
Vol. 7/3, December 2007 46

Extending the R Commander by “Plug-In”
Packages
by John Fox

This article describes how the Rcmdr package can be
extended by suitably designed “plug-in” packages.
Embodied in the Rcmdr package, the R Commander
was originally conceived as a basic-statistics graph-
ical user interface (“GUI”) to R. The R Comman-
der’s capabilities have since been extended substan-
tially beyond this original purpose, although it still
accesses only a small fraction of the statistical and
data-management capabilities of the standard R dis-
tribution, not to mention those of the more than 1000
contributed packages now on CRAN.

In addition to enhancing the usefulness of the R
Commander as a teaching tool, the plug-in package
mechanism allows interested package developers to
add graphical interfaces to their R software, with the
R Commander providing most of the necessary in-
trastructure, and without — as was previously the
case — requiring the developer to maintain an in-
dependent version of the Rcmdr package [e.g., Dusa
(2007)].

The Rcmdr package is based on the tcltk package
(Dalgaard, 2001, 2002), which provides an R interface
to the Tcl/Tk GUI builder. Because Tcl/Tk and the
tcltk package are available for all of the computing
platforms on which R is commonly run, the R Com-
mander GUI runs on all of these platforms as well.

The main R Commander window is shown in
Figure 1. Along the top are the R Commander
menus: File, Edit, Data, Statistics, and so on. Below
the menus is a tool bar, containing buttons for se-
lecting, editing, and viewing the “active” data set,
and for selecting the “active” statistical model. Be-
low the toolbar are script, output, and messages win-
dows: Commands generated by the R Commander
appear in the script window; these commands can be
edited and re-executed. Printed output is displayed
in the output window, while error messages, warn-
ings, and notes appear in the messages window. A
more detailed description of the R Commander in-
terface may be found in Fox (2005).

Workflow in the R Commander is straightfor-
ward, and is based on a single rectangular (i.e., case-
by-variable) data set being “active” at any given
time. Users can import, select, or modify the active
data set via the R Commander’s Data menu. Various
statistical methods are provided by the Statistics and
Graphs menus. The R Commander recognizes certain
classes of objects as statistical models. There can be
an active statistical model that is manipulated via the

Models menu. As long as a package conforms to this
simple design (and does not, for example, require ac-
cess to several data frames simultaneously), it should
be possible to integrate it with the R Commander.

From a very early stage in its development, the
R Commander was designed to be extensible: The
menus for the R Commander interface are not hard-
coded in the package sources, but rather are de-
fined in a plain-text configuration file that installs
into the Rcmdr package’s etc subdirectory. Simi-
larly, when it starts up, the R Commander will auto-
matically source files with .R extensions that reside
in the Rcmdr etc subdirectory; such files can con-
tain R code to build R Commander dialog boxes, for
example. Nevertheless, extending the R Comman-
der has been relatively inconvenient, requiring either
that users modify the installed package (e.g., by edit-
ing the R Commander menu-configuration file), or
that they modify and recompile the Rcmdr source
package.1

Starting with version 1.3-0, the Rcmdr makes
alternative provision for extension by “plug-in”
packages — standard R packages that are devel-
oped, maintained, distributed, and installed inde-
pendently of the Rcmdr package. Plug-in packages
can augment the R Commander menus, and can
provide additional dialog boxes and statistical func-
tionality. Once installed on the user’s system, plug-
in packages are automatically detected when the R
Commander starts up and can be loaded from the R
Commander’s Tools menu. Plug-in packages can al-
ternatively be loaded independently via R’s library
command; in this event, the Rcmdr package will also
be loaded with the plug-in’s menus installed in the R
Commander menu bar. Finally, plug-in packages can
be loaded automatically along with the Rcmdr pack-
age by setting the Rcmdr plugins option; for exam-
ple, the command

options(Rcmdr=list(plugins=
"RcmdrPlugin.TeachingDemos"))

causes the RcmdrPlugin.TeachingDemos plug-in
package (described below) to load when the R Com-
mander starts up.

The remainder of this article explains in some
detail how to design R Commander plug-in pack-
ages. I begin with a description of the R Comman-
der menu-definition file, because the format of this
file is shared by R Commander plug-in packages. I
then very briefly explain how to write functions for
constructing R Commander dialog boxes. Finally, I

1In at least one instance, this inconvenience led to the distribution of a complete, alternative version of the Rcmdr package, Richard
Heiberger and Burt Holland’s Rcmdr.HH package. Exploiting the new facilities for extending the Rcmdr described in this article, Professor
Heiberger has redesigned Rcmdr.HH as an R Commander plug-in package (Heiberger with Holland, 2007).

R News ISSN 1609-3631

Vol. 7/3, December 2007 47

Figure 1: The R Commander interface (under Windows XP), showing menus, script, output, and messages
windows.

R News ISSN 1609-3631

Vol. 7/3, December 2007 48

describe the structure of plug-in packages.

The Menu-Definition File

The standard R Commander menus are defined in
the file Rcmdr-menus.txt, which resides in the in-
stalled Rcmdr package’s etc subdirectory. Each line
in the file comprises seven text fields, separated by
white space. Fields with embedded blanks must be
enclosed in single or double-quotes; unused fields
are specified by an empty character string, "".

The Rcmdr-menus.txt file is quite large, and so
I will not reproduce it here (though you may want
to look at it in a text editor as you read the fol-
lowing description). Let us instead examine some
representative lines in the file. The first line in
Rcmdr-menus.txt defines the top-level File menu:

menu fileMenu topMenu "" "" "" ""

• The first, or “operation type”, field — menu —
indicates that we are defining a menu; it is also
possible to define a menu item, in which case
the operation type is item (see below).

• The second field — fileMenu — gives an arbi-
trary name to the new menu; any valid R name
can be employed.

• The third field — topMenu — specifies the “par-
ent” of the menu, in this case signifying that
fileMenu is a top-level menu, to be installed di-
rectly in the R Commander menu bar. It is also
possible to define a submenu of another menu
(see below).

• The remaining four fields are empty.

The second line in Rcmdr-menus.txt defines a
menu item under fileMenu:2

item fileMenu command "Open script file..."
loadLog "" ""

• As explained previously, the first field indicates
the definition of a menu item.

• The second field indicates that the menu item
belongs to fileMenu.

• The third field specifies that the menu item in-
vokes a command.

• The fourth field gives the text corresponding
to the menu item that will be displayed when
a user opens the File menu; the ellipses (...)
are a conventional indication that selecting this
menu item leads to a dialog box (see Figure 2).

• The fifth field specifies the name of the function
(loadLog) to be called when the menu item is
selected. This function is defined in the Rcmdr
package, but any R function that has no re-
quired arguments can serve as a menu-item
call-back function.

• In this case, the sixth and seventh fields are
empty; I will explain their purpose presently.

Figure 2: The dialog box produced by the R Com-
mander loadLog function.

A little later in Rcmdr-menus.txt, the following
line appears:

menu exitMenu fileMenu "" "" "" ""

This line defines a submenu, named exitMenu, under
fileMenu. Subsequent lines (not shown here) define
menu items belonging to exitMenu.

Still later, we encounter the lines

item fileMenu cascade "Exit" exitMenu "" ""
item topMenu cascade "File" fileMenu "" ""

Each of these lines installs a menu and the items that
belong to it, “cascading” the menu under its parent:
exitMenu is cascaded under fileMenu, and will ap-
pear with the label Exit, while fileMenu is installed
as a top-level menu with the label File. Again, the last
two fields are not used.

Fields six and seven control, respectively, the con-
ditional activation and conditional installation of the
corresponding item. Each of these fields contains
an R expression enclosed in quotes that evaluates
either to TRUE or FALSE. Here is an example from
Rcmdr-menus.txt:

item tablesMenu command "Multi-way table..."
multiWayTable
"factorsP(3)" "packageAvailable('abind')"

2I have broken this — and other — menu lines for purposes of display because they are too long to show on a single line.

R News ISSN 1609-3631

Vol. 7/3, December 2007 49

This line defines an item under tablesMenu (which
is a submenu of the Statistics menu); the item leads
to a dialog box, produced by the call-back function
multiWayTable, for constructing multi-way contin-
gency tables.

The activation field, "factorsP(3)", returns TRUE
if the active dataset contains at least three factors
— it is, of course, not possible to construct a multi-
way table from fewer than three factors. When
factorsP(3) is TRUE, the menu item is activated; oth-
erwise, it is inactive and “grayed out.”

The function that constructs multi-way con-
tingency tables requires the abind package, both
in the sense that it needs this package to oper-
ate and in the literal sense that it executes the
command require(abind). If the abind package
is available on the user’s system, the command
packageAvailable(’abind’) returns TRUE. Under
these circumstances, the menu item will be installed
when the R Commander starts up; otherwise, it will
not be installed.

Through judicious use of the activation and in-
stallation fields, a menu designer, therefore, is able to
prevent the user from trying to do some things that
are inappropriate in the current context, and even
from seeing menu items that cannot work.

R Commander Dialogs

Most R Commander menu items lead to dialog
boxes. A call-back function producing a dialog can
make use of any appropriate tcltk commands, and
indeed in writing such functions it helps to know
something about Tcl/Tk. The articles by Dalgaard
(2001, 2002) mentioned previously include basic ori-
enting information, and there is a helpful web site
of R tcltk examples compiled by James Wetten-
hall, at http://bioinf.wehi.edu.au/~wettenhall/
RTclTkExamples/. Welch et al. (2003) provide a thor-
ough introduction to Tcl/Tk.

In addition, however, the Rcmdr package exports
a number of functions meant to facilitate the con-
struction of R Commander dialogs, and to help in-
sure that these dialogs have a uniform appearance.
For example, the Rcmdr radioButtons function con-
structs a related set of radio buttons (for selecting one
of several choices) in a single simple command (see
below). One relatively painless way to proceed, if
it is applicable, is to find an existing R Commander
dialog box that is similar to what you intend to con-
struct and to adapt it.

A reasonably typical, if simple, Rcmdr dialog
box, for computing a paired t-test, is shown in Fig-
ure 3. This dialog box is produced by the call-back
function pairedTTest shown in Figure 4, which il-
lustrates the use of a number of functions exported
by the Rcmdr package, such as initializeDialog,
variableListBox, and radioButtons, as well as

some tlctk functions that are called directly, such
as tclvalue, tkentry, and tkgrid. Additional
information about the functions provided by the
Rcmdr package may be found in Fox (2005) and via
?Rcmdr.Utilities.

Figure 3: R Commander dialog produced by the
function pairedTTest.

Writing Plug-In Packages

I have contributed an illustrative plug-in package to
CRAN, RcmdrPlugin.TeachingDemos. The name
was selected so that this package will sort alphabet-
ically after the Rcmdr package on CRAN; I suggest
that other writers of Rcmdr plug-ins adopt this nam-
ing convention. The RcmdrPlugin.TeachingDemos
package adds menus to the R Commander for some
of the demonstrations in Greg Snow’s intriguing
TeachingDemos package (Snow, 2005). In particular,
a Visualize distributions sub-menu with several items
is cascaded under the standard R Commander top-
level Distributions menu, and a new Demos top-level
menu, also with several menu items, is installed in
the R Commander menu bar.

An R Commander plug-in package is, in the first
instance, an ordinary R package. Detailed instruc-
tions for creating packages are available in the man-
ual Writing R Extensions (R Development Core Team,
2007), which ships with R.

The DESCRIPTION file for the RcmdrPlugin.-
TeachingDemos package is given in Figure 5. All of
the fields in this DESCRIPTION file are entirely stan-
dard, with the exception of the last, Models:. Certain
classes of objects are recognized by the R Comman-
der as statistical models, including objects of class lm,
glm, multinom, and polr. You can add to this list
here, separating the entries by commas, if there are
more than one. The RcmdrPlugin.TeachingDemos
package specifies no additional models; it is, there-
fore, not necessary to include the Models: field in the
DESCRIPTION file — I have done so simply to indicate
its format.

Figure 6 shows the .First.lib function for the
RcmdrPlugin.TeachingDemos package. As is stan-

R News ISSN 1609-3631

http://bioinf.wehi.edu.au/~wettenhall/RTclTkExamples/
http://bioinf.wehi.edu.au/~wettenhall/RTclTkExamples/

Vol. 7/3, December 2007 50

pairedTTest <- function(){

initializeDialog(title=gettextRcmdr("Paired t-Test"))

.numeric <- Numeric()

xBox <- variableListBox(top, .numeric,

title=gettextRcmdr("First variable (pick one)"))

yBox <- variableListBox(top, .numeric,

title=gettextRcmdr("Second variable (pick one)"))

onOK <- function(){

x <- getSelection(xBox)

y <- getSelection(yBox)

if (length(x) == 0 | length(y) == 0){

errorCondition(recall=pairedTTest,

message=gettextRcmdr("You must select two variables."))

return()

}

if (x == y){

errorCondition(recall=pairedTTest,

message=gettextRcmdr("Variables must be different."))

return()

}

alternative <- as.character(tclvalue(alternativeVariable))

level <- tclvalue(confidenceLevel)

closeDialog()

.activeDataSet <- ActiveDataSet()

doItAndPrint(paste("t.test(", .activeDataSet, "$", x, ", ",

.activeDataSet, "$", y,

", alternative='", alternative, "', conf.level=", level,

", paired=TRUE)", sep=""))

tkfocus(CommanderWindow())

}

OKCancelHelp(helpSubject="t.test")

radioButtons(top, name="alternative",

buttons=c("twosided", "less", "greater"),

values=c("two.sided", "less", "greater"),

labels=gettextRcmdr(c("Two-sided", "Difference < 0",

"Difference > 0")),

title=gettextRcmdr("Alternative Hypothesis"))

confidenceFrame <- tkframe(top)

confidenceLevel <- tclVar(".95")

confidenceField <- tkentry(confidenceFrame, width="6",

textvariable=confidenceLevel)

tkgrid(getFrame(xBox), getFrame(yBox), sticky="nw")

tkgrid(tklabel(confidenceFrame,

text=gettextRcmdr("Confidence Level"), fg="blue"))

tkgrid(confidenceField, sticky="w")

tkgrid(alternativeFrame, confidenceFrame, sticky="nw")

tkgrid(buttonsFrame, columnspan=2, sticky="w")

dialogSuffix(rows=3, columns=2)

}

Figure 4: The pairedTTest function.

R News ISSN 1609-3631

Vol. 7/3, December 2007 51

Package: RcmdrPlugin.TeachingDemos

Type: Package

Title: Rcmdr Teaching Demos Plug-In

Version: 1.0-3

Date: 2007-11-02

Author: John Fox <jfox@mcmaster.ca>

Maintainer: John Fox <jfox@mcmaster.ca>

Depends: Rcmdr (>= 1.3-0), rgl, TeachingDemos

Description: This package provides an Rcmdr "plug-in" based on the

TeachingDemos package, and is primarily for illustrative purposes.

License: GPL (>= 2)

Models:

Figure 5: The DESCRIPTION file from the RcmdrPlugin.TeachingDemos package.

dard in R, this function executes when the package is
loaded, and serves to load the Rcmdr package, with
the plug-in activated, if the Rcmdr is not already
loaded. .First.lib is written so that it can (and
should) be included in every R Commander plug-in
package.3

Every R Commander plug-in package must in-
clude a file named menus.txt, residing in the
installed package’s etc subdirectory. This file,
therefore, should be located in the source pack-
age’s inst/etc subdirectory. A plug-in pack-
age’s menus.txt file has the same structure as
Rcmdr-menus.txt, described previously. For exam-
ple, the line

menu demosMenu topMenu "" "" "" ""

in the menus.txt file for the RcmdrPlugin.-
TeachingDemos package creates a new top-level
menu, demosMenu;

item demosMenu command
"Central limit theorem..."
centralLimitTheorem
"" "packageAvailable('TeachingDemos')"

creates an item under this menu; and

item topMenu cascade "Demos" demosMenu
"" "packageAvailable('TeachingDemos')"

installs the new menu, and its items, in the menu bar
(see Figure 7).

Figure 7: The Demos menu provided by the
RcmdrPlugin.TeachingDemos package.

The R Commander takes care of reconciling the
menus.txt files for plug-in packages with the mas-
ter Rcmdr-menus.txt file: New top-level menus ap-
pear to the left of the standard Tools and Help menus;
when new sub-menus or items are inserted into exist-
ing menus, they appear at the end. The RcmdrPlug-
in.TeachingDemos package also includes R code,
for example for the centralLimitTheorem call-back
function, which creates a dialog box.

Concluding Remarks

It is my hope that the ability to define plug-in pack-
ages will extend the utility of the R Commander in-
terface. The availability of a variety of specialized
plug-ins, and the possibility of writing one’s own
plug-in package, should allow instructors to tailor
the R Commander more closely to the specific needs
of their classes. Similarly R developers wishing to
add a GUI to their packages have a convenient means
of doing so. An added benefit of having a vari-
ety of optionally loaded plug-ins is that unnecessary
menus and menu items need not be installed: After
all, one of the disadvantages of an extensive GUI is
that users can easily become lost in a maze of menus
and dialogs.

Bibliography

P. Dalgaard. A primer on the R-Tcl/Tk package.
R News, 1(3):27–31, September 2001. URL http:
//CRAN.R-project.org/doc/Rnews/.

P. Dalgaard. Changes to the R-Tcl/Tk package. R
News, 2(3):25–27, December 2002. URL http://
CRAN.R-project.org/doc/Rnews/.

A. Dusa. QCAGUI: QCA Graphical User Interface,
2007. R package version 1.3-0.

3I am grateful to Richard Heiberger for help in writing this function, and, more generally, for his suggestions for the design of the
Rcmdr plug-in facility.

R News ISSN 1609-3631

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

Vol. 7/3, December 2007 52

.First.lib <- function(libname, pkgname){

if (!interactive()) return()

Rcmdr <- options()$Rcmdr

plugins <- Rcmdr$plugins

if ((!pkgname %in% plugins) && !getRcmdr("autoRestart")) {

Rcmdr$plugins <- c(plugins, pkgname)

options(Rcmdr=Rcmdr)

closeCommander(ask=FALSE, ask.save=TRUE)

Commander()

}

}

Figure 6: The .First.lib function from the RcmdrPlugin.TeachingDemos package.

J. Fox. The R Commander: A basic-statistics
graphical user interface to R. Journal of Statisti-
cal Software, 14(9):1–42, Aug. 2005. ISSN 1548-
7660. URL http://www.jstatsoft.org/counter.
php?id=134&url=v14/i09/v14i09.pdf&ct=1.

R. M. Heiberger and with contributions from
Burt Holland. RcmdrPlugin.HH: Rcmdr support for
the HH package, 2007. R package version 1.1-4.

R Development Core Team. Writing R Extensions.
2007.

G. Snow. TeachingDemos: Demonstrations for teaching
and learning, 2005. R package version 1.5.

B. B. Welch, K. Jones, and J. Hobbs. Practical Program-
ming in Tcl/Tk, Fourth Edition. Prentice Hall, Upper
Saddle River NJ, 2003.

John Fox
Department of Sociology
McMaster University
Hamilton, Ontario, Canada
jfox@mcmaster.ca

Improvements to the Multiple Testing
Package multtest
by Sandra L. Taylor, Duncan Temple Lang, and Katherine
S. Pollard

Introduction

The R package multtest (Dudoit and Ge, 2005) con-
tains multiple testing procedures for analyses of
high-dimensional data, such as microarray studies
of gene expression. These methods include var-
ious marginal p-value adjustment procedures (the
mt.rawp2adjp function) as well as joint testing pro-
cedures. A key component of the joint testing meth-
ods is estimation of a null distribution for the vector
of test statistics, which is accomplished via permu-
tations (Westfall and Young, 1993; Ge et al., 2003) or
the non-parametric bootstrap (Pollard and van der
Laan, 2003; Dudoit et al., 2004). Statistical analyses
of high-dimensional data often are computationally
intensive. Application of resampling-based statisti-
cal methods such as bootstrap or permutation meth-
ods to these large data sets further increases compu-
tational demands. Here we report on improvements
incorporated into multtest version 1.16.1 available
via both Bioconductor and CRAN. These updates have

significantly increased the computational speed of
using the bootstrap procedures.

The multtest package implements multiple test-
ing procedures with a bootstrap null distribution
through the main user function MTP. Eight test
statistic functions (meanX, diffmeanX, FX, blockFX,
twowayFX, lmX, lmY, coxY) are used to conduct one
and two sample t-tests, one and two-way ANOVAs,
simple linear regressions and survival analyses, re-
spectively. To generate a bootstrap null distribution,
the MTP function calls the function boot.null. This
function then calls boot.resample to generate boot-
strap samples. Thus, the call stack for the bootstrap is
MTP -> boot.null -> boot.resample. Finally, the
test statistic function is applied to each sample, and
boot.null returns a matrix of centered and scaled
bootstrap test statistics.

We increased the computational speed of gener-
ating this bootstrap null distribution through three
main modifications:

1. optimizing the R code of the test statistics;

2. implementing two frequently used tests (two
sample t-test and F-test) in C; and

R News ISSN 1609-3631

http://www.jstatsoft.org/counter.php?id=134&url=v14/i09/v14i09.pdf&ct=1
http://www.jstatsoft.org/counter.php?id=134&url=v14/i09/v14i09.pdf&ct=1
mailto:jfox@mcmaster.ca

