection procedure

Suppose we fit a single kernel semi-parametric model with a gaussian kernel to adjust the social media
features in the CSM data. The kernel part contains the set of social media features. We want to select
the relevant variables to be included in the kernel. We therefore can perform a stepwise variable
selection procedure based on AIC, while letting p vary at each iteration. To do so, we first fit the full
model including all features.

The R Journal Vol. 12/2, December 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

95

> csm.fit4 <- kspm(response = "Ratings"”, kernel = ~Kernel(~ Sentiment + Views
+ + Likes + Dislikes + Comments + Aggregate.Followers, kernel.function =
+ "gaussian”), data = csm)

Then, we apply the stepKSPM() command on the full model as follows.

> stepKSPM(csm.fit4, kernel.lower = ~1, kernel.upper = ~ Sentiment + Views
+ + Likes + Dislikes + Comments + Aggregate.Followers, direction = "both",
+ k = 2, kernel.param = "change"”, data = csm)

At each iteration, R returns the current model, and the list of variables that may be added or
removed.

Start: AIC = 913.2

Linear part: ~ 1

Kernel part: ~ Sentiment + Views + Likes + Dislikes + Comments +
Aggregate.Followers

Part AIC
- Sentiment kernel 910.8282
<none> 913.1769
- Views kernel 913.9753
- Likes kernel 917.6532
- Comments kernel 921.2163
- Aggregate.Followers kernel 925.4491
- Dislikes kernel 969.4304

Step: AIC = 910.8
Linear part: ~ 1
Kernel part: ~ Views + Likes + Dislikes + Comments + Aggregate.Followers

Part AIC
- Views kernel 905.2908
<none> 910.8282
+ Sentiment kernel 913.1769
- Aggregate.Followers kernel 915.5481
- Likes kernel 916.8125
- Comments kernel 921.9627
- Dislikes kernel 970.3804

Step: AIC = 905.3
Linear part: ~ 1
Kernel part: ~ Likes + Dislikes + Comments + Aggregate.Followers

Part AIC
<none> 905.2908
+ Views kernel 910.8282
+ Sentiment kernel 913.9753
- Aggregate.Followers kernel 916.0224
- Comments kernel 917.8758
- Likes kernel 925.0230
- Dislikes kernel 968.2502

The final model includes the variables Likes, Dislikes, Comments and Aggregate.Followers.

Example 2: Consumption of ener