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and it would work. The problem with this is that
the objects we construct have a formula that has, lit-
erally QDPI.Y[, n] as the dependent variable in the
formula. If we want to do anything with the objects
afterwards, such as prune them, update them, &c,
we need to re-establish what n is in this particular
case. The original object n was the loop variable and
that is long gone. This is not difficult, of course, but
it is an extra detail we need to carry along that we
don’t need. Essentially the formula part of the object
we generate would not be self-contained and this can
cause problems.

The strategy we have adopted has kept all the
variables together in one data frame and explicitly
encoded the correct response variable by name into

the formula of each object as we go. At the end each
fitted rpart object may be manipulated in the usual
way witout this complication involving the now de-
funct loop variable.
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geoRglm: A Package for Generalised

Linear Spatial Models

by Ole F. Christensen and Paulo |. Ribeiro Jr

geoRglm is a package for inference in gener-
alised linear spatial models using Markov chain
Monte Carlo (MCMC) methods. It has been de-
veloped at the Department of Mathematical Sci-
ences, Aalborg University, Denmark and the De-
partment of Mathematics and Statistics, Lancaster
University, UK. A web site with further informa-
tion can be found at http://www.maths.lancs.ac.
uk/~christen/geoRglm. geoRglm is an extension to
the geoR package (Ribeiro, Jr. and Diggle, 2001).
Maximum compatibility between the two packages
has been intended and geoRglm also uses several of
geoR’s internal functions.

Generalised linear spatial models

The classical geostatistical model assumes Gaussian-
ity, which may be an unrealistic assumption for some
data sets. The generalised linear spatial model (GLSM)
as presented in Diggle et al. (1998), Zhang (2002) and
Christensen and Waagepetersen (2002) provides a
natural extension to deal with response variables for
which a standard distribution other than the Gaus-
sian more accurately describes the sampling mecha-
nism involved.

The GLSM is a generalised linear mixed model in
which the random effects are derived from a spatial
process S(-). This leads to the following model spec-
ification.

Let S(-) = {S(x) : x € A} be a Gaussian stochas-
tic process with E[S(x)] = d(x)TB, Var{S(x)} =
o2 and correlation function Corr{S(x),S(x')} =
p(u; ¢) where u = ||x — x'|| and ¢ is a parameter. As-
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sume that the responses Y7, ...,Y, observed at loca-
tions x1, . .., x, in the sampling design, are condition-
ally independent given S(-), with conditional expec-
tations yy, ..., 1y, where h(w;) = S(x;),i =1,...,n,
for a known link function h(-).

We write S = (S(x1),...,S(x,))T for the unob-
served values of the underlying process at x1, ..., xy,
and S* for the values of S(-) at all other locations of
interest, typically a fine grid of locations covering the
study region.

The conditional independence structure of the
GLSM is then indicated by the following graph.

(B:a% 0)

The likelihood for a model of this kind is in gen-
eral not expressible in closed form, but only as a
high-dimensional integral

L(B,0%9) = [ [] 1 (0)p(s: 8,02 )

where f(y; 1) denotes the density of the error
distribution parameterised by the mean p, and
p(s; B,0%, ¢) is the multivariate Gaussian density
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for the vector S. The integral above is also the
normalising constant in the conditional distribution

[S|]// ﬁ/ 0-21 ¢}/

n

p(s |y, B.o% &) oc [ f(yis ™" (s1))p(si B, 0%, ).

1=1

In practice, the high dimensionality of the in-
tegral prevents direct calculation of the predic-
tive distribution [S* | y,B,0%,¢]. Markov chain
Monte Carlo provides a solution to this. First by
simulating a Markov chain we obtain a sample
s(1),...,8(m) from [S|y, B,0?, @], where each s(j)
is an n-dimensional vector. Second, by direct sam-
pling from [S*|s(j), B, 02, @], j = 1,...,m we obtain
a sample s*(1),...,s*(m) from [S*|y, B, 0%, ¢]. The
MCMC algorithm uses Langevin-Hastings updates
of S which are simultaneous updates based on gra-
dient information.

In a Bayesian analysis priors must be assigned to
the parameters in the model. For (j3,02) a conju-
gate prior exists such that these parameters can be
integrated out analytically, whereas for ¢ one has to
extend the MCMC algorithm above with updates of
this parameter. We use a Metropolis random walk-
type proposal for updating ¢.

In its current version geoRglm implements the
spatial Poisson model and the spatial binomial
model.

Package features

The following example gives a short demonstration
of an analysis for a binomial spatial model with logis-
tic link using the function binom.krige.bayes. We
omit the specific commands here, but refer to the
geoRglm homepage for further details. Consider the
simulated data set shown below which consists of bi-
nomial data of size 4 at 64 locations.
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Priors for the parameters and options
for the MCMC algorithm are set using the
prior.glm.control and mcmc.control functions,
respectively. As a rule of thumb the proposal vari-
ances must be tuned such that the acceptance rates
for updating the random effects and the parameter ¢
are approximately 60% and 25%, respectively.

Output from the MCMC algorithm is presented
below for the parameter ¢ and for the two random
effects at locations marked with a circle in the figure
above.
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Predicted values of the probabilities p(x) =
exp(S(x))/(1 + exp(S(x))) at 1600 locations are
plotted below using the function image.kriging
from geoR.
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Further details about this example and an in-
troduction to the models can be found in Diggle
et al. (2002) and in the files ‘inst/doc/bookchap.pdf’
and ‘inst/doc/geoRglIm.intro.pdf” distributed with the
package.
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Future developments

Work in progress with Gareth Roberts and Martin
Skold aims to improve convergence and mixing of
the MCMC algorithm by using a more appropriate
parameterisation.
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Querying PubMed

Web Services

by Robert Gentleman and Jeff Gentry

Introduction

While many view the world wide web (WWW) as
an interactive environment primarily designed for
interactive use, more and more sites are providing
web services that can be accessed programmatically.
In this article we describe some preliminary tools
that have been added to the annotate package in the
Bioconductor project www.bioconductor.org. These
tools facilitate interaction with resources provided at
the National Center for Biotechnology Information
(NCBI) located at www.ncbi.nlm.nih.gov. These
ideas represent only a very early exploration of a
single site and we welcome any contributions to the
project in the form of enhancements, new tools, or
tools adapted to other sites providing web services.
We believe that web services will play a very im-
portant role in computational biology. In part this is
because the data are complex and gain much of their
relevance by association with other data sources. For
example, knowing that there is a particularly high
level of messenger RNA (mRNA) for some gene (or
set of genes) does not provide us with much insight.
However, associating these genes with the relevant
scientific literature and finding common themes of-
ten does provide new insight into how these genes
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interact.

We can think of a cellular pathway as a set of
genes that interact (through the proteins that they
produce) to provide a particular function or protein.
A second way of obtaining insight into the role of
certain genes would be to examine the expression of
mRNA for a set of genes in a particular pathway, or
to take a set of genes and determine whether there
is a particular pathway that contains (most of) these
genes.

Both of these examples rely on associating experi-
mental data with data that are available in databases
or in textual form. These latter data sources are often
large and are continually evolving. Thus, it does not
seem practical nor prudent to keep local versions of
them suitable for querying. Rather, we should rely
on retrieving the data when it is wanted and on tools
to process the data that are obtained from on-line
sources.

It is important to note that most of the processes
we are interested in can be carried out interactively.
However, there are two main advantages to design-
ing programmatic interfaces. First, interactive use in-
troduces a rate limiting step. The analysis of genomic
data needs to be high throughput. A second reason
to prefer programmatic access is that it allows for the
possibility of combining data from several sources,
possibly filtered through online resources, to provide
a new product. Another reason to prefer a program-
matic approach is that it makes fewer mistakes and
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