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Introduction

In the recent past, flow cytometry (FCM) has become
a high-throughput technique used in both basic and
clinical research. Applications range from studies fo-
cusing on the immunological status of patients, ther-
apeutic approaches involving stem cells up to func-
tional screens used to identify specific phenotypes.
The technology is capable of measuring multiple flu-
orescence as well as some morphological properties
of individual cells in a cell population on the basis
of light emission. FCM experiments can be extremely
complex to analyze due to the large volume of data
that is typically created in several processing steps.
As an example, flow cytometry high content screen-
ing (FC-HCS) can process at a single workstation up
to a thousand samples per day each containing thou-
sands of cells, monitoring up to eighteen parameters
per sample. Thus, the amount of information gener-
ated by these technologies must be stored and man-
aged and finally needs to be summarized in order to
make it accessible to the researcher.

Instrument manufacturers have developed soft-
ware to drive the data acquisition process of their
cytometers, but these tools are primarily designed
for their proprietary instrument interface and offer
few or no high level data processing functions. The
packages rflowcyt and prada provide facilities for
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importing, storing, assessing and preprocessing data
from FCM experiments. In this article we demon-
strate the use of these packages for some common
tasks in flow cytometry data analysis.

FCS format

In order to facilitate data exchange across differ-
ent platforms, a data standard has been developed
which is now widely accepted by the flow cytometry
community and also by most instrument manufac-
turers. Flow Cytometry Standard (FCS) binary files
contain both raw data and accompanying meta data
of individual cytometry measurements and option-
ally the results of prior analyses carried out on the
raw data (Seamer et al., 1997). The current version
of the FCs standard is 3.0, but both packages can also
deal with the old 2.0 standard which is still widely
used. We can import FCS files into R using the func-
tion read.fcs.

Data models

Both rflowcyt and prada use their own object models
to deal with FCM data. While the focus of rflowcyt
is more on single cytometry measurements, prada
offers the possibility to combine several individual
measurements in the confines of a single experiment
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and to include all the necessary metadata. Its object
model tries to stay close to the familiar micro-array
data structures (expressionSet) making use of al-
ready defined generic functions. Both models store
the data corresponding to the different immunoflu-
orescence measurements or variables and the meta-
data included in the FCs files. The 2 main slots pro-
vide:

e a data frame with rows corresponding to the
biological unit (i.e. cells) and columns corre-
sponding to the measured variables

e the experimental metadata as a list (rflowcyt)
or a named vector (prada)

The argument objectModel to read.fcs can be used
to chose between the two models when importing
the data. In addition, the package rflowcyt provides
functions for the conversion between objects of both
classes.

prada data model

Objects of class cytoFrame are the containers for stor-
ing individual cytometry measurements in prada.
The data slot can be accessed using the func-
tion exprs, the metadata slot via the function
description. Subsetting of the data is possible us-
ing the usual syntax for data frames and matrices.

> library(prada)
> data(cframe)
> cframe

cytoFrame object with 2115 cells and 8 observables:
FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time
slot ’description’ has 148 elements

> subset <- cframe([1:3, c(1, 2,
+ 3, 7, 81
> exprs(subset)

FSC-H SSC-H FL1-H FL4-H Time

[1,] 467 532 87 449 2
[2,] 437 431 28 478 2
3,1] 410 214 0O 358 2

> description(cframe) [4:6]

$sYs

"Macintosh System Software 9.2.2"
CREATOR
4.0.2"
$TOT
"2115"

"CellQuest Pro

Collections of several cytometry measurements
(whole experiments) can be stored in objects of class
cytoSet. The phenoData slot of these objects con-
tains all the relevant experiment-wide meta data.
Multiple FCs files can be imported along with their
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metadata when the first argument to read.fcs is a
vector of filenames or an object of class phenoData
(see the documentation to read.fcs for more de-
tails). Subsetting of cytoSets is similar to subsetting
of list, i.e., individual cytoFrame objects are returned
when subsetting is done with double brackets.

> data(cset)
> cset

cytoSet object with 5 cytoFrames and colnames
FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time

> subset <- cset[1:2]
> pData(subset)

name ORF

2 fas-Bcl2-plate323-04-04.A02 MOCK

3 fas-Bcl2-plate323-04-04.A03 YFP
batch
2 1
3 1

> class(cset[[3]])

[1] "cytoFrame"
attr(, "package")
[1] "prada"

csApply can be used to apply a function on all
items of a cytoSet. In a simple case this could for
instance be a preprocessing step or a statistical in-
ference on the data from each well. In a more com-
plex application, the function could summarize dif-
ferent features of the data and even produce diag-
nostic plots for visualization and quality assesment.
Here, we apply a preprocessing function which re-
moves artefactual measurements from our dataset
based on the morphological properties of a cell and
computes the number of cells in each of the wells on
the plate.

> myFun <- function(xraw) {

+ fn <- fitNorm2(xraw([, c("FSC-H",
+ "SSC-H")], scale = 2)

+ x <- xraw[fn$sel, ]

+ return (arow(x))

+ }

> cellCounts <- csApply(cset,

+

myFun)

Many of the common R methods like plot
or length are also available for objects of class
cytoFrame and cytoSet.

rflowcyt data model

Objects of class FCS are the containers for storing in-
dividual cytometry measurements in rflowcyt. The
data slot can be accessed using the function fluors,
the metadata slot via the function metaData. Subset-
ting of the data is possible using:
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e [ij] to extract or subset information from the
data (a matrix object) of the FCS R-object

e [[i]] to extract metadata (which is of S4 class FC-
Smetadata) of the FCS R-object

> library(rflowcyt)
> data(VRCmin)
> st.DRT

Original Object of class FCS from:
DRT_GAG.fcs

Object name: st.DRT

Dimensions 206149 by 8

> subset <- st.DRT[1:3,1:3]
> metaData(subset)

FACSmetadata for non-original FCS object:
st.DRT from original file DRT_GAG.fcs
with 3 cells and 3 parameters.

> fluors(subset)
FSC-Height Side Scatter CD8 FITC

1 640 458 298
2 136 294 102
3 588 539 265

Multiple cytometry measurements can be im-
ported when the filename argument to read.fcs is
a vector of file names and are stored as a list of in-
dividualFCS objects. These lists may be further pro-
cessed using the familiar basic R functions, however,
no experiment-wide metadata is provided.

Besides the FCS class, rflowcyt include
FCSmetadata, FCSsummary, and FCSgate classes.
FCSmetadata is the class of the metadata slot of an
FCS R-object. The FCSsummary class is the class of
the output of the summary method implemented on
a FCS R-object. The FCSgate class contains the FCS
class and extends it to include gating information
(for more details, see the following section).

Gating

A common task in the analysis of flow cytome-
try data is to perform interactive selections of sub-
populations of cells with respect to one or several
measurement parameters, a process known as gat-
ing. In this respect, a gate is a set of rules that
uniquely identifies a cell to be part of a given sub-
population. In the easiest case this can be a sharp
cutoff, e.g., all cells with values in one parameter that
are larger than a given threshold. But often much
more complex selections are necessary like rectangu-
lar or elliptic areas in two dimensions or even polyg-
onal boundaries. It is sometimes desirable to define
a gate on a data set and later on apply this gate to a
number of additional data sets, hence gates should
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be independent from the actual raw data. In addi-
tion, there may be several different combinations of
gates that can be combined in a logical manner (i.e.,
“AND” and “OR”) and in a defined order, thus the
concept of the gate can be extended to collections of
multiple gates.

The package prada offers the infrastructure to
apply gating on cytometry data. Objects of class
gate and gateSet model the necessary features
of individual gates and of collections of multiple
gates and can be assigned to the gate slot of ob-
jects of class cytoFrame. Gates can either be cre-
ated from scratch by specifying the necessary se-
lection rules or, much more conveniently, the func-
tion drawGate can be used to interactively set gates
based on two-dimensional scatter plots of the raw
data (Fig. 1). Please see the vignette of package
prada for a more thorough discussion on gating.
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Figure 1: Interactive drawing of a polygonal gate

based on a scatterplot of two cytometry parameters
using function drawGate.

Quality control and quality assess-
ment of cytometry data

Data quality control and quality assessment are cru-
cial steps in processing high throughput FCM data.
Quality control efforts have been made in clinical cell
analysis by flow cytometry. For example, guidelines
were defined to monitor the fluorescence measure-
ments by computing calibration plots for each flu-
orescent parameter. However such procedures are
not yet systematically applied in high throughput
FCM and quality assessment of the raw data is often
needed to overcome the lack of data quality control.
The aim of data quality assessment is to detect sys-
tematic and stochastic effects that are not likely to be
biologically motivated. The rationale is that system-
atic errors often indicate the need for adjustments
in sample handling or processing. Further, the aber-
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rant samples should be identified and potentially
removed from any downstream analysis in order to
avoid spurious results.

rflowcyt proposes a variety of graphical ex-
ploratory data analytic (EDA) tools to explore and
summarize ungated FCM data.

e plotECDF.FCS creates Empirical Cumulative
Distribution (ECDF) plots that reveal differ-
ences in distributions (Fig. 2);

e boxplot.FCS draws boxplots that display loca-
tion and variation of the distributions and facil-
itate the comparison of these features between
samples as they are aligned horizontally;

e plotQA.FCS summarizes the distribution of one
or two parameters by their means, medians,
modes or IQR for the diferent samples and dis-
plays the values in a scatterplot (Fig. 4). The
dots in the resulting scatterplot can be colored
according to the samples position in a 96-well
plate to reveal potential plate effects;

e plotdensity.FCS displays density curves that
reveal the shape of the distributions, especially
multi-modality and asymmetry;

We illustrate the usefulness of those visualization
tools to assess FCM data quality through examina-
tion of a collection of weekly peripheral blood sam-
ples obtained from a patient following allogeneic
blood and marrow transplant. Samples were taken
at various time points before and after transplanta-
tion. At each time point, every blood sample was
divided into eight aliquots. Values for the forward
light scatter (FSC) which measures a cell’s size and
for the sideward light scatter (SSC, a measure for a
cell’s granularity) of aliquots from the same sample
should therefore be comparable.

The plotECDF . FCS function can be used to visual-
ize several variables for several samples in the same

graph.

> data(flowcyt.data)
> subset <- flowcyt.datal[c(1:24,

+ 41:48, 57:72)]

> stain <- paste("A", 1:8, sep = "")
> timePoint <- c¢(-8, 0, 5, 27,

+ 39, 46)

> plotECDF.FCS(subset,

+ varpos = c(1),

+ var.list = c(paste("Day "
+ timePoint)),

+ group.list = stain,

+ type = "1", xlab = "FSC",
+ lwd = 2, cex = 1.5)

For example, Figure 2 shows the FSC parame-
ter for the 8 aliquots of a sample per time point.
Each panel corresponds to a particular time point,
in days before or after transplantation. In Figure 2
we expected to see the density curves superimpose.
One aliquot significantly deviates from the other.
This aliquot should be investigated in more detail
and potentially be removed from further analysis.
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Figure 2: ECDF plots of the FSC parameter for 8
aliquots of a sample at different time point. Each
panel corresponds to a particular time point, in days
before or after transplantation. In each panel, each
intensity curves represents one of the 8 aliquots.

ECDF plots are not good for visualizing the shape
of the distributions. Instead, you can use the function
plotdensity.FCS (Fig. 3).
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Figure 3: Density plots of the FSC parameter for 8
aliquots of the same sample.
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> plotdensity.FCS(subset[41:48],

+ varpos = c(1), ylab = "Density",
+ xlab = "FSC Intensity",

+ col = ¢(1:8), ylim = c(0,

+ 0.015))

Finally the plotQA.FCS function creates "sum-
mary" scatterplots to visualize samples relationship
within plates. This representation allows to identify
biological outlier and/or plate biases, such as edge
effect or within-plate spatial effect. Figure 4 shows
the SSC vs FSC median intensities for all aliquots
stored in one 96-well plate and colored by their col-
umn position in the plate. In this figure, if all sam-
ples were identical, we expect to see a single cluster
of data points. One has to be careful when interpret-
ing such plots as each column correspond to different
samples collected at different time points. However,
we note that some columns have widely spread val-
ues (light blue and brown) and that one aliquot is an
outlier as it is far away from the rest of its group. This
aliquot appears to be the same as in Figures 2 and 3.

> idx <- order (names(flowcyt.data))

> flowcyt.data <- flowcyt.datal[idx]

> plotQA.FCS(flowcyt.data, varpos = c(1,
+ 2), col = "col", median,

+ labeling = TRUE, xlab = "SSC median",
+ ylab = "FSC median", xlim = c(0,
+ 200), ylim = c(75, 275),
+ pch = "*", asp =1, cex = 1.5,
+ main = "")
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Figure 4: Scatterplot of SSC vs FSC medians intensi-
ties for one plate.

prada offers another visualization tool which can
be used to inspect the data from whole experiments.
Using the function plotPlate we can display quan-
titative as well as qualitative values or even complex
graphs for each well of a microtiter plate retaining its
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array format 2. This allows for the identification of
spatial effects and for a consise presentation of im-
portant features of an experiment. plotPlate is im-
plemented using grid graphic and users are able to
define their own plotting functions, so conceptually
anything can be plotted in a mircrotiter plate format
(see Figure 5).
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Figure 5: Two different variations of plate plots
for 96 well microtiter plates. Top: Quantitative val-
ues. The consistently low number of cells around
the edges of the plate indicates a technical prob-
lem. Bottom: Complex graph. Image maps of two-
dimensional local densities of FSC vs SSC values for
each well relative to a standard. Blue areas indicate
low, red areas indicate high local densities. These
plots help detect morphological changes in a cell
population.

Discussion and Conclusion

The application of flow cytometry in modern cell bi-
ology is diverse and so are the demands on data anal-
ysis. The multitude of packages within R and Bio-
conductor already provides for many tools that are
also useful in the analysis of FCM data. The pack-
ages rflowcyt and prada try to close the gap between
data acquisition and data analysis by enabling the re-
searches to take their data into the powerful R envi-
ronment and to make use of the statistical and graph-
ical solutions already available there. In addition,
they provide for tools that are commonly used in
early steps of data analysis which in principle are the
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same for all FCM applications.

Currently, in a collaboration of several groups in-
volved in high-throughput FCM together with instru-
ment manufacturers and members of the flow cytom-
etry standards initiative a flowCore package and a
number of additional FCM utility packages are de-
veloped. The aim is to merge both prada and rflow-
cyt into one core package which is copmpliant with
the data exchange standards that are currently de-
veloped in the community. Visualization as well as
quality control will than be part of the utility pack-
ages that depend on the data structures defined in
the flowCore package.
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Protein Complex Membership Estimation

using apComplex
by Denise Scholtens

Graphs of protein-protein interactions, so called ‘in-
teractomes’, are rapidly surfacing in the systems bi-
ology literature. In these graphs, nodes represent
cellular proteins and edges represent interactions be-
tween them. Global interactome analyses are often
undertaken to explore topological features such as
network diameter, clustering coefficients, and node
degree distribution. Local interactome modeling,
particularly at the protein complex level, is also
important for identifying distinct functional com-
ponents of the cell and studying their interactivity
(Hartwell et al., 1999). The apComplex package con-
tains functions to locally estimate protein complex
membership as described in Scholtens and Gentle-
man (2004) and Scholtens et al. (2005).

Two technologies are generally used to query
protein-protein relationships. Affinity purification-
mass spectrometry (AP-MS) technologies detect pro-
tein complex co-membership. In these experiments
a set of proteins are used as baits, and in separate
purifications, each bait identifies all hits with which
it shares protein complex membership. AP-MS baits
and their hits may physically bind to each other, or
they may be joined together in a complex through an
intermediary protein or set of proteins. If a bait pro-
tein is a member of more than one complex, all of
its hits may not necessarily themselves be complex
co-members. These biological realities become essen-
tial components of complex membership estimation.
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Publicly available AP-MS data sets for Saccharomyces
cerevisiae include those reported by Gavin et al. (2002,
2006), Ho et al. (2002), and Krogan et al. (2004, 2006).

Yeast-two-hybrid (Y2H) technology is another
bait-hit system that measures direct physical interac-
tions. The distinction between AP-MS and Y2H data
is subtle, but crucial. Two proteins that are part of the
same complex may not physically interact with each
other. Thus an interaction detected by AP-MS may
not be detected by Y2H. On the other hand, two pro-
teins that do physically interact by definition form a
complex so any interaction detected by Y2H should
also be detected by AP-MS. Under the same exper-
imental conditions, Y2H technology should in fact
consist of a subset of the interactions detected by AP-
MS technology, the subset consisting of complex co-
members that are physically bound to each other. Ito
et al. (2001) and Uetz et al. (2000) both offer publicly
available Y2H data sets for Saccharomyces cerevisiae.

apComplex deals strictly with data resulting
from AP-MS experiments. The joint analysis of Y2H
and AP-MS data is an interesting and important
problem and is in fact an obvious next step after
complex membership estimation, but is not currently
dealt with in apComplex.
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