
CONTRIBUTED RESEARCH ARTICLES 5

Creating and Deploying an Application
with (R)Excel and R
Thomas Baier, Erich Neuwirth and Michele De Meo

Abstract We present some ways of using R in
Excel and build an example application using the
package rpart. Starting with simple interactive
use of rpart in Excel, we eventually package the
code into an Excel-based application, hiding all
details (including R itself) from the end user. In
the end, our application implements a service-
oriented architecture (SOA) with a clean separa-
tion of presentation and computation layer.

Motivation

Building an application for end users is a very chal-
lenging goal. Building a statistics application nor-
mally involves three different roles: application de-
veloper, statistician, and user. Often, statisticians
are programmers too, but are only (or mostly) fa-
miliar with statistical programming (languages) and
definitely are not experts in creating rich user inter-
faces/applications for (casual) users.

For many—maybe even for most—applications of
statistics, Microsoft Excel is used as the primary user
interface. Users are familiar with performing simple
computations using the spreadsheet and can easily
format the result of the analyses for printing or inclu-
sion in reports or presentations. Unfortunately, Excel
does not provide support for doing more complex
computations and analyses and also has documented
weaknesses for certain numerical calculations.

Statisticians know a solution for this problem, and
this solution is called R. R is a very powerful pro-
gramming language for statistics with lots of meth-
ods from different statistical areas implemented in
various packages by thousands of contributors. But
unfortunately, R’s user interface is not what everyday
users of statistics in business expect.

The following sections will show a very simple
approach allowing a statistician to develop an easy-
to-use and maintainable end-user application. Our
example will make use of R and the package rpart
and the resulting application will completely hide the
complexity and the R user interface from the user.

rpart implements recursive partitioning and re-
gression trees. These methods have become powerful
tools for analyzing complex data structures and have
been employed in the most varied fields: CRM, fi-
nancial risk management, insurance, pharmaceuticals
and so on (for example, see: Altman (2002), Hastie
et al. (2009), Zhang and Singer (1999)).

The main reason for the wide distribution of tree-
based methods is their simplicity and intuitiveness.

Prediction of a quantitative or categorical variable,
is done through a tree structure, which even non-
professionals can read and understand easily. The
application of a computationally complex algorithm
thus results in an intuitive and easy to use tool. Pre-
diction of a categorical variable is performed by a
classification tree, while the term regression tree is used
for the estimation of a quantitative variable.

Our application will be built for Microsoft Excel
and will make use of R and rpart to implement the
functionality. We have chosen Excel as the primary
tool for performing the analysis because of various
advantages:

• Excel has a familiar and easy-to-use user inter-
face.

• Excel is already installed on most of the work-
stations in the industries we mentioned.

• In many cases, data collection has been per-
formed using Excel, so using Excel for the anal-
ysis seems to be the logical choice.

• Excel provides many features to allow a
high-quality presentation of the results. Pre-
configured presentation options can easily
adapted even by the casual user.

• Output data (mostly graphical or tabular pre-
sentation of the results) can easily be used in
further processing— e.g., embedded in Power-
Point slides or Word documents using OLE (a
subset of COM, as in Microsoft Corporation and
Digital Equipment Corporation (1995)).

We are using R for the following reasons:

• One cannot rely on Microsoft Excel’s numerical
and statistical functions (they do not even give
the same results when run in different versions
of Excel). See McCullough and Wilson (2002)
for more information.

• We are re-using an already existing, tested and
proven package for doing the statistics.

• Statistical programmers often use R for perform-
ing statistical analysis and implementing func-
tions.

Our goal for creating an RExcel-based applica-
tion is to enable any user to be able to perform the
computations and use the results without any special
knowledge of R (or even of RExcel). See Figure 1 for
an example of the application’s user interface. The
results of running the application are shown in Figure
2.

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

http://cran.r-project.org/package=rpart

6 CONTRIBUTED RESEARCH ARTICLES

Figure 1: Basic user interface of the RExcel based end-user application.

Figure 2: Computation results.

There are a few alternatives to RExcel for connect-
ing Excel with R:

XLLoop provides an Excel Add-In which is able to
access various programming languages from
within formulae. It supports languages like R,
Javascript and others. The “backend” languages
are accessed using TCP/IP communication. In
contrast to this, RExcel uses COM, which has a
very low latency (and hence is very fast). Ad-
ditionally, the architecture of RExcel supports
a completely invisible R server process (which
is what we need for deploying the application),
or can provide access to the R window while
developing/testing.

inference for R provides similar functionality as
RExcel. From the website, the latest supported
R version is 2.9.1, while RExcel supports current
R versions immediately after release (typically
new versions work right out of the box without
an update in RExcel or statconnDCOM).

Integrating R and Microsoft Excel

Work on integration of Excel and R is ongoing since
1998. Since 2001, a stable environment is available
for building Excel documents based upon statistical
methods implemented in R. This environment con-
sists of plain R (for Windows) and a toolbox called
statconnDCOM with its full integration with Excel
using RExcel (which is implemented as an add-in for
Microsoft Excel).

Like all Microsoft Office applications and some
third-party applications, Excel provides a powerful

scripting engine combined with a highly productive
visual development environment. This environment
is called Visual Basic for Applications, or VBA for
short (see Microsoft Corporation (2001)). VBA allows
creation of “worksheet-functions” (also called user
defined functions or UDFs), which can be used in
a similar way as Excel’s built-in functions (like, e.g.,
“SUM” or “MEAN”) to dynamically compute values to be
shown in spreadsheet cells, and Subs which allow ar-
bitrary computations, putting results into spreadsheet
ranges. VBA code can be bundled as an “Add-In” for
Microsoft Excel which provides an extension both in
the user interface (e.g., new menus or dialogs) and
in functionality (additional sheet-functions similar to
the built-in sheet functions).

Extensions written in VBA can access third-party
components compatible with Microsoft’s Component
Object Model (COM, see Microsoft Corporation and
Digital Equipment Corporation (1995)). The link be-
tween R and Excel is built on top of two components:
RExcel is an Add-In for Microsoft Excel implement-
ing a spreadsheet-style interface to R and statconn-
DCOM. statconnDCOM exposes a COM component
to any Windows application which encapsulates R’s
functionality in an easy-to-use way.

statconnDCOM is built on an extensible design
with exchangeable front-end and back-end parts. In
the context of this article, the back-end is R. A back-
end implementation for Scilab (INRIA (1989)) is also
available. The front-end component is the COM in-
terface implemented by statconnDCOM. This imple-
mentation is used to integrate R or Scilab into Win-
dows applications. A first version of an Uno (OpenOf-
fice.org (2009)) front-end has already been released
for testing and download. Using this front-end R and

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 7

Scilab can easily be integrated into OpenOffice.org
applications, like Calc (see OpenOffice.org (2006)).
ROOo is available via Drexel (2009) and already sup-
ports Windows, Linux and MacOS X.

RExcel supports various user interaction modes:

Scratchpad and data transfer mode: Menus control
data transfer from R to Excel and back; com-
mands can be executed immediately, either from
Excel cells or from R command line

Macro mode: Macros, invisible to the user, control
data transfer and R command execution

Spreadsheet mode: Formulas in Excel cells control
data transfer and command execution, auto-
matic recalculation is controlled by Excel

Throughout the rest of this article, we will describe
how to use scratchpad mode and macro mode for proto-
typing and implementing the application.

For more information on RExcel and statconn-
DCOM see Baier and Neuwirth (2007).

Implementing the classification
and regression tree

With RExcel’s tool set we can start developing our ap-
plication in Excel immediately. RExcel has a “scratch-
pad” mode which allows you to write R code directly
into a worksheet and to run it from there. Scratchpad
mode is the user interaction mode we use when pro-
totyping the application. We will then transform the
prototypical code into a “real” application. In prac-
tice, the prototyping phase in scratchpad mode will
be omitted for simple applications. In an Excel hosted
R application we also want to transfer data between
Excel and R, and transfer commands may be embed-
ded in R code. An extremely simplistic example of
code in an R code scratchpad range in Excel might
look like this:

#!rput inval 'Sheet1'!A1
result<-sin(inval)
#!rget result 'Sheet1'!A2

R code is run simply by selecting the range con-
taining code and choosing Run R Code from the pop-
up menu.

Lines starting with #! are treated as special RExcel
commands. rput will send the value (contents) of a
cell or range to R, rget will read a value from R and
store it into a cell or range.

In the example, the value stored in cell A1 of sheet
Sheet1 will be stored in the R variable inval. After
evaluating the R expression result<-sin(inval), the
value of the R variable result is stored in cell A2.

Table 1 lists all special RExcel commands and pro-
vides a short description. More information can be
found in the documentation of RExcel.

In the example below, we have a dataset on the
credit approval process for 690 subjects. For each
record, we have 15 input variables (qualitative and
quantitative) while variable 16 indicates the outcome
of the credit application: positive (+) or negative (−).
Based on this training dataset, we develop our classi-
fication tree which is used to show the influence of 15
variables on the loan application and to distinguish
“good” applicants from “risky” applicants (so as to
estimate variable 16). The risk manager will use this
model fully integrated into Excel for further credit
approval process.

The goal of the code snippet below is to estimate
the model and display the chart with the classification
tree. The risk manager can easily view the binary tree
and use this chart to highlight the splits. This will help
discover the most significant variables for the credit
approval process. For example, in this case it is clear
that the predictor variables V9 determines the best
binary partition in terms of minimizing the “impurity
measure”. In addition, the risk manager will notice
that when V9 equals a, the only significant variable
to observe is V4. The graphical representation of the
classification tree is shown in Figure 3 on page 8.

library(rpart)
#!rputdataframe trainingdata \

'database'!A1:P691
fit<-rpart(V16~.,data=trainingdata)
plot(fit,branch=0.1,uniform=T,margin=.1, \

compress=T,nspace=0.1)
text(fit,fancy=T,use.n=T)
#!insertcurrentrplot 'database'!T10
graphics.off()

Note: \ in the code denotes a line break for readabil-
ity and should not be used in the real spread-
sheet

After estimating the model andvisualizing the re-
sults, you can use the Classification Tree to make pre-
dictions about the variable V16: the applicants will
be classified as “good” or “risky.” By running the
following code, the 15 observed variables for two
people are used to estimate the probability of credit
approval. Generally, a “positive” value (+) with prob-
ability higher than 0.5 will indicate to grant the loan.
So the risk manager using this model will decide to
grant the credit in both cases.

library(rpart)
#!rputdataframe trainingdata \

'database'!A1:P691
#!rputdataframe newcases \

'predict'!A1:O3
outdf<-as.data.frame(predict(fit,newcases))
predGroup <- ifelse(outdf[,1]>0.5, \

names(outdf[1]),names(outdf[2]))
res<-cbind(predGroup,outdf)
#!rgetdataframe res 'predict'!R1

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

8 CONTRIBUTED RESEARCH ARTICLES

Command Description

#!rput variable range store the value (contents) of a range in an R variable
#!rputdataframe variable range store the value of a range in an R data frame
#!rputpivottable variable range store the value of a range in an R variable
#!rget r-expression range store the value of the R expression in the range
#!rgetdataframe r-expression range store the data frame value of the R expression in the range
#!insertcurrentplot cell-address insert the active plot into the worksheet

Table 1: Special RExcel commands used in sheets

Figure 3: Graphical representation of the classification tree in the RExcel based application.

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 9

The potential of this approach is obvious: Very
complex models, such as classification and regression
trees, are made available to decision makers (in this
case, the risk manager) directly in Microsoft Excel.
See Figure 2 on page 6 for a screen-shot of the presen-
tation of the results.

Tidying up the spreadsheet

In an application to be deployed to end users, R code
should not be visible to the users. Excel’s mechanism
for performing operations on data is to run macros
written in VBA (Visual Basic for Applications, the
programming language embedded in Excel). RExcel
implements a few functions and subroutines which
can be used from VBA. Here is a minimalistic exam-
ple:

Sub RExcelDemo()
RInterface.StartRServer
RInterface.GetRApply "sin", _

Range("A2"), Range("A1")
RInterface.StopRServer

End Sub

GetRApply applies an R function to arguments
taken from Excel ranges and puts the result in a range.
These arguments can be scalars, vectors, matrices or
dataframes. In the above example, the function sin is
applied to the value from cell A1 and the result is put
in cell A2. The R function given as the first argument
to GetRApply does not necessarily have to be a named
function, any function expression can be used.

RExcel has several other functions that may
be called in VBA macros. RRun runs any code
given as string. RPut and RGet transfer matri-
ces, and RPutDataframe and RGetDataframe transfer
dataframes. RunRCall similar to GetRApply calls an
R function but does not transfer any return value to
Excel. A typical use of RunRCall is for calling plot
functions in R. InsertCurrentRPlot embeds the cur-
rent R plot into Excel as an image embedded in a
worksheet.

In many cases, we need to define one or more
R functions to be used with GetRApply or the other
VBA support functions and subroutines. RExcel has
a mechanism for that. When RExcel connects to R (us-
ing the command RInterface.StartRServer), it will check
whether the directory containing the active workbook
also contains a file named RExcelStart.R. If it finds
such a file, it will read its contents and evaluate them
with R (source command in R). After doing this, REx-
cel will check if the active workbook contains a work-
sheet named RCode. If such a worksheet exists, its
contents also will be read and evaluated using R.

Some notes on handling R errors in Excel: The R im-
plementation should check for all errors which are
expected to occur in the application. The application
itself is required to pass correctly typed arguments

when invoking an R/ function. If RExcel calls a func-
tion in R and R throws an error, an Excel dialog box
will pop up informing the user of the error. An alterna-
tive to extensive checking is to use R’s try mechanism
to catch errors in R and handle them appropriately.

Using these tools, we now can define a macro per-
forming the actions our scratchpad code did in the
previous section. Since we can define auxiliary fun-
cions easily, we can also now make our design more
modular.

The workhorse of our application is the following
VBA macro:

Sub PredictApp()
Dim outRange As Range
ActiveWorkbook.Worksheets("predict") _
.Activate

If Err.Number <> 0 Then
MsgBox "This workbook does not " _
& "contain data for rpartDemo"

Exit Sub
End If
ClearOutput
RInterface.StartRServer
RInterface.RunRCodeFromRange _
ThisWorkbook.Worksheets("RCode") _
.UsedRange

RInterface.GetRApply _
"function(" _
& "trainingdata,groupvarname," _
& "newdata)predictResult(fitApp("_
& "trainingdata,groupvarname)," _
& "newdata)", _

ActiveWorkbook.Worksheets(_
"predict").Range("R1"), _

AsSimpleDF(DownRightFrom(_
ThisWorkbook.Worksheets(_
"database").Range("A1"))), _

"V16", _
AsSimpleDF(ActiveWorkbook _
.Worksheets("predict").Range(_
"A1").CurrentRegion)

RInterface.StopRServer
Set outRange = ActiveWorkbook _
.Worksheets("predict").Range("R1") _
.CurrentRegion

HighLight outRange
End Sub

The function predictResult is defined in the
worksheet RCode.

Packaging the application

So far, both our code (the R commands) and data have
been part of the same spreadsheet. This may be conve-
nient while developing the RExcel-based application

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

10 CONTRIBUTED RESEARCH ARTICLES

or if you are only using the application for yourself,
but it has to be changed for redistribution to a wider
audience.

We will show how to divide the application into
two parts, the first being the Excel part, the second
being the R part. With a clear interface between these,
it will be easy to update one of them without affecting
the other. This will make testing and updating easier.
Separating the R implementation from the Excel (or
RExcel) implementation will also allow an R expert
to work on the R part and an Excel expert to work on
the Excel part.

As an additional benefit, exchanging the Excel
front-end with a custom application (e.g., written in a
programming language like C#) will be easier, too, as
the R implementation will not have to be changed (or
tested) in this case.

The application’s R code interface is simple, yet
powerful. RExcel will only have to call a single R
function called approval. Everything else is hidden
from the user (including the training data). approval
takes a data frame with the data for the cases to be
decided upon as input and returns a data frame con-
taining the group classification and the probabilities
for all possible groups. Of course, the return value
can also be shown in a figure.

Creating an R package

The macro-based application built in section “Tidy-
ing up the spreadsheet” still contains the R code and
the training data. We will now separate the imple-
mentation of the methodology and the user interface
by putting all our R functions and the training data
into an R package. This R package will only expose a
single function which gets data for the new cases as
input and returns the predicted group membership as
result. Using this approach, our application now has
a clear architecture. The end user workbook contains
the following macro:

Sub PredictApp()
Dim outRange As Range
ClearOutput
RInterface.StartRServer

RInterface.RRun "library(RExcelrpart)"
RInterface.GetRApply "approval", _

Range("'predict'!R1"), _
AsSimpleDF(Range("predict!A1") _
.CurrentRegion)

RInterface.StopRServer
Set outRange = Range("predict!R1") _

.CurrentRegion
HighLight outRange

End Sub

In this macro, we start a connection to R, load the
R package and call the function provided by this pack-

age and then immediately close the the connection to
R.

The statconnDCOM server can reside on another
machine than the one where the Excel application
is running. The server to be used by RExcel can be
configured in a configuration dialog or even from
within VBA macros. So with minimal changes, the
application created can be turned into an application
which uses a remote server. A further advantage of
this approach is that the R functions and data used
by the application can be managed centrally on one
server. If any changes or updates are necessary, the
Excel workbooks installed on the end users’ machines
do not need to be changed.

Building a VBA add-in for Excel

The implementation using an R package still has some
shortcomings. The end user Excel workbook contains
macros, and often IT security policies do to not allow
end user workbooks to contain any executable code
(macros). Choosing a slightly different approach, we
can put all the VBA macro code in an Excel add-in. In
the end user workbook, we just place buttons which
trigger the macros from the add-in. When opening a
new spreadsheet to be used with this add-in, Excel’s
template mechanism can be used to create the buttons
on the new worksheet. The code from the workbook
described in section “Tidying up the spreadsheet” can-
not be used “as is” since it is written under the as-
sumption that both the training data and the data for
the new cases are contained in the same workbook.
The necessary changes, however, are minimal. Con-
verting the workbook from section “Tidying up the
spreadsheet” again poses the problem that the data
and the methodology are now deployed on the end
users’ machines. Therefore updating implies replac-
ing the add-in on all these machines. Combining the
add-in approach with the packaging approach from
section “Creating an R package” increases modular-
ization. With this approach we have:

• End user workbooks without any macro code.

• Methodology and base data residing on a cen-
trally maintained server.

• Connection technology for end users installed
for all users in one place, not separately for each
user.

Deploying the Application

Using the application on a computer requires installa-
tion and configuration of various components.

The required (major) components are:

• Microsoft Excel, including RExcel and statconn-
DCOM

• R, including rscproxy

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 11

• The VBA Add-In and the R package created
throughout this article

For the simplest setup, all compontents are in-
stalled locally. As an alternative, you can also install
Excel, RExcel and our newly built VBA Add-In on
every workstation locally and install everything else
on a (centralized) server machine. In this case, R,
rscproxy, our application’s R package and statconn-
DCOM are installed on the server machine and one
has to configure RExcel to use R via statconnDCOM
on a remote server machine. Please beware that this
kind of setup can be a bit tricky, as it requires a cor-
rect DCOM security setup (using the Windows tool
dcomcnfg).

Downloading

All examples are available for download from the
Download page on http://rcom.univie.ac.at.

Bibliography

E. I. Altman. Bankruptcy, Credit Risk, and High Yield
Junk Bonds. Blackwell Publishers Inc., 2002.

T. Baier. rcom: R COM Client Interface and internal
COM Server, 2007. R package version 1.5-1.

T. Baier and E. Neuwirth. R (D)COM Server V2.00,
2005. URL http://cran.r-project.org/other/
DCOM.

T. Baier and E. Neuwirth. Excel :: COM :: R. Com-
putational Statistics, 22(1):91–108, April 2007.
URL http://www.springerlink.com/content/
uv6667814108258m/.

Basel Committee on Banking Supervision. Interna-
tional Convergence of Capital Measurement and
Capital Standards. Technical report, Bank for In-
ternational Settlements, June 2006. URL http:
//www.bis.org/publ/bcbs128.pdf.

L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA, 1984.

J. M. Chambers. Programming with Data. Springer,
New York, 1998. URL http://cm.bell-labs.
com/cm/ms/departments/sia/Sbook/. ISBN 0-387-
98503-4.

R. Drexel. ROOo, 2009. URL http://rcom.univie.ac.
at/.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and
Prediction. Springer, 2009.

INRIA. Scilab. INRIA ENPC, 1989. URL http:
//www.scilab.org.

B. D. McCullough and B. Wilson. On the accuracy of
statistical procedures in Microsoft Excel 2000 and
Excel XP. Computational Statistics and Data Analysis,
40:713–721, 2002.

Microsoft Corporation. Microsoft Office 2000/Vi-
sual Basic Programmer’s Guide. In MSDN Li-
brary, volume Office 2000 Documentation. Mi-
crosoft Corporation, October 2001. URL http:
//msdn.microsoft.com/.

Microsoft Corporation and Digital Equipment Corpo-
ration. The component object model specification.
Technical Report 0.9, Microsoft Corporation, Octo-
ber 1995. Draft.

OpenOffice.org. OpenOffice, 2006. URL http://www.
openoffice.org/.

OpenOffice.org. Uno, 2009. URL http://wiki.
services.openoffice.org/wiki/Uno/.

H. Zhang and B. Singer. Recursive Partitioning in the
Health Sciences. Springer-Verlag, New York, 1999.
ISBN 0-387-98671-5.

Thomas Baier
Department of Scientific Computing
Universitity of Vienna
1010 Vienna
Austria
thomas.baier@univie.ac.at

Erich Neuwirth
Department of Scientific Computing
Universitity of Vienna
1010 Vienna
Austria
erich.neuwirth@univie.ac.at

Michele De Meo
Venere Net Spa
Via della Camilluccia, 693
00135 Roma
Italy
micheledemeo@gmail.com

The R Journal Vol. 3/2, December 2011 ISSN 2073-4859

http://rcom.univie.ac.at
http://cran.r-project.org/other/DCOM
http://cran.r-project.org/other/DCOM
http://www.springerlink.com/content/uv6667814108258m/
http://www.springerlink.com/content/uv6667814108258m/
http://www.bis.org/publ/bcbs128.pdf
http://www.bis.org/publ/bcbs128.pdf
http://cm.bell-labs.com/cm/ms/departments/sia/Sbook/
http://cm.bell-labs.com/cm/ms/departments/sia/Sbook/
http://rcom.univie.ac.at/
http://rcom.univie.ac.at/
http://www.scilab.org
http://www.scilab.org
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://www.openoffice.org/
http://www.openoffice.org/
http://wiki.services.openoffice.org/wiki/Uno/
http://wiki.services.openoffice.org/wiki/Uno/
mailto:thomas.baier@univie.ac.at
mailto:erich.neuwirth@univie.ac.at
mailto:micheledemeo@gmail.com

