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EMD: A Package for Empirical Mode
Decomposition and Hilbert Spectrum

by Donghoh Kim and Hee-Seok Oh

Introduction

The concept of empirical mode decomposition
(EMD) and the Hilbert spectrum (HS) has been de-
veloped rapidly in many disciplines of science and
engineering since Huang et al. (1998) invented EMD.
The key feature of EMD is to decompose a signal
into so-called intrinsic mode function (IMF). Further-
more, the Hilbert spectral analysis of intrinsic mode
functions provides frequency information evolving
with time and quantifies the amount of variation due
to oscillation at different time scales and time loca-
tions. In this article, we introduce an R package
called EMD (Kim and Oh, 2008) that performs one-
and two- dimensional EMD and HS.

Intrinsic mode function

The essential step extracting an IMF is to iden-
tify an oscillation embedded in a signal from local
time scale. Consider the following synthetic signal
x(t),0 <t <9 of the form

x(t) = 0.5t + sin(7tt) + sin(27tt) + sin(67tt). (1)

The signal in Figure 1 consists of several com-
ponents, which are generated through the process
that a component is superimposed to each other.

Figure 1: A sinusoidal function having 4 components

An intrinsic oscillation or frequency of a compo-
nent, for example, sin(7tt),t € (0,9) in Figure 1 can
be perceived through the red solid wave or the blue
dotted wave in Figure 2. The blue dotted wave in
Figure 2 illustrates one cycle of intrinsic oscillation
which starts at a local maximum and terminates at
a consecutive local maximum by passing through
two zeros and a local minimum which eventually
appears between two consecutive maxima. A com-
ponent for a given time scale can be regarded as the
composition of repeated intrinsic oscillation which is
symmetric to its local mean, zero.
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Figure 2: A sinusoidal function

Thus the first step to define intrinsic oscillation
is to detect local extrema or zero-crossings. The
function ext rema () identifies local extrema and zero-
crossings of the signal in Figure 2.

> ### Identify extrema and zero-crossings
> ndata <- 3000

> tt <- seq(0, 9, length=ndata)

> xt <= sin(pi * tt)
>
>
>

library (EMD)
extrema (xt)
Sminindex
(11 [,2]
[1,] 501 501
[2,] 1167 1167
[3,] 1834 1834
[4,]1 2500 2500
Smaxindex
[,11 [,2]
[1,] 168 168
[2,] 834 834
[3,] 1500 1501
[4,]1 2167 2167
[5,] 2833 2833
Snextreme
[1]1 9
Scross
[,11 [,2]
[1,1 1 1
[2,] 334 335
[3,] 667 668
[4,] 1000 1001
[5,] 1333 1334
[6,] 1667 1668
[7,1 2000 2001
[8,] 2333 2334
[9,] 2666 2667
S$ncross
[1] 9

The function extrema () returns a list of follow-
ings.
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¢ nminindex : matrix of time index at which local
minima are attained. Each row specifies a start-
ing and ending time index of a local minimum.

® maxindex : matrix of time index at which local
maxima are attained. Each row specifies a start-
ing and ending time index of a local maximum.

® nextreme : the number of extrema.

® cross : matrix of time index of zero-crossings.
Each row specifies a starting and ending time
index of zero-crossings.

® ncross : the number of zero-crossings.

Once local extrema is obtained, the intrinsic mode
function is derived through the sifting procedure.

Sifting process

Huang et al. (1998) suggested a data-adapted algo-
rithm extracting a sinusoidal wave or equivalently a
frequency from a given signal x. First, identify the lo-
cal extrema in Figure 3(a), and generate the two func-
tions called the upper envelope and lower envelope
by interpolating local maxima and local minima, re-
spectively. See Figure 3(b). Second, take their aver-
age, which will produce a lower frequency compo-
nent than the original signal as in Figure 3(c). Third,
by subtracting the envelope mean from the signal x,
the highly oscillated pattern & is separated as in Fig-
ure 3(d).

Huang et al. (1998) defined an oscillating wave
as an intrinsic mode function if it satisfies two con-
ditions 1) the number of extrema and the num-
ber of zero-crossings differs only by one and 2)
the local average is zero. If the conditions of
IMF are not satisfied after one iteration of afore-
mentioned procedure, the same procedure is ap-
plied to the residue signal as in Figure 3(d),
(e) and (f) untll properties of IMF are satisfied.
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Figure 3: Sifting procedure
This iterative process is called sifting. The fol-

lowing code produces Figure 3, and the function
extractimf () implements the sifting algorithm by
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identifying the local extrema with the extrema().
Note that when setting the option ‘check=TRUE’, one
must click the plot to proceed to the next step.

##4 Generating a signal

ndata <- 3000

par (mfrow=c(1l,1), mar=c(1,1,1,1)

tt2 <- seq(0, 9, length=ndata)

xt2 <= sin(pi * tt2) + sin(2* pi * tt2) +
sin(6 * pi * tt2) + 0.5 * tt2
plot (tt2, xt2, xlab="", ylab="",
axes=FALSE); box()

type:"l",

### Extracting the first IMF by sifting process
tryimf <- extractimf (xt2, tt2, check=TRUE)

V V.V + V + V V V V V

The function extractimf () extracts IMF’s from a
given signal, and it is controlled by the following ar-
guments.

® residue :
time tt.

observation or signal observed at

¢ tt: observation index or time index.

* tol: tolerance for stopping rule.

* max.sift : the maximum number of sifting.
* stoprule : stopping rule.

* boundary : specifies boundary condition.

* check : specifies whether the sifting process is
displayed. If check=TRUE, click the plotting area
to start the next step.

Stopping rule

The sifting process stops when the replication of
sifting procedure exceed the predefined maximum
number by max.sift or satisfies the properties of
IMF by stopping rule. The stopping rule stoprule
has two options — "typel" and "type2". The option
stoprule = "typel" makes the sifting process stop
when the absolute values of the candidate IMF h; are
smaller than tolerance level, that is, |h;(t)| < tol for
all . Or by the option stoprule = "type2", the sift-
ing process stops when the variation of consecutive
candidate IMF’s is within the tolerance level,

hi(t) = hisa (B
Z( hifl(t)l )<t01'

t

Boundary adjustment

To eliminate the boundary effect of a signal, it is nec-
essary to adjust a signal at the boundary. Huang et
al. (1998) extended the original signal by adding arti-
ficial waves repeatedly on both sides of the bound-
aries. The waves called characteristic waves are
constructed by repeating the implicit mode formed
from extreme values nearest to boundary. The argu-
ment boundary specifies the adjusting method of the
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boundary. The argument boundary = "wave" con-
structs a wave which is defined by two consecutive
extrema at either boundary, and adds four waves at
either end. Typical adjusting method extends a sig-
nal assuming that a signal is symmetric or periodic.
The option boundary = "symmetric" or boundary =
"periodic" extends both boundaries symmetrically
or periodically.

Zeng and He (2004) considered two extended sig-
nals by adding a signal in a symmetric way and re-
flexive way called even extension and odd exten-
sion, respectively. Even extension and odd exten-
sion produce the extended signals so that its aver-
age is zero. This boundary condition can be specified
by boundary = "evenodd". For each extended signal,
upper and lower envelopes are constructed and en-
velope mean of the extended signals is defined by the
average of four envelopes. Then, the envelope mean
outside the time scale of the original signal is close to
zero, while the envelope mean within the time scale
of the original signal is almost the same as the enve-
lope mean of the original signal. On the other hand,
the option boundary = "none" performs no bound-
ary adjustments.

Empirical mode decomposition

Once the highest frequency is removed from a sig-
nal, the same procedure is applied on the residue sig-
nal to identify next highest frequency. The residue is
considered a new signal to decompose.

Suppose that we have a signal from model (1).
The signal in Figure 1 is composed of 4 compo-
nents from sin(67tt) with the highest frequency to
0.5t with the lowest frequency. We may regard the
linear component as a component having the low-
est frequency. The left panel in Figure 4 illustrates
the first IMF and the residue signal obtained by the
function extractimf (). If the remaining signal is
still compound of components with several frequen-
cies as in the left panel in Figure 4, then the next
IMF is obtained by taking the residue signal as a
new signal in the right panel in Figure 4. The num-
ber of extrema will decrease as the procedure contin-
ues, so that the signal is sequently decomposed into
the highest frequency component imf; to the low-
est frequency component im f,;, for some finite n and
a residue signal r. Finally, we have n IMF’s and a
residue signal as

X(t) = éimfi(t) ().
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Signal = 1-5UIMF + 1-st residue

Figure 4: Two IMF’s by the sifting algorithm

The above-mentioned decomposition process is
implemented by the function emd () that utilizes the
functions extractimf () and extrema(). The final
decomposition result by the following code is illus-
trated in Figure 5.

### Empirical Mode Decomposition
par (mfrow=c(3,1), mar=c(2,1,2,1)
try <- emd(xt2, tt2, boundary="wave")

### Ploting the IMF's

par (mfrow=c(3,1), mar=c(2,1,2,1)

par (mfrow=c (try$nimf+l, 1), mar=c(2,1,2,1)
rangeimf <- range (try$imf)

for(i in l:try$nimf)

plot (tt2, try$imf[,i], type="1", xlab="",
ylab="", ylim=rangeimf, main=

paste(i, "-th IMF", sep="")); abline (h=0)
plot (tt2, trySresidue, xlab="", ylab="",
main="residue", type="1")

+ VvV + + + V. V V V V V V V V

L-stME

Figure 5: Decomposition of a signal by model (1)

The arguments of emd () are similar to those of
extractimf (). The additional arguments are

® max.imf : the maximum number of IMF’s.

® plot.imf : specifies whether each IMF is dis-
played. If plot.imf=TRUE, click the plotting
area to start the next step.

Up to now we have focused on artificial signals
without any measurement error. A typical signal in
the real world is corrupted by noise, which is not the
component of interest and contains no interpretable
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information. A remedy to smooth out the noise is
to apply smoothing technique not interpolation dur-
ing the sifting process. Then the first IMF might
capture the entire noise effectively. As an alterna-
tive, Kim and Oh (Kim and Oh, 2006) proposed an
efficient smoothing method for IMF’s by combining
the conventional cross-validation and thresholding
approach. By thresholding, noisy signal can be de-
noised while the distinct localized feature of a signal
can be kept.

Intermittence

Huang et al. (1998, 2003) pointed out that intermit-
tence raises mode mixing, which means that different
modes of oscillations coexist in a single IMF. Since
EMD traces the highest frequency embedded in a
given signal locally, when intermittence occurs, the
shape of resulting IMF is abruptly changed and this
effect distorts procedures thereafter.

Huang et al. (2003) attacked this phenomenon by
restricting the size of frequency. To be specific, the
distance limit of the successive maxima (minima) in
an IMF is introduced. Thus, IMF composes of only si-
nusoidal waves whose length of successive maxima
(minima) are shorter than their limit. Equivalently,
we may employ the length of the zero-crossings to
overcome the intermittence problem. Consider a sig-
nal x(t) combined by two sine curves (Deering and
Kaiser, 2005),

x(¥)

_ [sin(2rfit) +sin(27fot), 45 <t< A, )
- sin(27tf1t), otherwise.

Figure 6 illustrates the signal x(t) when f; = 1776
and f, = 1000 and the corresponding two IMF’s. The
first IMF absorbs the component that appeared in the
second IMF between 55 and 2. Thus, the resulting
IMF has a mode mixing pattern.

> ### Mode mixing

> tt <- seq(0, 0.1, length = 2001)[1:2000]

> f1 <= 1776; f2 <= 1000

> xt <= sin(2*pi*fl*tt) * (tt <= 0.033 |

+ tt >= 0.067) + sin(2*pi*f2*tt)

>

> ### EMD

> interml <- emd(xt, tt, boundary="wave",

+ max.imf=2, plot.imf=FALSE)

> par (mfrow=c (3, 1), mar=c(3,2,2,1)

> plot (tt, xt, main="Signal", type="1")

> rangeimf <- range (interml$imf)

> plot (tt, interml$imf[,1], type="1", xlab="",
+ ylab="", ylim=rangeimf, main="IMF 1")

> plot (tt, interml$imf[,2], type="1", xlab="",
+ ylab="", ylim=rangeimf, main="IMF 2")
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Figure 6: Signal x(t) by model (2) and first two IMF’s

By following the approach of Huang et al. (1998,
2003), we can remove waves whose empirical period
represented by the distance of other zero-crossings
is larger than 0.0007 in the first IMF. The period in-
formation obtained by histogram in Figure 7 can be
used to choose an appropriate distance. We eliminate
the waves with lower frequency in the first IMF with
the histogram of other zero-crossings.

> ### Histogram of empirical period

> par (mfrow=c(1l,1), mar=c(2,4,1,1)

> tmpinterm <- extrema(interml$imf[,1])

> Zerocross <-

+ as.numeric(round (apply (tmpinterm$cross, 1, mean)))
> hist (diff (tt[zerocross([seq(l, length(zerocross),

+ by=2)1]), freg=FALSE, xlab="", main="")

Density
1000 2000 3000 4000

]

T T T T T T T 1
0.0004  0.0005 0.0006 0.0007 0.0008 0.0009 0.0010 0.0011

0

Figure 7: Histogram of the empirical period

Figure 8 shows the resulting IMF’s after treating
intermittence properly. The argument interm of the
function emd () specifies a vector of periods to be ex-
cluded from the IMF’s.

### Treating intermittence
interm2 <- emd(xt, tt, boundary="wave",
max.imf=2, plot.imf=FALSE, interm=0.0007)

### Plot of each imf

par (mfrow=c(2,1), mar=c(2,2,3,1), oma=c(0,0,0,0)
rangeimf <- range (interm2$imf)

plot (tt,interm2$imf [, 1], type="1",

main="IMF 1 after treating intermittence",
xlab="", ylab="", ylim=rangeimf)

plot (tt,interm2$imf[,2], type="1",

main="IMF 2 after treating intermittence",
xlab="", ylab="",

+ + vV + + V. V V. V V + V V

ylim=rangeimf)
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IMF 1 after treating intermittence

-1.0 00 1.0
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IMF 2 after treating intermittence
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0.00 0.02 0.04 0.06 0.08 0.10

Figure 8: Decomposition of signal x(¢) by model (2)
after treating the intermittence.

Hilbert spectrum

When a signal is subject to non-stationarity so that
the frequency and amplitude change over time, it is
necessary to have a more flexible and extended no-
tion of frequency. Huang et al. (1998) used the con-
cept of instantaneous frequency through the Hilbert
transform. For a comprehensive explanation of the
Hilbert transform, refer to Cohen (1995). For a real
signal x(f), the analytic signal z(t) is defined as
z(t) = x(t) + 1 y(t) where y(t) is the Hilbert trans-
form of x(t), that is, y(t) = %Pffooo% ds where
P is the Cauchy principal value. The polar coor-
dinate form of the analytic signal z with amplitude
and phase is z(t) = a(t) exp(i0(t)) where amplitude
a(t) is [z(t)]| = /x(t)? + y(t)? and phase 6(t) is
arctan (%) The instantaneous frequency as time-
varying phase is defined as %(tt). After decompos-
ing a signal into IMF’s with EMD thereby preserving
any local property in the time domain, we can ex-
tract localized information in the frequency domain
with the Hilbert transform and identify hidden lo-
cal structures embedded in the original signal. The
local information can be described by the Hilbert
spectrum which is amplitude and instantaneous fre-
quency representation with respect to time. Figure 9
describes the Hilbert spectrum for IMF 1 of the sig-
nal of model (2) before and after treating the inter-
mittence. The X-Y axis represents time and instanta-
neous frequency, and the color intensity of the image

depicts instantaneous amplitude.

### Spectrogram : X - Time, Y - frequency,
### 2 (Image) - Amplitude

testl <- hilbertspec (interml$imf)
spectrogram(testl$amplitude(, 1],
testlS$instantfreq[, 1]

test2 <- hilbertspec (interm2$imf, tt=tt)
spectrogram(test2$amplitude(, 1],
test2S$instantfreq(, 1]

+ V V + V V V V
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Figure 9: The Hilbert spectrum for IMF 1 of the signal
of model (2)

For multiple signals, the function hilbertspec ()
calculates the amplitudes and instantaneous fre-
quency using Hilbert transform. The function has the
following arguments,

* xt : matrix of multiple signals. Each column
represents a signal.

e tt: observation index or time index.

The function hilbertspec () returns a matrix of am-
plitudes and instantaneous frequencies for multiple
signals. The function spectrogram() produces an
image of amplitude by time index and instantaneous
frequency. The horizontal axis represents time, the
vertical axis is instantaneous frequency, and the color
of each point in the image represents amplitude of a
particular frequency at a particular time. It has argu-
ments as

* amplitude : vector or matrix of amplitudes for
multiple signals.

® freq : vector or matrix of instantaneous fre-
quencies for multiple signals.

e tt: observation index or time index.

* multi: specifies whether spectrograms of mul-
tiple signals are separated or not.

* nlevel : the number of color levels used in leg-
end strip

* size: vector of image size.

Extension to two dimensional im-
age

The extension of EMD to an image or two dimen-
sional data is straightforward except the identifica-
tion of the local extrema. Once the local extrema
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are identified, the two dimensional smoothing spline
technique is used for the sifting procedure.

For the two-dimensional case, we provide four R
functions.

(1) extrema2dC() for identifying the two dimen-
sional extrema,

(2) extractimf2d() for extracting the IMF from a
given image,

(3) emd2d() for decomposing an image to IMF’s
and the residue image combining two R func-
tions above, and

(4) imageEMD () for displaying the decomposition
results.

As in a one-dimensional case, extractimf2d()
extracts two dimensional IMF’s from a given image
based on local extrema identified by extrema2dC ().
Combining these functions, emd2d() performs de-
composition and its arguments are as follows.

* z:matrix of an image observed at (x, y).

® x, y:locations of regular grid at which the val-
ues in z are measured.

* tol: tolerance for stopping rule of sifting.
® max.sift : the maximum number of sifting.

* boundary : specifies boundary condition ‘sym-
metric’, ‘reflexive” or ‘none’.

* boundperc : expand an image by adding speci-
fied percentage of image at the boundary when
boundary condition is ‘symmetric’ or ‘reflex-

7

ive’.
® max.inmf : the maximum number of IMF.

® plot.imf : specifies whether each IMF is dis-
played. If plot.imf=TRUE, click the plotting
area to start the next step.

The following R code performs two dimensional
EMD of the Lena image. The size of the original im-
age is reduced for computational simplicity.

> data(lena)
> z <= lenal[seq(l, 512, by=4), seq(l, 512, by=4)]
> lenadecom <- emd2d(z, max.imf = 4)

The R function imageEMD () plots decomposition
results and the argument extrma=TRUE illustrates the
local maxima (minima) with the white (black) color
and grey background. See Figure 10.

> imageEMD (z=z, emdz=lenadecom, extrema=TRUE,
+ col=gray(0:100/100))
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residue

Image

extrema 2
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imfd extrema 4

Figure 10: Decomposition of the Lena image

Conclusions

IMF’s through EMD provide a multi-resolution tool
and spectral analysis gives local information with
time-varying amplitude and phase according to the
scales. We introduce EMD, an R package for the
proper implementation of EMD, and the Hilbert
spectral analysis for non-stationary signals. It is ex-
pected that R package EMD makes EMD methodol-
ogy practical for many statistical applications.
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