Vol. 4/2, September 2004

21

Plummer (2004) just released 0.50 of JAGS. Quote
from Martyn Plummer: “JAGS is Just Another Gibbs
Sampler - an alternative engine for the BUGS lan-
guage that aims for the same functionality as classic
BUGS. JAGS is written in C++ and licensed under the
GNU GPL. It was developed on Linux and also runs
on Windows.” The functions in package rbugs can
also be used to prepare files for JAGS. I am looking
forward to seeing the growth of JAGS.

I also tried using R for Windows through Wine. It
worked last winter with Wine 20031016, but is not
working with Wine 20040408 now. Unfortunately,
since my Wine 20040408 was compiled after my sys-
tem has been recently upgraded to Red Hat Worksta-
tion 3.0, I cannot tell which change has caused it.

Bibliography

Gelman, A. (2004), “bugs.R: func-
tions for running WinBugs from R/
http:/ /www.stat.columbia.edu/~gelman/bugsR/.
19

Plummer, M. (2003), “Using WinBUGS under Wine,”
http:/ /calvin.iarc.fr/bugs/wine/. 19, 20

Plummer, M. (2004), “TAGS ver-
sion 0.50 manual,” http:/ /www-
fis.iarc.fr/ ~martyn/software/jags/. 20

Plummer, M., Best, N., Cowles, K., and Vines, K.
(1996), “coda: Output analysis and diagnostics for
MCMC,” http:/ /www-fis.iarc.fr/coda/. 19

Rice, K. (2002), “EmBedBUGS: An R pack-
age and S library,” http://www.mrc-
bsu.cam.ac.uk/personal/ken/embed.html. 19

Smith, B. (2004), “boa: Bayesian Output Anal-
ysis Program for MCMC,” http://www.public-
health.uiowa.edu/boa. 19

Spiegelhalter, D. J.,, Thomas, A., Best, N. G,
and Gilks, W. (1996), BUGS: Bayesian inference
Using Gibbs Sampling, Version 0.5, (version ii)
http:/ /www.mrc-bsu.cam.ac.uk/bugs. 19

Sturtz, S. and Ligges, U. (2004), “R2WinBUGS:
Running WinBUGS from R,” http://cran.r-

project.org/src/contrib/Descriptions/R2ZWinBUGS.html.

19
Wine (2004), “Wine,” http:/ /www.winehq.org. 19
Jun Yan

University of Iowa, U.S.A.

jyan@stat.uiowa.edu

R Package Maintenance

Paul Gilbert

Introduction

Quality control (QC) for R packages was the feature
that finally convinced me to maintain R packages
and also run them in S, rather than the reverse. A
good QC system is essential in order to contain the
time demands of maintaining many packages with
interdependencies. It is necessary to have quick,
easy, reliable ways to catch problems. This article
explains how to use the R package QC features (in
the "tools" package by Kurt Hornik and Friedrich
Leisch) for ongoing maintenance and development,
not just as a final check before submitting a package
to CRAN. This should be of interest to individuals or
organizations that maintain a fairly large code base,
for their own use or the use of others.

The main QC features for an R package check
that:

® code in package directory R/ is syntactically
correct

* code in package directory tests/ runs and does

R News

not crash or stop()

¢ documentation is complete and accurate in sev-
eral respects

* examples in the documentation actually run
¢ code in package directory demo/ runs
* vignettes in package directory inst/doc/ run

These provide several important features for
package maintenance. Developers like to improve
code, but documentation updates are often ne-
glected. A simple method to identify necessary doc-
umentation changes means documentation mainte-
nance is (almost) painless. The QC tools can be used
to help flag when documentation changes are nec-
essary. They also ensure that packaged code can be
quickly tested to ensure it works with a new version
of R (or a new compiler, or a new operating system,
or a new computer). The system explained below
also helps check dependencies among functions in
different packages, easing development by quickly
identifying changes that break code in other pack-
ages.

ISSN 1609-3631

mailto:jyan@stat.uiowa.edu

Vol. 4/2, September 2004

22

The system described here uses the QC features
in R in conjunction with the make utility. It checks
code and documentation of multiple packages, au-
tomatically when changes to source files imply that
these checks need to be done. The key is a good
‘Makefile” with interdependencies properly identi-
fied. It should be possible to run this system with
a relatively small investment in "local setup” for a
different set of packages, perhaps only a couple of
hours. This presumes a certain familiarity with make.
For a complicated set of package, a somewhat larger
amount of time may be necessary in order to under-
stand interdependencies among packages. If your
packages are not well organized then a much larger
time investment will be necessary, but well worth-
while.

Make

This is not a tutorial about make, but a rudimentary
explanation is given in order to make the remainder
of the artical accessible to a wider audience. Briefly,
the make utility uses targets (rules) which may have
prerequisites (other targets or files). These are indi-
cated in a file typically called ‘Makefile’. This works
most easily when a target is the name of a file gener-
ated from another file, for example, a compiled tar-
get file called foo generated from a C code prereq-
uisite file called foo.c. Make determines that a tar-
get is out of date and must be re-generated if the file
timestamp for the target is older than the timestamp
of any prerequisite. This is recursive, so a target must
be re-generated (or "re-made") if it depends on a tar-
get, that depends on a target, ..., that depends on a
file that is newer. Properly mapping out the depen-
dencies in a ‘Makefile” eventually saves an enormous
amount of time, because a change in a source file only
necessitates re-generating dependent targets. To un-
derstand correctly how this is used in the context
of R package maintenance, it is important to recog-
nize that "re-made" does not mean simply that code
(or documentation) is checked to be syntactically cor-
rect, it also means a number of tests are completed to
insure it works correctly.

Make and R Package QC

In order to implement the system for R package
maintenance, one critical simplifying assumption is
that code testing does not depend on documenta-
tion testing. This may seem obvious, but it has the
implication that examples in the documentation are
not the most important way to catch mistakes in the
code. That is, there should be files in the tests/ direc-
tory of a package that will generate errors if mistakes

are introduced into the code. These would typically
run functions, check results against known values,
and stop() if an error is indicated.

With this simplifying assumption it is possible
to distinguish two main targets for each package:
"code" and "doc." These are each aliases for several
"sub-targets." The code target tests the code in a pack-
age. It may be a prerequisite for code in other pack-
ages, but the doc target in a package is never a pre-
requisite in other packages. This means that a change
to .Rd files in the man directory, or to .R files in the
demo directory, or to vignette files, will signal re-
making only for the package itself, and not for other
packages. Changes to code files in the R directory or
files in the tests directory will signal re-making for
the package, and this may imply re-making of other
packages that depend on it.

As an example, I have package dse2, which de-
pends on dsel, which depends on packages tframe
and setRNG. Changes in files in tframe/R should
provoke a remake of dsel and dse2, but changes in
tframe/man or tframe/inst/doc should not provoke
a remake of dsel and dse2.

The ‘Makefile” line for some targets uses "R CMD
check”, but in most cases the targets directly use
functions in library("tools"). Shell variables, doc tar-
gets, and many code targets, are common to all
packages and can be specified in common files,
‘Makevars’ and ‘Makerules’, which are included into
the ‘Makefile’ for each package. (For technical reasons
it is best to have these in two files rather than one.)
The key code sub-target (Rcode) has different prereq-
uisites for each package and must thus be specified in
the specific ‘Makefile” for each package.

As an example, Figure 1 shows the critical part !
of the ‘Makefile’ for my dsel package, which has the
packages tframe and setRNG as a prerequisites:

After first including the common variables from
../Makevars, this specifies the default target prereq-
uisites. (Left of the colon is a target name, right of the
colon is the list of prerequisites, backslash indicates
line continuation.)

Packages are each in a subdirectory below a com-
mon directory, so ../tframe refers to the relative path
from the package dsel directory to the directory for
the package tframe. Some targets, like Rcode, are not
naturally files, so to take advantage of the timestamp
mechanism used by make it is necessary to create an
artificial file (placed in a subdirectory referred to by
the variable FLAGS). The critical part of the macro?
RchkCodeMacro is specified in ‘Makevars’ in Figure 2

This checks the code using any necessary pack-
ages from the location indicated by CHKLIBS, which
is where packages that have already been checked
are installed.

As another example, some of the documentation
targets are specified in ‘Makerules’ (in Figure 3) by

IThe complete generic makefiles should be available in the contributed section of CRAN.
2The define feature and some other aspects of these files may be specific to GNU make.

R News

ISSN 1609-3631

Vol. 4/2, September 2004 23

include ../Makevars

default: undoc checkDocFiles codoc examples latex demos \
checkDocStyle checkFF checkMethods checkReplaceFuns \
Rcode checkVignettes pdfVignettes tar

Rcode: R/*.R tests/*.R LICENSE DESCRIPTION INDEX \
../tframe/$(FLAGS) /Rcode ../setRNG/$(FLAGS)/Rcode
${RchkCodeMacro}

include ../Makerules

Figure 1: Makefile for dsel

define RchkCodeMacro

R_LIBS=$(CHKLIBS) $(RENV) R CMD check \
-—-outdir=$ (CURDIR) /$ (TMP) --library=$(CURDIR)/$(TMP) \
--no-vignettes --no-codoc --no-examples \
--no-latex $(CURDIR)

@touch $(FLAGS)/$@
endef

Figure 2: RchkCodeMacro is specified in ‘Makevars’

undoc checkDocFiles checkDocStyle: man R/*.R
@$ (MKDIR) $(TMP)
@echo "library(tools); $@(dir="$(CURDIR)’)" | R --vanilla -q >$(TMP)/$@

Q@test -z "‘grep ’Error’ $(TMP)/$@‘" || (cat $(TMP)/$Q@ ; exit 1)
check errors from undoc and checkDocFiles
Qtest -z "‘grep ’Undocumented’ $(TMP)/$e‘" || (cat $(TMP)/$@ ; exit 1)

@$ (MKDIR) $(FLAGS)
Omv $(TMP)/$@ $(FLAGS)/$@

Figure 3: Documentation targets in ‘Makerules’

R News ISSN 1609-3631

Vol. 4/2, September 2004

24

This specifies the targets undoc, checkDocFiles,
and checkDocStyle, which all depend on any files in
the man directory, as well as any code files R/*.R.
The output from the R sessions that runs undoc() and
checkDocFiles() print errors and warnings, but these
do not automatically produce a shell error signal as a
flag that make recognizes. It is possible to do this us-
ing R code that determines if the result should indi-
cate an error, and sets g(status=1) but that is not done
in this example. Instead, a test on a grep of the out-
put is used to determine the shell error status. (This
may change in the future.) If the signal does not in-
dicate a failure (exit 1) then the output is moved to
the FLAGS directory to indicate that the target has
completed successfully.

Summary

There are trade-offs in the way R code is organized
into packages. If all code is in one package then there
are no package inter-dependencies, but everything
must be tested after any change. Faster computers
make it possible to consider this, and the make/QC
system described here would be extra overhead and
of limited value in that situation. However, more
documentation and examples, along with more ex-
tensive test suites, take longer to run, and so en-
courage a finer breakdown into packages. In addi-
tion to this, there are two complementary reasons for
organizing functions into packages. One is to limit
dependencies, as much as reasonably possible, be-
tween groups of functions that are not closely re-
lated and may not often be used together. The sec-
ond is to group together "kernel" functions which are

Changes in R

by the R Core Team

User-visible changes in 2.0.0

¢ The stub packages from 1.9.x have been re-
moved: the library () function selects the new
home for their code.

¢ ‘Lazy loading’ of R code has been imple-
mented, and is used for the standard and rec-
ommended packages by default. Rather than
keep R objects in memory, they are kept in
a database on disc and only loaded on first
use. This accelerates startup (down to 40% of
the time for 1.9.x) and reduces memory usage
— the latter is probably unimportant of itself,
but reduces commensurately the time spent in
garbage collection.

R News

tools used by several other packages. The dependen-
cies among packages must be carefully mapped out,
which forces one to think carefully about what is ker-
nel code and what is not. These reasons for organiz-
ing code into packages may be even more important
in a situation where multiple programmers or users
are maintaining packages.

It is important to see that the savings in this
make/QC system come from a few different aspects.
The first is that packages of kernel code used by other
packages tend to be more stable and less frequently
changed than the packages that use them. If ker-
nel packages are not changed, they do not need to
be re-made. The second aspect is that dependencies
among packages are in the code, not in the docu-
mentation. Thus documentaion changes imply only
that the documentation for that particular package
needs to be checked. The aspect that results in the
most important savings, however, is that the need for
many documentation changes are flagged immedi-
ately, while you still remember what that marvelous
change in the code really did.

Acknowledgments

I am grateful to Kurt Hornik for many helpful expla-
nations and comments.

Paul Gilbert,

Department of Monetary and Financial Analysis,
Bank of Canada,

234 Wellington St.,

Ottawa, Canada, K1A 0G9

pgilbert@bank-banque-canada.ca

Packages are by default installed using lazy
loading if they have more than 25Kb of R code
and did not use a saved image. This can be
overridden by INSTALL --[no-]lazy or via a
field in the DESCRIPTION file. Note that as with
--save, any other packages which are required
must be already installed.

As the lazy-loading databases will be consulted
often, R will be slower if run from a slow
network-mounted disc.

e All the datasets formerly in packages 'base’
and ’stats’ have been moved to a new package
‘datasets’. data() does the appropriate sub-
stitution, with a warning. However, calls to
data() are not normally needed as the data ob-
jects are visible in the "datasets’ package.

Packages can be installed to make their data ob-

ISSN 1609-3631

mailto:pgilbert@bank-banque-canada.ca

